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Abstract—Modern web applications are an integral part of our
digital lives. As we put more trust in web applications, the need
for security increases. At the same time, detecting vulnerabilities
in web applications has become increasingly hard, due to the
complexity, dynamism, and reliance on third-party components.
Blackbox vulnerability scanning is especially challenging because
(i) for deep penetration of web applications scanners need to exer-
cise such browsing behavior as user interaction and asynchrony,
and (ii) for detection of nontrivial injection attacks, such as stored
cross-site scripting (XSS), scanners need to discover inter-page
data dependencies.

This paper illuminates key challenges for crawling and scan-
ning the modern web. Based on these challenges we identify three
core pillars for deep crawling and scanning: navigation modeling,
traversing, and tracking inter-state dependencies. While prior
efforts are largely limited to the separate pillars, we suggest an
approach that leverages all three. We develop Black Widow, a
blackbox data-driven approach to web crawling and scanning.
We demonstrate the effectiveness of the crawling by code cov-
erage improvements ranging from 63% to 280% compared to
other crawlers across all applications. Further, we demonstrate
the effectiveness of the web vulnerability scanning by featuring no
false positives and finding more cross-site scripting vulnerabilities
than previous methods. In older applications, used in previous
research, we find vulnerabilities that the other methods miss. We
also find new vulnerabilities in production software, including
HotCRP, osCommerce, PrestaShop and WordPress.

I. INTRODUCTION

Ensuring the security of web applications is of paramount
importance for our modern society. The dynamic nature of web
applications, together with a plethora of different languages
and frameworks, makes it particularly challenging for existing
approaches to provide sufficient coverage of the existing
threats. Even the web’s main players, Google and Facebook,
are prone to vulnerabilities, regularly discovered by security
researchers. In 2019 alone, Google’s bug bounty paid $6.5
million [16] and Facebook $2.2 million [12], both continuing
the ever-increasing trend. Cross-Site Scripting (XSS) attacks,
injecting malicious scripts in vulnerable web pages, represent
the lion’s share of web insecurities. Despite mitigations by
the current security practices, XSS remains a prevalent class
of attacks on the web [38]. Google rewards millions of
dollars for XSS vulnerability reports yearly [21], and XSS
is presently the most rewarded bug on both HackerOne [20]
and Bugcrowd [5]. This motivates the focus of this paper on
detecting vulnerabilities in web applications, with particular
emphasis on XSS.

Blackbox web scanning: When such artifacts as the source
code, models describing the application behaviors, and code

annotations are available, the tester can use whitebox tech-
niques that look for vulnerable code patterns in the code
or vulnerable behaviors in the models. Unfortunately, these
artifacts are often unavailable in practice, rendering whitebox
approaches ineffective in such cases.

The focus of this work is on blackbox vulnerability detec-
tion. In contrast to whitebox approaches, blackbox detection
techniques rely on no prior knowledge about the behaviors of
web applications. This is the standard for security penetration
testing, which is a common method for finding security
vulnerabilities [31]. Instead, they acquire such knowledge
by interacting with running instances of web applications
with crawlers. Crawlers are a crucial component of blackbox
scanners that explore the attack surface of web applications
by visiting webpages to discover URLs, HTML form fields,
and other input fields. If a crawler fails to cover the attack sur-
face sufficiently, then vulnerabilities may remain undetected,
leaving web applications exposed to attacks.

Unfortunately, having crawlers able to discover in-depth
behaviors of web applications is not sufficient to detect vul-
nerabilities. The detection of vulnerabilities often requires the
generation of tests that can interact with the web application
in non-trivial ways. For example, the detection of stored cross-
site scripting vulnerabilities (stored XSS), a notoriously hard
class of vulnerabilities [38], requires the ability to reason about
the subtle dependencies between the control and data flows of
web application to identify the page with input fields to inject
the malicious XSS payload, and then the page that will reflect
the injected payload.

Challenges: Over the past decade, the research community
has proposed different approaches to increase the coverage
of the attack surface of web applications. As JavaScript has
rendered webpages dynamic and more complex, new ideas
were proposed to incorporate these dynamic behaviors to
ensure a correct exploration of the page behaviors (jÄk [30])
and the asynchronous HTTP requests (CrawlJAX [26, 4]).
Similarly, other approaches proposed to tackle the complexity
of the server-side program by reverse engineering (LigRE [10]
and KameleonFuzz [11]) or inferring the state (Enemy of the
State [8]) of the server, and then using the learned model to
drive a crawler.

Unfortunately, despite the recent efforts, existing approaches
do not offer sufficient coverage of the attack surface. To
tackle this challenge, we start from two observations. First,
while prior work provided solutions to individual challenges,
leveraging their carefully designed combination has the po-
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tential to significantly improve the state of the art of modern
web application scanning. Second, existing solutions focus
mostly on handling control flows of web applications, falling
short of taking into account intertwined dependencies between
control and data flows. Consider, for example, the dependency
between a page to add new users and the page to show existing
users, where the former changes the state of the latter. Being
able to extract and use such an inter-page dependency will
allow scanners to explore new behaviors and detect more
sophisticated XSS vulnerabilities.

Contributions: This paper presents Black Widow, a novel
blackbox web application scanning technique that identifies
and builds on three pillars: navigation modeling, traversing,
and tracking inter-state dependencies.

Given a URL, our scanner creates a navigation model of
the web application with a novel JavaScript dynamic analysis-
based crawler able to explore both the static structure of
webpages, i.e., anchors, forms, and frames, as well as discover
and fire JavaScript events such as mouse clicks. Also, our
scanner further annotates the model to capture the sequence
of steps required to reach a given page, enabling the crawler
to retrace its steps. When visiting a webpage, our scanner
enriches our model with data flow information using a black-
box, end-to-end, dynamic taint tracking technique. Here, our
scanner identifies input fields, i.e., taint source, and then probe
them with unique strings, i.e., taint values. Later, the scanner
checks when the strings re-surface in the HTML document,
i.e., sinks. Tracking these taints allows us to understand the
dependencies between different pages.

We implement our approach as a scanner on top of a modern
browser with a state-of-the-art JavaScript engine. To empiri-
cally evaluate it, both in terms of coverage and vulnerability
detection, we test it on two sets of web applications and
compare the results with other scanners. The first set of web
applications are older well-known applications that have been
used for vulnerability testing before, e.g. WackoPicko and
SCARF. The second set contains new production applications
such as CMS platforms including WordPress and E-commerce
platforms including PrestaShop and osCommerce. From this,
we see that our approach improves code coverage by between
63% and 280% compared to other scanners across all appli-
cations. Across all web applications, our approach improves
code coverage by between 6% and 62%, compared to the sum
of all other scanners. In addition, our approach finds more
XSS vulnerabilities in older applications, i.e. phpBB, SCARF,
Vanilla and WackoPicko, that have been used in previous
research. Finally, we also find multiple new vulnerabilities
across production software including HotCRP, osCommerce,
PrestaShop and WordPress.

Finally, while most scanners produce false positives, Black
Widow is free of false positives on the tested applications
thanks to its dynamic verification of code injections.

In summary, the paper offers the following contributions.
• We identify unsolved challenges for scanners in modern
web applications and present them in Section II.
• We present our novel approaches for finding XSS vulner-
abilities using inter-state dependency analysis and crawling

complex workflows in Section III.
• We implement and share the source code of Black
Widow1

• We perform a comparative evaluation of Black Widow
on 10 popular web applications against 7 web application
scanners.
• We present our evaluation in Section IV showing that our
approach finds 25 vulnerabilities, of which 6 are previously
unknown in HotCRP, osCommerce, PrestaShop and Word-
Press. Additionally, we find more vulnerabilities in older
applications compared to other scanners. We also improve
code coverage on average by 23%.
• We analyze the results and explain the important features
required by web scanners in Section V.

II. CHALLENGES

Existing web application scanners suffer from a number of
shortcomings affecting their ability to cope with the com-
plexity of modern web applications [9, 3]. We observe that
state-of-the-art scanners tend to focus on separate challenges
to improve their effectiveness. For example, jÄk focuses on
JavaScript events, Enemy of the State on application states,
LigRE on reverse engineering and CrawlJAX on network
requests. However, to successfully scan applications our in-
sight is that these challenges must be solved simultaneously.
This section focuses on these shortcomings and extracts the
key challenges to achieve high code coverage and effective
vulnerability detection.

High code coverage is crucial for finding any type of
vulnerability as the scanner must be able to reach the code
to test it. For vulnerability detection, we focus on stored XSS
as it is known to be difficult to detect and a category of
vulnerabilities poorly covered by existing scanners [9, 3]. Here
the server stores and uses at a later time untrusted inputs in
server operations, without doing proper validation of the inputs
or sanitization of output.

A web application scanner tasked with the detection of
subtle vulnerabilities like stored XSS faces three major chal-
lenges. First, the scanner needs to model the various states
forming a web application, the connections and dependencies
between states (Section II-A). Second, the identification of
these dependencies requires the scanner to be able to traverse
the complex workflows in applications (Section II-B). Finally,
the scanner needs to track subtle dependencies between states
of the web application (Section II-C).

A. Navigation Modeling

Modern web applications are dynamic applications with an
abundance of JavaScript code, client-side events and server-
side statefulness. Modeling the scanner’s interaction with both
server-side and client-side code is complicated and challeng-
ing. Network requests can change the state of the server while
clicking a button can result in changes to the DOM, which in
turn generates new links or fields. These orthogonal problems

1 Our implementation is available online on https://www.cse.chalmers.se/
research/group/security/black-widow/

https://www.cse.chalmers.se/research/group/security/black-widow/
https://www.cse.chalmers.se/research/group/security/black-widow/
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must all be handled by the scanner to achieve high coverage
and improved detection rate of vulnerabilities. Consider the
flow in an example web application in Figure 1. The scanner
must be able to model links, forms, events and the interaction
between them. Additionally, to enable workflow traversal,
it must also model the path taken through the application.
Finally, the model must support inter-state dependencies as
shown by the dashed line in the figure.

The state-of-the-art consists of different approaches to navi-
gation modeling. Enemy of the State uses a state machine and
a directed graph to infer the server-side state. However, the
navigation model lacks information about client-side events.
In contrast, jÄk used a graph with lists inside nodes, to
represent JavaScript events. CrawlJAX moved the focus to
model JavaScript network requests. While these two model
client-side, they miss other important navigation methods such
as form submissions.

A navigation model should allow the scanner to efficiently
and exhaustively scan a web application. Without correct
modeling, the scanner will miss important resources or spend
too much time revisiting the same or similar resources. To
achieve this, the model must cover a multitude of methods
for interaction with the application, including GET and POST
requests, JavaScript events, HTML form and iframes.

In addition, the model should be able to accommodate de-
pendencies. Client-side navigations, such as clicking a button,
might depend on previous events. For example, the user might
have to hover the menu before being able to click the button.
Similarly, installation wizards can require a set of forms to be
submitted in sequence.

With a solution to the modeling challenge, the next chal-
lenge is how the scanner should use this model, i.e. how should
it traverse the model.

B. Traversing

To improve code coverage and vulnerability detection, the
crawler component of the scanner must be able to traverse
the application. In particular, the challenge of reproducing
workflows is crucial for both coverage and vulnerability detec-
tion. The challenges of handling complex workflows include
deciding in which order actions should be performed and when
to perform possibly state-changing actions, e.g. submitting
forms. Also, the workflows must be modeled at a higher level
than network requests as simply replaying requests can result
in incorrect parameter values, especially for context-dependent
value such as a comment ID. In Figure 1, we can observe a
workflow requiring a combination of normal link navigation,
form submission and event interaction. Also, note that the
forms can contain security nonces to protect against CSRF
attacks. A side effect of this is that the scanner can not replay
the request and just change the payload, but has to reload the
page and resubmit the form.

The current state-of-the-art focuses largely on navigation
and exploration but misses out on global workflows. Both
CrawlJAX and jÄk focused on exploring client-side events.
By exploring the events in a depth-first fashion, jÄk can find
sequences of events that could be exploited. However, these

sequences do not extend across multiple pages, which will
miss out on flows. Enemy of the State takes the opposite
approach and ignores traversing client-side events and instead
focuses on traversing server-side states. To traverse, they use a
combination of picking links from the previous response and
a heuristic method to traverse edges that are the least likely to
result in a state change, e.g. by avoiding form submission until
necessary. To change state they sometimes need to replay the
request from the start. Replaying requests may not be sufficient
as a form used to post comments might contain a submission
ID or view-state information that changes for each request.
Due to the challenge of reproducing these flows, their approach
assumes the power to reset the full application when needed,
preventing the approach from being used on live applications.

We note that no scanner handles combinations of events
and classic page navigations. Both jÄk and CrawlJAX traverse
with a focus on client-side state while Enemy of the State
focus on links and forms for interaction. Simply combining
the two approaches of jÄk and Enemy of the State is not
trivial as their approaches are tailored to their goals. Enemy
of the State uses links on pages to determine state changes,
which are not necessarily generated by events.

Keeping the scanner authenticated is also a challenge. Some
scanners require user-supplied patterns to detect authentica-
tion [34, 28, 36]. jÄk authenticates once and then assumes the
state is kept, while CrawlJAX ignores it altogether. Enemy
of the State can re-authenticate if they correctly detect the
state change when logging out. Once again it is hard to find
consensus on how to handle authentication.

In addition to coverage, traversing is important for the
fuzzing part of the scanner. Simply exporting all requests to
a standalone fuzzer is problematic as it results in loss of
context. As such, the scanner must place the application in
an appropriate state before fuzzing. Here some scanners take
the rather extreme approach of trying to reset the entire web
application before fuzzing each parameter [8, 10, 11]. jÄk
creates a special attacker module that loads a URL and then
executes the necessary events. This shows that in order to fuzz
the application in a correct setting, without requiring a full
restart of the application, the scanner must be able to traverse
and attack both server-side and client-side components.

Solving both modeling and traversing should enable the
scanner to crawl the application with improved coverage,
allowing it to find more parameters to test. The final chal-
lenge, particularly with respect to stored XSS, is mapping the
dependencies between different states in the application.

C. Inter-state Dependencies

It is evident that agreeing on a model that fits both client-
side and server-side is hard, yet important. In addition, neither
of the previous approaches are capable of modeling inter-state
dependencies or general workflows. While Enemy of the State
model states, they miss the complex workflows and the inter-
state dependencies. The model jÄk uses can detect workflows
on pages but fails to scale for the full application.

A key challenge faced by scanners is how to accurately
and precisely model how user inputs affect web applications.
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As an example, consider the web application workflow in
Figure 1 capturing an administrator registering a new user.
In this workflow, the administrator starts from the index page
(i.e., index.php) and navigates to the login page (i.e.,
login.php). Then, the administrator submits the password
and lands on the administrator dashboard (i.e., admin.php).
From the dashboard, the administrator reaches the user man-
agement page (i.e., admin.php#users), and submits the
form to register a new user. Then, the web application stores
the new user data in the database, and, as a result of that,
the data of the new user is shown when visiting the page
of existing users (i.e., view_users.php). Such a workflow
shows two intricate dependencies between two states of the
web application: First, an action of admin.php#users can
cause a transition of view_users.php, and second, the
form data submitted to admin.php#users is reflected in
the new state of admin.php#users.

To detect if the input fields of the form data are vulnerable
to, e.g., cross-site scripting (XSS), a scanner needs to inject
payloads in the form of admin.php#users and then reach
view_users.php to verify whether the injection was suc-
cessful. Unfortunately, existing web scanners are not aware of
these inter-state dependencies, and after injecting payloads,
they can hardly identify the page where and whether the
injection is reflected.

III. APPROACH

Motivated by the challenges in Section II, this section
presents our approach to web application scanning. The three
key ingredients of our approach are edge-driven navigation
with path-augmentation, complex workflow traversal, and fine-
grained inter-state dependency tracking. We explain how we
connect these three parts in Algorithm 1. In addition to the
three main pillars, we also include a section about the dynamic
XSS detection used in Black Widow and motivate why false
positives are improbable.

Algorithm 1 takes a single target URL as an input. We start
by creating an empty node, allowing us to create an initial
edge between the empty node and the node containing the
input URL. The main loop picks an unvisited edge from the
navigation graph and then traverses it, executing the necessary
workflows as shown in Algorithm 2. In Algorithm 2, we use
the fact that each edge knows the previous edge. The isSafe
function in Algorithm 2 checks if the type of action, e.g.
JavaScript event or form submission, is safe. We consider
a type to be safe if it is a GET request, more about this
in Section III-B. Once the safe edge is found we navigate
the chain of actions. Following this navigation, the scanner is
ready to parse the page. First, we inspect the page for inter-
state dependency tokens and add the necessary dependency
edges, as shown in Algorithm 3. Each token will contain a
taint value, explained more in Section III-C, a source edge and
a sink edge. If a source and sink are found, our scanner will
fuzz the source and check the sink. Afterward, we extract any
new possible navigation resources and add them to the graph.
Next, we fuzz any possible parameters in the edge and then
inject a taint token. The order is important as we want the

token to overwrite any stored fuzzing value. Finally, the edge
is marked as visited and the loop repeats.

The goal of this combination is to improve both vulner-
ability detection and code coverage. The three parts of the
approach support each other to achieve this. A strong model
that handles different navigation methods and supports aug-
mentation with path and dependency information will enable
a richer interaction with the application. Based on the model
we can build a strong crawler component that can handle
complex workflow which combines requests and client-side
events. Finally, by tracking inter-state dependencies we can
improve detection of stored vulnerabilities.

Data: Target url
1 Global: tokens // Used in Algorithm 3
2 Graph navigation; // Augmented navigation graph
3 navigation.addNode(empty);
4 navigation.addNode(url);
5 navigation.addEdge(empty, url);
6 while unvisited edge e in navigation do
7 traverse(e); // See Algorithm 2
8 inspectTokens(e, navigation); // See Algorithm 3
9 resources = extract({urls, forms, events, iframes});

10 for resource in resources do
11 navigation.addNode(resource)

navigation.addEdge(e.targetNode, resource)
12 end
13 attack(e);
14 injectTokens(e);
15 mark e as visited;
16 end

Algorithm 1: Scanner algorithm

1 Function traverse(e: edge)
2 workflow = []; // List of edges
3 currentEdge = e;
4 while prevEdge = currentEdge.previous do
5 workflow.prepend(currentEdge);
6 if isSafe(currentEdge.type) then
7 break;
8 end
9 currentEdge = prevEdge

10 end
11 navigate(workflow);
12 end

Algorithm 2: Traversal algorithm

1 Function inspectTokens(e: edge, g: graph)
2 for token in tokens do
3 if pageSource(e) contains token.value then
4 token.sink = e;
5 g.dependency(token.source, token.sink);
6 attack(token.source, token.sink);
7 end
8 end
9 end

10 Function injectTokens(e: edge)
11 for parameter in e do
12 token.value = generateToken();
13 token.source = e;
14 tokens.append(token);
15 inject token in parameter;
16 end
17 end

Algorithm 3: Inter-state dependency algorithms
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Fig. 1: Example of a web application where anyone can see the list of users and the admin can add new users. The dashed red
line represents the inter-state dependency. Green lines are HTML5 and orange symbolises JavaScript. The dotted blue lines
between edges would be added by our scanner to track its path. The sequence numbers shown the necessary order to find the
inter-state dependency.

A. Navigation Modeling

Our approach is model-based in the sense that it creates,
maintains, and uses a model of the web application to drive the
exploration and detection of vulnerabilities. Our model covers
both server-side and client-side aspects of the application.
The model tracks server-side inter-state dependencies and
workflows. In addition, it directly captures elements of the
client-side program of the web application, i.e., HTML and
the state of the JavaScript program.

a) Model Construction: Our model is created and up-
dated at run-time while scanning the web application. Starting
from an initial URL, our scanner retrieves the first webpage
and the referenced resources. While executing the loaded
JavaScript, it extracts the registered JavaScript events and adds
them to our model. Firing an event may result in changing
the internal state of the JavaScript program, or retrieving a
new page. Our model captures all these aspects and it keeps
track of the sequence of fired events when revisiting the web
application, e.g., for the detection of vulnerabilities.

Accordingly, we represent web applications with a labeled
directed graph, where each node is a state of the client-side
program and edges are the action (e.g., click) to move from
one state to another one. The state of our model contains both
the state of the page, i.e., the URL of the page, and the state of
the JavaScript program, i.e., the JavaScript event that triggered
the execution. Then, we use labeled edges for state transitions.
Our model supports four types of actions, i.e., GET requests,
form submission, iframes and JavaScript events. While form
submissions normally result in GET or POST requests, we
need a higher-level model for the traversing method explained
in Section III-B. We consider iframes as actions because we
need to model the inter-document communication between the
iframe and the parent, e.g firing an event in the parent might
affect the iframe. By simply considering the iframe source as
a separate URL, scanners will miss this interaction. Finally,
we annotate each edge with the previous edge visited when
crawling the web application, as shown in Figure 1. Such
an annotation will allow the crawler to reconstruct the paths
within the web application, useful information for achieving
deeper crawling and when visiting the web application for
testing.

b) Extraction of Actions: The correct creation of the
model requires the ability to extract the set of possible
actions from a web page. Our approach uses dynamic analysis
approach, where we load a page and execute it in a modified
browser environment, and then we observe the execution of
the page, monitoring for calls to browser APIs to register
JavaScript events and modification of the DOM tree to insert
tags such as forms and anchors.

Event Registration Hooking Before loading a page we in-
ject JavaScript which allows us to wrap functions such as
addEventListener and detect DOM objects with event
handlers. We accomplish this by leveraging the JavaScript
libraries developed for the jÄk scanner [30]. While lightweight
and easy to use, in-browser instrumentation is relatively frag-
ile. A more robust approach could be directly modifying the
JavaScript engine or source-to-source compile the code for
better analysis.

DOM Modification To detect updates to the page we rescan
the page whenever we execute an event. This allows us to
detect dynamically added items.

c) Infinite Crawls: When visiting a webpage, crawlers
can enter in an infinite loop where they can perform the
same operation endlessly. Consider the problem of crawl-
ing an online calendar. When a crawler clicks on the View
next week button, the new page may have a different URL
and content. The new page will container again the button
View next week, triggering an infinite loop. An effective
strategy to avoid infinite crawls is to define (i) a set of
heuristics that determine when two pages or two actions
are similar, and (ii) a hard limit to the maximum number
of “similar” actions performed by the crawler. In our ap-
proach, we define two pages to be similar if they share the
same URL except for the query string and the fragments.
For example, https://example.domain/path/?x=1
and https://example.domain/path/?x=2 are sim-
ilar whereas https://example.domain/?x=1 and
https://example.domain/path/?x=2 are different.
The hard limit is a configuration parameter of our approach.



6

B. Traversal

To traverse the navigation model we pick unvisited edges
from the graph in the order they were added, akin to breadth-
first search. This allows the scanner to gain an overview of the
application before diving into specific components. The edges
are weighted with a positive bias towards form submission,
which enables this type of deep-dive when forms are detected.

To handle the challenge of session management, we pay
extra attention to forms containing password fields, as this
symbolizes an opportunity to authenticate. Not only does
this enable the scanner to re-authenticate but it also helps
when the application generates a login form due to incorrect
session tokens. Another benefit is a more robust approach to
complicated login flows, such as double login to reach the
administrator page—we observed such workflow in phpBB,
one of the web applications that we evaluated.

The main challenge to overcome is that areas of a web
application might require the user to complete a specific
sequence of actions. This could, for example, be to review
a comment after submitting it or submit a sequence of forms
in a configuration wizard. It is also common for client-side
code to require chaining, e.g. hover a menu before seeing all
the links or click a button to dynamically generate a new form.

We devise a mechanism to handle navigation dependencies
by modeling the workflows in the application. Whenever we
need to follow an edge in the navigation graph, we first check
if the previous edge is considered safe. Here we define safe
to be an edge which represents a GET request, similar to the
HTTP RFC [14]. If the edge is safe, we execute it immediately.
Otherwise, we recursively inspect the previous edge until a
safe edge is found, as shown in Algorithm 2. Note that the first
edge added to the navigation graph is always a GET request,
which ensures a base case. Once the safe edge is found, we
execute the full workflow of edges leading up to the desired
edge. Although the RFC defines GET requests to be idempo-
tent, developers can still implement state-changing functions
on GET requests. Therefore, considering GET requests as safe
is a performance trade-off. This could be deactivated by a
parameter in Black Widow, causing the scanner to traverse
back to the beginning.

Using Figure 1 as an example if the crawler needed to
submit a form on admin.php#users then it would first
have to load login.php and then submit that form, followed
by executing a JavaScript event to dynamically add the user
form.

We chose to only chain actions to the previous GET request,
as they are deemed safe. Chaining from the start is possible,
but it would be slow in practice.

C. Inter-state Dependencies

One of the innovative aspects of our approach is to identify
and map the ways user inputs are connected to the states
of a web application. We achieve that by using a dynamic,
end-to-end taint tracking while visiting the web application.
Whenever our scanner identifies an input field, i.e., a source,
it will submit a unique token. After that, the scanner will look
for the token when visiting other webpages, i.e., sinks.

a) Tokens: To map source and sinks, we use string
tokens. We designed tokens to avoid triggering filtering func-
tions or data validation checks. At the same time, we need
tokens with a sufficiently high entropy to not be mistaken
for other strings in the application. Accordingly, we generate
tokens as pseudo-random strings of eight lowercase characters
e.g. frcvwwzm. This is what generateToken() does in
Algorithm 3. This could potentially be improved by making
the tokens context-sensitive, e.g. by generating numeric tokens
or emails. However, if the input is validated to only accept
numbers, for example, then XSS is not possible.

b) Sources and Sinks: The point in the application where
the token is injected defines the source. More specifically,
the source is defined as a tuple containing the edge in the
navigation graph and the exact parameter where the token was
injected. The resource in the web application where the token
reappears defines the sink. All the sinks matching a certain
source will be added to a set which in turn is connected to the
source. Similar to the sources, each sink is technically an edge
since they carry more context than a resource node. Since each
source can be connected to multiple sinks, the scanner needs
to check each sink for vulnerabilities whenever a payload is
injected into a source.

In our example in Figure 1, we have one source and one
connected sink. The source is the username parameter in the
form on the management page and the sink is the view users
page. If more parameters, e.g. email or signature, were also
reflected then these would create new dependency edges in the
graph.

D. Dynamic XSS detection

After a payload has been sent, the scanner must be able
to detect if the payload code is executed. Black Widow uses
a fine-grained dynamic detection mechanism, making false
positives very improbable. We achieve this by injecting our
JavaScript function xss(ID) on every page. This function
adds ID to an array that our scanner can read. Every payload
generated by Black Widow will try to call this function with a
random ID, e.g. <script>xss(71942203)</script>
Finally, by inspecting the array we can detect exactly which
payloads resulted in code execution.

For this to result in a false positive, the web application
would have to actively listen for a payload, extract the ID,
and then run our injected xss(ID) function with a correct
ID.

IV. EVALUATION

In this section, we present the evaluation of our approach
and the results from our experiments. In the next section, we
perform an in-depth analysis of the factors behind the results.

To evaluate the effectiveness of our approach we implement
it in our scanner Black Widow and compare it with 7 other
scanners on a set of 10 different web applications. We want
to compare both the crawling capabilities and vulnerabil-
ity detection capabilities of the scanners. We present the
implementation details in Section IV-A. The details of the
experimental setup are presented in Section IV-B. To measure
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the crawling capabilities of the scanners we record the code
coverage on each of application. The code coverage results
are presented in Section IV-C. For the vulnerability detection
capabilities, we collect the reports from each scanner. We
present both the reported vulnerabilities and the manually
verified ones in Section IV-D.

A. Implementation
Our prototype implementation follows the approach pre-

sented above in Section III. It exercises full dynamic execution
capabilities to handle such dynamic features of modern appli-
cations like AJAX and dynamic code execution, e.g. eval.
To achieve this we use Python and Selenium to control a
mainstream web browser (Chrome). This gives us access to
a state-of-the-art JavaScript engine. In addition, by using a
mainstream browser we can be more certain that the web
application is rendered as intended.

We leverage the JavaScript libraries developed for the
jÄk scanner [30]. These libraries are executed before load-
ing the page. This allows us to wrap functions such as
addEventListener and detect DOM objects with event
handlers.

B. Experimental Setup
In this section, we present the configuration and methodol-

ogy of our experiments.
a) Code Coverage: To evaluate the coverage of the

scanners we chose to compare the lines of code that were
executed on the server during the session. This is different
from previous studies [8, 30], which relied on requested
URLs to determine coverage. While comparing URLs is
easier, as it does not require the web server to run in debug
mode, deriving coverage from it becomes harder. URLs can
contain random parameter data, like CSRF tokens, that are
updated throughout the scan. In this case, the parameter
data has a low impact on the true coverage. Conversely, the
difference in coverage between main.php?page=news and
main.php?page=login can be large. By focusing on the
execution of lines of code we get a more precise understanding
of the coverage.

Calculating the total number of lines of code accurately in
an application is a difficult task. This is especially the case in
languages like PHP where code can be dynamically generated
server-side. Even if possible, it would not give a good measure
for comparison as much of the code could be unreachable. This
is typically the case for applications that have installation code,
which is not used after completing it.

Instead of analyzing the fraction of code executed in the web
application, we compare the number of lines of code executed
by the scanners. This gives a relative measure of performance
between the scanners. It also allows us to determine exactly
which lines are found by multiple scanners and which lines
are uniquely executed.

To evaluate the code coverage we used the Xdebug [33]
module in PHP. This module returns detailed data on the lines
of code that are executed in the application. Each request to the
application results in a separate list of lines of code executed
for the specific request.

b) Vulnerabilities: In addition to code coverage, we also
evaluate how good the scanners are at finding vulnerabilities.
This includes how many vulnerabilities they can find and how
many false positives they generate. While there are many
vulnerability types, our study focuses on both reflected and
stored XSS.

To evaluate the vulnerability detection capabilities of the
scanners, we collect and process all the vulnerabilities they
report. First, we manually analyze if the vulnerabilities can be
reproduced or if they should be considered false positives.
Second, we cluster similar vulnerability reports into a set
of unique vulnerabilities to make a fair comparison between
the different reporting mechanisms in the scanners. We do
this because some applications, e.g. SCARF, can generate an
infinite number of vulnerabilities by dynamically adding new
input fields. These should be clustered together. Classifying
the uniqueness of vulnerabilities is no easy task. What we aim
to achieve is a clustering in which each injection corresponds
to a unique line of code on the server. That is, if a form has
multiple fields that are all stored using the same SQL query
then all these should count as one injection. The rationale is
that it would only require the developer to change one line in
the server code. Similarly, for reflected injections, we cluster
parameters of the same request together. We manually inspect
the web application source code for each reported true-positive
vulnerability to determine if they should be clustered.

c) Scanners: We compare our scanner Black Widow
with both Wget [27] for code coverage reference and 6 state-
of-the-art open-source web vulnerability scanners from both
academia and the web security community: Arachni [36],
Enemy of the State [8], jÄk [30], Skipfish [42], w3af [34] and
ZAP [28]. We use Enemy of the State and jÄk as they are
state-of-the-art academic blackbox scanners. Skipfish, Wget
and w3af are included as they serve as good benchmarks when
comparing with previous studies [8, 30]. Arachni and ZAP
are both modern open-source scanners that have been used
in more recent studies [19]. Including a pure crawler with
JavaScript capabilities, such as CrawlJAX [26], could serve as
a good coverage reference. However, in this paper we focus
on coverage compared to other vulnerability scanners. We still
include Wget for comparison with previous studies. While it
would be interesting to compare our results with commercial
scanners, e.g. Burp Scanner [32], the closed source nature of
these tools would make any type of feature attribute hard.

We configure the scanners with the correct credentials for
the web application. When this is not possible we change the
default credentials of the application to match the scanner’s
default values. Since the scanners have different capabilities,
we try to configure them with as similar configurations as
possible. This entails activating crawling components, both
static and dynamic, and all detection of all types of XSS
vulnerabilities.

Comparing the time performance between scanners is non-
trivial to do fairly as they are written in different languages
and some are sequential while others run in parallel. Also,
we need to run some older ones in VMs for compatibility
reasons. To avoid infinite scans, we limit each scanner to run
for a maximum of eight hours.
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TABLE I: Lines of code (LoC) executed on the server. Each column represents the comparison between Black Widow and
another crawler. The cells contain three numbers: unique LoC covered by Black Widow (A\B), LoC covered by both crawlers
(A ∩ B) and unique LoC covered by the other crawler (B \ A). The numbers in bold highlight which crawler has the best
coverage.

Crawler Arachni Enemy jÄk Skipfish w3af Wget ZAP

A \B A ∩B B \A A \B A ∩B B \A A \B A ∩B B \A A \B A ∩B B \A A \B A ∩B B \A A \B A ∩B B \A A \B A ∩B B \A

Drupal 35 146 22 870 757 6 365 51 651 20 519 25 198 32 818 5 846 29 873 28 143 937 32 213 25 803 725 32 981 25 035 498 15 610 42 406 2 591

HotCRP 2 416 16 076 948 16 573 1 919 0 6 771 11 721 271 11 295 7 197 31 3 217 15 275 768 16 345 2 147 3 16 001 2 491 24

Joomla 14 573 29 263 1 390 33 335 10 501 621 24 728 19 108 1 079 33 254 10 582 328 12 533 31 303 1 255 33 975 9 861 576 7 655 36 181 1 659

osCommerce 3 919 6 722 172 9 626 1 015 15 4 171 6 470 507 4 964 5 677 110 5 601 5 040 661 6 070 4 571 103 6 722 3 919 209

phpBB 2 822 5 178 492 2 963 5 037 337 3 150 4 850 348 4 643 3 357 72 4 312 3 688 79 4 431 3 569 21 4 247 3 753 65

PrestaShop 105 974 75 924 65 650 157 095 24 803 3 332 155 579 26 319 58 138 732 43 166 1 018 156 513 25 385 3 053 148 868 33 030 118 141 032 40 866 110

SCARF 189 433 12 270 352 5 342 280 2 464 158 5 404 218 6 520 102 2 340 282 2

Vanilla 5 381 9 908 491 6 032 9 257 185 3 122 12 167 536 8 285 7 004 577 8 202 7 087 171 8 976 6 313 18 8 396 6 893 145

WackoPicko 202 566 2 58 710 9 463 305 0 274 494 14 111 657 9 495 273 0 379 389 2

WordPress 8 871 45 345 1 615 35 092 19 124 256 18 572 35 644 579 7 307 46 909 5 114 26 785 27 431 640 37 073 17 143 73 25 732 28 484 781
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Fig. 2: Each bar compares our scanner to one other scanner on a web application. The bars show three fractions: unique lines
we find, lines both find and lines uniquely found by the other scanner.

d) Web Applications: To ensure that the scanners can
handle different types of web applications we test them on 10
different applications. The applications range from reference
applications that have been used in previous studies to newer
production-grade applications. Each application runs in a VM
that we can reset between runs to improve consistency.

We divide the applications into two different sets. Refer-
ence applications with known vulnerabilities: phpBB (2.0.23),
SCARF (2007), Vanilla (2.0.17.10) and WackoPicko (2018);
and modern production-grade applications: Drupal (8.6.15),
HotCRP (2.102), Joomla (3.9.6), osCommerce (2.3.4.1),
PrestaShop (1.7.5.1) and WordPress (5.1).

C. Code Coverage Results

This section presents the code coverage in each web applica-
tion by all of the crawlers. Table I shows the number of unique
lines of code that were executed on the server. Black Widow
has the highest coverage on 9 out of the 10 web applications.

Using Wget as a baseline Table I illustrates that Black
Widow increases the coverage by almost 500% in SCARF.

Similarly with modern production software, like PrestaShop,
we can see an increase of 256% in coverage compared to
Wget. Even when comparing to state-of-the-art crawlers like
jÄk and Enemy of the State we have more than 100% increase
on SCARF and 320% on modern applications like PrestaShop.
There is, however, a case where Enemy of the State has the
highest coverage on Drupal. This case is discussed in more
detail in Section V-A.

While it would be beneficial to know how far we are from
perfect coverage, we avoid calculating a ground truth on the
total number of lines of code for the applications as it is
difficult to do in a meaningful way. Simply aggregating the
number of lines in the source code will misrepresent dynamic
code, e.g. eval, and count dead code, e.g. installation code.

We also compare Black Widow to the combined efforts
of the other scanners to better understand how we improve
the state-of-the-art. Table II has three columns containing the
number of lines of code that Black Widow finds which none
of the others find, the combined coverage of the others and
finally our improvement in coverage. In large applications, like
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TABLE II: Unique lines our scanner finds (A \ U ) compared
to the union of all other scanners (U ).

Application Our scanner Other scanners Improvement
A \ U U |A \ U |/|U |

Drupal 4 378 80 213 +5.5%
HotCRP 1 597 18 326 +8.7%
Joomla 5 134 42 443 +12.1%
osCommerce 2 624 9 216 +28.5%
phpBB 2 743 5 877 +46.7%
PrestaShop 95 139 153 452 +62.0%
SCARF 176 464 +37.9%
Vanilla 2 626 14 234 +18.4%
WackoPicko 50 742 +6.7%
WordPress 3 591 58 131 +6.2%

PrestaShop, Black Widow was able to find 53 266 lines of code
that none of the others found. For smaller applications, like
phpBB, we see an improvement of up to 46.7% compared to
the current state-of-the-art.

To get a better understanding of which parts of the applica-
tion the scanners are exploring, we further compare the overlap
in the lines of code between the scanners. In Table III we
present the number of unique lines of code Black Widow find
compared to another crawler. The improvement is calculated
as the number of unique lines we find divided by the total
number of lines the other crawlers find.

We plot the comparison for all scanners on all platforms
in Figure 2. In this figure, each bar represents the fraction of
lines of code attributed to each crawler. At the bottom is the
fraction found only by the other crawlers, in the middle the
lines found by both and on top are the results found by Black
Widow. The bars are sorted by the difference of unique lines
found by Black Widow and the other crawlers. Black Widow
finds the highest number of unique lines of code in all cases
except the rightmost, in which Enemy of the State performed
better on Drupal. The exact number can be found in Table I.

D. Code Injection Results

This section presents the results from the vulnerabilities the
different scanners find. To be consistent with the terminology
used in previous works [8, 30], we define an XSS vulnerability
to be any injected JavaScript code that results in execution.
While accepting JavaScript from users is risky in general,
some applications, like Wordpress, have features which require

TABLE III: Comparison of unique lines of code found by our
scanner (A \B) and the other scanners (B \A). Improvement
is new lines found by our scanner divided by the other’s total.

Crawler Our scanner Other scanners Other’s total Improvement
A \B B \A B |A \B|/|B|

Arachni 179 477 71 489 283 664 +63.3%
Enemy 267 372 25 268 149 548 +178.8%
jÄk 242 066 9 216 158 802 +152.4%
Skipfish 239 064 8 206 160 794 +148.7%
w3af 249 881 7 328 149 099 +167.6%
Wget 289 698 1 405 103 359 +280.3%
ZAP 226 088 5 560 171 124 +132.1%

TABLE IV: Number of reported XSS injections by the scan-
ners and the classification of the injection as either reflected
or stored.

Crawler Arachni Enemy jÄk Skipfish w3af Widow ZAP
Type R S R S R S R S R S R S R S

Drupal - - - - - - - - - - - - - -
HotCRP - - - - - - - - - - 1 - - -
Joomla - - 8 - - - - - - - - - - -
osCommerce - - - - - - - - - - 1 1 9 -
phpBB - - - - - - - - - - - 32 - -
PrestaShop - - - - - - - - - - 2 - - -
SCARF 31 - - - - - - - 1 - 3 5 - -
Vanilla 2 - - - - - - - - - 1 2 - -
WackoPicko 3 1 2 1 13 - 1 1 1 - 3 2 - -
WordPress - - - - - - - - - - 1 1 - -

TABLE V: Number of unique and correct XSS injections by
the scanners and the classification of the injection as either
reflected or stored.

Crawler Arachni Enemy jÄk Skipfish w3af Widow ZAP
Type R S R S R S R S R S R S R S

Drupal - - - - - - - - - - - - - -
HotCRP - - - - - - - - - - 1 - - -
Joomla - - - - - - - - - - - - - -
osCommerce - - - - - - - - - - 1 1 - -
phpBB - - - - - - - - - - - 3 - -
PrestaShop - - - - - - - - - - 1 - - -
SCARF 3 - - - - - - - 1 - 3 5 - -
Vanilla - - - - - - - - - - 1 2 - -
WackoPicko 3 1 2 1 1 - 1 - 1 - 3 2 - -
WordPress - - - - - - - - - - 1 1 - -

executing user supplied JavaScript. In Section V-G we discuss
the impact and exploitability of the vulnerabilities our scanner
finds.

In Table IV we list all the XSS vulnerabilities found by
the scanners on all the applications. The table contains the
number of self-reported vulnerabilities. After removing the
false positives and clustering similar injections, as explained
in Section IV-B, we get the new results in Table V. The
results from Table V show that Black Widow outperforms
the other scanners on both the reference applications and
the modern applications. In total, Black Widow finds 25
unique vulnerabilities, which is more than 3 times as many
as the second-best scanner. Of these 25, 6 are previously
unknown vulnerabilities in modern applications. We consider
the remaining 19 vulnerabilities to be known for the following
reasons. First, all WackoPicko vulnerabilities are implanted
by the authors and they are all known by design. Second,
SCARF has been researched thoroughly and vulnerabilities
may be already known. We conservatively assumed the eight
vulnerabilities to be known. Third, the vulnerabilities on
phpBB and Vanilla were fixed in their newest versions.

It is important to note we did not miss any vulnerability that
the others found. However, there were cases where both Black
Widow and other scanners found the same vulnerability but by
injecting different parameters. We explore these cases more in
Section V-F. Furthermore, Black Widow is the only scanner
that finds vulnerabilities in the modern web applications.
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E. Takeaways

We have shown that our scanner can outperform the other
scanners in terms of both code coverage and vulnerability
detection. Figure 2 and Table I show that we outperform the
other scanners in 69 out of 70 cases. Additionally, Table II and
Table III show we improve code coverage by between 63%
and 280% compared to the other scanners and by between 6%
and 62%, compared to the sum of all other scanners. We also
improve vulnerability detection, as can be seen in Table IV
and Table V. Not only do we match the other scanners but we
also find new vulnerabilities in production applications.

In the next section, we will analyze these results closer and
conclude which features allowed us to improve coverage and
vulnerability detection. We also discuss what other scanners
did better than us.

V. ANALYSIS OF RESULTS

The results from the previous section show that the code
coverage of our scanner outperforms the other ones. Further-
more, we find more code injections and in particular more
stored XSS. In this section, we analyze the factors which led
to our advantage. We also analyze where and why the other
scanners performed worse.

Since we have access to the executed lines of code we can
closely analyze the path of the scanner through the application.
We utilize this to analyze when the scanners miss injectable
parameters, what values they submit, when they fail to access
parts of the application and how they handle sessions.

We start by presenting interesting cases from the code
coverage evaluation in Section V-A, followed by an analysis of
the reported vulnerabilities from all scanners in Section V-B.
In Section V-C, we discuss the injections our scanner finds
and compare it with what the others find. In Section V-D,
we perform two case studies of vulnerabilities that only our
scanner finds and which requires both workflow traversal and
dependency analysis. Finally, in Section V-E, we extract the
crucial features for finding injections based on all vulnerabil-
ities that were found.

A. Coverage Analysis

As presented in Section IV-C, Black Widow improved code
coverage, compared to the aggregated result of all the other
scanners, ranged from 5.5% on Drupal to 62% on PrestaShop.
Comparing the code coverage to each scanner, Black Widow’s
improvement ranged from 63.3% against Arachni to 280%
against Wget. In this section, we analyze the factors pertaining
to code coverage by inspecting the performance of the different
scanners. To better understand our performance we divide the
analysis into two categories. We look at both cases where we
have low coverage compared to the other scanners and cases
where we have high relative coverage.

a) Low coverage: As shown in Figure 2, Enemy of
the State is the only scanner that outperforms Black Widow
and this is specifically on Drupal. Enemy of the State high
coverage on Drupal is because it keeps the authenticated
session state by avoiding logging out. The reason Black
Widow lost the state too early was two-fold. First, we use

a heuristic algorithm, as explained in Section III-B to select
the next edge and unfortunately the logout edge was picked
early. Second, due to the structure of Drupal, our scanner did
not manage to re-authenticate. In particular, this is because, in
contrast to many other applications, Drupal does not present
the user with a login form when they try to perform an
unauthorized operation. To isolate the reason for the lower
code coverage, we temporarily blacklist the Drupal logout
function in our scanner. This resulted in our scanner producing
similar coverage to Enemy of the State, ensuring the factor
behind the discrepancy is session handling.

Skipfish performs very well on WordPress, which seems sur-
prising since it is a modern application that makes heavy use of
JavaScript. However, WordPress degrades gracefully without
JavaScript, allowing scanners to find multiple pages without
using JavaScript. Focusing on static pages can generate a large
coverage but, as is evident from the detected vulnerabilities,
does not imply high vulnerability detection.

b) High coverage: Enemy of the State also performs
worse against Black Widow on osCommerce and HotCRP.
This is because Enemy of the State is seemingly entering
an infinite loop, using 100% CPU without generating any
requests. This could be due to an implementation error or
because the state inference becomes too complicated in these
applications.

Although Black Widow performs well against Wget, Wget
still finds some unique lines, which can seem surprising as it
has previously been used as a reference tool [8, 30]. Based on
the traces and source code, we see that most of the unique
lines of code Wget finds are due to state differences, e.g.
visiting the same page Black Widow finds but while being
unauthenticated.

B. False positives and Clustering

To better understand the reason behind the false positives,
and be transparent about our clustering, we analyze the
vulnerabilities reported in Table IV. For each scanner with
false positives, we reflect on the reasons behind the incorrect
classification and what improvements are required. We do not
include w3af in the list as it did not produce any false positives
or required any clustering.

a) Arachni reports two reflected XSS vulnerabilities in
Vanilla. The injection point was a Cloudflare cookie used on
the online support forum for the Vanilla web application. The
cookie is never used in the application and we were unable
to reproduce the injection. In addition, Arachni finds 31 XSS
injections on SCARF. Many of these are incorrect because
Arachni reuses payloads. For example, by injecting into the
title of the page, all successive injection will be label as
vulnerable.

b) Enemy of the State claims the discovery of 8 reflected
XSS vulnerabilities on Joomla. However, after manual anal-
ysis, none of these result in code execution. The problem is
that Enemy of the State interprets the reflected payload as an
executed payload. It injects, eval(print "[random]"),
into a search field and then detects that "[random]" is
reflected. It incorrectly assumes this is because eval and
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print were executed. For this reason, we consider Enemy
of the State to find 0 vulnerabilities on Joomla.

c) jÄk reports 13 vulnerabilities on WackoPicko. These
13 reports were different payloads used to attack the search
parameter. After applying our clustering method, we consider
jÄk to find one unique vulnerability.

d) Black Widow finds 32 stored vulnerabilities on phpBB.
Most of these parameters are from the configuration panel and
are all used in the same database query. Therefore, only 3
can be considered unique. Two parameters on PrestaShop are
used in the same request, thus only one is considered unique.
Black Widow did not produce any false positives thanks to
our dynamic detection method explained in section III-D

e) Skipfish claims the detection of a stored XSS in
WackoPicko in the image data parameter when uploading an
image. However, the injected JavaScript could not be executed.
Interesting to note is that Skipfish was able to inject JavaScript
into the guestbook but was not able to detect it.

f) ZAP claims to find 9 reflected XSS injec-
tion on osCommerce. They are all variations of injecting
javascript:alert(1) into the parameter of a link. Since
it was just part of a parameter and not a full URL, the
JavaScript code will never execute. Thus, all 9 injections were
false positives.

C. What We Find

In this section, we present the XSS injections our scanner
finds in the different applications. We also extract the impor-
tant features which made it possible to find them.

a) HotCRP: Reflected XSS in bulk user upload: The
admin can upload a file with users to add them in bulk. The
name of the file is then reflected on the upload page. To find
this, the scanner must be able to follow a complex workflow
that makes heavy use of JavaScript, as well as handle file
parameters. It is worth noting that the filename is escaped on
other pages in HotCRP but missed in this case.

b) osCommerce; Stored and reflected XSS: Admins can
change the tax classes in osCommerce and two parameters are
not correctly filtered, resulting in stored XSS vulnerabilities.
The main challenge to find this vulnerability was to find the
injection point as this required us to interact with a navigation
bar that made heavy use of JavaScript.

We also found three vulnerable parameters on the review
page. These parameters were part of a form and their types
were radio and hidden. This highlights that we still inject all
parameters, even if they are not intended to be changed.

c) phpBB; Multiple Stored XSS in admin backend:
Admins can change multiple different application settings on
the configuration page, such as flooding interval for posts and
max avatar file size. On a separate page, they can also change
the rank of the admin to a custom title. In total, this results
in 32 vulnerable parameters that can be clustered to 3 unique
ones. These require inter-state dependency analysis to solve.
Once a setting is changed, the admin is met with a “Successful
update” message, which does not reflect the injection. Thus,
the dependency must be found to allow for successful fuzzing.

d) PrestaShop; Reflected XSS in admin dashboard: The
admin dashboard allows the admin to specify a date range
for showing statistics. Two parameters in this form are not
correctly filtered and result in a reflected XSS. Finding these
requires a combination of modeling JavaScript events and
handling workflows. To find this form the scanner must first
click on a button on the dashboard.

e) SCARF; Stored XSS in comments: There are many
vulnerabilities in SCARF, most are quite easy to find. Instead
of mentioning all, we focus on one that requires complex
workflows, inter-state dependencies and was only found by us.
The message field in the comment section of conference papers
is vulnerable. What makes it hard to find is the traversing
and needed before posting the comment and the inter-state
dependency analysis needed to find the reflection. The scanner
must first create a user, then create a conference, after which
it can upload a paper that can be commented on.

f) Vanilla; Stored and reflected XSS: The language tag
for the RSS feed is vulnerable and only reflected in the feed.
Note that the feed is served as HTML, allowing JavaScript to
execute. There is also a stored vulnerability in the comment
section which can be executed by saving a comment as a
draft and then viewing it. Both of these require inter-state
dependency analysis to find the connecting between language
settings and RSS feeds, as well as posting comments and
viewing drafts.

Black Widow also found a reflected XSS title parameter
in the configuration panel that was vulnerable. Finding this
mainly required and modeling JavaScript and forms.

g) WackoPicko; Multi-step stored XSS: We found all the
known XSS vulnerabilities [7], except the one requiring flash
as we consider it out-of-scope. We also found a non-listed XSS
vulnerability in the reflection of a SQL error. Most notably
we were able to detect the multi-step XSS vulnerability that
no other scanner could. This was thanks to both inter-state
dependency tracking and handling workflows. We discuss this
in more detail in the case study in Section V-D1.

h) WordPress; Stored and reflected XSS: The admin can
search for nearby events using the admin dashboard. The prob-
lem is that the search query is reflected, through AJAX, for the
text-to-speech functionality. Finding this requires modeling of
both JavaScript events, network requests and forms.

Our scanner also found that by posting comments from the
admin panel JavaScript is allowed to run on posts. For this,
the scanner must handle the workflows needed to post the
comments and the inter-state dependency analysis needed to
later find the comment on a post.

D. Case Studies

In this section, we present two in-depth case studies of
vulnerabilities that highlights how and why our approach finds
vulnerabilities the other scanners do not. We base our analysis
on server-side traces, containing the executed lines of code,
generated from the scanner sessions. By manually analyzing
the source code of an application we can determine the exact
lines of code that need to be executed for an injection to be
successful.
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The cases we use are the comment section in WackoPicko
and the configuration panel in phpBB. As we have shown,
Black Widow can find vulnerabilities in more complex modern
web applications. Nevertheless, these cases allow us to limit
the number of factors when comparing our approach with the
other scanners. Since WackoPicko and phpBB have been used
in previous studies [30, 8] they also serve as a level playing
field for all scanners.

1) Comments on WackoPicko: WackoPicko has a previ-
ously unsolved multistep XSS vulnerability that no other
scanner has been able to find. The difficultly of finding and
exploiting is the need for correctly reproducing a specific
workflow. After submitting a comment via a form the user
needs to review the comment. While reviewing, the user can
choose to either delete the comment or add it. If, however, the
user decided to visit another page, before adding or deleting,
then the review form will be removed and the user will have
to resubmit the comment before reviewing it again. Thus, the
steps that must be taken are: Find an image to comment on
(view.php#50, i.e. line 50 in view.php), Post a comment
(preview_comment.php#54), Accept the comment while
reviewing (view.php#53) In Table VI we note that two
scanners are able to find the input but not exploit it.

Both Enemy of the State and Arachni managed to post a
comment but neither could exploit the vulnerability. Enemy
of the State was able to post a comment containing an empty
string but the fuzzing was unsuccessful. Arguably, Arachni
made it a bit further since it was able to inject an XSS
payload. However, the payload was not detected and reported.
Enemy of the State’s shortcoming is that it fuzzes the forms
independently while Arachni’s shortcoming is that it forgets
it’s own injection.

jÄk and ZAP had problems finding the first step, i.e. viewing
the pictures, because the login form breaks the HTML standard
by putting a form inside a table [41]. We avoid this by using
a modern browser to parse the web page. This allows Black
Widow to view the web page as the developer intended,
assuming they tested it in a modern browser

Both w3af and Skipfish were able to find the pictures but
not able to post the comment. w3af because it could not model
the textarea in the form. Skipfish, on the other hand, does
not have this problem. We believe that Skipfish logged out
after seeing the picture but before posting the comment. The
data shows that Skipfish does not try to log in multiple times.
In comparison, we correctly handle the textarea allowing
us to post comments. At the same time, we also try to log in
multiple times if presented with a login form. This mitigates
losing the session forever at an early stage.

To solve this challenge Black Widow needs to combine the
modeling of form elements, handle workflows and use inter-
state dependency analysis to correctly inject and detect the
vulnerability.

2) Configuration on phpBB: The configuration panel on
phpBB has multiple code injection possibilities. To find these
the crawler must overcome two challenges. First, to reach the
admin panel requires two logins, the first to authenticate as a
user and then again, with the same credentials, to authenticate
as an administrator. Second, the injected parameter is not

TABLE VI: Steps to recreate the vulnerability in WackoPicko.
The columns contain the file name and line of code for each
step.

Crawler view.php#50 preview comment.php#54 view.php#53 Exploit

Arachni X X X
Enemy X X X
jÄk
Skipfish X
w3af X
Widow X X X X
ZAP

reflected on the same page. To detect this injection inter-state
dependency analysis is required. The steps needed to find the
vulnerability is, log in as admin (admin/index.php#28),
find the vulnerable form (admin_board.php#34), success-
fully update the database (admin_board.php#74) find the
reflection (admin_board.php#34).

As shown in Table VII, none of the other scanners managed
to access the configuration panel. This is because phpBB
requires a double login. Arachni, jÄk, Skipfish, w3afand ZAP
all require user-supplied credentials together with parameters
before running. Based on the traces they do not try these
credentials on the admin login form, only the first login form.
Enemy of the State, on the other hand, tries the standard
username and password scanner1. This was enough to log
in but it did not manage to log in as an admin.

Our scanner solves the double login by being consistent with
the values we submit. This allows us to both authenticate as a
user and then also as an admin when presented with the login
prompt. After submitting the form in configuration panel with
our taint tokens and later revisiting it, we detect the inter-state
dependency and can fuzz the source and sink.

TABLE VII: Steps to recreate the vulnerability in phpBB. The
columns contain the file name and line of code for each step.

Crawler admin/
index.php#28

admin
board.php#34

admin
board.php#74

admin
board.php#34 Exploit

Arachni
Enemy
jÄk
Skipfish
w3af
Widow X X X X X
ZAP

E. Features Attribution

In this section, we identify and attribute the key features
that contributed to finding the vulnerabilities in the web
applications.

In particular, we try to determine the impact of our model-
ing, traversing and inter-state dependency analysis techniques.
Below are the definitions we use in Table VIII.

a) Modeling: Modeling is considered to contribute if a
combination of HTML forms and JavaScript events were used
to find the code injection.
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b) Traversal: Workflow traversal contributes if the point
of injection depends on a previous state. This could, for
example, be a form submission, a click of a button or some
other DOM interaction.

c) Inter-state dependency: A code injection is defined to
need inter-state dependency analysis if the point of reflection
is different from the point of injection.

Table VIII shows the 25 unique code injections from the
evaluation. Of these, modeling contributed to 4, workflow
traversal contributed to 9, and inter-state dependency analysis
contributed to 13. In total, at least one of them was a
contributor in 16 unique injections. The remaining 9 were
usually simpler. Four of them were from WackoPicko where
the results of injection were directly reflected. SCARF had
3 directly reflected injections and osCommerce had 2. It
is clear, especially for unique vulnerabilities, that modeling,
workflow traversal and inter-state dependency analysis plays
an important role in detecting stored XSS vulnerabilities.

TABLE VIII: For each of the vulnerabilities we note contribut-
ing features, i.e. modeling, workflow reproduction or inter-
state dependency (ISD) analysis. We also present if they were
uniquely detected by Black Widow.

Id Application Description Model Workflow ISD Unique

1 HotCRP User upload X X X
2 osCommerce Review rating X
3 osCommerce Tax class X
4 phpBB Admin ranks X X
5 phpBB Configuration X X
6 phpBB Site name X X
7 PrestaShop Date X X X
8 SCARF Add session X X X
9 SCARF Comment X X X
10 SCARF Conference name
11 SCARF Edit paper X X X
12 SCARF Edit session
13 SCARF Delete comment X X X
14 SCARF General options
15 SCARF User options X
16 Vanilla Comment draft X X
17 Vanilla Locale X X
18 Vanilla Title banner X X
19 WackoPicko Comment
20 WackoPicko Multi-step X X X
21 WackoPicko Picture
22 WackoPicko Search
23 WackoPicko SQL error
24 WordPress Comment X X X
25 WordPress Nearby event X X X X

F. Missed by Us

Out of the 25 unique injections found by all scanners,
we also find all 25. There was, however, an instance where
Arachni found a vulnerability by injecting a different parame-
ter than we did. This does not constitute a unique vulnerability
due to our clustering, which we explain in Section IV-D.
On SCARF, input elements can be dynamically generated by
adding more users. The input names will simply be 1_name,
2_name, etc. Arachni managed to add multiple users by
randomizing email addresses. Since our crawler is focused on
consistency, we do not generate valid random email addresses
and could therefore not add more than one user.

The drawback, as we have discussed is that is it easier to
lose the state if too much randomness is used. A possible

solution to this could be to keep two sets of default values
and always test both when possible. There is still the risk
that using multiple users can result in mixing up the state
between them. It would also introduce a performance penalty
as multiple submissions for each form would be required.

The w3af scanner was able to find a reflected version
of a vulnerable parameter that we considered to be stored.
In this particular case on SCARF, it was possible to get a
direct reflection by submitting the same password and retype
password in the user settings. This is what w3af did. Our
scanner injected unique values into each field, resulting in an
error without reflection, however, the fields were still stored.
Inter-state dependency analysis was used to detect these stored
values when revisiting the user settings.

Further possible improvements include updating our method
for determining safe requests and more robust function hook-
ing. A machine learning approach, such as Mitch [6], could
be used to determine if a request can be considered safe. The
function hooking could be done by modifying the JavaScript
engine instead of instrumenting JavaScript code.

G. Vulnerability Exploitability

For the six new vulnerabilities, we further investigate the
impact and exploitability. While all of these vulnerabilities
were found using an admin account in the web application,
the attacker does not necessarily need to be an admin. In fact,
XSS payloads executed as the admin gives a higher impact as
the JavaScript runs with admin privileges. What the attacker
needs to do is usually to convince the admin to click on a
link or visit a malicious website, i.e. the attacker does not
require any admin privileges. Although, there might be an XSS
vulnerability in the code, i.e. user input being reflected, there
are orthogonal mitigations such as CSRF tokens and CSP that
can decrease the exploitability.

To exploit the HotCRP vulnerability the attacker would have
to guess a CSRF token, which is considered difficult. Similarly,
PrestaShop has a persistent secret in the URL which would
have to be known by the attacker. One of the WordPress
vulnerabilities was a self-XSS, meaning the admin would need
to be convinced to, in this case, input our payload string, while
the other one required a CSRF token. Finally, osCommerce
required no CSRF tokens making it both high impact and easy
to exploit.

H. Coordinated Disclosure

We have reported the vulnerabilities to the affected vendors,
following the best practices of coordinated disclosure [15].
Specifically, we reported a total of six vulnerabilities to
HotCRP, osCommerce, PrestaShop and WordPress.

So far our reports have resulted in HotCRP patching their
vulnerability [24]. A parallel disclosure for the same vulnera-
bility was reported to PrestaShop and is now tracked as CVE-
2020-5271 [1]. Due to the difficulty of exploitation, WordPress
did not consider them vulnerabilities. However, the nearby
event vulnerability is fixed in the latest version. We have not
received any confirmation from osCommerce yet.
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VI. RELATED WORK

This section discusses related work. Automatic vulnerability
scanning has been a popular topic due to its complexity and
practical usefulness. This paper focuses on blackbox scanning,
which requires no access to the application’s source code
or any other input from developers. We have evaluated our
approach with respect to both community-developed open-
source tools [36, 34, 28] and academic blackbox scanners [30,
8]. There are also earlier works on vulnerability detection
and scanning [2, 17, 35, 23, 10, 11]. While we focus on
blackbox testing, there is also progress on whitebox security
testing [13, 18, 22, 25, 39].

As previous evaluations [3, 9, 37, 40, 29] show, detecting
stored XSS is hard. A common notion is that it is not the
exact payload that is the problem for scanners but rather
crawling deep enough to find the injections, as well as, model
the application to find the reflections. Similar to our findings,
Parvez et al. [29] note that while some scanners were able to
post comments to pictures in WackoPicko, something which
requires multiple actions in sequence, none of them was able
to inject a payload.

We now discuss work that addresses server-side state, client-
side state, and tracking data dependencies.

a) Server-side state: Enemy of the State [8] focuses on
inferring the state of the server by using a heuristic method to
compare how requests result in different links on pages. Black
Widow instead takes the approach of analyzing the navigation
methods to infer some state information. For example, if the
previous edge in the navigation graph was a form submission
then we would have to resubmit this form before continuing.
This allows us to execute sequences of actions without fully
inferring the server-side state.

One reason many of the other scanners pay little atten-
tion to server-side state is to prioritize performance from
concurrent requests. Skipfish [42] is noteworthy for its high
performance in terms of requests per second. One method they
use to achieve this is making concurrent requests. Concurrent
requests can be useful in a stateless environment since the
requests will not interfere with each other. ZAP [28], w3af [34]
and Arachni [36] take the same approach as Skipfish and use
concurrent requests in favor of better state control. Since our
traversing method relies on executing a sequence of possibly
state-changing action we need to ensure that no other state-
changing requests are sent concurrently. For this reason, our
approach only performs actions in serial.

b) Client-side state: jÄk considers client-side events
to improve exploration. The support for events is however
limited, leaving out such events as form submission. While
other scanners like Enemy of the State, w3af, and ZAP execute
JavaScript, they do not model the events. This limits their
ability to explore the client-side state. As modern applications
make heavy use of JavaScript, Black Widow offers fully-
fledged support of client-side events. In contrast to jÄk, Black
Widow models client-side events like any other navigation
method. This means that we do not have to execute the events
in any particular order which allows us to chain them with
other navigations such as form submissions.

c) Tracking data dependencies: Tracking payloads is an
important part of detecting stored XSS vulnerabilities. Some
scanners, including Arachni, use a session-based ID in each
payload. Since the ID is based on the session this can lead to
false positives as payloads are reused for different parameters.
jÄk and Enemy of the State use unique IDs for their payload
but forgets them on new pages. w3af uses unique payloads
and remembers them across pages. ZAP uses a combination
in which a unique ID is sent together with a generic payload
but in separate requests. This works if both the ID and payload
are stored on a page. In addition to using unique IDs for
all our payloads, Black Widow incorporates the inter-state
dependencies in the application to ensure that we can fuzz
the correct input and output across different pages.

LigRE [10], and its successor KameleonFuzz [11] use a
blackbox approach to reverse engineering the application and
apply a genetic algorithm to modify the payloads. While they
also use tainting inside the payloads to track them, we use
plaintext tokens to avoid filters destroying the taints. While
Black Widow works on live applications, KameleonFuzz
requires the ability to reset the application. Unfortunately,
neither LigRE nor KameleonFuzz are open-source, which has
hindered us from their experimental evaluation.

VII. CONCLUSION

We have put a spotlight on key challenges for crawling
and scanning the modern web. Based on these challenges,
we have identified three core pillars for deep crawling and
scanning: navigation modeling, traversing, and tracking inter-
state dependencies. We have presented Black Widow, a novel
approach to blackbox web application scanning that lever-
ages these pillars by developing and combining augmented
navigation graphs, workflow traversal, and inter-state data
dependency analysis. To evaluate our approach, we have im-
plemented it and tested it on 10 different web applications and
against 7 other web application scanners. Our approach results
in code coverage improvements ranging from 63% to 280%
compared to other scanners across all tested applications.
Across all tested web applications, our approach improved
code coverage by between 6% and 62%, compared to the
sum of all other scanners. When deployed to scan for cross-
site scripting vulnerabilities, our approach has featured no
false positives while uncovering more vulnerabilities than the
other scanners, both in the reference applications, i.e. phpBB,
SCARF, Vanilla and WackoPicko, and in production software,
including HotCRP, osCommerce, PrestaShop and WordPress.
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[9] Adam Doupé, Marco Cova, and Giovanni Vigna. Why
johnny cant pentest: An analysis of black-box web
vulnerability scanners. In International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 111–131. Springer, 2010.

[10] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and
Roland Groz. Ligre: Reverse-engineering of control
and data flow models for black-box xss detection. In
2013 20th Working Conference on Reverse Engineering
(WCRE), pages 252–261. IEEE, 2013.

[11] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and
Roland Groz. Kameleonfuzz: evolutionary fuzzing for
black-box xss detection. In Proceedings of the 4th ACM
conference on Data and application security and privacy,
pages 37–48, 2014.

[12] Facebook. A Look Back at 2019 Bug Bounty
Highlights. https://www.facebook.com/notes/facebook-
bug-bounty/a-look-back-at-2019-bug-bounty-
highlights/3231769013503969/, 2020.

[13] Viktoria Felmetsger, Ludovico Cavedon, Christopher
Kruegel, and Giovanni Vigna. Toward automated de-
tection of logic vulnerabilities in web applications. In
USENIX Security Symposium, volume 58, 2010.

[14] Roy Fielding and Jiulian Reschke. Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content. RFC 7231,
RFC Editor, June 2014.

[15] Google. Project zero: Vulnerability disclosure faq, 2019.
[16] Google. Vulnerability Reward Program: 2019 Year in

Review. https://security.googleblog.com/2020/01/vulner

ability-reward-program-2019-year.html, 2020.
[17] William GJ Halfond, Shauvik Roy Choudhary, and

Alessandro Orso. Penetration testing with improved input
vector identification. In 2009 International Conference
on Software Testing Verification and Validation, pages
346–355. IEEE, 2009.

[18] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung
Tsai, Der-Tsai Lee, and Sy-Yen Kuo. Securing web ap-
plication code by static analysis and runtime protection.
In Proceedings of the 13th international conference on
World Wide Web, pages 40–52, 2004.

[19] SE Idrissi, N Berbiche, F Guerouate, and M Shibi.
Performance evaluation of web application security scan-
ners for prevention and protection against vulnerabilities.
International Journal of Applied Engineering Research,
12(21):11068–11076, 2017.

[20] InfoSecurity. XSS is Most Rewarding Bug Bounty as
CSRF is Revived. https://www.infosecurity-magazine.c
om/news/xss-bug-bounty-csrf-1-1-1-1/, 2019.

[21] Security Innovation. Google Awards $1.2
Million in Bounties Just for XSS Bugs.
https://blog.securityinnovation.com/google-awards-
1.2-million-in-bounties-just-for-xss-bugs, 2016.

[22] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
Static analysis for detecting taint-style vulnerabilities
in web applications. Journal of Computer Security,
18(5):861–907, 2010.

[23] Stefan Kals, Engin Kirda, Christopher Kruegel, and Ne-
nad Jovanovic. Secubat: a web vulnerability scanner.
In Proceedings of the 15th international conference on
World Wide Web, pages 247–256, 2006.

[24] Eddie Kohler. Correct missing quoting
reported by Benjamin Eriksson at Chalmers.
https://github.com/kohler/hotcrp/commit/81b7ffee2c
5bd465c82acf139cc064daacca845c, 2020.

[25] Xiaowei Li, Wei Yan, and Yuan Xue. Sentinel: securing
database from logic flaws in web applications. In
Proceedings of the second ACM conference on Data and
Application Security and Privacy, pages 25–36, 2012.

[26] Ali Mesbah, Engin Bozdag, and Arie Van Deursen.
Crawling ajax by inferring user interface state changes.
In 2008 Eighth International Conference on Web Engi-
neering, pages 122–134. IEEE, 2008.

[27] Hrvoje Niki. Wget - gnnu project, 2019.
[28] OWASP. Owasp zed attack proxy (zap), 2020.
[29] Muhammad Parvez, Pavol Zavarsky, and Nidal Khoury.

Analysis of effectiveness of black-box web application
scanners in detection of stored sql injection and stored
xss vulnerabilities. In 2015 10th International Confer-
ence for Internet Technology and Secured Transactions
(ICITST), pages 186–191. IEEE, 2015.

[30] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden,
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VIII. APPENDIX

A. Scanner configuration
1) Arachni: The following command was used to run

Arachni.
1 arachni [url] --check=xss* --browser-cluster-pool

-size=1 --plugin?autologin:url=[loginUrl],
parameters="[userField]=[username]&[
passField]=[password]",check="[logout string
]}

2) Black Widow: The following command was used to run
Black Widow.
1 python3 crawl.py [url]

3) Enemy of the State: First we changed the username and
password in the web application to scanner1 then we ran the
following command.
1 jython crawler2.py [url]

4) jÄk: We updated the example.py file with the URL
and user data.
1 url = [url]
2 user = User("[sessionName]", 0, url, login_data =

{"[userField]": "[username]", "[passField]"
: "[password]"}, session="ABC")

5) Skipfish: The following command was used to run
Skipfish.

1 skipfish -uv -o [output]
2 --auth-form [loginUrl]
3 --auth-user-field [userField]
4 --auth-pass-field [passField]
5 --auth-user [username]
6 --auth-pass [password]
7 --auth-verify-url [verifyUrl]
8 [url]

6) w3af: For w3af we used the following settings, generic
and xss for the audit plugin, web spider for crawl plugin and
generic (with all credentials) for the auth plugin.

7) Wget: The following command was used to run Wget.

1 wget -rp -w 0 waitretry=0 -nd --delete-after --
execute robots=off [url]

8) ZAP: For ZAP we used the automated scan with both
traditional spider and ajax spider. In the Scan Progress
window we deactivated everything that was not XSS. Similar
to Enemy of the State, we changed the credentials in the web
application to the scanner’s default, i.e. ZAP.

https://portswigger.net/burp/documentation/scanner
https://portswigger.net/burp/documentation/scanner
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
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