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Abstract many similarities between problems that arise in the access con-

This paper presents Paralocks, a language for building expressivetr()l and information flow control domains. In particular, problems

but statically verifiable fine-grained information flow policies. Par- regardi_ng_ policy specification and modelling Of_ principal actors are
alocks combine the expressive power of Flow Locks (Broberg & quite §|mllar, much due to the fagt that these issues are not purely
Sands, ESOP'06) with the ability to express policies involving run- t€chnical, but rather refate to the interface between the system and
time principles, roles (in the style of role-based access control), Its users (implementor, gdmlns). Thus, many ideas releva_mt in one
and relations (such as “acts-for” in discretionary access control), domain are equally applicable to the other, at least on a high level.
We illustrate the Paralocks policy language by giving a simple en- In t_he access °°r.“.r°' _domaln the_re exists plenty of .research
coding of Myers and Liskov's Decentralized Label Model (DLM).  €garding policy specification mechanisms. Such mechanisms have
Furthermore — and unlike the DLM — we provide an information tradltlor_lally been categorized into two separate groups: M_a_ndatory
flow semantics for full Paralock policies. Lastly we illustrate how (OF Static) access control (MAC), where an outside administrator
Paralocks can be statically verified by providing a simple program- assigns static pnwleges_ to principals, and Discretionary access
ming language incorporating Paralock policy specifications, and a control (DAC), where principals themselves can grant and revoke

tati t hich dl f inf tion fl _ privileges to and from other principals. A later addition to the

static type system which soundly enforces information flow secu family of models is Role-based access control (RBAC) [SCFY96],

rity according to the Paralock semantics. : ] )
which has become very popular and has seen wide-spread adoption

Categories and Subject DescriptorsD.3 [PROGRAMMING LAN- both commercially and academically.

GUAGES; F.3.1 LOGICS AND MEANINGS OF PROGRAMS On the information flow control side, there has been far less
Specifying and Verifying and Reasoning about Programs focus on policy specification. We surmise that this has a very
natural cause. In access control, which deals with the interfaces to a
system, policy specification is the one core issue and a prerequisite
for any further aspects of security. Information flow control on the

General Terms Security, Languages, Verification

1. Introduction other hand is more naturally focused towards issues of semantic
Issues of software security can be crudely categorized into three SECUrity with respect to a policy, and most research in the domain
broad domains: has been devoted in that direction.

Papers on information flow control issues typically fall into one
* Access contrafieals with security at the end points of a system, of two categories where the policy mechanism used is concerned. In
to verify that an entity is allowed to access the system, and to the first category we find those that use a simple model built around
what extent. a lattice of principals or sets of principals, going back to Denning’s
e Information flow controldeals with securitynside a system,  €arly ground-breaking work. The other category is the research that
between the end points, to ensure that data in the system is hanbPuilds on the Decentralised Label Model (DLM), which is today
dled in a way that agrees with the security policy of the system. Something of a flagship of information flow control through its
This is the domain that is most interesting from a programming implementation in JIF. These two categories can somewhat crudely

language point of view, since it deals with security during exe- D€ said to correspond to the MAC (static Denning-style lattice) and
cution. DAC (decentralised and discretionary) models.

. . . . Interestingly and perhaps surprisingly there has been almost no
* Encryptiondeals with securitputsidea system, to ensure that 4 on marrying a fundamentally role-based model to information
data can be protected even outside the trusted system environsiow control (the exceptions being [SHTZ06, BWWO08] which are

ment. discussed further in Section 8), despite the massive attention RBAC

The problems involved in research on encryption are quite dif- has received in the access control domain, both commercially and
ferent from the other two domains, but unsurprisingly there are academically. The use of roles in an information-flow setting is
discussed in Section 2.

In this paper we present Paralocks (Section 3), a language for
building expressive but statically verifiable fine-grained informa-
tion flow policies. Paralocks is based on the simple and expressive
idea of Flow Locks|[BS06] extended with the ability to express
policies modelling roles (in the style of RBAC) and run-time prin-
cipals.

The extensionffarameterisedocks turns out to provide much

[Copyright notice will appear here once 'preprint’ option is removed.] more than just the ability to model roles: we show (Section 4) how
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relations such as delegation in discretionary access control can bespectively, immediately spring to mind. Other constraints on the
represented by policies, and use this to give a sound and completeauction influence the intended information flows:
encoding of théDecentralised Label Mod¢ML97]. ] S B

Unlike theDecentralised Label Modeve also provide an infor- e the seller can set a reserve price which is initially only visible
mation flow semantics for Paralocks (Secfion 5). This defines what  to the seller;
it means for a program (whose state components are labelled with e bidders provide sealed bids and can see their own bid but cannot
policies) to be secure. see each others’ bids;

As an illustration of how paralocks can be integrated into a
programming language we give (Sectian 6) an example of a small
programming language with a paralock type system for which we
show that well-typed programs satisfy the semantic information e if the reserve price is not met then there is no winning bid;
flow condition.

Finally (Section 7) we outline a logically natural extension to
the paralocks policy language to include recursively specified locks In summary, to verify that code managing such auctions is well
(DATALOG rules). behaved raises a number of general challenges from an information

Our aim with this work is really two-fold. On the one hand we  flow perspective:
present the policy specification language Paralocks. We show how
Paralocks naturally models roles, but also actors, groups and gen-1. We need to model dynamic actors — actors whose concrete
eral relationships in a simple and structured way. On the other hand,  identity is not known or may not exist until runtime.

we also present Paralocks as a very general framework for infor- 2 The data associated with a role (e.g. the bids) belongs to the

mation flow control. This aspect lets us use Paralocks to reason  actor and not the role (because bidders should not be able to see
about and give meaning to other mechanisms both current and fu-  gj| pids - only their own bid).

ture. Paralocks thus serves as a platform that can greatly simplify
further research into various aspects of information flow control,
such as specialised policy specification languages, and the relation-
ship between information flow control and programming language

e bidders learn of the winning bid, but only at the end of the
auction;

e sellers cannot also be bidders for the same item.

3. Permissions associated with roles are assigned dynamically (in
this example, the ability to read a winning bid is only granted
after the auction is complete).

design. 4. Declassification is required: the winning bid (or its absence)
provides partial information about the secret reserve price of
2. Roles and Information Flow the seller.

Roles are a natural concept in an organisational structure and are5. We must be able to impose role constraints (a la RBAC2) to
just as naturally tied to information flow controls as to access  ensure that the seller cannot become a bidder on the same item.

control. Consider a department consisting of managers, personnel . . S
P g gers. p In the next section we develop a policy language which is aimed

and sales. These roles form a hierarchy as illustrated in the Hasse ; p . .
diagram below: at meeting these challenges. The policy language is built on top

of flow locks a versatile policy language for dynamically changing

Manager information-flow policies. The extension in question is motivated
/ \ by the addition ofoles As we will show in the subsequent section
Personnel Sales (4), the extension turns out to provide considerably more than just

In role-based access control each role represents a set oflasers ( the ability to represent roles.

we will use the neutral terractor§ endowed with a set of permis-
sions. The hierarchy illustrated in the figure (roles + hierarchies are
referred to as RBAC1 in the RBAC96 model [FSGL]) represents 3. Flow Locks and Roles
the intention that the permissions granted to higher roles subsumeFlow locks are a simple security policy specification mechanism.
those granted to lower roles. Flow locks themselves are “policy neutral” — they do not presup-
Let us suppose that we take an information flow perspective pose any particular labels, information flow levels, or fixed hierar-
on roles and we assume data is labelled with a role, representingchy. The core idea s to logically specify the conditions under which
the permission to gain information about that data. Then role- a given actor in the system may gain information about some data.
based information flow control would simply be the constraint that We use the phrase “gain information” rather than “access” at this
information may only flow upwards in the hierarchy. This is simply point to stress that this is an information flow notion rather than
the Denning lattice-based model [Deh76] with a relaxation on the an access control one. The conditions are specified using so called
requirements that the hierarchy forms a complete lattice. locks which are boolean variables that may be manipulated by the
In this setting the assignment of users to roles is of little direct execution of the program. A policy is then a set of logical clauses of
concern from an information flow perspective, since users do not the form =« (so called Horn clauses), where each clause spec-
possess their own data, and are defined purely by the roles to whichifies the conditionsX)) under which data labelled with that policy
they are assigned. Inputs and outputs of the system would then bemay flow to actora. 3 is a set of locks, which we interpret as a
bound to roles, and some external mechanism would mediate theconjunction, i.e., for to have access to the data then all lockXin
connection between roles and users. must be true. The set of clauses is itself interpreted as a conjunction,
However, if we admit the possibility of personal data then the so for an actor to have access it is enough that one clause allows it
information flow perspective becomes considerably richer. For ex- (a conjunction of implications is equivalent to a disjunction of the
ample, if we had 1/0 channels directly to users then we would have premises).
an information flow problem with a dynamic policy: information Consider a simplified form of the auction example in which we
flows to and from a given actor would depend on her current role. have two known buyer8;, and B, and a single selle$ and where
Consider another scenario involving personal data: an auction the bidders may see each other’s bids once they have placed their
site managing sealed-bid auctions forapriori unspecified num- own. We associate two lock$é;d; and bid» with the placing of
ber of users. In such a scenario the roles of seller and bidder, re-bids by B, and B: respectively;bid; will be assumed to become
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true onceB; has placed his bid. Then the policy fB4’s bid is
{S; B1; bids = BQ} .

This says that thé3;’s bid may flow to.S and B; unconditionally,
and may flow toBs only when B, has placed a bid (as modelled
by lock bid2).

Using the terminology of flow locks, when a condition repre-
sented by a lock becomes true, we say that the lookéned Sim-
ilarly when is becomes false we say that itiesed

Consider a further example from [BS09] represented in Figure
[1which depicts three Denning-style information-flow lattices.

Alice promote Alice Bob

/—\ Alice

te B
Bob promote Bob

Bob Alice

demote Alice demote Bob
Joe

Joe

Figure 1. Example Dynamic Policy

In the leftmost lattice Alice is the top element. While Alice is
“boss” all information may flow to her. If she is demoted, how-
ever, then the information flow lattice changes to the central figure.
From there either Bob or Alice can be promoted to be the boss. Let
us consider how to encode this intended scenario with flow locks.
To represent this dynamic flow policy we begin, not surprisingly,
by assuming three actorlice, Boh andJoe To model the transi-
tions between policies we use two locksomoteAandpromoteB
The events of promotion and demotion are modelled by the respec-
tive opening and closing of these locks. WhaomoteAis open
then Alice is boss. ClosingromoteA(respectivelypromoteB cor-
responds to demoting Alice (resp. Bob).

To complete the picture we need to describe the corresponding
policies for the data to be associated with Alice, Bob, and Joe. Joe
is the simplest case, and his data has pofidye; Alice; Bob} —

i.e. it is readable by everyone at all times. Alice’s data has pol-
icy { Alice; promoteB = Bob} and Bob has the symmetric policy
{Bob; promoteA = Alice}. For Bob this means that his data is
readable by Alice only when Alice has been promoted. Note that

and we allow data labelled with poligy to flow to a location with
policy ps provided thaip: (X) C p2, whereX is the lock state in
effect at the time of the flow.

3.1 Modelling roles

A naive approach to supporting roles with Flow locks could be
to simply let the actorde the roles, and not have conventional
actors at all. This would work with no changes to the current policy
language, however as our examples in the previous section have
shown, we often need to reason about both roles (or groaps)
individual actors.

Thus we need a different approach to roles that retains the
notion of an actor. Looking at what it means for some data to be
accessible to a rol®, the natural interpretation is that an actor
may gain information about that data if the actor is a membét.of
How do we express this as a flow lock policy? We need a lock that
captures the condition that‘is a member of roleR”, which we
henceforth writeR(a). But clearly the policy we want is not just
for some specific actog, but rather any actat. for which R(z)
holds. Logically we could easily write this &&. R(z) = z. A
role thus has a natural representation as afancily, parametrised
by actors.

To achieve this we propose two separate — though synergistic —
extensions to the basic formulation of flow locks from [BS06]:

Parameterised LocksLocks which are parameterised over actors
represent role memership. For example the &i8er is rep-
resented as parameterised lock family, sa i§ an actor then
Seller(a) is a lock which models being a member of the seller
role. Data labelled with the policySeller(a) = a} is permit-
ted to flow toa providing thata is a seller.

Actor Polymorphism To make parameterised locks practically
useful we also need to be able to quantify oméractors, so
that we could instead write the policy as

{Vz. Seller(x) = x}

— meaning that data labelled with this policy may flowatoy
seller.

if both locks are open then we have a situation not modelled in the With this interpretation of roles, and these extensions to the policy
figure: Alice and Bob become equivalent from an information flow specification Ianguage, we can ee_tsny fc_)rmulate the policies from
perspective. If we want to rule this out we cannot do so using the the examples in the previous section using flow locks. Let us then

policy on data, instead we must enforce this via an invariant prop-
erty of the locks themselves.

The reason for keeping the guards as simple boolean flags rather

than arbitrary logical expressions is that this makes it possible to
mechanically check that programs conform to a flow lock policy
using a type system. Ensuring that locks are open at appropriate
times is an application-specific problem that can be seperately
verified using a general purpose theorem prover, for example.

To track information flow in a program, data labelled with some
policy p; is allowed to flow to a location with a different policy
p2, assuming thap, is more restrictivethanp, . This ordering of
policies, which we writep; C p», corresponds naturally to logical
entailment when viewing policies as Horn clauses. In fact, it is
easy to show that policies form a lattice, where the join and meet
of two policies correspond to logical disjunction and conjunction
respectively, and the partial ordering is logical implication as noted.

But whether a flow is permitted obviously also depends on the
current lock state, to allow for e.g. declassification. To this end
we express the comparison of policies in a specific context by
specialisinga policyp to a particular set of locks that are known
to be open. Formally this is defined for flow locks as

pX)={A\E=z| A=z € p}

To appear: Principles of Programming Languages, POPL 2010, dgni7—23, 2010, Madrid, Spain.

return to the challenges offered by those examples:

1. Actors whose concrete identity is not known until run-time
can be handled by policies with actor polymorphism. As a
simple example, the policyvz. z} is the most liberal policy,
permitting its data to flow to any actor at all times. This does
not require us to know the identity of all actors at policy creation
time (as would be required using the original basic flow locks
mechanism).

2. Fine grained policies at the level of individual actors combine
easily with roles. For example, suppose we wish to generalise
the scenario in Figurel 1 to an organisation of 1000 employees —
or a situation with an unknown number. Here we must combine
a role (the boss) with the requirement that non-bosses cannot
obtain information from each other (with the exception of Joe).
The data of Joe would have policyx.z — it can flow to
anyone. The data for any other individualwould have the
policy {a;Vz. Boss(xz) =z}, which means that data labelled
with this policy can flow taz and anyone who is a boss (at the
time of the flow).

. Permissions associated with roles are assigned dynamically
by using standard (non-parameterised) locks. For example, the
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largest bid might be stored in a variable with policy e if ¢; and ¢, are equal up to (i) capture-free renaming 'of

. ) bound actors (ii) reordering of quantified actors and (iii) dele-
{vo. {AuctionClosed, Bidder (z)} = x} tion of V-bound actors not occurring in the body of the clause,

where the vanilla lockductionClosed represents the property thenc; C ca;

that the auction is complete and the reserve has been met. S0 e Va4, ..., a,.51 = b C Vai,...,an. B2 = bif 1 C s.

in effect AuctionClosed represents the condition under which ¢ 4, 4, ... a,.S=a C Vai,...,an. (S=a)lao := b)),

the Bidder role is assigned the permission to learn about the  \here[a, := b] denotes the unconstrained substitutiorb 6

winning bid. ao.
4. geglﬁs‘:‘:'f'fat)'(o% 'SI‘ '?Eerr'ted r\f/romri th? St\‘?r}:j%ﬁd tﬂo’[vl’\l/ Iocﬁsr We do not present a formal proof that this corresponds to the logical
odel. For example, e reserve price IS avallable to the sefler, interpretation (in fact we did not spot the connection directly), but
but is declassified to bidders providing there is a winning bid: we note that clauses are equivalent to so-caltegunctive queries
{Seller; Va. { AuctionClosed, Bidder(z)} = x} CM77], and a policy thus a union of conjunctive queries. The
) ) . . ordering on clauses defined above can be seen as a construction
5. Role constraints — here the requirement that e.g. there is a singlepf a containment mappinfUll90]. The fact thatvc, € po.Jc1 €

seller, and that seller and buyer cannot be the same actor —, ¢, C ¢, is necessary and sufficient to check logical entailment
can be established by runtime invariants for flow locks. These of unions of conjunctive queries was established in [SY80].

can either be verified statically or enforced dynamically using
a runtime representation of locks. In Section 7 we describe

At any point during program execution, the permitted flows will
depend on the locks which are open at that point. To determine

an extension which permits certain constraints on roles to be whetherp C ¢ in the context of some open locks, we check

specified as part of the policy.

3.2 The Paralocks Policy Language
Now it is appropriate to summarise the policy language of this

the logical implication® A p | g. In the type system given in
Section 6 we implement this check via thigecialisatiorof policy

p to a lock state, written p(X); we then check thai(X) C q.

The meet operation on policies is simple to define as it corre-

paper, and define its lattice structure. In summary, the policy sponds exactly to conjunction of (sets of) Horn clauses. In our lan-
language generalises flow locks policies with actor-parametrised guage, that means taking the union of the clauses of two policies,

locks, hence the namBaralocks The ordering on policies is based
on a straightforward and natural logical interpretation of policies.

DEFINITION 3.1 (Paralock Policies).

¢ Policies are built fromactor identifiers ranged over by, b,
etc. andparameterised locksanged over by, ¢’ etc. Each
parameterised lock has a fixed arityity (o) > 0.

e Alockis atermo(azi,...,ay), wherearity(c) = n. LetX, &’
range over sets of locks.

e Aclausecis a term of the fornva, ..., an. X = a.

e Apolicy p is a set of clauses writteficy; ... ;¢ }.

We have already adopted a number of syntactic abbreviations in

earlier examples: we write just instead ofs() in the case that
arity(c) = 0. Similarly we drop the quantifier on clauses when
there are no quantified variables. When the lock’sét a clause
is empty, as ivai,...,a,. @ =a we write Vai,...,a,.a. We
will routinely write @ to denote some sequenaeg, . . ., a,. Such
a sequence will be treated as a &et, . . ., a, } when the context
permits us to do so without ambiguity.

Policies have a natural reading as conjunctions of definite first-
order Horn clauses. Each clause

Vay,...,an.{ 01(61); o
can be read as the Horn clause
Vai,. .. an. (61(B1) A - A Gm(bm)) = Flow(a)

where Flow is a single unary predicate disjoint from the parame-
terised locks, representing the “may flow to” property.

Using this logical interpretation we obtain a natural lattice
structure on policies, where the policy orderirig)(on individ-
ual clauses is just logical entailment. Specifically, we defifie g
whenevemp, viewed as a first order formula, entajlswWe will write
p [= ¢ to denote this logical interpretation.

Following this natural interpretation we have the following def-
inition:

—

;U'm(b'm)} =a

DEFINITION 3.2 (Policy ordering)Policy p; is less restrictive
thanpolicy p2, written p; T po, if Vea € pe.3e1 € pr.c1 E co,
where the orderind- on clauses is defined to be the least partial
order (reflexive and transitive relation) satisfying the following:
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i.e.p1 ﬂpg =p1 Upz.

The join operation however is more tricky. Logically it corre-
sponds to a best approximation of disjunction of Horn clauses,
since in general (sets of) Horn clauses are not closed under dis-

junction. l.e.p Ll q is the least policy such thatV ¢ = pU q. We

can define the join directly as follows:

DEFINITION 3.3 (LUB). In the following it is convenient to parti-
tion actor variables in tov-bound variables ranged over by ¥,
and free actor variables (i.e. actor constants) ranged oves bypd
b. We writeX = b to denote the policyy. X = b wherey are the
V-bound variables oE = b.

Letp andq be policies. We will assume, without loss of general-
ity, that all V-bound variables appearing in the head of any clause
are namedrz, and that any othek-bound variables in any clause
from p are distinct from the&/-bound variables of.

Then we define

pUg={S, U=z |S, =z e€EpS,=>zE€q}
U{EZ,USg=a Sy =a€EpXi=acq}
U{E, U (Ey[z:=a])=a |y =a€p;Xy=2x € q}
U{(Z,z:=a)USg=a | Epy=>z€p;Xi=a€ q}

It can be shown that the set of paralock policies (quotiented by the
equivalence relation generated frdm) form a complete lattice.
We will not go into the proof here, but simply note the least (most
liberal) policy L {Vz.z} and the greatest (most restrictive)
policy T = { }, which will be needed later.

The reader may have noticed that the policy language defined
here can contain locks parameterised over more than a single actor.
This gives us more expressive power than just roles. In the next
section we motivate and illustrate this generalisation.

4. From Roles to Relations: Encoding the
Decentralized Label Model

Using actor-indexed lock families we have shown how we can
model roles along-side specific actors in a natural logical setting,
and how the two can co-exist in the same program. In this section
we will show how, using a natural generalisation, we can model
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policies where information flow can depend tations between

owner who specifies its readers. The label on a piece of data reflects

actors. Such relations are useful in the description of a decentralisedthe various potential origins of the information in that data.

discretionary security model.

The decentralisation relates to the readers. Each owner can

The core components of a decentralised discretionary model independently specify who they consider trusted to view the data.

is the concept obwnership and anacts-for relationship (some-
times referred to agelegatioror aspeaks-forelation )}
where an actorn who acts forb enjoys the same rights @s In
particular if actora owns some data theb has full access to
that data ifb acts fora. The condition under which may access
the data is thus thath*acts fora”. Logically this is easily mod-
elled with a binary relationship between actors, which in the flow
locks setting would naturally correspond to a lock family witlo

parameters. The policy mentioned here could then be written as

{a;Vz. ActsFor(a,z) = z}.
Going from one to two parameters, or indeeatary lock fam-
ilies, is a straight-forward generalisation. There are no additional

The effective reader®f some data are those for whom all the
owners have agreed may read it, i.e. the intersection of the separate
reader sets for all owners. A label for some data may look like

{01 tr1,r2; 02 7‘2,7“3}

whereo; ando, are owners anai, ro andrs are readers. Such
data might be obtained by combining data fromandos in some
way. The effective readers in this example is just

A label L, is said to be more restrictive than laldel, written
L1 Cpru Lo, if it has at least the same owners, and each of those
owners list fewer potential readers. Formally it is defined [ML97]

technical difficulties involved, and we already have the mechan- as

ics for quantification in place. (We have no immediate examples of

lock families with more than two parameters, but see no reason to

exclude them.)

Typically, acts-for relationships are modelled with two other
properties, namely reflexivity and transitivity. Each actor acts for
himself. If  acts forb andb acts forc, then models typically as-
sume implicitly thata acts forc as well. With Paralocks, proper-
ties like transitivity and reflexivity are not built in. Locks are just

boolean variables with no additional predefined semantics attached

to them. If we want a transitive property for a particular relation
like ActsFor, we must handle this explicitly.

A naive attempt could be to try to handle this on the policy level,
e.g. by specifying the policy as

{a;Vz. ActsFor(a, ) = x;
Va,y. ActsFor(a,z), ActsFor(z,y) =y}
This is not a viable approach since the above policy only works

for one step of transitivity; for full transitivity we would need
to explicitly list the transitive closure, and this would be at best

L1 Cpra Lo = owners(L1) C owners(L2) A
Vo € owners(L1). readers(Li1,0) 2 readers(Lz, o)

Data may beelabeledin two ways, through an assignment:

e Data with labell; can always be assigned to a storage location
(a container) with label if L is more restrictive thai, i.e.
L, C Ls.

¢ Data can bealeclassifiedby adding more readers for a given
owner. In the DLM this can be done freely providing that the
current process runs on behalf of the owner in question.

Apart from labels, there is one other important component to
the DLM, namely theprincipal hierarchyand its associated acts-
for relationship. The DLM lets principals represent both individual
users and other notions like roles and groups, and membership for
a user in a role can thus be modelled by letting the user act for that
role. The acts-for relationship is transitive and reflexive.

This has two effects on the security of a program. First,atts

cumbersome, and impossible if we could not statically enumerate for b andb is listed as a reader in a label, theis also implicitly a

all actors. There are two routes to deal with this issue. The first

reader. Second, if a piece of code runs on behatf,dhen it also

is to extend the expressive power of the policy language to enableimplicitly runs on behalf ob, so code running on behalf efmay
such global invariants to be expressed as part of the policy. This conduct declassifications s name.

is explored in Sectioh]7. For now we take a simpler route, and
view transitivity not as a property of a policy, but rather an intended
invariant on the set of locks open at any given time. This invariant

To encode the DLM using Paralocks, we need to represent a
number of things explicitly that are implicit in the DLM. The first
of these is the acts-for relationship, which we've already discussed

can easily be maintained at runtime by suitably encapsulating lock how to model earlier in this section. If the principal hierarchy states

manipulation operations.

So if we ensure that any program using a policy involving
delegation maintains the transitivity property 4ttsFor, then it
is enough for the policy to be stated (as before) as simply

{a;Vz. ActsFor(a,z) = z}.

4.1 Encoding the Decentralized Label Model

To show the flexibility of our model, we show how it can be used
to encode the Decentralized Label Model (DLM) of Myers and
Liskov [ML97][*.

The core component of the DLM is tha&bel. Data is decorated
with labels that govern how that data may be used. A label
specifies thewnersof some data, writtenwners(L), and for each
owner the set ofeadersallowed by that ownemeaders(L, o). The
intuition behind the owners is that data, at its origins, has a single

1 In the earlier flow locks work [BS06] we sketched a possiblévDéncod-
ing, but the encoding there required all principals to bevkmstatically, so
that all relations between principles could be “hard wirgdd the policy.
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thatb acts fora, then we expect thd ctsFor(a, b) lock to be open.

We can account for changes to the hierarchy during execution by
opening or closing the appropriate locks. We expect a concrete
semantics to maintain the invariants for transitivity and reflexivity
for the ActsFor relationship as previously discussed.

Second, to account for declassification being possible only
when the process runs with the authority of the owner of the declas-
sified data, we need a lock famijunsFor(a). We expect the ap-
propriate locks to be open for those actors for whom the code runs.
Further, we also expect the invariant that whenetetsFor(a, b)
and RunsFor(b) is open thenRunsFor(a) is also open, again
making the implicit relationship explicit.

Third, since Paralocks take the perspective of the reader, as op-
posed to the owner as in in DLM, the policy needs to be explicit
about the potential future readers to whom the data may be de-
classified. With respect to a given owner, we can freely add new
readers as long as the code executes with that owner’s authority.
We can thus model the labéb :}, i.e. data owned by with no
added readers, with the policy

{Vz. RunsFor(o) = x}
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The intuition here is that in code running witfs authority, this
data may be declassified to any acioP Adding a reader to the
above policy, we gefo : r}, which we would represent as

{Vy. ActsFor(r,y) = y; V. RunsFor(o) =z}
The first clause here corresponds to the readBy reflexivity we

will always haveActsFor(r, r) open, and hence and anyone else
who acts forr, will be able to read data labelled with this policy.

we get[{o1 : r1,72} Upran{o2 : 72, 73}]
=[{o1 : 71,725 02 : T2, 73}]
={Vz. RunsFor(o1), RunsFor(o2) = x;
Vy. ActsFor(ra,y) = v;
Vy. RunsFor(o2), ActsFor(r1,y) = y;
Vy. RunsFor(o1), ActsFor(rs,y) =y}

=[{or : i, r2}JU[{o2 : 72,7m3}]

To handle the general case of the encoding we need to deal with

the case of @otential reader(a reader who is a reader for one but

Finally we can show that the lattice of labels in the DLM is a

not all owners). For these readers we need to consider the ownerssublattice of the Paralocks policy lattice:

who donot permitr to read the data.

DEFINITION 4.1 (Label Encoding)Suppose that is a (potential
or effective) reader for some labél andO is a subset of owners
for L. We say that the paifO, ) is aconflict pairfor label L if

O ={o]| o€ owners(L),r & readers(L,o0)} .

Intuitively, O are the owners who have not permittetb read data
labelled L.

Now we can define the general encoding of Labels as policies
[] : Label — Policy by

[L] = {Vx. {RunsFor(o) | o € owners(L)} =z}
U {Vy. RunsFor(o1),..., RunsFor(o,), ActsFor(r,y) =y
| ({o1,...,0n},7)isaconflict pair forL}

The first clause in the definition dfL] says that data can be
declassified to anyone providing it is in a context which runs with
the authority of all owners. Otherwise a potential reade(or
anyone who acts for) may read providing it does so in a context
which runs with the authority of those owners who did not grant
explicit access to.

As an example, consider the encoding of the empty label:

[{ 3 = {ve. {} =2} U {} = {Ve.a}

The empty label has no owners, so implicitly anyone can read data

with that label — as expressed explicitly in the flow locks encoding.
When combining labels from different data sources, the DLM

simply performs the union of the respective owner policies, leaving

THEOREM4.1. L1 Cpry Lo if and only if [Li] £ [L2].
Further, [L1Upwy L2]] = [L1]U[L2], and similarly for M.

The proof of these properties is given in the extended version of the
paper. The relationship betweénh andC,,,, amounts to saying
that the encoding is sound and complete with respect to the DLM
rule for relabelling data.

What we have given here is an encoding of the DLM policy
specification language only. One might expect to see a deeper com-
parison, in which we also compare the impact of the two on the
security of programs, i.e. the formal semantic security definitions.
The problem is that the DLM, or more accurately its implementa-
tion in JIF, does not have a formal semantic security model. There
exist models for subsets or restricted scenarios for DLM, but it has
never been covered in full. But with our encoding here, we are ac-
tually able to do just that, to provide a semantic security model for
programs that use the DLM for their information flow control. Our
full semantic model will be presented in the next section.

5. Paralock Security

In previous work/[BS09] we have developed a simple and accu-
rate context-sensitive security model for flow locks based on un-
derstanding when an attacker’s knowledge about initial data values
is permitted to increase, developed as a generalisation of the simple
gradual releasalefinition [ASO7].

The semantic model developed in this section is an extension of
the simple flow locks model frorh [BS09]. The difference is that we
must handle both runtime actor allocation and runtime querying of
the lock state, both of which may be sources of information flow.

5.1 Computation Model

the effective reader set implicit as the intersection of all readers. In We assume an imperative computation model — a labelled transition
our encoding the difference between effective and potential readerssystem — involving commands and states, but the definition is
is rendered more explicit. Consider combining the two policies otherwise not specific to a particular programming language. We

representindos : 71,72} and{oz : 72,73}, which are

[{o1:71,m2}] =
{Vz. RunsFor(o1) = x;
Vy. ActsFor(r,y) = y; Vy. ActsFor(ra,y) =y}
[{o2:72,73}] =
{Vx. RunsFor(o2) = x
Yy. ActsFor(ra,y) = y; Vy. ActsFor(rs,y) =y}

2 Note that in a programming language enforcing a DLM (such asIBif
Mye99, MZZt06]) one might want to additionally constrain that declassi-
fication occurs at explicitly declared places in the codés heasily mod-
elled using regular flow locks by associatin@eclassifylock with the por-
tion of code which is designated as a declassification. Hawever, is not
part of the DLM model.
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assume transitions of the forifr, S) = (c’,S’) wherec is a
program ands is the program state. We assume that the semantics
signals any flow of information, i.e. changes to the state, using
labelsi, wherel is either a distinguished silent output(when
there is no state update), or a vatueorresponding to the value of

the updated part of the state. So for example a simple assignment

x := 42 would generate a3 transition. We further assume that the
state includes at least the following three components:

e A memory, i.e. a mapping from locations to the values they
contain. We denote the memory of stétdy Mem(S), and
range over memories using variables N.

¢ A lock state, which is the set of all locks currently open. We
denote the lock state of stateby LS(S), and useX, A to
range over lock states.

e An actor mapping, keeping track of the concrete run-time rep-
resentation of actors that the actor variables in the program rep-
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resent. We denote the actor mapping part of sfatg Act(S) attacker(a, 3J) can seesome part of the state with poligy iff
useA to range over actor mappings. p C {¥ = a}. Atransition isvisible to A if A can see the portion

. . u / !
Just as with program variables, actors have concrete representation@ the state involved in the change. We write 5) —.a (c', 57)

at runtime, which differ from their representations in the program When(c, S) = (¢, §’) and the transition is visible td, and
code. This is so we can handle e.g. dynamic creation of actors in a gy & g
loop, where the same actor variable name is reused for a new actor {e,5) = (e, 5)

each titme ?round the lo?ﬁ' \t/r\gacfl” tthe tr untimte r%pretsfentations when there exists a sequentef labelled transitions between the
concrete actorsas opposed to stract actorgactor identifiers) respective configurations, where the projection/ab the non-

found in the program code and policies. ilent A-visible transitions is equal t@. We sometimes omit result

A.S a consequence, since Iogks can take actors as arguments, aionfigurations if we only care about the output of a program, as in
runtime locks will be parametrised by concrete actor representa- =

tions. We refer to a lock with concrete actor parameters esna (¢, S) == . Note that the series of execution steps generating a
crete lock The lock state component of the state consists of the set trace need not be maximal, so the set of4xbbservable traces of
of concrete locks currently open. a given program-state pair for a given attacKeis prefix closed.

For both actors and lock sets we adopt the convention to use AN A-low stateis a projection of a state to exactly those parts
bold face identifiers when denoting concrete entities. For instance, Visible to attacker. Two states arel-equivalentwrittenS ~ 4 T,
. would represent a set of abstract locks in e.g. a policy stated in if their A-low projections are equal. _ _
the program, whil& ranges over sets of concrete locks. For actors, ~ With these definitions in hand, we can define the notion of
A ranges over sets of abstract actors, while (with a slight abuse of attacker knowledges follows:

our convention)A will denote an actor mapping, and henkéa) DEFINITION 5.1 (Attacker knowledge)The knowledge an at-
denotes the concrete actor corresponding to abstract acide tacker has of the starting memory after observing tracef pro-

will also apply actor mappings to sets _of abstract actors and to grame with a starting state who'st-low projection isL is
abstract locks and lock sets; the effect in each case is to replace

each abstract actor with the corresponding concrete one. ka(ii,c, L) = {5 | S ~4 L, (e, S>;_H>A}

One other important thing to realise is that since actors and locks
have runtime representations, and can be manipulated and queriede., the set of all possible starting states that might lead to that
at runtime, they are subject to the same possibilities for information trace.
flows as the memory. This means that to ensure that all information Note that knowledge grows (uncertainty decreases) during execu-
flows are properly specified and tracked, locks and actors must havet. | % g thit (7 I é Kalt oI 9
policies too, to govern how they may be used in a program. For a "0 SO We aways have (@u, ¢, L) C ka(d,c, L).

given state componentwe write pol(t) to denote the policy of. 53 Security

5.2 Validating flows To validate that all information flows in a program are secure
according to the stated policies, each output must be examined in
the context it takes place, which in our flow locks setting means
the lock state in effect at the time of the output. Consider for
example the simple program := y, wherepol(z) = {a} and
éaol(y) = {o = a}. Clearly this program is insecure in isolation,
Since the policy onx: is less restrictive than that an but it would

be secure providing that was already open.

To help with our definition, we first define the notion of an
A-observable rurof a program to be a non-empty-observable
trace of the program, paired with the lockstate in which the last
output of that trace takes place. We formally define the set of all
é4-observable runs that could arise from a given progeastarting
in a state whosel-low projection isL, as

To ensure correct information flow in a program, all flows must
be validated at each possible “level” that data can flow to. This is
not specific to our setting, but a very general statement regarding
information flow control. Each of these levels can be thought of as
a potential attacker. For each such attacker, we must ensure that th
attacker does not learn more than intended about the initial data.

The way to do this is, for each possible attacker, to split the
state into ehigh and alow portion — the low portion being the part
directly visible to the attacker. The security goal is to ensure that
the attacker, by observing the low part, does not learn more than
intended about thiigh part of the state. For standard noninterfer-
ence the goal is that the attacker learns nothing. For gradual releas
ASOQ7] the goal is to ensure that nothing is learned for the observa-
tions that are not labelled as declassifications. DEFINITION 5.2 (A-observable run).

Since flow locks permit fine-grained flows where data can be _
effectively declassifed to an actor in a series of steps, each remoW®un (c, L) = {(ﬁu, LS(S") | S ~a L, {c,S) == (¢, S") im}
ing one condition (i.e. lock) that needs to be fulfilled, our “levels” . . . )
need to account for both actors and lock sets. We thus define an  Now, for a given attacker, representing a particular split of
attackerA to be an actor paired with a set of locks which we de- the state into high and low portions, who observes an output, the
note thecapability of that attacker. The intuition is that an attacker equirement is that this output may not signify a data flow from

A = (a, ) may see any data guarded from acidsy at mosts. “high” to “low” portions of the state, unless the lock state permits
Formally, such flows. Note that a single attacker is a very course-grained

representation of security, as itaaly able to distinguish between

A € Actors x P(Locks) “high” and “low”, but no nuances. As a consequermaylockstate
We write Cap(A) for the capability ofA. Note in particular that that would allowsomeflow from high to low will do. The split of
attackers observe concrete things at runtime, so they represenhigh and low depends on the capability of the attacker, so for an
concrete actors with concrete capability sets. attackerA we have that some locksta¥ allows flows from high

To formulate security in a “knowledge evolution” style, follow-  to low as long a2 ¢ Cap(A). If ¥ C Cap(A) then the only
ing [AS07, BS09], we first need a number of auxiliary definitions.  flows that are allowed fall completely inside the parts of the state

A traceis a sequence of labels denoting changes to the state.that A considers low.
An A-observable tracés a trace where we mask out changes to The fine granularity is obtained by quantifying over all possible
pieces of the state that the attackkrcannot see. We say that an  such attackers, since for any bad flow there must exist an attacker
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for which the flow is from “high” to “low”, but without a permissive
enough lockstate.

Our formal definition of top-level security for a program, de-
noted PLS(c), can then be defined in terms of runs as follows:

DEFINITION 5.3 (Paralock security)A program is said to bear-

alock securgwritten PLS(c), if for all attackers A, for all A-

low statesL, for all runs (du, A) € Runa(c,L) we have that
if A C Cap(A)then

ka(du,c,L) =ka(d,c,L)

Informally, if the lock state at the time of the update would not
allow any flows from “high” to “low” portions of the state, then no
knowledge may be gained about the initial state.

In practice we also need a generalised definition which accounts
for subprograms that are secure in the context they appear, wher
“context” here means the actors which exist and the locks which

are open. For space reasons we omit this generalisation here, bu}

note that it is needed in the proof for the type system presented in
the next section. The generalisation can be found in the appendix.
The above definition of security is termination sensitive — a pro-
gram is insecure if high data can influence termination behaviour.
We get a weaker but more easily verifisgrmination insensitive
version following the formulation from [AHSS08] as follows:

DEFINITION 5.4 (Termination-insensitive securityl programec
is said to be termination insensitive secure, writLSr1(c),
if for all attackers A, for all A-low statesL, for all pairs of
runs which differ only at the last outpytiu, A), (du’, A’) €
Run 4(c, L) we have that ifA C Cap(A) then

ka(iu, ¢, L) = ka(iu', ¢, L)

Here we do allow some knowledge to be gained by observing the
next output, but only by the fact that there is an output in the first
place.

6. Enforcement: An Example Paralocks Type
System
In this section we give an example of how Paralocks can be com-

flow locks language, locks here will have runtime representations
and can carry information, so the runtime use of locks will also be
governed by policies. Thehen command is a conditional which
queries the the state of a particular lock.

New actors can be introduced dynamically usingdéeactor a
command, which generates a fresh concrete actor and brings a new
actor variablez into scope for the enclosed subcomputation. Note
that this could for instance be placed inside a loop, so the same
variable name introduced by the samewactor command can
represent many different concrete actors during execution.

In order to keep the language and in particular the type system
simple, actors are not first class entities. To regain some of the lost
expressive power from this choice, we reuse lock families as a sort
of storage for actors. A lock family can be viewed as a “named
collection of actors”, and to access the contents of such a collection
we introduce theforall command, which loops over all open

Socks in some family, bringing the relevant actors into scope in the

oop body for each iteration. We assume that the order in which
ocks are looped over is deterministic.

The creation and use of actors may also be a conduit for infor-
mation flow at runtime, so like references and locks we could re-
quire actor variables to have policies too. For simplicity though, we
assume that all actors introducediyywactor commands are pub-
lic, i.e. with a policy{Vx. z}. Actor variables bound by forall
command will carry information about the lock family used in the
loop, so we assume they inherit the policy of that lock.

Regarding policies, it is important to note that the runtime poli-
cies on runtime entities will talk about concrete actors and locks,
while in the program code the policies will mention abstract enti-
ties. We have no explicit declaration of references in the language,
instead we assume that they are globally available. But since actor
variables arenot globally defined, this has the effect that policies
on references (and locks) cannot contain free actors, as that could
lead to name capture problems. In many settings this would be too
restrictive, since it would preclude actor-specific data.

To enable actor-specific data while avoiding all the extra ma-
chinery that would have been needed to track scoping and name-
capture problems for policies, we instead make this explicit at the
top level by having actor-parametrisémilies of references. For
full flexibility we allow any number of parameters on a family of

bined with a concrete programming language, and present a typereferences, just as with locks.

system which guarantees that well-typed programs are (termination

Locks are also globally available, and may have actor parame-

insensitive) paralock secure. The underlying language we present isters. However, for simplicity we do not allow the policies on lock

as simple as possible while still using the full expressive power of
Paralocks, to focus on the interesting parts of the interaction.

Expressions: e = n|z[d] |e®e

Commands:

¢ = z[d] := e | if e then c else ¢ | while (e) c | skip
| c1;c2 | open o (@) | close o(@) | newactor a in ¢
| when o (@) do ¢ else ¢ | forall o(d) do ¢

Internal Commands: ¢ ::= for o(@) in X do ¢

Figure 2. Example language syntax

The language, found in Figure 2, is at its core a sequential im-

perative language, with assignments, conditionals and loops. Data
sinks and sources are kept abstract and are uniformly represented
as references, with each reference having an attached policy. For

simplicity the only basic type is the integers. The internal com-
mand €or) is not part of the surface syntax and only arises in the
operational semantics.

To manipulate locks we introduce the commasplen o (@) and 1
close o(d). These are the only commands in the language that can

change the lock state component of the state. Unlike in the basic

To appear: Principles of Programming Languages, POPL 2010, dgni7—23, 2010, Madrid, Spain.

families to mention the actor parameters, and thus may not con-
tain any free actor variables. In other words, for a family of ref-
erences we could have different actors having access to each in-
dividual reference, e.gpol(x[a]) = {a}, whereas for families

of locks we only allow a single policy for the entire family, e.g.
pol(o) = {Vz.o(z) =z}

With all this in place, there is no need for any control that actors
in policies refer to the proper runtime actors, since they cannot
appear free in policies.

To illustrate these language features consider a simple sealed-
bid auction scenario. For example, if we wanted a ’bid’ variable
for each bidder in a sealed-bid auction, we could model that with
a family of referencesid[a], parametrised by actors. Policies on
such families can then use the actor parameter, so we could have

pol(bid[a]) = {a;Vz. AuctionClosed = x}

where the policy on the individual references in the ’bid’ family
depends on the actor in question. As an example, the code repre-
senting the registration of a new bidder might be written:

newactor b in
open Bidder (b)
bid[b] := getBid
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where we assume thgetBid is an input channel from the actor (n,S) In
in question, represented as a reference. The policy on the reference
bid[b] would be{b; Vz. {Bidder(z), AuctionClosed} = z}, stat-
ing that all bidders can gain information about this bid once the
auction is completed.

The code fragment for concluding the auction and publishing (open o(d), S)
the winning bid (the first of the largest bids) could then be written

(z[a], S) ¥ Mem(S5)][x[a]]
open o (&)

(skip, S U {c(a)})

(skip, S\ {o(a)})

open o (&)
—_—

(close o(a), S)

maxBid := 0
forall Bidder(x) do
if bid[x] >= maxBid then {e,S)l}v
maxBid := bid[x] (2[d) = e, 8) Y, (skip, S[x[d] > v])
forall Winner(y) do close Winner (y)
open Winner (x) (e,S)y v v € {true, false}
else skip - p
open AuctionClosed (if € then Cirue else Craise, S) — (v, 5)

To be able to compute the maximum bid before the auction is
marked as closed (as in this example) we would gizeBid the
policy {Vx. {Bidder(z), AuctionClosed} = z}. We use a separate

(while (e) ¢, S) = (if e then (c;while (e) c) else skip, S)

4

lock family to denote the winning actor, and by (line 5) closing all (c1,S) = (c},5") ] -
previous winners and then opening the lock for the new winner, we ., ; (skip; 2, S) — (c2, )
are assured that we only ever have (at most) one winner. We could (c13¢2,8) = (ch;2,57)

then loop over all actors for whom theWinner(a) lock is open,
to do specific things relating to the winner.

Again we stress that while some of the language design choices
here are unorthodox, this is just a consequence of keeping the lan- {

a(a)

(newactor a in ¢, S) — (¢, S[a — a]) (a fresh)

(c1,8) o(Act(@)) € LS(S)
(c2,S) otherwise

guage and type system relatively small. In a more realistic pro- (when o(d@) do ¢1 else ¢z, S) D>
gramming language incorporating Paralocks, there are a number ’
of other language design considerations. Supporting first-class dy-

namic actors would be a more natural route in a richer language, s (5 %) € LS(S
and this would be naturally supported in the type system using sin- {al Uf(a) € LS(5)}
gleton types. From the expressiveness viewpoint support for poli- (forall o(a) do ¢, S) — (for o(a@) in X do ¢, S)

cies not known until runtime (cf. DLM runtime labels [ZMO07])
could well prove useful, but would require more language features
to enable static checking. However, the issues involved there are

(&)

(for o(d@) in {d} U do ¢, S) —= (c; for o(d@) in B do ¢, S")

largely problems ofenforcementWhile interesting in their own a=ai,...,an S" = S[a1 — ai,...,an — ay]
right, they are orthogonal to the core issues of this work, namely

the Paralocks policy specification language and its associated defi- (for (@) in @ do ¢, S) Z> (skip, S)

nition of security. ’ ’

6.1 Operational Semantics Figure 3. Operational Semantics

The operational semantics of our example language can be found

in Figure 3. Transitions occur between configurations of the form

(¢, S), wherec is the command and' is the program state. This  we leave the scope, instead we rely on the type system to ensure
state is a triplet of an actor mapping\¢t(S)), a lock state that there can be no accidental capture.

(LS(S)) and a memory NMem(S)). For simplicity we lift up- Finally, the most complex command semantically isfibeall,
dates on individual components to the full state, so for instance which loops over all locks in some particular family. Its execution is
we write e.g.S[x — wv] to update the value of a variable in the done in two steps. First, the set of locks in the family that are open
memory, orS U o to add an open lock to the lock state. Since the is (deterministically) calculated, and second that set is looped over,
three components have disjoint domains there should be no risk forone lock at a time. For this we need to extend the language with

confusion. an internal commandor o(a,...,a,) in X do ¢, to handle
Apart from the labels on transitions, there should be no surprises the actual looping. The transition rule féorall is then simple:
in the rules for the ordinary imperative constructs. Regardisun gather all open locks in the relevant lock family and go to the next

and close, the only thing of note is that we need to map actor step, thefor.
variables in locks to their concrete representations before updating  In the for we bind the relevant actors to the provided variables

the lock state. and then proceed to execute the body. Just like witmthector
Thewhen command is very similar to the standairt], the only rule, we don't care where the scope of the variables ends syntacti-

difference being thathen queries the lock state instead of the cally, relying on the type system to handle the scoping details.

memory. The transition arrows are labeled with outputs that signal all

Thenewactor command generates a fresh concrete actor repre- direct information flows that take place during execution, which in
sentation and binds it to the variable name given. Since we assumethis simple language means all changes to the program state. These
all actors bound this way are public, we don’t need to care about are purely for the sake of reasoning about security and otherwise
the particulars of the generation scheme. Syntactically the variable have no effect on the computation. The commands that have an
is scoped, but in the semantics we don’t bother to remove it once effect on the state are assignments for the memoryoaed and
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close for the lock state. For the actor mapping, thevactor ¥ = {Actsfor(a,b)} then the policy in force at that stajgX)
command can introduce a single new actor in scope, while the is {a, Vx. Actsfor(a, z) = z, b}. l.e. in that state) is also uncon-
forall loop, via the auxiliary internafor construct, can bind a  ditionally permitted to see the data. Specialisation is most easily
number of names in one transition step. All other base rules have understood in logical termgi(X) is just the most liberal policy

no effect on the state, and thus yield the silent output which is entailed by the conjunction pfandX..
In the definitions that follow we distinguisf+bound actor vari-
6.2 Type System ables syntactically, using metavariable

To enforce security we use the type system in Figure 4. Since we ) e
only have integers as the base type for values, we don't need toDEFINITION 6.1 (Matching).Let ¢ be a substitution from bound
track base types at all, so our type system only handles the securityctor variables to free actor varibles. We say thatmatches®
component. with @ if and only if the set of bound actors i is equal to the
H J— ’

For expressions, the typing judgement is simply e : r, domain off), andXf = X'.
where r is a paralock policy which we call theead effectof .
the expression, as it intuitively specifies who may read data from FOr €xample, {Actsfor(a, )} matches {Actsfor(a,b)} with
references with this policy. In effect it will be the least upper bound ¥ *= b.
of the policies on references used to compute the expression
There should be no surprises in how this read effect is computed
though note that the rule for references handles both parametrise
and unparametrised references, as we allow the vector of actors to p() = U {c-2}, where
be of lengtho.

The typing judgement for commands is a bit more involved, but

the various components should come as no surprise. The judgementVZ. A =b) - £ = {VZ. A= b0 | A=A UAy; ¥y C 3
is A; matchesE; witho  }

. /
) AZben~ w,.E . . Note thatp(X) always contain (to see this také\; andX; to be
wherec is the command to type arwl_ls a pollcy we (_:aII thewvrite the empty set in the auxilliary definition above) — i#X) C p —
effectof the command. Intuitively this policy specifies who Would. normalising a policy always yields a more liberal policy.
be able to notice that the command was executed, by observing  computing the outgoing lock state is straightforward in most
its effects on the state. It is thus the greatest lower bound of all ;5565 but a few rules are slightly complex. Actors introduced
policies on references, locks and actor variables whose values arg,y nev’,actor andforall are scoped, and when their respective
affected by the command. The purpose of this policy is to track gcopes end we need to forget about any locks mentioning those

indirect flows, similar to the use of a “program counter” in many actors; to avoid name clashes with potential future scopes reusing
other systems. This can be seen in the rules for the commands tha{pe same actor variable.

DEFINITION 6.2 (Specialisation)For a policy p and a lock state
aZl, we define the normalisation pfat 33, writtenp(X), as

ceEp

affect control flow, namely.f, while, when andforall. All these Most interesting perhaps is the rule fetose, which has to
rules compare the policy of the branching expression or lock with 4¢count for potential aliasing issues between actor variables. Hence
the write effect of the body of the command. it is maximally pessimistic, and assumes that not only the lock
The write effect is straightforward to compute for most rules. hat js explicitly mentioned will be closed, but also any other
For assignmentsipen andclose itis simply the policy of the af- |ock in the same family where the actor arguments may point
fected location or lock. Theewactor command introduces actor 1 the same concrete actors at runtime. Two variables introduced
variables with the policyl, which is thus its write effect, as is by newactor commands can never be aliases of each other as

clearly at least as liberal as any write effect of the body. The most ey must represent fresh concrete actors. A variable introduced
interesting rule in this regard is tha_t of th!lerall_ command. We by aforall could alias any other variable though. We assume an
cannot in general know exactly which actors will be referenced in implicit predicatealias wherealias(a) = true if a in the current
the loop iterations, so we assume it may be any of them, meaninggcope s introduced by orall construct, otherwisgalse. The

that actors introduced by thiorall that appear in the write ef- result clearly depends on the context in which the function is called.
fect of the body must be universally quantified. However, since the \yje then define a simple may-alias relation as

forall also binds actors to the relevant variables, and these vari-

ables inherit the policy of the lock, the write effect of the whole a~b*% alias(a) V alias(b) V a = b.
command will be exactly the policy of the lock, since we require ) ) . .
that to be more liberal than any write effect of the body. We extend this relation to equal-length vectors of actors in a point-

A is the set of actors in scope, for both commands and expres-Wiseé manner. Using this may-alias relation, the rule éabse
sions, and themewactor and forall commands introduce new IS suitably pessimistic about what abstract locks may actually be
actors into this scope as expected. We use it only to ensure that anyelosed at runtime.
mention of actor variables as arguments to references and locks are .
done in a correct way, and that no variable names clash. 6.3 Security

¥ is the set of locks assumed to be open when the commandWwe show that well typed programs are paralock secure. The proof
starts executing, andl’ is a lower bound on the locks that will  can be found in the accompanying online appendix. Here we just
be open afterwards. The one place whEres actually used is in note the main technical stepping stones — the first of which is the
the assignment rule. In this rule we must determine whether the standard property that reduction preserves typability:
policy of the expression is compatible with the policy of the vari- . ) i
ablerelative to the current lock stat@he idea is the same as with ~LEMMA 6.1 (Preservation)Let us say that stat§ is compatible
flow locks — but the details are more complex. For example, sup- With X if LS(S) 2 Act(5)(%). Similarly we say that stat§ is

pose we have a poligy = {a, V. Actsfor(a, z) = x}. Intuitively compatible with an actor set if dom (Act(5)) 2 A. ,
this says thatw may always read the data, and that for any ac- Now suppose that; > - ¢ ~ w, A and{c, S) — (c/,S").
tor z, if the lock Actsfor(a,x) (“flow from a to z is permitted”) Then if A and X are compatible withS thenA’; X/ - ¢’ ~ w’, A’

thenx may also read. If we specialise this policy to a lock state for someA’ and’ compatible withS’, w C w’ andA C A’.
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Figure 4. Flow Lock Type System

The second basic property is the global (“big step”) property of
the effect components of the typing derivation. Stated informally
(to convey the intuition without all the technicalities), they say that
wheneverA; X + ¢ ~ w, A then

e If data labelledw is not visible to attacker then any compu-
tation ofc in any start state compatible withwill not produce
any A-visible output (and hence will not modify the parts of the
state with policyw or stronger).

¢ A terminating computation of in a state with at least locks
open will result in at least lockA being open.

In this section we briefly explore the implications of this exten-
sion to the questions gfolicy (c.f. §3.2), expressiveness.f. §4),
semantic<c.f. §5), andenforcementc.f. §6).

7.1 Policy

Policies will now consist of two parts. Firstly we have policies on
memory objects just as before: collections of clauses which have
an actor variable (bound of free) as their head. For the purposes of
this section it will be useful to write a clausé,...,a,. X =a
asVa,...,an. ¥ = Flow(a), thus making the “may flow to”-
predicate explicit. The extension we make is to adyiodal policy

G which is also a set of clauses. These clauses differ in that their

Finally we have proven the main theorem of this section, namely paaqs may be locks — and thus they may be recursive. For example,

that a well-typed program is guaranteed to be secure by our se-
mantics for Paralocks. Since the type system as stated is ter-

mination insensitive, for instance it allows “high loops” to pre-
cede “low writes”, we formally have that well-typed programs are
termination-insensitive paralock secure:

THEOREM®G6.1. If @; @ + ¢ thenc is termination-insensitive par-
alock securePLSr1(c)).

This in turn is a corollary of a theorem involving a generalisation
of the PLSt1 property. Again, the details are available in the
appendix.

7. Recursive Paralocks

in a DLM encoding we would include the following two clauses in
the global policy:

Vy. ActsFor(y,y);
V,y, z. ActsFor(x,y), ActsFor(y, z) = ActsFor(z, z)

This style of policy specification is already familiar in a security
context: it amounts to the use ofADALOG programs as policy
specifications, and has been used in numerous logics for access
control policies — e.g.| [Jim01, DeT02, LMWO02]. We permit one
further useful feature: global policies, in addition to using locks,
may also use the distinguishét@ow predicate in their specification
(see Sectioh 7.2 for examples).

Policy comparison To compare policiep and ¢ we must now

In Sectiori 4 we presented an encoding of the DLM. One aspect of atake into account the global policy. We writeC ¢ g to mean that

DLM policy was the treatment of thd ctsFor relation; implicitly
we required that whenever we open a lotktsFor(a,b) then we

policy ¢ is more restrictive than policy in the context of global
policy G. We can define this relation by giving a straightforward

must also open all transitive consequences. It is intended that thisinterpretation in first-order logic. As before we can interpret each
invariant is imp|emented exp||c|t|y by encapsmating the open op- clause Ip, q andd as first-order Horn clauses, and sets of clauses

eration appropriately within a program which uses a DLM policy.

In this section we explore an extension to the policy language

which allows us to specify such properties explicitly, avoiding the

are interpreted as logical conjunction. Then we define

def
PEecqg=GApkEq

need to encode them explicitly in the program. The extension is a To see that this does “the right thing”, consider some lock state
natural logical one: allow relations between locks and flows to be Suppose that A G A g | Flow(a) —i.e. that in some concrete

specified recursively as part of a global policy component.
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be readily seen that C ¢ ensuresthat A G A p = Flow(a) — by G A Cap(A) = A.

i.e.,p allows any flow that; does.
7.4 Enforcement

7.2 Expressiveness Here we consider the impact that recursive paralocks have on the

Here we consider a couple of simple examples using recursive integration with the language and type system of Section 6.
paralocks. The global policy is essentially &¥aLod?. DaTALOG and
Denning Lattices, Reloaded The flow locks encoding of standard ~ Modest extensions thereof, has proved to be a popular basis for
Denning-style information flow lattices involves identifying secu- ©-9- &ccess control logics because, among other things, a query (the
rity levels with actors, and representing a security levély the access c_on_trol mechanlsm itself) can be answered in po_IynomlaI
(lock-free) policy { Flow(k) | j < k}. Recursive Paralocks pro- time. This is also useful in th_e present context. At runtime we
vide several alternative ways to specify this. One example is to N€€d to enumerate all actors in a given role (irll-construct

represent the policy for data of levél as just{ Flow(k)}. The in our example language), and check whether a particular lock
global policy then must define the covering relation of the lattice 1S open (thewhenconstruct). It is necessary that these can be
(represented as a binary loeR), together with the rule answered precisely and efficiently, and this is possible because they
are datalog queries.
Va,y. Flow(z),z < y= Flow(y). However, type checking is another matter. We do not need to an-
So, for example, the three point lattide < M < H would be swer datalog queries within the type system, we n(_eed to implement
represented by the global policy policy comparison (). In all other regards we conjecture that the
type system given in Section 6 is sound for recursive paralocks —
{L < M;M < H;Vz,y. Flow(z),z < y= Flow(y)}. providing we generalise the policy ordering and least-upper-bound
The “Complete” DLM In the case of the DLM encoding we  operation accordingly.
already mentioned the ability to express reflexivity and transitivity In the case of assignment := e, for example, where: has
for the ActsFor hierarchy. Similarly the invariant on thRunsFor policy ¢, ande has policyr, and we know that at least locksare
lock can then be specified as open, then we need to determine whetilen G A r |= ¢. This

problem (and the similar problem of determining whethét; q)
is the problem otontainmenbf a non-recursive datalog program
We can also move part of each policy into the global part by ¢ inarecursive on& UG Ur. This containment problem is known
applying theActsFor hierarchy toFlow predicates: to be decidable, although EXPTIME-complete (see e.g. [CV97]).
Va, y. ActsFor(z, y), Flow(z) = Flow(y) \S{\égither this complexity is a problem in practice remains to be
which says that whenever flow tois permitted then flow tg is Similarly we need a generalised form of least upper bound oper-
also permitted providing acts forxz. With this rule we no longer ation wherep Ll ¢ denotes the least polieysuch thap A G = r
need to be explicit about thécts For relationship in the data policy  andg A G |= r. This kind of operation —i.e., finding aADALOG
itself, so for example we can encode a lapel : r1;02 : r1, 72} program which gives a best approximation to the disjunction of two
more succinctly as DATALOG programs — does not to our knowledge seem well stud-
ied in the DATALOG literature. However, we note that usipg! g
just as before (thus ignoring) would provide a safe upper bound
As an interesting side note, the original version of the DLM qperation which would be adequate for use in the type system.
(IML97]) was considered incomplete; a follow-up paper ([ML98])
identified a “complete” policy ordering. Specifically the new for- g Related Work

mulation made the policy ordering more liberal by weakening it to o o )
allow two new_-monotone operations on policies: Considering related work, there are two main dimensions along

which our work can be compared: policy and semantics.

Va,y. ActsFor(z,y), RunsFor(z) = RunsFor(y)

{Vx. RunsFor(o1), RunsFor(o2) = x;r1; RunsFor(o1) = ra}

e An ownero; may to be replaced in a label with an owner ) ) ) ) )
that acts forw, Policy As mentioned, the Paralocks policy language is built on

our earlier work on Flow Locks, and flow locks themselves are
a special case of paralocks. As such paralocks can also encode
integrity policies and a variety of declassification policies. We refer
Our original encoding is faithful to the original DLM, and cannot  the reader to [BS06] for more examples.

not handle these components, specifically because the policy order-  The Paralocks model is policy neutral — it provides the means
ing was ignorant of the transitive nature of tHetsFor relation- to construct information flow policies but does not prescribe any
ship and its relation to th&unsFor property. With the extension  particular kind of policy. In this regard our goals are related to
presented here, policy ordering becomes “complete” and thus cor-the recent security policy programming language Fable [SCHO8].
responds to the revised version of the DLM [ML98]. Fable allows programmers to specify a custom label language for

. data, and constraints (via dependent types) on how programming
7.3 Semantics operations may use labelled data. Static typing ensures that there
The definition of security needs only minor modifications to handle is no way to “bypass” the policy. The Fable approach is very flex-
recursive paralocks. There are just two places where the definitionible and general, but as a result it provides no general extensional
needs to be modified: semantic security condition — one must construct these on a case-
by-case basis. Paralocks is not intended to be as general purpose as

e If a readerr; is listed by some owner, and acts forry, then
we can also add, as a reader for that owner.

e Generalisé_ to C in the definition of the parts of a state that

the attacker can see. 3 Certain policies that we have used are safein the DATALOG sense
e In the definition of security, generalise the comparison between (see e.g./ [CGT89]) For examplér. Runsfor(o) = Flow(x) is unsafe

lock stateA and attacker capabilitCap(A) to take into ac- becauser does not appear in the body of the clause, and so it generates
nt the al [ poli replacing th ndition infinitely many instances. However, at any point during rumetj the do-
count the global policy by replacing the conditio mains of actors is finite and known. Hence the rule can be thoofgis a
A C Cap(A) (logically: Cap(A) = A) shorthand fowz. Actor(z), Runsfor(o) = Flow(z).
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Fable (for example it does not aim to be able to encode security au-since they flag insecurity simply because they do not have an suf-
tomata) but focuses on the higher level concept of information flow. ficiently accurate model of the context of a given “insecure look-
As a result we can give a single information-flow semantics to all ing” subcomputation. In contrast, the semantic model here is based
Paralock policies. It may be possible, however, to use Fable’s fine- on a revised and much improved flow locks semantics developed
grained data manipulation policies as an implementation platform in [BS09] which in turn builds on the knowledge-style semantics
for a Paralocks type system, although the only information flow en- from gradual release [AS07] which avoids this pitfall.

coding described so far in Fable [SCHO08] is a standard information ~ Paralocks do not provide direct control of one of the “dimen-
flow lattice policy. sions of declassification” [SS05] — namely the specificatiomtuit

Paralocks deal with dynamic policies in the sense that permit- information flows from a given data source. For example we might
ted information flows change over time. We assume that locks are specify thatA can read only some part of data (e.g. a checksum)
opened and closed at appropriate points in a given program in or-rather than all of it. Although certain simple “what” policies are
der to communicate the intended changes. We could say that theeasily encoded in the Paralocks model (e.g. in the checksum exam-
program synchronises with the policy via lock operations. An alter- ple by ensuring that the checksum is declassified to variable read-
native approach is to assume that the trigger for policy change lies able by A), this is clearly not the main focus of the Paralocks ap-
outside the program itself. To some extent this is what is done with proach. Semantically this kind of policy falls within the PER model
the acts-for hierarchy in Jif (DLM) programs — and we can take [SS01] and a more constructive perspective on this kind of model
the same perspective using runtime lock checking instead of open-is provided by theabstract noninterferencéamework [GMO04].
ing locks from within the program. This works well if all policy =~ Recent work by Banerjee et al. [BNRO8] present a language for
changes make the policy more liberal, but asynchronous changesexpressive declassification policies which broadly lie in this class.
corresponding to the closing of locks are potentially problematic Policies are intended to be verified by a mixture of static typing

HTHZO05]. This is related to the problem tackled in the Rol- and static verification. In common with our work, Banerfteal

icy language [SHTZ06]. This work (and the more recent refine- also adopt the gradual release style of information flow semantics.
ment [BWWO08])) is the only other language-based security work of

which we are aware which uses roles in an information-flow set-

ting. The main thrust of their approach is to specify and manage 9. Conclusions and Future Work

information flows which are caused by policy changes. Role man-
agement ideas are used to control policy updates. In common with
this approach, our semantics also tracks information flows caused
by “role management” — something which was not necessary in the
earlier flow locks work due lack of run-time locks. We believe that
many features of their meta-policies can be directly encoded using
paralocks, but we have yet to investigate such examples.

One important feature of Paralocks that was not supported by
flow locks is the notion of aun-time actor In this regard the
work of Tse and Zdancewic's extension of the DLM witin-time
principles[TZ04] is closely related, and our inclusion of a run-time
lock test was motivated by that work.

We note some further similarities to work on RBAC models.
Paralocks permit finer granularity than standard RBAC, with the
use of user-specific policies. This level of control appears similar
to that provided byole template§G197]. Our ability to model ac-
cesses which are triggered by arbitrary state conditions (modelled
via locks) has similarities tenvironment role§CLS™ 01]. Related
to this, the role activation rules of the OASIS model have a superfi-
cial similarity with paralock policies (see e.g. [BEMO3]) although
these rules would be more like lock invariant specifications in our
model.

The extension to recursive paralocks described in Settion 7
brings the work much closer to the logic-based access control work
(e.g. [Jim01, DeT02, LMWO02]). One line of work by Dougherty et
al [DFKO0E] deals specifically with the issues that arise in situations
where changes in the environment entail dynamic changes to acces
control policy. This is analogous to our problem of reasoning about
policies in the presence of a program which has side-effects on the
policy.

Semantics Semantic models for complex information flow poli-  Appendix An extended version of this article (available from the
cies are problematic. In some cases — e.g. in the DLM — there is authors) contains proofs of the main technical results stated in the
simply no information flow model. In others (e.g., [TZ04]) the se- paper.

mantic models are simplgioninterference in the absence of pol-

icy change For semantic models of declassification and other dy- Acknowledgements Thanks to the ProSec group at Chalmers, to
namic information flow policies which attempt to do more than Reiner Hihnle and Mike Hicks for useful comments and sugges-
this (e.g. the “noninterference between policy updates” approach tions. The POPL referees provided outstanding feedback, including
in [SHTZ06, BWWO8]), we have argued [BS09] that many seman- independently suggesting the extension outlined in Section 7. This
tic models suffer fromflow insensitivity Flow insensitivity here work was partly funded by the Swedish research agencies VR &
means that the semantic conditions are not really fully semantic, SSF.

As we noted initially, our aim with this work is really two-fold.

On the one hand we present the policy specification language Par-
alocks, and show its usefulness for handling a variety of informa-
tion flow challenges. On the other hand, Paralocks is also a very
general framework that is capable of expressing and encoding a
wide variety of information flow policy mechanisms, and impor-
tantly give such mechanisms a concrete information flow seman-
tics. It is our hope and belief that Paralocks can thus serve as a
platform that can simplify further research into policy mechanisms,
both future and present, and help give a better understanding of the
relationship between various mechanisms.

A different area of future research is to look closer into the
interplay between Paralocks and concrete programming language
constructs, with a particular focus on type systems guaranteeing
Paralock security. The example language we gave in section 6
is very simplistic in many ways, and there are many interesting
challenges in adding features like first-class actors (which would
be needed, among other things, to avoid our ad-hoc introduction of
actor-indexed data) or policies not known until runtime (c.f.runtime
labels [ZMOQ7]).

A third potential direction for future research is to fully exploit
the connection to logic-based access control languages. Here we
can benefit from various well-behaved extensions wrADoG
such as the addition of stratified negation and constraints on data;
see e.g.| [BFGO7] for an elegant authorization language combining
such extensions. But the potential here is not just the transferral
df technical results. The connection offers new opportunities to
transfempolicy conceptérom access control to an information flow
context.
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