Composable Non-interactive Zero-knowledge
Proofs in the Random Oracle Model

Yashvanth Kondi
AARHUS
/ ¥ UNIVERSITY

Based on joint work with abhi shelat (Asiacrypt "22)

In this talk...

o Zero-knowledge proofs (of knowledge)
— Understand and use their security guarantees

e A taste for how they are designed and analysed

— Provably secure composition
— Random Oracle Model

e [Ks 22] Uncover a gap in the literature that was glossed over as
folklore—turns out to permit a new kind of attack
Briefly discussion on how we fix it

Quick Disclaimer

e What will be covered:

Intuitive abstract idea of how to construct composition-safe ZK,
how our attack works

e What won’t be touched:
Formalism of definitions, concrete instantiations, efficiency

(this is to help understanding, not to hand-wave; please ask if
something is unclear!)

Composable
Non-interactive

Zero-knowledge Proofs
in the Random Oracle Model

Zero-knowledge Proots

e Very powertul cryptographic primitive, introduced by
|Goldwasser Micali Rackofl 85]

e Intuition: Prover convinces a Verifier of a statement, without
revealing “why” it’s true.

- Prover typically needs to use some secret information

- Verifier obtains no useful information about Prover’s secrets

Zero-knowledge Proots

o Simple application: proof of possession (key ownership)

Zero-knowledge Proots

o Simple application: proof of possession (key ownership)

Zero-knowledge Proots

o Simple application: proof of possession (key ownership)

Zero-knowledge Proofs

o Simple application: proof of possession (key ownership)

—
Show me
I

Zero-knowledge Proofs

o Simple application: proof of possession (key ownership)

—
Show me
I

Zero-knowledge Proofs

o Simple application: proof of possession (key ownership)

I know

=y

Bob

Show me

\

Zero-knowledge Proofs

o Simple application: proof of possession (key ownership)

Zero-knowledge Proofs

o Simple application: proof of possession (key ownership)

Zero-knowledge Proofs

o Simple application: proof of possession (key ownership)

@ [know I I I

Bob _

Zero-knowledge Proofs

o Simple application: proof of possession (key ownership)

i

I know
—
Prove i1t

Zero-knowledge Proofs

o Simple application: proof of possession (key ownership)

I know A
, | Prove it
Zero-knowledge Proof:
“I know = that unlocks&”
Bob 3

Defining Zero-knowledge Proofs

o ZK is intuitive: No information about the key should be leaked by the proof
o But what does it mean to "know” something?

e "Proof of Knowledge” is formalized by an “extractor” Ext

Defining Zero-knowledge Proofs

o ZK is intuitive: No information about the key should be leaked by the proof
o But what does it mean to "know” something?

o "Proof of Knowledge” is formalized by an “extractor” Ext

Zero- knowledge Prootf:
“I know that unlocks@

Defining Zero-knowledge Proofs

o ZK is intuitive: No information about the key should be leaked by the proof
o But what does it mean to "know” something?

e "Proof of Knowledge” is formalized by an “extractor” Ext

Zero-knowledge Proof: EXt
“Iknow that unlocks@”

Defining Zero-knowledge Proofs

o ZK is intuitive: No information about the key should be leaked by the proof
o But what does it mean to "know” something?

e "Proof of Knowledge” is formalized by an “extractor” Ext

Zero-knowledge Proof: EXt
“Iknow that unlocks@”

Why is Ext special?

e Clearly, Ext must not be an algorithm that just anybody can run
e Ext has carefully chosen special privileges:

- Powerful enough to accomplish extraction

- Still meaningtful as a security claim

e« We will look at a certain type of ZK proof to build intuition

>, Protocols

[Damgard 02]

@ il

P N

>, Protocols

[Damgard 02]

-8
I
I

P N

>, Protocols

[Damgard 02]

-8
I 111

P N

>, Protocols

[Damgard 02]

3

W

X =

@

>, Protocols

[Damgard 02]

3

W

X =

@

V(X

(

>, Protocols

[Damgard 02]

V(X)

>, Protocols

[Damgard 02]

V(X)

>, Protocols

[Damgard 02]

-8

V(X)

>, Protocols

[Damgard 02]

-8

V(X)

>, Protocols

[Damgard 02]

- @

V(X)

>, Protocols

[Damgard 02]

- @

V(X)

>, Protocols

[Damgard 02]

- @

V(X)

>, Protocols

[Damgard 02]

V(X)

>, Protocols

[Damgard 02]

V(X)
4
€ Challenge

>, Protocols

[Damgard 02]

V(X)
Commitment (
e
€ Challenge
B .
Response e

>, Protocols

[Damgard 02]
X @

4 Ext

P(X,w)

)

P(X,w)

>, Protocols

[Damgard 02]

- @

Ext
€ Z

P(X,w)

>, Protocols

[Damgard 02]

- @

Ext
€ Z

P(X,w)

>, Protocols

[Damgard 02]

- @

Ext
€ Z

)

P(X,w)

>, Protocols

[Damgard 02]

- @

Ext
€ Z
€ <

)

P(X,w)

>, Protocols

[Damgard 02]

- @

Ext
€ Z
€ <

P(X,w)

>, Protocols

[Damgard 02]
X @

—>

Toy example

z=we + f(a)

7' = we'+ fla)
solve for w

Ext
e Z
e’ 7

)

P(X,w)

This is a usetul
protocol feature
to keep in mind

>, Protocols

[Damgard 02]

- @

Toy example

z=we + f(a)

7' = we'+ fla)
solve for w

Ext
e Z
e’ 7

Composable

Composable?

Composable?

P

) a 1l

Composable?

P

) a 1l

Composable?

Ext

Composable?

Ext

Composable?

Ext

Ext

Composable?

Ext

Ext

Composable? e
8 8 I

— ———

e

_ Composable?
@ 8 8

— ———

Ext Ext

e

_ Composable?
@ 8 8

—

Ext

— Ext

—_—

—_—

———

_ Composable?
% 8 6

—

Ext

— Ext

—_—

—_—

———

Composable?

—

7 Ext

— Ext

—_—

———

Composable?

—

_n Ext
— Ext
EE— !

———

Composable?

—

_n Ext
— Ext
— !

———

Composable?

/88

—

_n Ext
— Ext
— ’a

Rewinding extraction strategies are bad for concurrent composition

Straight-line Extraction

e What special privileges can we grant Ext that compose
nicely?

e One option is a "Common Reference String”
- i.e. system parameter for which Ext has a backdoor

- Well studied, theoretically sound

- Unsatisfying in practice; trusted generator needed

Non-interactive

in the Random Oracle Model

Random Oracle Model

H:{0,1}* — {0,1}*

Random Oracle Model

. H:{0,1}* ¥~ {0,1}

i

Random Oracle Model

e Began as a heuristic to analyze protocols that use
cryptographic hash functions

e Developed as a methodology to design efficient protocols
with meaningful provable guarantees

e Intuition:

- Cryptographic hashes are complex and highly unstructured

- Unless you evaluate H(x) from scratch, it looks random

Random Oracles as Ext Privilege
H

&,
' —_—
P E—

—_—

Random Oracles as Ext Privilege
H

/\»
— Ext

—_—

Random Oracles as Ext Privilege
o[
A

" Ext

—_—

Random Oracles as Ext Privilege
o
— Ext

—_—

Random Oracles as Ext Privilege

Ext

Random Oracles as Ext Privilege
o B
G

—_—

Ext

Random Oracles as Ext Privilege
H

Random Oracles as Ext Privilege
e Bob "knows” all of the {Q.} values queried to H
e Ext could obtain useful information from {Q;}

e {Q;} can be obtained without rewinding

Ext Ext
o Ext |
(0] 10}

Non-interactive

Non-interactive

e As the name suggests, a non-interactive proof is a
single message protocol

e Useful communication pattern for many applications
e Common methodology: compile X protocol

e [Pass 03] gave a simple straight-line extractable
compiler in the random oracle model

Fischlin's Compiler

o [Fischlin 05] gave a much more eflicient compiler in the
same model as [Pass 03]

e More interesting to analyze, and has remained the state
of the art for X — NIZK compilers

B ——
— ¢
<

—_—

Fischlin's Compiler

o [Fischlin 05] gave a much more eflicient compiler in the
same model as [Pass 03]

e More interesting to analyze, and has remained the state
of the art for X — NIZK compilers

)

ad e ¢

Fischlin's Compiler

o [Fischlin 05] gave a much more eflicient compiler in the
same model as [Pass 03]

e More interesting to analyze, and has remained the state
of the art for X — NIZK compilers

)

H

—_—

ad e ¢

Fischlin's Compiler

o [Fischlin 05] gave a much more eflicient compiler in the
same model as [Pass 03]

e More interesting to analyze, and has remained the state
of the art for X — NIZK compilers

)

H

a € ¢ H(a,e,Z):O

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

Sample X-protocol first message ‘a’

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

Sample X-protocol first message ‘a’

(aa()aZO)

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

Sample X-protocol first message ‘a’

(aa()aZO)
) 0010101

Fischlin’s Transformation

- {0,1}* > {0,1}¢ be a random oracle

Sample X-protocol first message ‘a’

(aa()aZO)
) 0010101

(aa ia Zl)

) 1001001 :I 1

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

Sample X-protocol first message ‘a’

(aa()aZO)
) 0010101

(aa ia Zl)

) 1001001 :I 1

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

Sample X-protocol first message ‘a’

(aa()aZO)
) 0010101

(aa ia Zl)

) 1001001 :I 1

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

Sample X-protocol first message ‘a’

(a,0,2)) Soundness: Except with Pr=2"%, P
) 0010101 is forced to query more than one
: accepting transcript to |

(aa ia Zl)

) 1001001 :I 1

Completeness: P terminates in poly
time when ¢ is small, i.e. O(log k)

Fischlin’s Transformation

- {0,1}* > {0,1}¢ be a random oracle

This gives Ext the values (e, 7)
and (e, 7') as needed, by looking

Sample X-protocol first message ‘a’ at queries made to H
(a,0,2)) Soundness: Except with Pr=2"%, P
) 0010101 is forced to query more than one
| : accepting transcript to |
(aa L Zl)
) 1001001 —1H . .
: Completeness: P terminates in poly
time when ¢ is small, i.e. O(log k)
(a,e,2)
0000000

Fischlin’s Transformation

- {0,1}* > {0,1}¢ be a random oracle

This gives Ext the values (e, 7)
and (e, 7') as needed, by looking

Sample X-protocol first message ‘a’ at queries made to H
(a,0,2)) Soundness: Except with Pr=27%, P
) 0010101 is forced to query more than one
| : accepting transcript to |
(aa L Zl)
) 1001001 —1H . .
: Completeness: P terminates in poly
time when ¢ is small, i.e. O(log k)
(a,e,2) '
0000000 Problem!

Fischlin’s Transformation

- {0,1}* > {0,1}¢ be a random oracle

This gives Ext the values (e, 7)
and (e, 7') as needed, by looking

Sample X-protocol first message ‘a’ at queries made to H
(a,0,2)) Soundness: Except with Pr=27%, P
) 0010101 is forced to query more than one
| : accepting transcript to |
(aa L Zl)
) 1001001 —1H . .
: Completeness: P terminates in poly
time when ¢ is small, i.e. O(log k)
(a,e,2) '
0000000 Problem!

Full Soundness: Repeat r times

Fischlin vs Pass: Qualitative

e Pass’ compiler works for any Sigma protocol

o Fischlin's compiler works for a restricted class of Sigma
protocols with "quasi-unique responses’

e Supported by many standard Sigma protocols (eg. DLog),
but many may not—especially if a statement can have
multiple witnesses (eg. Pedersen Commitment opening,
1-of-2 witnesses, etc.)

Quasi-unique Responses [Fischlin 05]

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

Quasi-unique Responses [Fischlin 05]

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

Quasi-unique Responses [Fischlin 05]

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

(aa()az())
X
Easy to see how this (a,0,20) ___
ties into soundness of X :| 2
Fischlin’s compiler :
(a O,Zél):l

Quasi-unique Responses [Fischlin 05]

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

(a,O,Z())
X . Prover can produce a proof
Easy to see how this (a,0,2)) = W1thouth ever havglguto try
ties into soundness of X — more than one challenge
Fischlin’s compiler :
(aaoaz(,),):

Quasi-unique Responses |Fischlin 05

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

(CZ,O,Z())
X . Prover can produce a proof
Easy to see how this (d,O,Zé):I |7 Wlthouthever haw}:lgum try
ties into soundness of X more than one challenge
Fischlin’s compiler : Recall
ecall:
,O, // .
(@.0.2) '\ Extractor needs transcripts

with different challenges

[s it really necessary, though?

o Folklore: breaking Sigma protocol abstraction, and
simply ‘adjusting syntax’ of the extractor is usually
sufficient to preserve Proof of Knowledge

e This is demonstrated by the Sigma protocol to prove
knowledge of one-out-of-two witnesses
| Cramer Damgard Schoenmakers 94]

e In [K shelat 22] we formalize this folklore

What about Zero-knowledge?

e Interestingly, Fischlin's proof of Zero-knowledge also
depends on quasi-unique responses

e Unlike extraction, it is not intuitive as to why
(or whether it’s even necessary)

o K shelat 22]: In the absence of unique responses, an explicit
attack on Witness Indistinguishability (WI)

Witness Indistinguishability

e The following kind of statement finds many applications:

I know either OR

P

Witness Indistinguishability

e The following kind of statement finds many applications:

8 &
on }

I know either

P

Zero-knowledge Proof:

“I know that unlocks @
OR

?that unlocks 6”

Witness Indistinguishability

e The following kind of statement finds many applications:
Witness Indistinguishable:
No information about which

@ key Bob actually has

[know either = OR ? (Implied by ZK)

Zero-knowledge Prootf:

“I know that unlocks @

OR

Tthat unlocks 6”

Witness Indistinguishability

e The following kind of statement finds many applications:

A

Witness Indistinguishable:
No information about which

key Bob actually has
[know either | OR ? (Implied by ZK)
Important note:
Zero-knowledge Proof: This holds even if both keys
“Tknow that unlocks @
OR are actually known to bank

1 that unlocks 6 (like known plaintext security)

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

TOR @aa i ¢

€

—

<

—_—

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

ToR @aa '

€

—

Taken in isolation, no

—Z, information about which
key Bob has

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

- 8 &
) ‘

?

—_—————

€

Taken in isolation, no

—Z, information about which
key Bob has

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

) a

—_—

aecx

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

N 8 &
) ‘

?

—_—

aecx

(Betore Bob’s response)
compute 7' and z*

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

N 8 &
) ‘

?

—_—

e/ adeé

4—
(Betore Bob’s response)

compute 7' and z*

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

. 88

/ adeé

?

(Betore Bob’s response)
< compute 7z and z*

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

& 88 -

T

(l —

e/ adeé

(Betore Bob’s response)
compute and Z*

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

868

/ adeé

?

" (Betore Bob’s response)
—Z> compute 7’ and

Usetul Fact

e Some X protocols have the following property:
(including some multi-witness ones)

86
R

?

d

e/ adeé

(Betore Bob’s response)

compute 7’ and

Attack Strategy

Tor —
@ TIk,

a, e, 7
H(a,e,z) =0

Attack Strategy

OR H P
@ it

a, e,z
Reveals nothing about Bob's key in isolation 2 (aa €, Z) =

Attack Strategy
ToR H

& '
ad, e,

Reveals nothing about Bob's key in isolation 2 (aa €, Z) = (

e Imagine we could ask Bob to answer challenge ¢’
...his answer (7' or z*) would determine which key he has

e Turns out we can achieve this effect by probing H
(with no special privileges)

Probing Strategy

G
1.

If both possibilities
f \~ (e.2) “agree” at e, then they
I o € 1) /

disagree” at any e’ # e

Probing Strategy

<3

Common a

If both possibilities
“agree” at e, then they
“disagree” at any e’ # e

(€,2)

Probing Strategy

@

(0, z))

G2\
@ 2 (0,) (€,2)

If both possibilities
“agree” at e, then they
“disagree” at any e’ # e

Probing Strategy

@

v
(1,)

Z4)
@ . 0,z (1,2 (e,z)

If both possibilities
“agree” at e, then they
“disagree” at any e’ # e

Probing Strategy

@

v
(1,)

G2\ |
@ . 0, z0) (4, zf) - (e,2)

If both possibilities
“agree” at e, then they
“disagree” at any e’ # e

Probing Strategy

Given (a, e, 7) produced by
Fischlin’s compiler, we can
test which path is “plausible”

Probing Strategy

Given (a, e, 7) produced by
Fischlin’s compiler, we can

test which path is “plausible”

Probing Strategy

Given (a, e, 7) produced by — @) Wh p., only one

Fischlin’s compiler, we can

test which path is “plausible” — X
H[%
— X

(e,2)—=

path—
induced by one
of the two keys

iS plaus1ble

Probing Strategy

Given (a, e, 7) produced by

W.h.p., only one
path—
induced by one
of the two keys

22 -
@ . (0, Z(;k) (1, Zik) (e,z) is plausible

Fischlin’s compiler, we can
test which path is “plausible”

Probing Strategy

Given (a, e, 7) produced by

W.h.p., only one
path—
induced by one
of the two keys

22 -
@ . (0, Z(;k) (1, Zik) (e,z) is plausible

Fischlin’s compiler, we can
test which path is “plausible”

Probing Strategy

Given (a, e, 7) produced by
Fischlin’s compiler, we can
test which path is “plausible”

This path induces
fresh queries to H

) 0,290, 29

(€,2)

W.h.p., only one
path—
induced by one
of the two keys

is plausible

Probing Strategy

Given (a, e, 7) produced by
Fischlin’s compiler, we can
test which path is “plausible”

This path induces
fresh queries to H

) 0,290, 29

X

(€,2)

W.h.p., only one
path—
induced by one
of the two keys

is plausible

Probing Strategy

Given (a, e, 7) produced by
Fischlin’s compiler, we can
test which path is “plausible”

This path induces
fresh queries to H

) 0,290, 29

X

(€,2)

W.h.p., only one
path—
induced by one
of the two keys

is plausible

Probing Strategy

Given (a, e, 7) produced by

Fischlin’s compiler, we can W-h.p., only one

. S path—
test which path is "plausible induced by one
This path induces Would have of the two keys

fresh queries to H terminated here

& is plausibl
U) (Og(;k) (1, Zik) (g,z) is plausible

How to Fix it? [Ks 22]

e The probing strategy very strongly depends on being able
to “re-trace” the Prover’s steps

- This is enabled by the deterministic nature of Fischlin's
compiler

e We showed that randomizing the order in which the Prover
tries challenges will fix the problem

o We strengthen Fischlin's technique to be good enough to
apply to most useful Sigma protocols

In Summary

o We saw what non-interactive zero-knowledge proofs of knowledge
are, how they can be used

o« We got a taste for how they are designed and analysed, and how to
understand security guarantees like concurrent composition and ROM

e« We uncovered a gap in the literature that was glossed over as folklore,
and saw how it turned out to be a vulnerability
(and briefly discussed how it’s now fixed)

Qlle SthnS ? Thanks Eysa Lee for
eprint.lacr.org/2022/393 7

Example: Schnorr PoK of Discrete Logarithm

.

P(X, x) X=g" V(X)

Example: Schnorr PoK of Discrete Logarithm

.

P(X, x) X=g" V(X)
I — Zq

Example: Schnorr PoK of Discrete Logarithm

.

P(X, x) X =g V(X)
re 2, a=g'

Example: Schnorr PoK of Discrete Logarithm

.

P(X, x) X=g" V(X)

re 2, a=g'

eEZq

Example: Schnorr PoK of Discrete Logarithm

.

P(X, x) X=g V(X)
re 2, a=g'
e E Zq

7=Xxe+r

Example: Schnorr PoK of Discrete Logarithm

.

P(X, x) X=g V(X)
re 2, a=g'
e E Zq
7=Xe +r

Example: Schnorr PoK of Discrete Logarithm

.

P(X, x) X=g" V(X)
re 2, a=g"
Ext(a. (e.2). (¢.2): e €,
x= (' —2/(e—e)
Output x
7=Xe+r

Example: Schnorr PoK of Discrete Logarithm

e

P(X, x) X=g" V(X)
r — /4 T
! a=5 HVZK S(e):
7 < Zq
Ext(a. (e.2). (¢, 2)): e € / a=giX®
x= (7 —2)/(e —e) q Output (a, 2)

Output x
I=Xe+r

The Fiat-Shamir Transtorm

o |[Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

The Fiat-Shamir Transtorm

o |[Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

0

P(X,w) V(X)

Verify(a, e, 7)

The Fiat-Shamir Transtorm

o |[Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

0

P(X,w) V(X)

e = H(X, a)

Verify(a, e, 7)

The Fiat-Shamir Transtorm

o |[Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

0

P(X,w) V(X)

a,z e = H(X, a)
Verify(a, e, 7)

Fiat-Shamir: Security

o Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

S —

Output (a;, e;, 7;)

Fiat-Shamir: Security

o Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

px - px
€ 5 €
d; d;
€
am
em

Output (a;, e;, 2,)

Fiat-Shamir: Security

o Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

px - px
€ 5 €

d; d;
e; e:"

l

a,, a’f}‘fl

e, e’;‘;

Output (a;, e;, 2,)

Fiat-Shamir: Security

o Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

px - px
€ 5 €

d; d;
e; e:"

l

a,, a;}’fl

e, e}jfl

Output (a;, e;, 2,) Output (a;, ¢, 2)

Fiat-Shamir: Security

o Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

px % - px %

€ 5 €

a a (aia ei) (aia ei)
l [E EXt SE
e, e* 5 <%
l :
a,, at Outputs witness w

e, er

Output (a;, e;, 2,) Output (a;, ¢, 2)

Fiat-Shamir: Security

o Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:
i [—
€ €0

a; E a, E C vt <(ai’ e;) (a;, ei)>

l

a,, ar Outputs witness w
e, — p pm—
Output (a;, e;, 2,) Output (a;, ¢, 2)
Probability of D D Y p2

SUCCESS:

Fiat-Shamir Compilation

o Advantages:
- Simple to describe/implement
- Very efficient; proving, verification cost exactly the
same as input 2-protocol
e Downsides:

- Forking strategy does not compose;
unclear how to prove concurrent security

- Quadratic security loss

Straight-line Extraction

o Formalized by [Pass 03] in the Random Oracle Model:

P ?:j

0, Ext ((Qpr 70): +++(Qp 7
C—— ()
0 Outputs witness w
P m—
Probability of D S,

SUCCESS:

Straight-line Extraction

o Formalized by [Pass 03] in the Random Oracle Model:

pEx Qo
pS—
Supports concurrent composition :(Qo» ro), (O, ”m))

7, — | [Pass 03]

0 Outputs witness w
P —
Probability of D S,

SUCCESS:

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Por(wy) X0s X1 V

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy,) Por(wy) X0s X1 V

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy,) . Por(wy) X0s X1 V
b__,

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy,) . Por(wy) X0s X1 V
b

—_—
(a1 _p» €1_p» Z1_p) < SIM(X;_p)

—_—

—

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy) . Por(wy) X0s 4 |4
b
(ay_p,€1_1n,21_1) < SIM(x;_;)
1—b> €1—b> <1—b 1—b aOaal
—_—
———

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy,) . Por(wy) X0s X1 V
b
(ay_p,€1_1n,21_1) < SIM(x;_;)
1—b> €1—b> <1—b 1—b aOaal
- €&

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy,) . Por(wy) X0s X1 V
b |
(ay_.,€e1_1,21_5) < Sim(x;_
1—b> €1—p> Z1—p) (X1_p) .
0> “1
€
€p = € — €1} -

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy,) . Por(wy) X0s X1 V
b
(ay_.,€e1_1,21_5) < Sim(x;_
1—b> €1—p> Z1—p) (X1_p) .
0> “1
€
eb e, =€ —e_, —

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy,) . Por(wy) X0s X1 V
b
(a;_p,€1_1,21_5) < Sim(x;_,)
1—b> €1—b> <1-b 1—b Cl(), 611
_—
€
eb e, =€ —e_, —
G
<h

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy,) . Por(wy) X0s X1 V
b
(ay_.,€e1_1,21_5) < Sim(x;_
1—b> €1—p> Z1—p) (X1_p) .
0> “1
€
eb e, =€ —e_, —

Zb (e()a Z())? (ela Zl)

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wy,) . Por(wy) X0s X1 V
b |
(ay_.,€e1_1,21_5) < Sim(x;_

1—b> €1—p> L1 —p) (X1_p) a
0> “1
€

e, ep=e—ep —
— Both are

Zb (eo’ Z())’ (el’ Zl) accepting
- 5

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Ps(wp) . Por(Wp) X0 X1 V
b__,
(a;_p,€1_1,21_5) < Sim(x;_,)
1—-b>~1-b><1-b 1-b a()’ al
eb eb — € — el_b)
- Both are
Zb accepting

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Por(wWp) 20> A1 4
(ay_ps€1_pr21_p) < Sim(x;_;) Recall: (a, e, 2,7) < (pp)
ag, A1 violates unique responses
S E—
€
eb — € — el—b —ee

(e()a Z())a (619 Zl)

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Por(Wp) 20> A1 4
(@1 _p> €1—p Z1—p) < SIM(x;_p) Recall: (a, e, 2,7) < <(pp)
Ao, A4 violates unique responses
—_—
... but what does (a, e, z, Z')
€ look like here?
e, =¢e—e_, —

(e()a Z())a (619 Zl)

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Por(wp) 20> A1 4
(@)_p» €1_p 21 _p) < Sim(x;_p) Recall: (a, e, 2,7) < <(pp)
ag, A1 violates unique responses
S E—

... but what does (a, e, z, 7

€ look like here?
eb — € — el_b ¢
(e()a Z())? (619 Zl)

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Por(wp) 20> A1 4
(@)_p» €1_p 21 _p) < Sim(x;_p) Recall: (a, e, 2,7) < <(pp)
ag, A1 violates unique responses
S E—

... but what does (a, e, z, 7

€ look like here?
eb — € — el_b ¢
< (60, Z())a (619 Zl)

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Por(wp) 20> A1 4
(@)_p» €1_p 21 _p) < Sim(x;_p) Recall: (a, e, 2,7) < <(pp)
ag, A1 violates unique responses
S E—

... but what does (a, e, z, 7

€ look like here?
eb — € — el_b ¢
< (60, Z())a (619 Zl)

(€ 20), (€1,27) @

—

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

Por(wy) X0s X |%4

Recall: (a,e, z,7") <« A (pp)
ag, A1 violates unique responses
_ ' 1

(@1 _p» €1_p» Z1_p) < SIM(X;_p)

... but what does (a, e, z, 7
€ look like here?

(e(l)a Z(,))a (eia Zi) Z’ S

. / /
7~ 5 Eitherey# ¢y ore # ¢

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

POR

Recall: (a,e,z,7') < A (pp)
ag, A1 violates unique responses
—_—

Zl—b) <« Sim(xl_b)

... but what does (a, e, z, 7
€ look like here?

e — ey -
/) AN ¢ (60, ZO)’ (61, Zl)
(60’ ZO)’ (61’ Zl), ¢ Either ey # ¢, or e, # ¢;

Wy EXt(aba (eba Zb)a (61;9 Z[;))

Logical OR-Composition of X Protocols

|Cramer Damgard Schoenmakers 94]

POR

Recall: (a,e,z,7') < A (pp)
ag, A1 violates unique responses
—_—

Zl—b) <« Sim(xl_b)

... but what does (a, e, z, 7
€ look like here?

e — ey -
/) AN ¢ (60, ZO)’ (61, Zl)
(60’ ZO)’ (61’ Zl), ¢ Either ey # ¢, or e, # ¢;

Wy EXt(aba (eba Zb)a (61;9 Z[;))

Quasi-unique responses not strictly necessary for extraction |(folklore)

Tightening Conditions for Extraction

| [Ks 22]
o
P(X,w) V(X)
d
- €
<L

Verify(a, e, 7)

2-special soundness:

w « Ext(X, a, (e, zy), (€5,2,)) such that R(X,w) =1

Tightening Conditions for Extraction

| [Ks 22]
o
P(X,w) V(X)
d
- €
<L

Verify(a, e, 7)

Strong 2-special soundness:

w « Ext(X, a, (e, zy), (€5,2,)) such that R(X,w) =1

Tightening Conditions for Extraction

[Ks 22]

©
P(X, w) V(X)
d
€
<
Verify(a, e, 7)

Strong 2-special soundness:

w « Ext(X, a, (e, 2y), (€5,2,)) such that R(X,w) =1
e, # e, OR z; # 7,

Tightening Conditions for Extraction

[Ks 22]

.
P(X, w) V(X)
d
€
<
Verify(a, e, 7)

Strong 2-special soundness:

w « Ext(X, a, (e, 2y), (€5,2,)) such that R(X,w) =1
e, #e, OR z; # 7 ...are we done?

