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Abstract:

Proximity testing is at the core of several Location-Based Services (LBS). Despite a series of
reported and confirmed abuses, modern LBSs still demand their clients to disclose their locations
in plain in order to preform location proximity testing.

This works aims at enhancing proximity testing with privacy. We design CatNap a novel protocol
that (1) implements precise Euclidean distance matching; (2) allows matching even if the clients are
not online at the same time (the “napping party” feature); (3) is secure against active adversaries
(malicious actors that corrupt up to one party); (4) makes black-box use of generic Multi-Party
Computation techniques (any future improvement of the underlying building blocks will also boost
CatNap); and (5) is efficient: servers run with about 0.03 seconds of CPU time and 5.6MB of
communication, while clients perform only a small number of Boolean operations and need just

51 bytes of communication.

1 Introduction

Location-Based Services (LBS) have gained a
steadily increasing role in our lives by providing
personalized services based on users’ locations,
e.g., displaying nearby points of interest, selecting
optimal services (e.g., taxi rides), or even trigger-
ing specific location-based behaviors (e.g., smart
home devices). At the core of most LBS is a
prozimity testing (PT) protocol that allows the
system to decide whether some parties lie within
a certain proximity of one another. This pa-
per focuses on PT by means of privacy-enhancing
protocols and input coordinates (e.g., users know
their own locations), which is the main use case
for LBS. We acknowledge the existence of other
approaches that implement PT via direct com-
munication and measuring signal strength using,
e.g., Bluetooth [Troncoso et al., 2020] (adopted
in some COVID-19 contact tracing apps). While
these solutions might provide an accurate dis-
tance calculation, they occupy a different niche:
in some LBS it might not be possible for users to
pick each other signals (e.g., planning for a shared

ride between towns; matching with a proximity
radius larger than the signal range; or matching
with offline users).

Modern taxi services match drivers and pas-
sengers according to the proximity of their routes,
or the start and endpoints of their journeys. Mes-
saging apps use PT to match users who are in the
same area, and online mapping services use it to
help users discover close-by places.

In current practice, LBS are full-trust central-
ized services: to deliver their functionality, they
require users to submit their location data to the
LBS. This way, the LBS provider knows the lo-
cation of any active client in their system; and
clients cannot check if their data has been used
the way they expect, and not misused by the LBS
provider or stolen by an attacker who breached
the security of LBS. For example, Snapchat em-
ployees reportedly abused their privileges to spy
on users’ location data [Cox, 2019], and similar

cases were reported about Uber [Héfn, 2016], Ya-
hoo [Cole, 2019], and Facebook [Cox and Hoppen-
stedt, 201§]. This raises privacy concerns over the

existing practices and motivates the search for so-



lutions that would ensure the privacy of user data.
This paper designs a cryptographic protocol
that performs proximity testing in a privacy-
enhancing way. Such protocol is required to
be correct (provide the right answer) and secure
(preserve input privacy) by revealing only the
outcome of the PT, and no further information
about users’ locations. In the remainder of the
paper, whenever we refer to PT, we will mean
privacy-enhancing proximity testing.
Formalizing PT. There exist multiple ap-

proaches to formalizing “location” and “proxim-
ity” in PT. The grid-based approach Ehon% et al.
Eiksnvs et al. 2oo§ iksnys et al., 2010, Fren

t al.. 2010, Mascetti et al.. 2011, Narayanan et al.
011, Nielsen et al., 2012, Kotzanikolaou et al.
016] divides the whole plane into a grid of cells,
the clients determine the cell they are in and then
simply perform equality test on their cell identi-
fiers. Although it might be tempting to do PT
at a cost of a simple equality test, this approach
suffers from inherent imprecision. Another alter-
native is polygon-based matching [
], which becomes less efficient if one wants to
approximate a circle with a polygon (but may suit
applications like geofencing). We follow the line

of work on FEuclidean distance-based matchin
[iarvj

[Hallgren et al., 2015,0leynikov et al., 2020,

revious _work [Hallgren et al.. 201 ,l!éirvineg
it al., 2015, leynikov et al., 2020] on Euclidean
distance-based PT:

Offline We adopt the setting of “napping
party” [F ;leynikov et al., 202d]s in addition to the
two clients who want to use the PT, we intro-
duce two servers that will aid the clients in it.
One of the clients can connect to the servers at
any moment, submit its location (in a privacy-
preserving manner) to them and go offline. The
other client will connect to them later, submit its
location, wait for the servers to perform match-
ing, and retrieve the result. The clients connect to
the servers at possibly disjoint moments of time.
In real-life applications, the two servers can be
run by independent, mutually distrusting orga-
nizations which are providing a single LBS to-
gether. Introducing servers is necessary to per-
form privacy-preserving PT while a client is of-
fline. The use of two not-colluding servers allows
us to remove the requirement for clients to share
keys or any other secret information before the
protocol starts. As a consequence, the data sub-
mitted by a client is not tied to a specific other
client and it is up to the servers to decide whom
to match the client with.

RadiusInd In [IHallgren et al., 2015|,b1eynikov|
Et al. 202ih the protocol performance depends on

nen et al., 2019, Pagnin et al., 2019], because it
is precise and it is natural to some important ap-
plications, e.g., messengers, social networks, and
taxi. Euclidean distance may serve as an approx-
imation of other measures like Manhattan dis-
tance.

In this work, we consider users’ locations to be
points on a (discretized) Euclidean plane (which
can approximate a small enough region of Earth’s
surface). Our functionality matches two users
(outputs 1 instead of 0) if the distance between
their input locations does not exceed a threshold
radius value R, on which they agree beforehand.
The threshold radius R here serves as a parame-
ter of the protocol, and can be chosen to be any
positive integer when instantiating the protocol;
it is fixed and public, i.e. known to all the parties
prior to the protocol start. We focus on the case
of 2-dimensional client locations (i.e. belonging
to a Euclidean plane) for a fair comparison with
prior work, but it is not essential for our proto-
col: CatNap easily generalizes to n-dimensional
Euclidean distance-based matching.

Distinguishing Features of CatNap.
There are three crucial features that we achieve
with CatNap but that were out of reach for

R, the proximity radius. This is a significant lim-
itation that makes such protocols practical only
for small enough values of R. In contrast, our
CatNap’s performance (computation, communi-
cation, and round complexity) does not depend
on the chosen value of R.

ActiveSec From the security viewpoint, for
a protocol to be truly practical it needs to be se-
cure against active adversaries (actively secure for
short). This means that the protocol preserves
its security even if some of the parties get cor-
rupted by the adversary, who maliciously makes
them deviate from the protocol specification. As
discussed by Oleynikov et al. [Eileynikov et al.
2020], if the adversary corrupts both servers, it
can recover all locations submitted by clients. In
this setting, it is impossible to guarantee loca-
tion privacy and clients’ input privacy is lost. We
require CatNap to have the best possible active
security in the given circumstances: to be secure
as long as at least one of the two servers is honest.

The offline feature is particularly distinguish-
ing since most existing PT Zhong
et al., QOOﬂ allegren et al., 2015, Olevnikov et al.
020, Hallgren et al., 201 , Sakib and Huang
016, Jarvinen et al., 2019] require the clients




(who want to perform the PT of their locations)
to communicate directly with one another. This
presents a significant limitation to the protocols’
applications: in some scenarios, users expect to
be matched with their friends or places on the
map (e.g. cafes, stores) even when the other
clients are not online. Therefore it may be de-
sirable to have an intermediate entity that the
clients could interact through. While the use of
servers is necessary to perform offline PT, rely-
ing on two servers comes with an extra benefit:
now the clients can reduce their workload by of-
floading computations to the servers. Although
the servers do not learn the matching outcome,
they know which clients requested PT to be run
(also how many times and when the users did
s0); this is a necessary compromise since perfectly
hiding the user identities to the servers would in-
troduce an unrealistic performance overhead and
negate all the benefits of 0ffline feature. Con-
crete server policies for choosing clients to match
are very application-specific and are out of the
scope of this work. It must be noted that such
a policy can be correctly enforced as long as at
least one of the two servers honestly follows it;
which is realistic in our model, where the proto-
col security already requires one of the servers to
be honest,

Table m summarizes the features achieved by
our protocol, CatNap, compared to the most rel-
evant recent works. The InnerCircle protocol by
Hallgren et al. [Hallgren et al., 2015] involves two
clients who communicate with one another di-
rectly, its main drawbacks are passive security
and performance proportional to R?. The proto-
cols ABYS and ABYSy, by Jérvinen et al. [Jérvi-
nen et al., 2019] have performance that is in-
dependent of the radius value R, but use pas-
sively secure two-party computation techniques
which implicitly demand clients be online at the
same time and interact. The OLIC protocol
by Oleynikov et al. [Oleynikov et al., 2020] is
essentially an adaptation of InnerCircle to the
two-server setting, and thus it is the first pro-
tocol to provide the Offline feature. It inherits
some of the drawbacks of InnerCircle [Hallgren
et al., 2015]: passive security and R?-dependent
performance. These works are further discussed
in section This paper presents CatNap, the
first protocol for privacy-enhancing location PT
to achieve all the above three properties.

Our contribution. This paper presents Cat-
Nap, a novel, actively secure protocol for server-
aided privacy-enhancing PT. CatNap is the first

Table 1: Comparison of CatNap features to the re-
lated protocols
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actively secure PT protocol to achieve practical
performance. We provide a formal description
of the CatNap protocol and its building blocks.
We formally prove its security in Canetti’s hybrid
model [Canetti, 1998], as long as one of the two
servers is honest. In addition, we develop a proof
of concept implementation of CatNap and com-
pare its performance against InnerCircle [Hall
oren et al., 2015], OLIC [Oleynikov et al., 2020],
ABYY and ABYSy [Jérvinen et al., 2019]. Al-

though the InnerCircle, ABYSY, and ABYS pro-
tocols [Hallgren et al., 2015, Jarvinen et al., 2019]
do not work in the same setting as CatNap (their
clients talk directly to one another and are re-
quired to be online at the same time), we still
include them to see how CatNap compares with
server-less PT.

Our evaluations show that CatNap’s demands
on the servers in terms of amortized computation
and communication are quite moderate. For ex-
ample, performing 2000 matchings requires 0.03
seconds of CPU time (ignoring the network la-
tency) and 6 MB of communication in total per
matching. We stress that taking into account
only the amortized complexity is practical since in
real-life scenarios LBS providers will be matching
large numbers of users and will be able to run a
longer precomputation phase. It is worth noting
that the improved amortized performance of our
protocol comes solely from the MPC techniques
edaBits [Escudero et al,, 2020], SPDZ2k [Crame
et al., 2018], Tinier [Frederiksen et al., 2015
which tend to perform better when run multiple
times, not the construction we present here. The
computation and communication cost for clients
is negligible, we ignore it in our benchmarks.

Overview of our technique. We build
CatNap using generic Multi-Party Computation
(MPC) techniques provided out of the box by
the MP-SPDZ framework [Keller, 2020]. In our
protocol, the clients “outsource” the functionality



computation to the servers using the technique
of Jakobsen et. al. [Jakobsen et al., 2014]: each
of the two clients secret-shares its location be-
tween the servers; the servers input the shares
into an MPC protocol, reconstruct them there
and evaluate the PT functionality; after that, the
servers use a simple masking technique to deliver
the result to one of the clients without learning
it themselves. Since the PT involves both arith-
metic (computing distance between the clients)
and non-arithmetic (comparing the distance to
the threshold radius R) operations, we combine
two MPC protocols: SPDZ2k [Cramer et al.,
2018] and Tinier [Frederiksen et al., 2015], us-
ing the former for computation in the arithmetic
domain, and the latter for the binary domain. To
convert values from arithmetic to binary and vice
versa we use the daBits [Rotaru and Wood, 2019]
and edaBits [Escudero et al., 202(0] techniques.

Assumptions. CatNap is not a fully-
featured protocol that can be used for a real-life
LBS implementation out of the box, it is best
seen as a fundamental building block that can
be used by an LBS. CatNap works in the stan-
dard setting of MPC protocols [Lindell, 2016],
the same setting was used for a number of previ-
ous PT protocols [Hallgren et al., 2015, Oleynikov
et al., 2020, J4rvinen et al., 2019] albeit the (pas-
sive) adversary was more limited in those proto-
cols. The assumptions of this model are: par-
ties communicate through secure point-to-point
channels (which can be implemented in real life
by means of Public Key Infrastructure), at the
beginning of the protocol the (active) adversary
can corrupt some of the parties and arbitrarily
change their behavior attempting to learn some-
thing about the other parties’ inputs and cause
the other parties’ outputs to be incorrect. Cat-
Nap ensures that the adversary can not do this
as long as both servers are not corrupted at the
same time.

Scope. The setting of CatNap does not ad-
dress the data leakage that is allowed by the func-
tionality itself, e.g., knowing whether some user
is close to you or not inevitably reveals something
about that user’s location, or when two users
perform the matching the servers will learn the
fact that matching happened (since they know
what users they communicated with and when)
but not the result of that matching. CatNap
does not define how clients specify whom they
want to be matched with; such a selection process
highly depends on the application, and, as a con-
sequence, should not be implemented by a sub-

routine such as CatNap. Also, CatNap does not
protect against attacks by a user who might probe
the protocol with different maliciously crafted lo-
cations trying to learn something about the other
users. To mitigate this in a real-life instantiation,
it may be necessary to apply some policy similar
to MaxPace [Hallgren et al., 2016] limiting the
queries that a client is allowed to make. Also,
CatNap trivially supports replacing two servers
with more while still allowing all of them except
one to be corrupted. This setting relaxes the secu-
rity assumption at the cost of extra performance
overhead; a similar model with_multiple servers
is offered by the Sharemind [Sharemind, 2022]
framework.

2 Preliminaries

Ideal Functionality. To model the mixed
arithmetic-binary MPC, we make black-box us-
age of the functionality Fap-mpc shown on Fig-
ure [ll. This functionality is jmplemented by the
edaBits [Escudero et al., 2020] technique. Most of
the commands in Fap.mpc repeat the function-
ality on which the edaBits is built, except for the
commands ConvertA2B and Compare which are
implemented using the edaBits technique itself.
The Compare is obtained by combining the other
commands of Fag.mpc, but there are multiple
ways to do that (e.g., using a Boolean compar-
ison _circuit or with probabilistic truncation [Es-
cudero et al., 2020]). For the sake of generality,
we define Compare as a standalone command and
leave its specification up_to specific implementa-
tions. The edaBits [Escudero et al., 202(] is im-
plemented in MP-SPDZ [Keller, 2020] framework
(which we use for our benchmarks).

Notation We will use the notation [x]on for
value x € Zom being input into the Fap.mpc with
type = arithmetic, and [x]; for value x € {0,1}
with type = binary (the variable names x are as-
sumed to be unique over both arithmetic and
binary domains). When describing protocols
that use Fap.mpc in pseudocode, we will use
the listed message types as procedure names,
e.g., [xJom + ConvertB2A([y]2) means sending
(ConvertB2A,“x”,“y”) to the Fap.mpc. We will
also use values [-]on in arithmetic expressions and
[]2 in Boolean expressions (i.e., arithmetics over
%), implying evaluation of the corresponding ex-
pressions using Mult and LinComb. For a vector of
bits v = (vo, ... 1) we will write [V]2 to denote
a vector of bits ([vo]e,. .. [vki—1]2), all of which are
in the binary domain of Fap.mpc-



Input: On input (Input,P;,type,id,x) from P; and
(Input, P, type,id) from all other parties, with
id a fresh identifier, type € {binary,arithmetic}
and x € Zy or x € Zy: (depending on type), store
(type,id,x).

Linear Combination: On
(LinComb, type, id, (ldl)in:]_v (Cj);rl:OL
each id; is stored in memory and c; € Zo if
type = binary or ¢; € Zox if type = arithmetic,
retrieve ((type,idi,x1),... (type,idm,xn)), com-
pute y=co+ Y x;-¢; modulo 2 if type = binary
and modulo 2F if type = arithmetic, and store
(type,id,y).

Multiply: On input (Mult,type,id,id;,ids) from all
parties (where id;,id2 are present in memory), re-
trieve (type,idi,x), (type,ide,y), compute z=x-y
modulo 2 if type = binary and modulo 2™ if
type = arithmetic, and store (id,z).

input
where

From Binary to Arithmetic: On input
(ConvertB2A,id,id’) from all parties, retrieve
(binary,id’,x) and store (arithmetic,id,x).

From Arithmetic to Binary: On input
(ConvertA2B,idg...id;_1,id’) from all par-
ties, retrieve (arithmetic,id’,x), bit-
decompose it into (xp,...xx_1) and store

((binary,idg,x0),... (binary,id; 1,x_1)).

Compare: On input (Compare,id,id’,y) from all par-
ties, where y € Zan, retrieve (arithmetic,id,x),
store (binary,id’, 1) if x <y or (binary,id’,0) oth-
erwise.

Output: On input (Output,type,id) from all hon-
est parties (where id is present in memory), re-
trieve (type,id,y) and output it to the adversary.
Wait for an input from the adversary; if this is
Deliver then output y to all parties, otherwise
output Abort.

Figure 1: Ideal functionality Fap.-mpc of MPC arith-

metic_blackbox modulo 2 and modulo 2¢ [Escuderg
et al., 2020]

3 The CatNap Protocol

The CatNap protocol is built by combining the
previous works in a blackbox way, i.e., relying
only on their most standard properties. Figure

gives an overview of the order in which the
existing techniques are applied to one another.
Here, Tinier provides MPC computations in the
binary domain, SPDZ2k provides computations
in the arithmetic domain, edaBits combines the
two to implement a single MPC capable of do-
ing both and converting between them, and, fi-
nally, the outsourcing technique allows the clients
to securely transfer their data into the edaBits
MPC and then get back the result even if one of
the servers is untrusted. The rest of this section

FAB-MPC:

. — ¢ Tinier SPDZZk
edaBits
B !
CatNap Outsourcing Technique

from [Jakobsen et al., 2014|

Figure 2: The dlagram of blackbox apphcatlons of
previous works that yields CatNap protocol and the
Fap-mpc functionality that we use to build CatNap.

shows the operations done by CatNap in greater
detail; it essentially unfolds the last step from
Figure P to show how the inputs and outputs are
transferred to and from edaBits MPC, and it also
shows how the squared distance between parties
is computed and compared to the radius. The ed-
aBits is still treated as a blackbox in this section,
since unfolding that one as well would yield too
much detail and harm the high-level exposition.

CatNap involves four parties: two servers
Server-1 and Server-2; and two clients Alice
and Bob. Alice and Bob know their respective
locations (x4,y,) and (xp,yp), and will input these
at the start of the protocol. At the end of its ex-
ecution, CatNap returns to Alice a bit p; p=1
if her distance to Bob is less than or equal to a
given public value R, otherwise p = 0. Following
the offline feature introduced by OLIC, in Cat-
Nap clients never exchange messages with one
another directly: all of Bob’s interaction happens
before any interaction from Alice (i.e., Bob acts
as a “napping party” during the actual proxim-
ity test). Figure B shows the formal definition of
the ideal functionality #pt that CatNap imple-
ments, while Figure H’shows how CatNap imple-
ments Fpr in the real world.

Parameters: a positive number R, the radius of prox-
imity testing; k, the bit width of clients’ coordinates.
Setup: Four parties, Alice, Bob, Server-1, Server-2.
Alice and Bob hold inputs (x4,y4) € ng and (xp,yp) €

Z%k respectively
1. Receive (x4,y4) from Alice, and (xp,yp) from Bob.

Ensure that each value x4, yq, xp, ¥, consists of
exactly k bits; if not, abort.

2. Receive Deliver from both servers. If one of them
sends something else, abort.

3. Send p =1 to Alice if (xs —xp)% + (ya —y5)? < RZ,
and p =0 otherwise.

4. Send Received to both servers.

Figure 3: The Fpt ideal functionality



CatNap achieves the “pt functionality in
three major steps. First, the client inputs are
transferred into the Fap.mpc functionality. Re-
member that clients cannot communicate with
the Fap.mpc directly, only servers do that. To
transfer its input, each client authenticates it
using AMD (Algebraic Manipulation Detection
code) and secret-shares z, its authentication key,
and tag between the servers [Jakobsen et al.)
2014]. The servers input the shares together with
the authentication tags into Fap.mpc, verify that
the shares are correct, and reconstruct them in-
side the functionality. Second, the servers com-
pute the squared Euclidean distance between the
clients’ input locations:

D= (xg—xp)% = (va—yp)"- (1)
Subsequently, the servers compare D to R?,
obtaining a single bit p € {0,1}, where p =1 if
D < R27 and p =0 otherwise. We remark that all
computations performed by the servers so far are
implemented trivially using the arithmetic and
comparison operations supported by Fap.-mpcC-
This means that the servers never see D or the
client inputs in plain, yet by interacting with the
Fas-mpc functionality they can operate on these
values without seeing them. Third, the servers
transfer the result p to one of the clients in a
safe way. This is achieved_via_the technique of
Jakobsen et al. suggest in [Jakobsen et al., 2014].
None of the three steps reveals anything about
the clients’ inputs or p to the servers; all of the
values the servers work with are either blinded
with random masks or are inside the Fap-mpc
functionality.

The transferring of client inputs into the
Fas-mpc functionality mentioned above is done
in their bit-decomposed form: each coordinate is
represented as a bit-vector of fixed length, the
vectors of all coordinates are concatenated to-
gether and the resulting vector is transferred (us-
ing a special subprotocol Transfer, shown be-
low) into the Fap.ympc. This has a useful side-
effect: we can naturally bound inputs provided by
each client by limiting the number of bits used to
represent them (since the Transfer accepts only
fixed number of bits). This way, a malicious client
cannot input values that are too large and may
cause an overflow modulo 2" in the computation
of D (see Equation (E)) We limit each client co-
ordinate to k bits, where k can be any positive
integer value such that 2k+ 3 < m (this ensures
that there is no _overflow in the expression for D
from Equation ([l)). In other words, for all mean-

ingful values of R, it must hold that 0 <R < 25\/2.

Setup: One client (Alice or Bob) and the two servers
(Server-1 and Server-2). The servers have access to
the Fap-mpc functionality (of Figured;

Initial condition: The client knows its input z € 72] ,
which is a sequence of [ bits. ¢ is a statistical security
parameter.

Final condition: The bits of z are input into Faop_mpC
functionality as [Z]z.

1. The client authenticates its input z using AMD
with freshly chosen key:

(a) K% Foo
(b) +=AMD(z)

2. The client secret-shares its input z, the authenti-
cation key and tag input z using AMD with freshly
chosen key:

a) r(1) 8 Fol
) 1 =zarM)
C) K(Q) = K@K(l)
) 1) 8 oo
e) t® =r@r)
3. The client sends (r(l),K(l)jt(l)) to Server-1, and
("(2)71((2)71‘(2)) to Server-2.

— o~
o

aa

—

4. The servers input shares () and the tags ) into
the Fap-mpc

a) [[ri(l)]]g — InputServer-l(ri(l)) forie {0...1-1}
@) for ie{0...1—-1}
() [tM ]2 < Tnputge,yepq (t)) for i€ {0...0—1}

(d) [[ti(Q)]]g — InputServer_Q(ti(Q)) forie{0...0-1}.

(
(

5. The servers send k(1) and k(?) to one another and
recover K = K(l) D K(2).

6. The servers recompute the tag for the z inside the
FAB-MPC:
(@) [ = AMD([ D2 6 [])

7. The servers check that the computed tags match
the expected values:

[z — EQ]2. V]2 0 [ 21),

where EQ((ag...a;_1),(bo...bj_1)) = ~V'_ba; @
b; is the logical formula that compares two se-
quences of bits for equality.

8. The servers reveal the bit ¢ + Output([c]2) and
abort if ¢ =0.

9. The servers reconstruct the value [ 7]z = [[r(T;]]g @
[r®)]2, which is the result of this sub-protocol.

Figure 4: The Transfer sub-protocol



The Transfer Sub-protocol. Figure H
shows the sub-protocol that transfers the clients’
inputs into Fag.mpc. This happens between a
client (who can be either Alice or Bob) and the
two servers. The purpose of this sub-protocol is to
transfer a vector z € 721 from the client into the bi-
nary domain of the Fap_mpc functionality (with-
out revealing it to the servers). Formally, this
protocol can work for values z of any length. In
practice, each client will execute this sub-protocol
exactly once with z being the concatenation of the
bit-decomposition of their input locations (Alice
will additionally concatenate a random bit p to
her z, which will be used in the last step of the
érhole CatNap protocol. More on this on Figure

).

The Transfer routine starts with a client, say,
Alice authenticating her input z using AMD with
a freshly generated key (step E), then she secret-
shares the value z, the picked key and the authen-
tication tag between the two servers using XOR
(steps B and ). The servers input the shares and
tags into Fap.mpc (step ). At this point, the
servers_can simply reveal the keys to each other
(steps f), since they cannot modify the shares nor
the tags they input into the functionality. Af-
ter that, the servers recompute the authentica-
tion tag [@]2 (step f) and compare it to the one
that the servers have input (step []).

Computing AMD is essentially free since it
uses only linear operations (see the extended pa-
per version [Oleynikov et al., 2022] for more de-
tails). On the other hand, the equality check is
the heaviest step computations-wise, because this
comparison requires non-linear Boolean operation
V. The servers reveal the result [c]o_of the equal-
ity check and abort if [¢]2 =0 (step f§). This com-
pletes the authentication check, now each server
is convinced that the other one has not cheated
while inputting the client data into Fap-mpc-
Now, they can reconstruct the secret-shared value
[Z]2 (without revealing it yet), which is the re-
sult of running this sub-protocol.

The CatNap Protocol Figure a provides a
detailed overview of our CatNap protocol. We re-
call that CatNap implements the Fp1 functional-
ity from FigureLE. The protocol starts with both
clients transferring their inputs into Fag.mpc us-
ing Transfer (step El; They do so by running the
Transfer protocol on the concatenation of the
bit-decomposition of their inputs. Alice addi-
tionally transfers a random bit y that will be used
in the final stage of CatNap to privately transfer
the matching outcome p from Fap.mpc back to

her. The servers convert the clients’ inputs from
the binary domain into the arithmetic domain, as
required in the Fap vpe functionality (step [Ld).
Alice’s mask p remains in the binary domain.

Parameters: a positive number R, the radius of prox-
imity testing; k, the bit width of client coordinates.
Setup: Alice, Bob and the two servers. The servers
have accegs to the Fap.mpc functionality (depicted
in Figure ES) It must hold that 2k+ 3 < m, where Zon
is the arithmetic domain of Faop_ypc. Alice and Bob
receive (x4,y4) and (xp,yp) as inputs.

1. Inputs outsourcing phase.

(a) Bob bit-decomposes his input coordinates x;
and y,, represents them as a single 2k bit s{ring,
and runs the Transfer protocol (Figureg) on
it.

(b) Alice samples a random bit u, bit decomposes
her inputs x, and y,, and represents all of them
as a single string of 2k+ 1 bits. Then she runs
the Transfer protocol on it.

(¢) The servers convert the client inputs into the
arithmetic domain

[xa]om < ConvertB2A 2

[%]2)
[yal2)
[x5]2)

).

[ys]on  ConvertB2A([y;]2

[ya]2m + ConvertB2A

1

(
(
[xp]2m < ConvertB2A(
(

The value [u]2 stays in the binary domain.

2. The Servers compute the squared distance be-
tween Alice and Bob and compare it to R2:

(a) [D]an « ([xa]2n — [xp]2n)% + ([yal2n — [ys]2n)?
(b) [p]2 + Compare([[D}]Qm,RQ).

3. The servers mask the bit p with u and reveal the
result:

(@) [p'T2 < [pl2 @ [u]2
(b) p'« Output([p']2).
4. Both servers forward the obtained p’ to Alice.

5. Alice ensures that both servers have sent the
same value of p’, unmasks it to get the final result
p = p’ ®u, which she outputs.

Figure 5: The CatNap protocol

Once the clients’ inputs are in Fap_-mpc and
ready to be used, the servers can compute the
squared distance and compare it to R? (step P).
All this is trivially done using commands sup-
ported by Fag.mpc. The outcome of this com-
parison, p, which is also the result of matching, is
stored in [p]2 inside Fap-mpc. At this point, the
only thing that needs to be done is revealing the
result [p]2 to Alice (without leaking anything to
anyone else). To achieve this, we mask it with



Alice’s random bit u and open the masked value
p’ (step B) to both servers. Since the value is
masked, the servers cannot learn anything about
it. Moreover, since both servers hold a copy of the
masked result, none of them can modify it with-
out getting caught. Both servers forward p’ to
Alice (step E), who makes sure that both servers
sent the same value, and unmasks it to obtain the
matching result p (step f).
Security Proof. The security proof of Cat-
Nap is obtained by combining the proofs of the
nderlying techniques which we employ (Figure
E) We discuss it in more detail in the extended
version of this paper [Oleynikov et al., 2022].

4 Evaluation

To evaluate the performance of CatNap, we im-
plemented it in the MP-SPDZ [Keller, 2020] cryp-
tographic_framework and made it available on-
line [Oleynikov et al., 2022]. We compare its
performance to InnerCircle, ABY Sy and ABYY,
OLIC. Because of the inherent similarity between
InnerCircle and OLIC, we run only OLIC in our
benchmarks and argue that most of the conclu-
sions we make here about OLIC hold for Inner-
Circle as well. For the performance comparison,
we focus total execution time (on a single CPU
core) and on total data exchanged by parties.

To achieve a fairer comparison, we ran all
the protocols on the same Linux machine having
Intel(R) Core(TM) i7-8700 CPU and 32 GB of
RAM. For each of the protocols we run here we
use the implementation provided by their origi-
nal papers: the C+4 implementation using ABY
[Demmler et al., 2015] framework for ABY$y
and ABY%7 the Python implementation using the
GMP library for OLIC. Although the protocols
are implemented using different tools, the bulk of
their computations is done by low-level C libraries
(and the communication cost is independent of
the tools), such comparison is useful nevertheless.
We do not introduce any intentional network la-
tency, all the parties are executed on the same
machine (one CPU core per party) and commu-
nicate through loopback network device. The fol-
lowing list shows the parameters with which we
instantiated each of the protocols.

OLIC. We use the most efficient one of the two
instantiations presented in the original pa-
per [Oleynikov et al., 2020], namely, the (EC)
which is based on Curve25519 and M383 ellip-
tic curves.

ABYXY and ABYS. We use ABY [Demmler

et_al., 2015] parameters of the original paper
[Jarvinen et al., 2019]: bits =64, secparam =
128. In other words, the values domain is 264
and the symmetric security key length is 128

bits.

CatNap. We instantiate DPDZ2k and Tinier
with the security parameter of 64 bits, and
plaintext values of SPDZ2k consist of 64 bits.
The statistical security parameter for edaBits
is 40.

We do not include the performance of clients
in our benchmarks of CatNap since it is negligi-
ble; as can be seen on Figures 1gand , the to-
tal communication cost for each client does not
exceed 2(36+4k+1) bits (which is 51 bytes for
k=20 and 6 =40), and the computation cost con-
stitutes a small number of Boolean operations.

Figure g shows the amortized performance of
P
server in CatNap depending on the number of
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times the protocol is executed. These measure-
ments include both setup time and the actual
protocol execution. As the number of repetitions
approaches 4000, the amortized execution time
reaches 0.03 seconds, and the total communica-
tion cost reaches 5.6 MB. We use these two num-
bers as constants in the next plots, where we com-
pare CatNap to other protocols. The B parame-
ter present on the plots is internal to the edaBits;
smaller values of B are expected to provide better
asymptotic performance.

The performance of OLIC depends on the spe-
cific value used for the radius R, this is reflected
in the measurements presented on Figure [. The
protocols that have performance independent of R

I
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Figure 7: Comparison of CatNap with OLIC, ABY\C(
and ABY Sy

are shown there as straight horizontal lines. No-
tably, CatNap is less efficient than ABYSY and
ABYg (we consider it a minor price to pay since
CatNap achieves active security), but it still be-
comes more efficient than OLIC for large enough
values of R.

5 Related Work

Zhong et al. [Zhong et al., 2007] propose the
Louis, Lester and Pierre protocols for location
proximity. The Louis protocol computes the dis-
tance between Alice and Bob using additively ho-
momorphic encryption. It relies on a third party
to perform the PT, and Bob must be present on-
line to perform the PT. The Lester protocol does
not use a third party but rather than performing
PT computes the actual distance between Alice
and Bob. The Pierre protocol divides the space
into a grid of cells and reveals the cell distance
between Alice and Bob. All three protocols are
only passively secure.

Narayanan et al. [Narayanan et al., 2011]
present protocols for PT. They cast the PT
problem as equality testing on a grid system of
hexagons. One of the proposed protocols uti-
lizes an oblivious server. Parties in this pro-
tocol use symmetric encryption, which leads to
better performance. However, this requires hav-
ing preshared keys among parties, which is less
amenable to one-to-many PT. Saldamli et al. [Sal-
damli et al., 2013] build on the protocol with the
oblivious server and suggest optimizations based
on properties from geometry and linear algebra.
Nielsen et al. [Nielsen et al., 2012] and Kotzaniko-
laou et al. [Kotzanikolaou et al., 2016] also pro-
pose grid-based solutions.

Hide&Crypt by Freni et al. [Freni et al., 2010]
splits proximity into two steps. First, it per-
forms filtering between a third party and the
initiating principal. Second, the two principals
execute computation to achieve finer granular-
ity. In both steps, the granule in which a prin-
cipal is located is sent to the other party. C-
Hide&Hash by Mascetti et al. [Mascetti et al.
2011] is a centralized protocol, where the prin-
cipals do not need to communicate pairwise but
otherwise share many aspects with Hide&Crvpt.
FriendLocator by Siksnys et al. [Siksnys et al.,
2009] is a centralized protocol where clients map
their positions to different granularities, similarly
to Hide&Crypt, but instead of refining via the
second principal, each iteration is done via the
third_party. VicinityLocator also by Siksnys et
al. [Siksnys et al., 2010] is an extension of Friend-



Locator, which allows the proximity of a principal
to be represented not only in terms of any shape.

Sedénka and Gasti [Eedenka and Gasti, 2014—1]]
homomorphically compute distances using the
UTM projection, ECEF (Earth-Centered Earth-
Fixed) coordinates, and the Haversine formula
that makes it possible to consider the curvature of
the Earth. Hallgren et al. [ﬁallgren et al., 2015]
introduce InnerCircle for parallelizable decentral-
ized PT, using additively homomorphic encryp-
tion between two parties that must be online. The
MaxPace [Hallgren et al., 2016] protocol builds
on the speed constraints of an InnerCircle-style
protocol as to limit the effects of trilateration at-
tacks. Polakis [lgolakis et al., 2015} study different
distance and proximity disclosure strategies em-
ployed in the wild and experiment with practical
effects of trilateration.

Sakib and Huang [ISakib and Huang, 201d] ex-
plore PT using elliptic curves. They require Alice
and Bob to be online_to be able to run the proto-
col. Jarvinen et al. [[iéirvinen et al., 201&] design
efficient schemes for Euclidean distance-based
privacy-preserving location proximity, as well
as schemes for polygon-based matching. They
demonstrate performance improvements over In-
nerCircle. Yet the requirement of the two par-
ties being online applies to their setting as well.
Hallgren et al. [ﬁallgren et al., 2015] show how
to leverage PT for endpoint-based ridesharing,
building on the InnerCircle protocol, and com-

pare this method with a method of matchin
trajectories. Oleynikov et al. [F ;leynikov et al.j

] build OLIC, a natural extension of Inner-
Circle to the two-server setting to perform Eu-
clidean distance-based matching. They also pro-
pose the “napping party” model with two servers
that formalizes the possibility for parties to sub-
mit their locations at independent moments of
time. The “napping party” setting requires that
the clients communicate with servers at disjoint
intervals of time and that they do not share any
secret data (e.g. cryptographic keys) before the
protocol starts. It is necessary to have at least two
servers to achieve this property. As shown by Hal-
levi et al. [ﬁalevi et al., 2011], using one server for
this purpose will leak the clients’ data to it. Fur-
ther works on generic MPC in client-server set-
tings [Jarrous and Pinkas. 2013, Gordon et al.

013, Halevi et al., 2017, Beimel et al., 2014, Ben-
amouda et al., 2017] also consider one-server sce-
narios,_Some of these protocols are mentioned in
Table [l
The main challenge of Euclidean distance-

based PT is efficiently combining the arithmetic
operations (like computing the squared distance)
with the comparison operation; many existing
tools for multiparty computation tend to be effi-
cient only for one of the two kinds of operations,
and performing the other one introduces great
overhead. To overcome this, we use state-of-the-

art MPC techniques: SPDZ2k protocol for arith-
metic computation [Cramer et al., 201§], Tinier

[Frederiksen et al., 2015] for Boolean computation
and edaBits [Escudero et al., 202(] for converting
values between Boolean and arithmetic domains.

In the wake of the COVID-19 pandemic,
privacy-preserving PT witness a boom of proto-
cols that rely on Bluetooth communication [
Eoso et al., 202”]. These solutions realize PT
without relying on knowing the exact location
of clients. Such solutions are effective only for
shorter radius (Bluetooth range) and the dis-
tance between users cannot be accurately com-
puted (e.g., signal strength varies in the presence
of physical barriers and with weather conditions).
In contrast, this work does not rely on a specific
technology (e.g., Bluetooth communication) and
aims at providing precise matching using the Eu-
clidean distance. Protocol-based solutions which
are the focus on this work aim to privately imple-
ment the partial functionality of global services
like social networks, messengers and taxi services.

To _summarize, most [Zhong et al.. 2007, Sik-

snys et al., 2009, Siksnys et al., 2010, Freni et al.
010, ;;]araganan et_al., 21!1!2Faldamli et_al.
13, Sedenka and Gasti, 201 alleren et _al
015,0leynikov et al., 2020, Hallgren et al., 2016,
akib and Huang, 2016, Jarvinen et al., 2019]
of the existing approaches to proximity testings
require both parties to be online or requires
clients to share common keys before the proto-
col starts, thus not being suitable for one-to-
many matching, and also provide only passive
security, limiting the practical applicability of
the protocol. A notable exception to the work
above is_the C-Hide&Hash protocol by Mascetti
et al. [;iascetti et al., 2011], which allows one-
to-many testing, yet at the price of not com-
puting the precise proximity result but its grid-
based approximation. lly, a_larg
of approaches M Siksnys et
Siksnyvs et al., 2010, Freni et _al., 2010
scetti et al., 2011, Narayanan et al. Z%I_II,INielsen
et al., 2013, Kotzanikolaou et al., 2016] resort to
grid-based approximations, thus losing precision
of proximity tests.




6 Conclusion

We presented CatNap, a secure and privacy-
enhancing protocol for PT, which performs ex-
act Euclidean distance-based matching. CatNap
solves some of the major issues previous similar
works suffered from: its performance does not de-
pend on the proximity radius; it is secure against
active adversaries; and it does not require clients
to be simultaneously online for the PT to run.
Our evaluation results confirm that the amortized
performance of CatNap is practical: the running
time per repetition is close to negligible, and the
communication cost is around a few megabytes.
Our approach is trivially augmentable to sup-
port time-based matching [Pagnin et al., 2019,
i.e. to allow clients to submit the time interval
during which they plan to be in the specified loca-
tion and make the protocol match them only if the
locations are close and the time intervals inter-
sect. This can be useful for friend-finding services
as well as taxi applications (e.g. BlaBlaCar [Bla,
2022]), where drivers need to pick up the passen-
gers at the right time (and get the actual pas-
senger location if the matching succeeded). We
also allow one-to-many matching via the “nap-
ping party” feature, since the servers can reuse
Alice and Bob’s locations multiple times. For ex-
ample, Bob can submit his location to the servers
and let them match him with any of his friends,
yielding a single bit of the result or a list of all
of his friends who are nearby. In the case of
one-to-many matching, the overhead of our ap-
proach will grow linearly in the number of clients
for the servers and stay constant for the clients.
Also, since the protocol already relies on one of
the servers being honest, this fact can be used to
implement a fine-grained policy to control whom
a certain client can be matched with, track the
exact time when the client has submitted their
location to the servers (to show the other clients
how fresh it is), or let the client see who requested
matching with them while they were offline; these
features are orthogonal to our work and are de-
pendent on a specific application scenario.
CatNap can be easily generalized to use more
than two servers, so that it stays secure as long
as at least one of the servers is honest. This
significantly weakens the security assumption it
depends on, making the protocol more reliable
at a cost of some performance overhead. Since
the real-life purpose of having two servers was
to allow distributing trust between two indepen-
dent organizations that are providing the LBS to-
gether, distributing it over a larger number of or-

ganizations makes breaking it harder.

We leave a more extensive evaluation of
CatNap’s performance in the presence of realistic
network latency for the future work, as well as
the evaluation of time-based matching.
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