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In this talk...

o Zero-knowledge proofs (of knowledge)
— Understand and use their security guarantees

e A taste for how they are designed and analysed

— Provably secure composition
— Random Oracle Model

e [Ks 22] Uncover a gap in the literature that was glossed over as
folklore—turns out to permit a new kind of attack
Briefly discussion on how we fix it



Quick Disclaimer

e What will be covered:

Intuitive abstract idea of how to construct composition-safe ZK,
how our attack works

e What won’t be touched:
Formalism of definitions, concrete instantiations, efficiency

(this is to help understanding, not to hand-wave; please ask if
something is unclear!)



Composable
Non-interactive

Zero-knowledge Proofs
in the Random Oracle Model



Zero-knowledge Proots

e Very powertul cryptographic primitive, introduced by
|Goldwasser Micali Rackofl 85]

e Intuition: Prover convinces a Verifier of a statement, without
revealing “why” it’s true.

- Prover typically needs to use some secret information

- Verifier obtains no useful information about Prover’s secrets
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Why is Ext special?

e Clearly, Ext must not be an algorithm that just anybody can run
e Ext has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningtful as a security claim

e« We will look at a certain type of ZK proof to build intuition
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Straight-line Extraction

e What special privileges can we grant Ext that compose
nicely?

e One option is a "Common Reference String”
- i.e. system parameter for which Ext has a backdoor

- Well studied, theoretically sound

- Unsatisfying in practice; trusted generator needed
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Random Oracle Model

e Began as a heuristic to analyze protocols that use
cryptographic hash functions

e Developed as a methodology to design efficient protocols
with meaningful provable guarantees

e Intuition:

- Cryptographic hashes are complex and highly unstructured

- Unless you evaluate H(x) from scratch, it looks random
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Random Oracles as Ext Privilege
e Bob "knows” all of the {Q.} values queried to H
e Ext could obtain useful information from {Q;}

e {Q;} can be obtained without rewinding

Ext Ext
o Ext |
(0] 10}
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Non-interactive

e As the name suggests, a non-interactive proof is a
single message protocol

e Useful communication pattern for many applications
e Common methodology: compile X protocol

e [Pass 03] gave a simple straight-line extractable
compiler in the random oracle model



Fischlin's Compiler

o [Fischlin 05] gave a much more eflicient compiler in the
same model as [Pass 03]

e More interesting to analyze, and has remained the state
of the art for X — NIZK compilers
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Fischlin’s Transformation

- {0,1}* > {0,1}¢ be a random oracle

This gives Ext the values (e, 7)
and (e, 7') as needed, by looking

Sample X-protocol first message ‘a’ at queries made to H
(a,0,2)) Soundness: Except with Pr=27%, P
) 0010101 is forced to query more than one
| : accepting transcript to |
(aa L Zl)
) 1001001 —1H . .
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0000000 Problem!

Full Soundness: Repeat r times




Fischlin vs Pass: Qualitative

e Pass’ compiler works for any Sigma protocol

o Fischlin's compiler works for a restricted class of Sigma
protocols with "quasi-unique responses’

e Supported by many standard Sigma protocols (eg. DLog),
but many may not—especially if a statement can have
multiple witnesses (eg. Pedersen Commitment opening,
1-of-2 witnesses, etc.)
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Quasi-unique Responses |Fischlin 05

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

(CZ,O,Z())
X . Prover can produce a proof
Easy to see how this (d,O,Zé):I |7 Wlthouthever haw}:lgum try
ties into soundness of X more than one challenge
Fischlin’s compiler : Recall
ecall:
,O, // .
(@.0.2) '\ Extractor needs transcripts

with different challenges



[s it really necessary, though?

o Folklore: breaking Sigma protocol abstraction, and
simply ‘adjusting syntax’ of the extractor is usually
sufficient to preserve Proof of Knowledge

e This is demonstrated by the Sigma protocol to prove
knowledge of one-out-of-two witnesses
| Cramer Damgard Schoenmakers 94]

e In [K shelat 22] we formalize this folklore



What about Zero-knowledge?

e Interestingly, Fischlin's proof of Zero-knowledge also
depends on quasi-unique responses

e Unlike extraction, it is not intuitive as to why
(or whether it’s even necessary)

o K shelat 22]: In the absence of unique responses, an explicit
attack on Witness Indistinguishability (WI)
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Witness Indistinguishability

e The following kind of statement finds many applications:

A

Witness Indistinguishable:
No information about which

key Bob actually has
[ know either | OR ? (Implied by ZK)
Important note:
Zero-knowledge Proof: This holds even if both keys
“Tknow that unlocks @
OR are actually known to bank

1 that unlocks 6 (like known plaintext security)
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ToR H
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Reveals nothing about Bob's key in isolation 2 (aa €, Z) = (

e Imagine we could ask Bob to answer challenge ¢’
...his answer (7' or z*) would determine which key he has

e Turns out we can achieve this effect by probing H
(with no special privileges)
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Probing Strategy

Given (a, e, 7) produced by

Fischlin’s compiler, we can W-h.p., only one

. S path—
test which path is "plausible induced by one
This path induces Would have of the two keys

fresh queries to H terminated here
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How to Fix it? [Ks 22]

e The probing strategy very strongly depends on being able
to “re-trace” the Prover’s steps

- This is enabled by the deterministic nature of Fischlin's
compiler

e We showed that randomizing the order in which the Prover
tries challenges will fix the problem

o We strengthen Fischlin's technique to be good enough to
apply to most useful Sigma protocols



In Summary

o We saw what non-interactive zero-knowledge proofs of knowledge
are, how they can be used

o« We got a taste for how they are designed and analysed, and how to
understand security guarantees like concurrent composition and ROM

e« We uncovered a gap in the literature that was glossed over as folklore,
and saw how it turned out to be a vulnerability
(and briefly discussed how it’s now fixed)

Qlle SthnS ? Thanks Eysa Lee for
eprint.lacr.org/2022/393 7
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Example: Schnorr PoK of Discrete Logarithm

e

P(X, x) X=g" V(X)
r — /4 T
! a=5 HVZK S(e):
7 < Zq
Ext(a. (e.2). (¢, 2)): e € / a=giX®
x= (7 —2)/(e —e) q Output (a, 2)

Output x
I=Xe+r
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The Fiat-Shamir Transtorm

o |[Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

0

P(X,w) V(X)

a,z e = H(X, a)
Verify(a, e, 7)
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Fiat-Shamir: Security

o Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:
i [ —
€ €0

a; E a, E C vt <(ai’ e;) (a;, ei)>

l

a,, ar Outputs witness w
e, — p pm—
Output (a;, e;, 2,) Output (a;, ¢, 2)
Probability of D D Y p2

SUCCESS:



Fiat-Shamir Compilation

o Advantages:
- Simple to describe/implement
- Very efficient; proving, verification cost exactly the
same as input 2-protocol
e Downsides:

- Forking strategy does not compose;
unclear how to prove concurrent security

- Quadratic security loss



Straight-line Extraction

o Formalized by [Pass 03] in the Random Oracle Model:

P ?:j

0, Ext ((Qpr 70): +++(Qp 7
C—— ( )
0 Outputs witness w
P m—
Probability of D S,

SUCCESS:



Straight-line Extraction

o Formalized by [Pass 03] in the Random Oracle Model:

pEx Qo
pS—
Supports concurrent composition :(Qo» ro), (O, ”m))

7, — | [ Pass 03]

0 Outputs witness w
P —
Probability of D S,

SUCCESS:
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Logical OR-Composition of X Protocols
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Ps(wy,) . Por(wy) X0s X1 V
b

—_—
(a1 _p» €1_p» Z1_p) < SIM(X;_p)

—_—

—



Logical OR-Composition of X Protocols
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Ps(wy) . Por(wy) X0s 4 |4
b
(ay_p,€1_1n,21_1) < SIM(x;_;)
1—b> €1—b> <1—b 1—b aOaal
—_—
———
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Ps(wy,) . Por(wy) X0s X1 V
b
(ay_p,€1_1n,21_1) < SIM(x;_;)
1—b> €1—b> <1—b 1—b aOaal
- €&



Logical OR-Composition of X Protocols
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Ps(wy,) . Por(wy) X0s X1 V
b |
(ay_.,€e1_1,21_5) < Sim(x;_
1—b> €1—p> Z1—p) (X1_p) .
0> “1
€
€p = € — €1} -
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Ps(wy,) . Por(wy) X0s X1 V
b
(ay_.,€e1_1,21_5) < Sim(x;_
1—b> €1—p> Z1—p) (X1_p) .
0> “1
€
eb e, =€ —e_, —



Logical OR-Composition of X Protocols
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Ps(wy,) . Por(wy) X0s X1 V
b
(a;_p,€1_1,21_5) < Sim(x;_,)
1—b> €1—b> <1-b 1—b Cl(), 611
_—
€
eb e, =€ —e_, —
G
<h



Logical OR-Composition of X Protocols
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Ps(wy,) . Por(wy) X0s X1 V
b
(ay_.,€e1_1,21_5) < Sim(x;_
1—b> €1—p> Z1—p) (X1_p) .
0> “1
€
eb e, =€ —e_, —

Zb (e()a Z())? (ela Zl)
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Ps(wy,) . Por(wy) X0s X1 V
b |
(ay_.,€e1_1,21_5) < Sim(x;_

1—b> €1—p> L1 —p) (X1_p) a
0> “1
€

e, ep=e—ep —
— Both are

Zb (eo’ Z())’ (el’ Zl) accepting
- 5
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Ps(wp) . Por(Wp) X0 X1 V
b__,
(a;_p,€1_1,21_5) < Sim(x;_,)
1—-b>~1-b><1-b 1-b a()’ al
eb eb — € — el_b )
- Both are
Zb accepting
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Por(wWp) 20> A1 4
(ay_ps€1_pr21_p) < Sim(x;_;) Recall: (a, e, 2,7) < (pp)
ag, A1 violates unique responses
S E—
€
eb — € — el—b —ee

(e()a Z())a (619 Zl)
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Por(Wp) 20> A1 4
(@1 _p> €1—p Z1—p) < SIM(x;_p) Recall: (a, e, 2,7) < <(pp)
Ao, A4 violates unique responses
—_—
... but what does (a, e, z, Z')
€ look like here?
e, =¢e—e_, —

(e()a Z())a (619 Zl)
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Por(wp) 20> A1 4
(@)_p» €1_p 21 _p) < Sim(x;_p) Recall: (a, e, 2,7) < <(pp)
ag, A1 violates unique responses
S E—

... but what does (a, e, z, 7

€ look like here?
eb — € — el_b ¢
(e()a Z())? (619 Zl)
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Por(wp) 20> A1 4
(@)_p» €1_p 21 _p) < Sim(x;_p) Recall: (a, e, 2,7) < <(pp)
ag, A1 violates unique responses
S E—

... but what does (a, e, z, 7

€ look like here?
eb — € — el_b ¢
< (60, Z())a (619 Zl)
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Por(wp) 20> A1 4
(@)_p» €1_p 21 _p) < Sim(x;_p) Recall: (a, e, 2,7) < <(pp)
ag, A1 violates unique responses
S E—

... but what does (a, e, z, 7

€ look like here?
eb — € — el_b ¢
< (60, Z())a (619 Zl)

(€ 20), (€1,27) @

—
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Por(wy) X0s X |%4

Recall: (a,e, z,7") <« A (pp)
ag, A1 violates unique responses
_ ' 1

(@1 _p» €1_p» Z1_p) < SIM(X;_p)

... but what does (a, e, z, 7
€ look like here?

(e(l)a Z(,))a (eia Zi) Z’ S

. / /
7~ 5 Eitherey# ¢y ore # ¢
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Recall: (a,e,z,7') < A (pp)
ag, A1 violates unique responses
—_—

Zl—b) <« Sim(xl_b)

... but what does (a, e, z, 7
€ look like here?

e — ey -
/) AN ¢ (60, ZO)’ (61, Zl)
(60’ ZO)’ (61’ Zl), ¢ Either ey # ¢, or e, # ¢;

Wy EXt(aba (eba Zb)a (61;9 Z[;))
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POR

Recall: (a,e,z,7') < A (pp)
ag, A1 violates unique responses
—_—

Zl—b) <« Sim(xl_b)

... but what does (a, e, z, 7
€ look like here?

e — ey -
/) AN ¢ (60, ZO)’ (61, Zl)
(60’ ZO)’ (61’ Zl), ¢ Either ey # ¢, or e, # ¢;

Wy EXt(aba (eba Zb)a (61;9 Z[;))

Quasi-unique responses not strictly necessary for extraction |(folklore)
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| [Ks 22]
o
P(X,w) V(X)
d
- €
<L

Verify(a, e, 7)

2-special soundness:

w « Ext(X, a, (e, zy), (€5,2,)) such that R(X,w) =1
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©
P(X, w) V(X)
d
€
<
Verify(a, e, 7)

Strong 2-special soundness:

w « Ext(X, a, (e, 2y), (€5,2,)) such that R(X,w) =1
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Tightening Conditions for Extraction

[Ks 22]

.
P(X, w) V(X)
d
€
<
Verify(a, e, 7)

Strong 2-special soundness:

w « Ext(X, a, (e, 2y), (€5,2,)) such that R(X,w) =1
e, #e, OR z; # 7 ...are we done?



