
Programming in Paragon

Bart van DELFT, Niklas BROBERG, and David SANDS
Chalmers University of Technology

Introduction

This tutorial introduces Paragon, a programming language which allows programmers
to express, as an integral part of the code, security concerns about the data that is ma-
nipulated. The Paragon compiler will only allow a program to be run if it is guaranteed
to respect the security policy declared for its data. In this sense Paragon promises that
well-typed programs are secure by construction.

But what security policies might we want for our data? Access control mechanisms
are perhaps one obvious way to control security, and Java (on which Paragon is built)
includes APIs to express fine-grained access to security-sensitive resources. But access
controls, while useful, are often a poor tool to express the end-to-end security require-
ments that we actually desire from applications.

For example, consider an “app” which sends you special offers from your local
florists in advance of the birthdays of your friends. To function the app needs access to at
least your calendar (to retrieve birthdays), the network (to retrieve the latest special offers
from florists) and your geolocation (to determine which florists are located nearby). But
any app with these access permissions can freely send the whole of your calendar or your
location to anywhere on the net. What we want is to grant access (since it is necessary)
but limit the information flows. In this case we want to limit the information flows from
the calendar to the network despite granting access to both.

Paragon allows the programmer to express such concerns directly in the program,
by labelling data with policies describing where, and under what conditions, the data
is permitted to flow. Moreover, the Paragon compiler checks, at compile time, that the
intended information flows are never violated. This helps programmers check their own
code for information flow errors, and can be used to ensure that third-party code respects
the policy of the data to which it is given access.

For whom is this tutorial written? Several academic publications on Paragon and its
policy specification language Paralocks have been written [3,4]. To better understand
the technicalities behind the language design, and the historical context of this work the
reader is referred to those articles. This document, however, is written for the program-
mer, not the researcher; the programmer, as the end user of the programming language,
should be able to write information-flow secure programs without having to learn all
of the theories, enforcement mechanisms and meta-properties underlying Paragon, nor
indeed the field of information flow research itself. Since Paragon builds on Java, we
assume that the reader is reasonably conversant with the Java programming language.

Overview To demonstrate exactly where and why current programming languages lack
the enforcement we want, we start with a section containing a collection of Java programs
that demonstrate how easily introduced bugs can violate the desired security policy of an
application. In Section 2 we encounter our first examples of small Paragon programs; we
see how we can attach security policies to data and let the Paragon compiler determine
if the program violates these policies. We then look into the definitions of the policies
themselves (Section 3), and see how we can roll our own policies. We delve further in
the policy specification language in Section 4 and see how we can define more dynamic
policies by specifying the conditions under which information is allowed to flow. Sec-
tion 5 rises above the world of small example code fragments to discuss the features of
Paragon that allow for modular programming. For the final deployment and distribution
of Paragon programs, Sections 6 and 7 discuss how we can adopt Java’s library oriented
programming style, as well as provide hints on challenges found in practical applications.

Digital version On the Paragon project’s home page an up-to-date version of this tu-
torial can be found in digital form [1]. What is more, this online tutorial allows you to
compile as well as to edit the example code listed in this document. We encourage you
to use this interactive version of the tutorial, as it will give you a better understanding on
the Paragon programming language.

1. A Programmer’s Perspective on Information-Flow Control

This section motivates what merits an information-flow aware language such as Paragon
can offer over conventional programming languages. In particular, we discuss uninten-
tional errors a programmer might make that violate the information flow policy of a pro-
gram, and could have been prevented by programming in Paragon. If necessary Paragon
can also be used to reject programs that intentionally violate the information flow policy
of a system; an application that we discuss in Section 6.

Consider the following Java code fragment. The fragment is an excerpt of a blogging
web site where visitors can leave their name and a comment. These comments will be
displayed to other visitors, so in order to prevent cross-site scripting (XSS) attacks1 the
comment is escaped before it is stored in the database. Implicitly the programmer is
trying to enforce the policy “all user input needs to be escaped before it is displayed on
the web site”.

public void postComment(HttpRequest userInput) {
String name = userInput.getParameter("name");
String comment = userInput.getParameter("comment");

String esc_comment = escapeHTML(comment);

storeComment(name, esc_comment);
}

The Java compiler raises no errors and the code is deployed, now allowing visitors to
comment on the various blog posts. Unfortunately XSS attacks quickly start to infiltrate

1In a cross-site scripting attack a malicious visitor of the web site tries to e.g. inject HTML or JavaScript
code in web pages viewed by other visitors to steal their personal information.

the blog’s comments. Despite the programmer’s intentions, she did not keep careful track
of all information flows and missed that the name of the commenter ends up unescaped
in the database. Since the information flow policy is implicit, and not explicitly present
in the program, it is impossible for the Java compiler to warn about any violation of this
policy.

The programmer corrects the code to the following, now escaping the variable name
as well:

public void postComment(HttpRequest userInput) {
String name = userInput.getParameter("name");
String comment = userInput.getParameter("comment");

String esc_name = escapeHTML(name);
String esc_comment = escapeHTML(comment);

storeComment(name, esc_comment);
}

The updated code fragment has no noticable effect; the XSS attacks persist. The
programmer’s fix was incomplete, since it is the unescaped user input from the variable
name that ends up in the database, rather then the intended escaped information stored
in esc_name. Again, the Java compiler detects no issues with this program (apart from
some unused variable) because the information flow policy cannot be made explicit.

The programmer updates the code fragment again, now sending the escaped name
into the database:

storeComment(esc_name, esc_comment);

Even this seemingly final version does not necessarily guarantee the absence of
security vulnerabilities in the system. The (potentially different) programmer of the
storeComment method might be assuming that the arguments provided are already es-
caped to be free from SQL injection attacks2. The Java programming language, or any
other conventional programming language, does not give us the opportunity to provide
any context information that might allow the programmer or the compiler to realise that
we are violating the desired information flow policy.

There are more ways, and more subtle ways, in which a programmer can accidentally
introduce undesired information flows. Consider the following code, from another Java-
driven web site. As is common for login checkers, the web site presents you with the
same error message regardless whether the login name exists or not – this prevents an
attacker from learning whether the account he tries to access actually exists.

public void login(String username, String password) {
String correctPass = Database.lookupPass(username);
if (correctPass == null)

error("Username/password is incorrect");
else if (!correctPass.equals(password))

error("Username/password is incorrect.");
else // ... perform login ...

}

2If a string is inserted unescaped in a database query, it might alter the structure and effect of the query itself.

Accidentally, the programmer returns two different error messages after all. One of
them has a period at the end and the other does not. Even without access to the source
code an attacker would quite readily understand the difference between the two error
messages. Again, the programming language does not allow us to specify what infor-
mation flows we want to prohibit, making it impossible to detect the policy violation
automatically.

As a final example, consider this code fragment coming from a social networking
web site:

public void sendMessages(User from, User to) {
to.receive(from.getMessages());

}

There is no way to judge the correctness of this code fragment without being aware
of the information flow policy of the application where this code appears in. For example,
it might be the case that only users that marked each other as friends can share messages,
and the code should have read:

public void sendMessages(User from, User to) {
if (friends(from, to))

to.receive(from.getMessages());
}

The various examples in this section each display an undesired information flow
which could easily arise by small programmer’s mistakes. None of the bugs can be cap-
tured during compilation, since there is no explicit information flow policy to comply
with in the first place.

What the following sections show, is that the Paragon language allows programmers
to make the information flow policy an explicit part of the program. The Paragon com-
piler understands the policy annotations and checks that implementations comply with
them. Therefore programmers’ mistakes such as those listed in this section can be de-
tected already at compilation time, preventing them from showing up only when the sys-
tem is being tested, or worse, when the system is already deployed and the bug is being
exploited.

2. Static Lattices and Information-Flow Varieties

Paragon allows us to specify a program’s intended information flows, and the compiler
verifies that the intended flows will never be violated. This is achieved by labelling data
with policies which describe to where, and under what conditions, the labelled informa-
tion may flow.

To understand how this works in Paragon we must understand how to specify where
information may flow, how to construct policies, and how conditional information flow
is specified.

In this section we focus on the first of these three concepts: where information may
flow. So for now, policies will be just abstract entities and we will not concern ourselves
with how they are created.

Comparing Information Flow Policies Paragon policies are a generalisation of the clas-
sic concept of security in the presence of multiple levels of security clearance. To make
things concrete we will consider the simplest example, confidentiality policies in which
data is labelled according to two confidentiality levels: high confidentiality (a.k.a. se-
cret) and low confidentiality (a.k.a. public). Here high and low are Paragon objects of a
special type named policy. But high and low themselves are not special built-in poli-
cies, and we will see how to define them (in class HighLow) in the next section. The key
property of high and low is the relation between them. Data labelled with high should
be handled more restrictively than data labelled with low. Data labelled high – secrets
– may not flow to containers labelled low. But the reverse is permitted – low data may
flow to containers labelled high. For this reason we say that high is more restrictive
than low.

In addition to the relation between policies which describes when one policy is more
restrictive than another, there are a few other basic operators and policies:

• Given two policies p and q, pt q is the most liberal policy which is at least as
restrictive as both p and q. This means that when we combine data labelled with
p together with data labelled with q, pt q is a description of the policy of the
resulting data.

• Given two policies p and q, puq is the most restrictive policy which nevertheless
allows everything that both p and q allow. For example, if a methods modifies
some data labelled with p, and some data labelled with q, then calling the method
will result in information flow to level puq (and higher).

• Of all policies, there is a most restrictive policy (top) and a least restrictive policy
(bottom).

In Paragon programs, the policy operators u and t can be written * and + respectively.

Labelling Data and Information Flow Basics How do we use policies in programs?
Data containers of various kinds (objects, files, communication channels) are classified
according to the intended information that they contain. For example, the listing below
declares a class with two boolean fields which are each declared with a specific pol-
icy; mySecret is intended for storing high confidentiality data and is labelled ?high,
indicating that reading (querying) the variable will reveal high confidentiality data:

import static HighLow.*; // Importing definitions of high and low

public class MyClass {
?high boolean mySecret;
?low boolean myPublic;

}

The Paragon compiler ensures that all code will respect the policies on these fields. Thus
the following code fragment will be accepted by the compiler:

mySecret = myPublic;

It takes data labelled with low and places it in a location with a more restrictive label,
namely high. However the compiler will flag the following assignment as an information
flow violation:

myPublic = mySecret;

It is instructive to see how we might attempt to fool the compiler by writing equivalent
code. Suppose we try to hide the value of mySecret in a method getSecret() which
simply returns the value of mySecret. This will not help: in Paragon, methods must
declare the policy of their result, so we would have to write

public static ?high boolean getSecret(){
return mySecret;

}

And the violation is detected by the compiler when we try to assign the result of the
method to the low location:

myPublic = getSecret();

Now consider the following alternative:

if (mySecret) { myPublic = true; } else { myPublic = false; }

This is also caught by the compiler, which sees that a publicly visible action (assigning
to a low variable) is performed in a secret “context” – i.e. at a program point that is
reached or not depending on secret information. As a final attempt, let’s try to combine
the previous two obfuscations to trick the compiler. Could we hide the assignments inside
an innocent looking method?

void setPublicTrue(){
myPublic = true;

}
...
if (mySecret) { setPublicTrue(); } else { setPublicFalse(); }

Here we attempt to hide the publicly visible side effect inside a function, hoping that the
compiler does not notice that we call this function in a high context. However, Paragon
requires (for this very reason) that methods declare their information flow side effects
– their so-called write effect. We must annotate not only the parameters and return type
of a method, but also the policy of the lowest level to which the method might write.
The write effect of a method tells us: if we run the method, what is the lowest level at
which we might we notice an effect? In this case, Paragon will only accept the method
declaration if we declare that it writes to a low variable thus:

!low void setPublicTrue(){
myPublic = true;

}

With this annotation on the method the compiler easily rules out the attempted informa-
tion flow via the secret context.

To fully cover all the ways in which information might flow through the program,
Paragon also requires annotations on other components of the language, such as the ar-
guments of a method or the exceptions it may throw. We come back to these in Section 5.

There are, however, limits to what kinds of information flows the compiler checks.
It is possible to leak information by exploiting variation in the timing or termination
behaviour of code. Such covert channels are beyond the scope of what Paragon attempts
to achieve.

Combining Policies As a second example of a simple information flow policy, consider
the problem of ensuring that data originating from an untrusted source (for example a
user input) does not influence data which ought to be trustworthy (e.g. a query string to
be sent to a database). This is sometimes referred to as an integrity policy.

To model this intent we can introduce another two policies, named trusted and
untrusted. Once again we will not reveal how they are defined just yet, suffice to say
that information labelled trusted may freely flow to containers labelled untrusted,
but not vice-versa. Note that these policies behave just like low and high, respectively.
In fact, if we only wanted to model integrity requirements then we could do so by reusing
the HighLow module. However, by defining them as different abstract policies they can
be combined freely to form policies which deal with confidentiality and integrity issues
simultaneously. For example, suppose I have two secrets, my diary and my password.
Both are secret, but my diary might well quote text from an untrusted source, whereas
untrusted data should never have an influence on the contents of my password:

?(high u untrusted) String myDiary;
?(high u trusted) String myPassword;

public !(high u untrusted) void savePassword(){
myDiary += myPassword;

}

Method savePassword() writes a copy of the password into the diary. Note that if we
accidentally assigned the diary contents to the password the compiler would reject the
program, because the diary contents is untrusted, and as such cannot flow to a trusted
container.

The ability to modularly combine policies in this way depends on the policies being
orthogonal – the property that they do not interfere with each other. To see what this
really means we need to see exactly how they are built.

3. Defining Static Policies

So far we have treated policies as abstract entities which are related according to some
permitted information flows, and which can be combined using the operations u, and t.
In this section we will open the box and see how such static policies can be defined.

The basic building block for static policies (by static here we mean policies that
do not vary over time) is the notion of an actor. An actor is nothing more than an ob-
ject which is used to model an observer of information. Static policies are built by sim-
ply specifying to which actors information may flow. (Dynamic policies, which will
be described later, will further add conditions which describe the circumstances un-
der which the information may flow.) Let us begin with the HighLow lattice, and con-
sider one of several possible ways of defining it. The approach is to construct two ac-
tors, highObserver and lowObserver, as representations of users with high and low

security clearance, respectively. The high policy is defined by specifying that only
highObserver may view high-labelled data. The low policy, on the other hand, is view-
able by both highObserver and lowObserver. Hence the high policy is more restric-
tive than the low policy. The syntax necessary to achieve this is as follows:

public class HighLow {
private static final Object lowObserver;
private static final Object highObserver;

public static final policy high = { highObserver : };
public static final policy low = { lowObserver :

; highObserver : };
}

Analogously, we could create a class TrustedUntrusted in which we use the actors
untrustedObserver and trustedObserver respectively.

In the previous section we mentioned the existence of a “bottom” policy, more liberal
than any other, and a “top” policy, being the most restrictive of all policies. These are
not predefined policy constants, but are definable directly. The most restrictive policy is
simply the empty set of actors: { : }. Any policy which permits information to flow to
some actor is by definition more liberal than this policy. At the other extreme, the most
liberal policy says that data may flow to any actor

public static final policy top = { : };
public static final policy bottom = { Object a : };

Note that this policy introduces us to a feature that we will see more often – a bound
actor variable (in this case a). The policy says: for any actor a, information may flow to
that actor.

Using bottom and top we can illustrate two alternative encodings of the HighLow
policies:

public class HighLowB {

private static final Object highObserver;

public static final policy high = { highObserver : };
public static final policy low = bottom;

}

public class HighLowT {
private static final Object lowObserver;

public static final policy high = top;
public static final policy low = { lowObserver : };

}

In both cases the result creates two policies which are ordered in the intended way. Thus
for the purposes of tracking information flow according to a high-low classification they

serve equally well. However there are some differences. The first version, HighLow, ex-
ports policies which are completely fresh – they cannot be reconstructed outside of the
class. This means that they can be freely combined with other policies without “interfer-
ence” between the policies. This means in particular that if we combine HighLow poli-
cies with TrustedUntrusted policies, however the latter are encoded, we will get the
collection of policies we expect, as depicted in the Hasse diagram below:

!high!u!untrusted!

!low!u!trusted!

high!u!trusted!low!u!untrusted!
increasingly
restrictive
policies

This would not be the case if we used either of the other two encodings.
HighLowB.low u q is equivalent to HighLowB.low for any policy q. On the other
hand HighLowT.high u q is equivalent to q . For the other combinations the result will
depend crucially on the encoding of the policy q.

4. Dynamic Lattices and Controlling Locks

So far we have seen how to define static policies. A static policy describes information
flows that do not depend on the state of the system, or the context in which the flow
occurs. Although useful, in practice the completely static prescription of information
flow is too inflexible. For example:

• Declassification: confidential information becomes public whenever a login at-
tempt is made: “incorrect password” tells us something about the secret, but suffi-
ciently little that we would like to ignore it.

• Information Purchase: The permitted flows of a digital product depend on who has
paid for them.

• Sanitisation: Untrusted data can flow to trusted sinks providing that it has been
sanitised.

• Trust relations: Whether you can see my photos depends on whether you are my
friend in a social network.

The key to Paragon’s flexibility is the ability to make each potential information flow
described in a policy conditional on the state of the system.

4.1. Locks

To make information flows conditional on the state of the system, we need a policy-level
representation of the state. This interface is provided by a new type of object called a
lock. A lock is special kind of boolean value which is used by the programmer to model
security relevant events. Suppose that we have a system involving a potential buyer of

information, modelled by an object customer. Information which the customer may
freely learn can be labelled with the policy {customer:}. To model information which
must be purchased, for example a software activation key, we declare a lock Paid. The
lock will be used to flag when payment has been made:

public class KeySeller {
public static lock Paid;

?{customer: } String customerData
?{customer: Paid} String softwareKey

}

Here the policy {customer: Paid} dictates that the software key can flow to the cus-
tomer only when the Paid lock is open (the Paragon terminology for the paid lock being
true).

A lock is a built-in data type of Paragon that can be used in limited ways. One of
the important ways that we use a lock is to open and close the lock to signal changes in
the state of the system. For example, suppose that we have a confirmPayment method
which is called once payment is complete. This would be a suitable place to insert the
code

open(Paid)

Now consider the assignment in the following code:

if (paymentSuccess) {
confirmPayment()
customerData = softwareKey

}

Is this a legal information flow? The policy on the expression softwareKey is more
restrictive than the policy on the target customerData, so it seems that it violates the
intended information flow. However, the effective policy of the softwareKey at this
program point is the policy obtained by deleting all locks which are known to be open
at that point. Here the lock Paid is open, and thus the effective policy of softwareKey
here is {customer: } and so the policies are indeed compatible. This all relies on the
Paragon compiler to compute (an under-approximation of) the locks that are open at any
assignment point in the program.

Runtime Testing of Locks However smart the compiler might be at working out which
locks might be open, sometimes it is simply impossible to know the status of a lock at
compile time. For example, suppose that Paid lock is opened after a successful payment:

public void processPayment() {
// customer pays for item
if (paymentSuccessful) { open Paid; } else { ... }

}

After calling processPayment() we cannot be sure, statically, that the Paid lock is
open. To resolve this uncertainty we can add a run-time test on a lock, treating it as a
boolean value:

processPayment();
if (Paid) { customerData = softwareKey; } else { ... }

Now, of course, the compiler has no problem determining that the assignment conforms
to the information flow policy.

4.2. Parameterised Locks

Suppose now that instead of a single customer we have any number of individual cus-
tomers, created from a class Customer. In this case we would need a Paid lock for each
of these. This is accomplished by parameterising the locks over objects thus:

public class KeySeller {
public static lock Paid(Customer);

?{Customer x : Paid x} String softwareKey
}

Thus the Paid lock is now a family of locks, and the policy says that the softwareKey
can flow to any customer x who has paid.

In general, parameterised locks with one parameter (unary locks) are a good tool to
model information flow to principals that depends on a dynamic role. Binary (two pa-
rameter) locks, on the other hand, are useful for modelling relationships between objects
which may influence permitted flows. The following policy for work documents in an
organisation reflects this, and also serves to illustrate that policies may have multiple
clauses:

policy workData =
{ Manager m :
; (Manager m) Employee e : GivesPermissions(m, e)
; (Manager m) Employee e : IsBoss(m), WorksFor(e, m) };

This policy allows (clause 1) information to flow to any manager, (clause 2) any em-
ployee who has been given permission by a manager, and (clause 3) any employee who
works immediately under the manager who is the overall boss. Spelling out the third
clause in natural language, it says:

For all managers m, information may flow to any employee e providing that m is a boss, and
e works for m.

Comparing Policies As before, data with policy p can be assigned to a container with
policy q providing that q does not permit any flows that are not already allowed by p. I.e.
q is more restrictive than p. So for example suppose that alice is a Manager, and bob is
an Employee. Then the following three policies are all more restrictive than workData:

policy workData2 =
{ Manager m :
; (Manager m) Employee e : IsBoss(m), WorksFor(e, m) };

policy aliceSecretProject = // only alice and the boss
{ alice :
; (Manager m) : IsBoss(m) };

policy bobAlice = // alice and maybe bob
{ alice :
; bob : GivesPermissions(alice, bob) };

We could freely assign a value with policy workData to a container declared with
any of these policies. On the other hand, the following policies are incompatible with
workData, as they each allow some flows that workData does not necessarily allow.

policy managerAndBob =
{ Manager m :
; bob : };

policy underManagement =
{ Manager m :
; (Manager m) Employee e : WorksFor(e, m) };

As before, when comparing policies the compiler will also take into account the
locks which are open at the point of comparison, the effective policy. One way of under-
standing the effective policy when we have parameterised locks is to think of the locks
which are open as allowing us to add further clauses to the policy. Consider, for example,
workData in a context where GivesPermissions(alice, bob) is open. This means
that, by the second clause of the policy, information may flow to bob. Thus the effective
policy is

workData u { bob : }

Thus in this context we could assign workData to a container with policy managerAndBob.

4.3. Lock Properties

As we have seen, the status of locks influences the meaning of a policy. This means that
we have to open and close appropriate locks at the right times. For some security policies
this might result in a lot of seemingly boilerplate code. For instance, consider a company
which has a strict hierarchy among its employees. Each employee has the authority to
read all the documents that can be read by the employees below him in the hierarchy.
The policy on a document of employee Elton might therefore be:

{ elton : ; Employee e : ReadsFor(e, elton) }

This means that the ReadsFor lock needs to properly represent the hierarchical state,
including its transitive nature. Thus a method that allows an employee a to start reading
documents of b already becomes quite complicated:

void allowReading(Employee a, Employee b) {
open ReadsFor(a, b);
for (Employee e : employees) {

if (ReadsFor(b, e)) open ReadsFor(a, e);
if (ReadsFor(e, a)) open ReadsFor(e, b);

}
}

If a read permission gets revoked, a can no longer read for b, it becomes hard to even
correctly modify the lock state:

void disallowReading(Employee a, Employee b) {
close ReadsFor(a, b);
for (Employee e : employees) {

if (ReadsFor(b, e)) close ReadsFor(a, e);
}

}

Is it correct to also disallow employee a from reading of any of the indirectly obtained
permissions? Perhaps one could argue that this depends on whether those read permis-
sions were not also provided explicitly to a.

Clearly, this all results in fairly complicated code, only to successfully maintain the
correct lock state. At the same time it also leads to quite a large lock state that consumes
memory at run time. To better address these situations where certain locks are implicitly
opened depending on some explicitly opened locks, Paragon provides lock properties.

A lock property specifies under which circumstances a lock is implicitly opened. A
property is defined at the declaration point of the lock on which it is a property, e.g.:

lock ReadsFor(Employee, Employee)
{ (Employee a) ReadsFor(a,a) :
; (Employee a, b, c) ReadsFor(a,c) : ReadsFor(a,b),
ReadsFor(b,c) };

The clauses forming the lock properties are similar to the policy clauses we saw earlier.
The first property states that each employee is allowed to read on his own behalf. The
second property, in natural language, reads:

Any employee a may read for any employee c, provided that there exists some employee b
such that a reads for b and b reads for c.

With these properties, we now only need to maintain the essential links that form
the hierarchy among the employees, while Paragon ensures that the implicit lock state
is correctly maintained – that is, we can do without the for-loops in the previous code
fragments.

Some forms of lock properties are rather common, in particular on binary locks.
Paragon provides shorthands for three typical relational properties: reflexivity, transitiv-
ity, and symmetry. The two first are exactly the ones we have used above: that an actor is
related to itself, and that we can form chains of relations, respectively. Symmetry speci-
fies that if some actor a is related to some actor b, then b is also related to a. An example
is the following relation:

symmetric reflexive transitive lock CoWorkers(Employee,Employee);

Finally, a lock property could involve other locks than the lock it is defined on. For
example, each senior employee who is a manager is automatically also a member of the
company’s board:

lock BoardMember(Employee)
{ (Employee e) BoardMember(e) : Manager(e), Senior(e) };

5. Modularity

So far we have only looked at information flows in short code fragments. To enable
information-flow control on realistic applications we need to track information flows
across multiple methods, fields, and classes. Paragon does this in a way that enables each
method to be checked independently of the others – much in the same manner that Java
checks the types of methods.

In order to check information flows in a compositional way, each of these compo-
nents (methods, fields, and classes) specifies additional annotations in its signature re-
garding its information flow policy – which the compiler needs to check. When a com-
ponent is referenced elsewhere in the application we can reason about information flow
using only its signature without needing to consult its actual implementation. Some of
these annotations we already encountered in Section 2. In this section we present a full
overview of all such annotations introduced in the Paragon language.

5.1. Read Effects

A read effect specifies the information flow policy of a particular location, such as the
fields used to demonstrate various information flows in Section 2. If a read effect an-
notation on a field is omitted, the compiler defaults to the bottom (least restrictive) pol-
icy {Object x:}, except for locks themselves which are defaulted to the top policy
{:}. The different default for locks is motivated by write effects, which are discussed in
Section 5.2.

Similarly local variables within a method can be given a read effect:

public class Clazz {
?high boolean mySecret;
?low boolean myPublic;
void myMethod() {

?low boolean localBoolean = myPublic;
mySecret = localBoolean;

}
}

However, it is never necessary to explicitly specify the read effect on a local variable
since Paragon will infer these effects for you, if possible, based on the other annotations
found on fields, method’s return values etc. If Paragon is not able to infer the read effects,
this means that some information flow policy is violated via the use of local variables,
such as in this fragment:

public class Clazz {
?high boolean mySecret;
?low boolean myPublic;
void myMethod() {

boolean localBoolean = mySecret;
myPublic = localBoolean;

}
}

The arguments of a method and, as we saw previously, its return type, are annotated
with a read effect:

?high int specialAdd(?low int lowInt, ?high int highInt) {
return lowInt + highInt;

}

When checking the information flows within this method’s body, we treat the argu-
ment lowInt as a location which stores information with policy low, and information
in highInt has policy high. The read effect of any returned value should be at most as
restrictive as the read effect on the method’s return type.

In order to rely on these assumptions, the compiler checks that in every call to this
method the arguments are not more restrictive then the annotated policies. Similarly, the
result of the method should be stored in a location which has a policy at least as restrictive
as the read effect on the method’s return argument, i.e. high.

highInt = specialAdd(lowInt, lowInt); // Valid
highInt = specialAdd(lowInt, highInt); // Valid
highInt = specialAdd(highInt, lowInt); // Invalid first

argument
lowInt = specialAdd(lowInt, lowInt); // Invalid assignment

The read effect annotations prevent unintended relabeling of information via method
calls. When a read effect annotation is not present on a method argument, we assume that
the method is polymorphic in that argument. The read effect annotations of the method
can refer to its polymorphic policy using the policyof keyword:

?(policyof(otherInt)*low) int specialAdd(?low int lowInt, int
otherInt) {
return lowInt + otherInt;

}

With this definition the following uses of the method are both valid:

highInt = specialAdd(lowInt, highInt);
lowInt = specialAdd(lowInt, lowInt);

When the read effect on the return type of the method is omitted, it defaults to the
join of the read effects of all the arguments (polymorphic or not). Note that this default

is not necessarily restrictive enough, for example if the method uses more restrictive
information to contribute to its result than is provided in its arguments:

public class Clazz {
private ?high int highInt = 10;

boolean greaterThan(int val) {
return highInt > val;

}
}

The compiler would yield the error when checking the return statement in the
greaterThan method: the policy on the returned expression (policyof(val)*high)
is more restrictive than what the method’s signature expresses (policyof(val)).

5.2. Write Effects

The read effects used in the signatures of fields and methods prevent explicit information
flows in a modular fashion. Write effects achieve the same for implicit information flows,
i.e. flows via secret contexts.

All observable effects of statements that are visible outside a method’s scope, such
as performing assignments to fields or writing to an output stream, are referred to as side
effects. Any entity that can observe the side effects of a method can potentially determine
whether that method has been called. Therefore, the decision to call a method should not
depend on information with a higher security level than the security level of the method’s
side effects – a flow that is exploited in the following class:

public class Clazz {
public ?low int data = 0;

void setData(?low int val) {
this.data = val;

}

void myMethod(?high boolean secret) {
if (secret) { // Decision made on high data

setData(1); // Low side effect
}

}
}

If we inline the method call to setData, that is, replace it with the method’s body
this.data = 1;, we see that this is indeed the same implicit flow as we saw earlier
in Section 2. To detect these implicit flows while preserving our modular approach, i.e.
without inlining the method’s body, Paragon requires that methods are annotated with
their write effect.

The write effect of a method is a lower bound on its side effects. For every method,
the compiler verifies that the write effect of any side-effect in its body, including calls to
other methods, is indeed at least as restrictive as this lower bound. In our example, the

method setData has a statement with a side effect on security level low which has to
be reflected in its signature. The write effect is written as !pol :

public class Clazz {
public ?low int data = 0;

!low void setData(?low int val) {
this.data = val;

}

!low void myMethod(?high boolean secret) {
setData(0);
if (secret) {

setData(1); // Invalid side effect detected
}

}
}

Since myMethod calls setData it inherits its side-effects and needs to be annotated
accordingly. Due to the annotation on setData the Paragon compiler is now able to
derive that the call in the branch depending on secret breaks the information flow
policy via an implicit flow.

In the absence of a write effect the compiler assumes the top policy {:} as an upper
bound on the side effects. This means that the method has either no side effects, or only
side effects on containers with exactly the policy {:}.

One interesting observation is that opening and closing locks are side effects as well.
As indicated in Section 5.1 the read effect of locks defaults to the top policy {:}, which
means that the side effect of opening and closing a lock can be largely ignored by the
programmer. The only reason to change the default policy on a lock is when the state of
the lock may flow to different locations, i.e. via lock querying (see Section 4.1).

5.3. Lock-State Modifications

The locks which are open at any time will be referred to as the lock state. Irrespective of
side effects, the lock state influences the effective information flow policy at any point
in the code. To be able to determine how the effective policy changes between method
calls, a method needs to have annotations that describe how it modifies the lock state.

Within one method it is relatively straightforward to determine how the lock state
changes and therefore how the effective policy is affected. When another method is
called, everything we know about the current lock state might be changed. The simplest
approximation would therefore be to assume that all the locks we knew to be open before
the method call are closed after the method call. This is a safe approximation because
by assuming locks to be closed locks we strictly reduce the number of information flows
which are deemed acceptable.

But such a pessimistic assumption would cause the compiler to reject many rea-
sonable programs, so instead Paragon requires the programmer to annotate each method
with all the locks it potentially closes. We write these lock state modification annotations
as -Lock:

-LoggedIn -Administrator public void logout() {
close LoggedIn;
if (isAdministrator(user))

close Administrator;
}

In this example the annotation says at at most locks LoggedIn and Administrator
will be closed on return from this method. And neither of these annotations could safely
be omitted from the method declaration. By implication, any other lock which was open
before the method call will still be open after the call.

Conversely, we allow the programmer to annotate each method with any of the locks
it definitely opens. These annotations are written as +Lock:

+LoggedIn public void login() {
open LoggedIn;
if (isAdministrator(this.user))

open Administrator;
open MayEdit;

}

Here, the programmer chose to not add the lock state modifier +MayEdit to
the method’s signature, although it would have been valid to do so. Adding +

Administrator to the signature would not have been allowed, since this lock is not
guaranteed to have been opened after the method returns. These annotations allow the
compiler to update its approximation of the current lock state as the result of a method
call, by only inspecting the method’s signature.

As a final annotation, a method might explicitly state that it can only be called in
a context where a particular lock is guaranteed to be open. This annotation is written
˜Lock:

˜Administrator public void deletePage() {
...

}

Here we say that the method expects lock Administrator to be open. Thus when
checking the body of this method the compiler assumes the lock Administrator to be
open. In order to rely on this assumption, the compiler must also be able to determine
that Administrator is open at every call-site of deletePage method, for example:

public void foo() {
login();
if (Administrator) // runtime check required

deletePage();
logout();

}

5.4. Exceptions

An alternative way of returning from a method to its caller is by throwing an exception.
Since the effects of a method might differ depending on whether it returned normally or
not, we annotate each thrown exception with its own write effect and lock state modifiers.
In addition the exception itself might carry information, for example in its message, and
can therefore be given a read effect as well.

!high +A -B public void divideBy(?low int lowInt)
throws +A !low ?low Exception {

open A;
if (lowInt == 0)

throw new Exception("Argument cannot be 0");
this.highInt = this.highInt / lowInt;
close B;

}

In the case that method divideBy returns normally, it guarantees to open lock
A, close lock B and has a write effect high because it changes the value in the field
highInt. In the case that the method returns with an exception, it has also guarantees to
have opened lock A but has not closed lock B that annotation is left out.

The write effect annotation on the exception denotes what information might be
learned from the fact that the exception is thrown. Therefore, code following a call to
this method, up to and including the catch clause for this exception, may only perform
side-effects whose write effects are of the specified policy or above. At the same time the
annotation constrains the contexts inside the method’s body where the exception could
occur, enforcing that those contexts are no more restrictive than low.

Every exception forms an implicit information flow channel and therefore needs
to be handled explicitly in every Paragon program. That is, every exception needs to
be either caught or part of the method’s throws annotation. This includes runtime ex-
ceptions such as NullpointerException and ArithmeticException. The method
divideBy could thus also be written as:

!high +A -B public void divideBy(?low int lowInt)
throws +A !{:} ?low ArithmeticException {

open A;
this.highInt = this.highInt / lowInt;
close B;

}

5.5. Classes and .pi-files

Like Java applications, a typical Paragon application is a collection of various classes
defined in separate .para files, collected in one or more packages. If the current class
file under compilation refers to other classes, e.g. by extending them or using object
instances of those other classes, the Paragon compiler does not need to have access to
original source code of those classes. Instead, after the successful compilation of each
class, a .pi file (or: Paragon Interface file) is created that preserves the policy-relevant

signatures of fields, methods and constructors. The Paragon compiler looks for these .pi
files and assumes that the information flow policies therein are correct. This modular
approach also allows the programmer to tie Paragon with Java programs, as is described
in more detail in Section 7.

The current edition of the Paragon compiler does not support inner classes or cyclic
dependencies between classes – for any referenced class the .pi file is assumed to exist.
The Paragon compiler comes with a collection of Paragon Interface files for a subset
of the standard java packages java.io, java.lang, java.security, java.util,
javax.crypto, javax.mail and javax.servlet .

5.6. Generics and Policy-Agnostic Libraries

Certain classes might be agnostic to the actual information flow policy and simply pro-
vide functionality agnostic to the security level of the data that they handle. Most of the
standard Java classes fall into this category, such as List or InputStream. To write
these classes we build on the notion of generics, as introduced in Java 5. That is, it is
possible to add policy type arguments to the definition of a class and use them as reg-
ular policy variables. Typically this occurs for classes that already have standard generic
arguments, such as this simplified LinkedList:

public class LinkedList<G, policy p> implements List<G, p> {

private ?p G data;
private LinkedList<G, p> next;

public LinkedList(?p G data) {
this.data = data;

}

public ?(p*policyof(index)) G get(int index) {
if (index == 0)

return this.data;
return this.next.get(index - 1);

}

public void append(?p G data) {
if (this.next == null)

this.next = new LinkedList<G,p>(data);
else

this.next.append(data);
}

}

The (Java) type argument G is the type of the objects stored in the list, and each
element in the list is given the policy p. The policy can be used exactly like any concrete
policy, as is done for example in the read effect of the get method. We can now use this
data structure to store elements of any desirable policy:

public void foo(?low Object a, ?high Object b) {

LinkedList<Object, low> myList = new LinkedList<>();
myList.append(a);
myList.append(b); // Policy violation detected
?low Object x = myList.get(0);

}

Like in Java, it is also possible to provide type arguments to a method, for example
in this static method to obtain an instance with a particular policy:

public class MyObject<policy p> {

// Private constructor
private MyObject() { ... }

public static <policy q> MyObject<q> getInstance() {
MyObject<q> result = new MyObject<q>();
...
return result;

}
}

Using policy type arguments it is possible to write libraries that are independent
of the actual policy enforced. This places the information flow policy entirely on the
level of the user code. On the other end of the spectrum it is possible to encapsulate an
information flow policy entirely within the library code, forcing the user code to comply
with the policy of the library. This is the perspective we explore in Section 6.

6. Abstraction and Encapsulation

Throughout Section 2 we used a library as a layer of abstraction between the security
levels high, low and their actual definitions. In this section we profit even more from the
synergy between Paragon policies and Java encapsulation, by encapsulating locks and
even complete information flow paradigms as libraries.

6.1. Encapsulating Locks – a Sanitisation Policy

Locks enable conditional information flow policies. Opening locks make the effective in-
formation flow policy more liberal. But in general we don’t always want the programmer
to have full control over the opening and closing of locks. For example, we might want
to open a lock briefly to allow the untrusted output of a sanitisation function to be moved
to a trusted container. But we only want this to happen when we use the sanitisation
operation. The key here is the appropriate use of encapsulation.

The following class exports a sanitisation function, stripping possible HTML tags
from a string – like the escapeHTML function used in Section 1. It also exports a policy

unescaped which guards information flows using the private lock Escaping. As a
result, information protected under the unescaped policy can only remove this policy
by applying the escapeHTML method on that information. The method uses a policy
argument p that allows the library’s policy to be used in conjunction with any other
policy.

public class Escaper {

private lock Escaping;
public static final policy unescaped = {Object x : Escaping};

public static <policy p> ?p String
escapeHTML(?(p*unescaped) String text) {

open Escaping {
// Perform the escaping
return result;

}
}

}

External code can use the unescaped policy to label its untrusted sources of
information. Using proper annotation on the arguments of the postComment and
storeComment methods Paragon detects the information flow bug from Section 1 (as-
suming that the getParameter method returns a String with the same policy as its
HttpRequest object):

public void storeComment(?low String name, ?low String comment) { ... }

public void postComment(?(low*Escaper.unescaped) HttpRequest userInput) {
String name = userInput.getParameter("name");
String comment = userInput.getParameter("comment");

?low String esc_comment = Escaper.<low>escapeHTML(comment);

storeComment(name, esc_comment); // Invalid flow detected
}

The escape policy easily combines with the external code’s policy on the user input
(low). The same pattern can be used for other so-called ‘trusted declassifier’ libraries,
such as encryption, signing and tainting.

6.2. Encapsulating Information Flow Policies – a Framework for Third-party Code

In Paragon it is possible to completely encapsulate an application’s information flow
policy and force third-party code to follow that policy. As an example we use a very
simplified framework for smart-phone applications. Third-party programmers can write
applications in Paragon, addressing the resources of the phone via the framework’s API.
Our small case study’s framework provides API operations to get the phone’s GPS lo-
cation, read and write access to the file system, and read and post access to the internet.
The framework’s information flow policy annotations dictate how these resources may

be used. Information on the file system is considered to be of the security level high
whereas information on the internet is low. The GPS location can be declassified to low

but only by asking the user’s permission to do so.

public class Framework {

private lock DeclassifyGPS;

public final policy low = { Object any : };
public final policy high = { : };
public final policy gps = { Object any : DeclassifyGPS};

?low String readWebPage (?low String page);
?high String readFile (?high String fileName);
?gps Location getGPSLocation ();

// Method that asks user to declassify location
?low Location declLocation(?gps Location loc)

throws PermissionException;

void writeFile(?high String fileName, ?high String data);
void sendWeb(?low String url, ?low String data);

}

public interface App {
public abstract void run(Framework framework);

}

An application for the phone is required to implement the App interface. The
Paragon compiler enforces the policies specified by the framework, and detects any at-
tempt by the third-party code to violate the information flow policy:

public class MyApp implements App {

public void run(Framework fw) {
String news = fw.readWebPage("thenews.com")
fw.writeFile("latest.xml", news);
String agenda = fw.readFile("agenda.xml");
fw.sendWeb("collecting.com", agenda); // Invalid flow
Location loc = fw.getGPSLocation();
fw.sendWeb("collecting.com", loc.toString());

// Invalid flow
try {

Location dloc = fw.declLocation(loc);
fw.sendWeb("collecting.com", dloc.toString());

} catch (PermissionException) {
// User denied declassification

}
}

}

Note that, in this simple setting, the Paragon code in MyApp contains only standard
Java syntax. If we are willing to accept that the third-party programmer needs to write
some Paragon specific syntax we can encapsulate more complicated policies, such as
different permissions for different applications, or policies that can be modified by the
user of the phone.

7. Real world practicalities

So far we only discussed Paragon in the context of small or simplified examples. When
starting to program large scale, real world applications in Paragon some additional pro-
gramming paradigms become useful.

7.1. Linking Java and Paragon using .pi-files

In the Paragon distribution, Paragon Interface (.pi) files are used to summarise the in-
formation flows present in a collection of standard java packages. Although there is the
risk that these information flow assertions are incorrect and introduce security bugs, they
remove the need for rewriting the large (and partly native) Java code base entirely in
Paragon.

The same approach can be taken to reuse existing Java code and libraries for a
Paragon application, whenever the programmer is confident that this code is free of pol-
icy violations. For example, the JPMail application discussed in Section 7.4 uses .pi-
files to avoid reimplementation of e-mail protocols and encryption standards in Paragon.
This modularity allows the programmer to limit Paragon policy annotations to the parts
of the application where information flows are deemed relevant and that need strong
guarantees that the policy is not violated.

Since Paragon trusts that the information flow assertions in .pi-files are correct, it is
possible to exploit this trust during the development of an application. In particular, it al-
lows us to write a (.pi, .java) file pair for printing debugging messages that potentially
violate the information flow policy.

// Debug.pi:
public native class Debug {

public !{:} void out(?{:} String message);
}

// Debug.java:
public class Debug {

private static final boolean DEBUG = true;
public void out(String message) {

if (DEBUG) {
System.out.println("DEBUG: " + message);

}
}

}

The native keyword in the .pi-file indicates that this interface is written by hand
and not the result of a Paragon compilation. The policies in the .pi-file assert that mes-

sages with any information flow policy can be provided as an argument, and that the
method has no side effects. Therefore, the debug method can be called at any point in the
application even though it violates the information flow policy. Naturally, the debugging
module should not be functional during the application’s deployment phase.

7.2. Input-Output Channels

Any real world application demands more input and output capabilities than just program
arguments and return values. It is important to realise that all communication channels,
such as writing to files or reading from an input stream, introduce additional implicit
flows. An observer of the channel does not only learn what information is read or sent
on the channel, but also that the channel is being used.

To correctly model this information flow each channel operation must come with
an appropriate write effect. The write effect should be at least as permissive as the read
effect of the data sent or received on the channel, since at least the observers of that data
learn that the channel is used. There might also exist external observers who learn that
the channel is used but not the content sent on it, for example when observing encrypted
network traffic. Therefore the write effect might be of a strictly lower security level than
the level of the information itself.

The standard Paragon Interface files supplied for streams assume that both the read
and the write effect of channel operations have the same information flow policy:

public native class PrintStream<policy p> {
!p public void print (?p String s);
!p public void println (?p String s);
!p public void println ();
!p public void flush ();
...

}
public native class BufferedReader<policy p> {

public BufferedReader(?p InputStreamReader<p> isr) { }

!p public ?p String readLine() throws !p IOException;
...

}

7.3. Linking Paragon Actors with External Entities

Many real world applications with information flow concerns need a way of representing
external entities in the application’s policy. For example, a Unix application needs to
specify information flow policies for the various users of the system, and a web server
needs the same for the users of its web applications. A similar situation can be found
on a smart phone that has information flow policies for the various applications installed
on the phone. In these cases it appears natural to associate a separate actor with each of
these external entities.

In Paragon actors are represented as objects, implying that each external entity
should be represented by exactly one object pointer. Some care needs to be taken as to

how these actors are created. For example, the following method opens a lock for an
actor that exists only in the scope of the method:

public void foo() {
UnixUser alice = new UnixUser("alice");
open SomeLock(alice);

}

The opening of the lock has no effect, since any other new UnixUser("alice") in-
stance is referring to a different actor. In such a situation a variant of the singleton pat-
tern can be used to guarantee that we always refer to the same particular instance of
UnixUser for each actual user:

public class UnixUser {
private static final HashMap<String, UnixUser> users =

new HashMap<>();

private UnixUser(String name) { ... }

public static final UnixUser getUser(String username) {
UnixUser u = users.get(username);
if (u == null) {

u = new UnixUser(username);
users.put(username, u);

}
return u;

}
}

7.4. JPMail

One of the larger current applications in Paragon implements a functional e-mail client
based on JPMail [5]. In JPMail the user can specify a mail-policy file, partly dictating
the information flow policies that the mail client has to enforce.

JPMail ensures that an e-mail is only sent if its body has been encrypted under
an algorithm that is trusted by the receiver of the e-mail. Which encryption algorithms
are trusted by what JPMail users is specified in the mail-policy file. In addition JPMail
needs to enforce more static policies, e.g. preventing the login credentials from flowing
anywhere else than to the e-mail server.

The JPMail example incorporates the various pragmatics discussed in this section,
as well as most of the other features of the Paragon langauge. The source code of the
application can be found on the Paragon website [1].

8. Further resources

More information about Paragon and its policy specification language can be found in
the following resources:

Paragon project web site
All tutorials and publications related to Paragon are been collected on the Paragon
project web page [1]. Here you can also find the interactive version of this tutorial
that allows you to run the Paragon compiler via your web browser.

Paragon
For more information on the Paragon programming language, and for citing the
project, please see [4].

Paralocks
For more information on the earlier versions of the policy specification language,
see [3,6]. The version of the language used in Paragon can be found in the appendix
of the technical report version of [4].

Issue reporting
If you find any issues in the Paragon compiler, we would be very grateful if you
report them at our issue tracker, which can be found at [2].

References

[1] Paragon. Website, 2013. http://www.cse.chalmers.se/research/group/paragon.
[2] Paragon issue tracker. Website, 2013. http://code.google.com/p/paragon-java/issues.
[3] N. Broberg and D. Sands. Paralocks – Role-Based Information Flow Control and Beyond. In POPL’10,

Proceedings of the 37th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, 2010.

[4] N. Broberg, B. van Delft, and D. Sands. Paragon for Practical Programming with Information-Flow
Control. In Asian Symposium on Programming Languages and Systems (APLAS) 2013, volume 8301,
pages 217–232. Springer, 2013.

[5] B. Hicks, K. Ahmadizadeh, and P. D. McDaniel. From languages to systems: Understanding practical
application development in security-typed languages. In ACSAC. IEEE Computer Society, 2006.

[6] B. van Delft, N. Broberg, and D. Sands. A Datalog Semantics for Paralocks. In Proceedings of the 8th
International Workshop on Security and Trust Management (STM), pages 305–320. Springer, 2012.

A. Overview Paragon Syntax

This appendix lists the additional syntax introduced by Paragon on top of Java.
TODO: check correctness of syntax here :-)

A.1. Locks

lock MyLock;

Defines 0-ary lock – may only appear as field of a class and has implicit modifiers
final and static.

lock MyLock { MyLock : OtherLock };

Defines lock with a property stating that when OtherLock is open MyLock is also
open.

lock MyLock(File, Object);

Defines lock of arity 2. Arguments to this lock should be of type File and Object
respectively.

lock ActsFor(Actor, Actor)
{ ActsFor(alice, bob) :
; (Actor a) ActsFor(a, alice) : SomeLock(a)
; (Actor a, b, c) ActsFor(a, b) : ActsFor(a,c), ActsFor(c,b)
};
Example of a lock with multiple lock properties. The lock is always opened for
the actor pair (alice,bob). Both alice and bob need to refer to final, non-null
instances of type Actor. Any actor acts for alice provided that SomeLock is
opened for that actor. Finally, the last clause makes the lock transitive. Note that c
is existentially quantified, whereas the others are universally quantified.

reflexive lock Rel(Object, Object);

Adds the lock property (Object a)Rel(a,a):

Only applicable on binary locks.
symmetric lock Rel(Object, Object);

Adds the lock property (Object a b)Rel(a,b): Rel(b,a)

Only applicable on binary locks.
transitive lock Rel(Object, Object);

Adds the lock property (Object a b c)Rel(a,b): Rel(a,c), Rel(b,c)

Only applicable on binary locks.
readonly lock MyLock;

This lock can be queried outside its defining class, as well as used in method
annotations outside its defining class, but can only be opened or closed within
its defining class. The readonly modifier replaces the standard access modifier
public, private or protected.

open MyLock(alice);

Statement which opens the lock MyLock for the final, non-null object alice.
close MyLock(alice);

Statement which closes the lock MyLock for the final, non-null object alice.
if (MyLock(bob)){ s1 } else { s2 }

Queries the lock MyLock and executes branch s1 if the lock is open, s2 otherwise.

A.2. Lock Annotations

+MyLock void m() { ... }
Specifies that method m, if terminated normally, guarantees to have opened
MyLock.

void m() throws +MyLock SQLException { ... }
Specifies that method m, if terminated with an SQLException, guarantees to have
opened MyLock.

-MyLock void m() { ... }
Specifies that method m, if terminated normally, might have closed MyLock.

void m() throws -MyLock SQLException { ... }
Specifies that method m, if terminated with an SQLException, might have closed
MyLock.

˜MyLock void m() { ... }
Enforces that method m can only be called in a context where MyLock is known to
be open.

A.3. Policies

policy bottom = { Object o : };

Defines the most permissive policy: information can be observed by anybody.
policy top = { : };

Defines the most restrictive policy: information can be observed by nobody.
policy pol = { alice : }

Specificies that information can only flow to alice, where alice is a final, non-
null instance in scope.

policy pol = { alice : HasPaid(alice)}

Information can flow to alice provided that she has paid, i.e. when the HasPaid
lock is open for alice.

policy pol = { Customer c : HasPaid(c), Release }

Information can flow to any instance of type Customer provided that customer
has paid and the lock Release is open.

policy pol =
{ Manager m :
; (Manager m) Employee e : GivesPermissions(m, e)
; (Manager m) Employee e : IsBoss(m), WorksFor(m, e)
};
Policy with multiple clauses. Information can flow to any manager, to any em-
ployee if there is some manager that has given this employee permissions, and to
any employee that works directly under the boss.

policy pol = polA * polB;

Defines the policy to be the most permissive policy that is at least as restrictive as
polA as well as polB. Also referred to as the join or t of the two policies.

policy pol = polA + polB;

Defines the policy to be the most restrictive policy that is at least as permissive as
polA as well as polB. Also referred to as the meet or u of the two policies.

public static typemethod policy owner(Actor a) {
return { a : Owner(a) };

}
A type method is evaluated at compile time and therefore has to be static, deter-
ministic and side-effect free.

policy pol = owner(alice);

A policy definition using a type method.

A.4. Policy annotations

?pol
Declares a read effect. The policy has to be final. If the policy is absent it is de-
faulted to the following:

Read effect on Default policy
local variable policy inferred by compiler
field { Object o : }

lock { : }

method argument parametric in argument
method return type join of all arguments
thrown exception join of all arguments

!pol
Declares a write effect. The policy has to be final. If the policy is absent it is
defaulted to the following:

Write effect on Default policy
method return type { : }

method exception { : }

class Clazz<policy p>

Class definition with a policy as type argument. The provided policy has to be
final.

class Clazz<actor Employee>

Class definition that requires a type argument of type Employee to serve as an
actor (i.e. the provided argument has to be final and not-null).

Clazz c = new Clazz<pol>()

Calling the constructor of the class, providing a final policy as type argument.
<policy p> void m()

Method signature that requires a policy as type argument. The provided policy has
to be final.

inst.<pol>m();

Calling an instance method with a policy as type argument.
Clazz.<pol>m();

Calling a static method with a policy as type argument.
?r Clazz<p>[]<q> myArray = new Clazz<p>[10];

Creates an array storing instances of Clazz<p>, i.e. Clazz with policy argument
p. The elements of the array have the policy q. The array itself has policy r.

?(policyof(arg)*q) int m(int arg) { ... }

Method is polymorphic in the policy of its argument; returned value has the same
policy joined with policy q.

