
Paralocks – Role-Based Information Flow Control and Beyond

Niklas Broberg
Department of Computer Science and Engineering,

University of Gothenburg
and Chalmers University of Technology, Sweden

d00nibro@chalmers.se

David Sands
Department of Computer Science and Engineering,

Chalmers University of Technology, Sweden
dave@chalmers.se

Abstract
This paper presents Paralocks, a language for building expressive
but statically verifiable fine-grained information flow policies. Par-
alocks combine the expressive power of Flow Locks (Broberg &
Sands, ESOP’06) with the ability to express policies involving run-
time principles, roles (in the style of role-based access control),
and relations (such as “acts-for” in discretionary access control).
We illustrate the Paralocks policy language by giving a simple en-
coding of Myers and Liskov’s Decentralized Label Model (DLM).
Furthermore – and unlike the DLM – we provide an information
flow semantics for full Paralock policies. Lastly we illustrate how
Paralocks can be statically verified by providing a simple program-
ming language incorporating Paralock policy specifications, and a
static type system which soundly enforces information flow secu-
rity according to the Paralock semantics.

Categories and Subject DescriptorsD.3 [PROGRAMMING LAN-
GUAGES]; F.3.1 [LOGICS AND MEANINGS OF PROGRAMS]:
Specifying and Verifying and Reasoning about Programs

General Terms Security, Languages, Verification

1. Introduction
Issues of software security can be crudely categorized into three
broad domains:

• Access controldeals with security at the end points of a system,
to verify that an entity is allowed to access the system, and to
what extent.

• Information flow controldeals with securityinside a system,
between the end points, to ensure that data in the system is han-
dled in a way that agrees with the security policy of the system.
This is the domain that is most interesting from a programming
language point of view, since it deals with security during exe-
cution.

• Encryptiondeals with securityoutsidea system, to ensure that
data can be protected even outside the trusted system environ-
ment.

The problems involved in research on encryption are quite dif-
ferent from the other two domains, but unsurprisingly there are

[Copyright notice will appear here once ’preprint’ option is removed.]

many similarities between problems that arise in the access con-
trol and information flow control domains. In particular, problems
regarding policy specification and modelling of principal actors are
quite similar, much due to the fact that these issues are not purely
technical, but rather relate to the interface between the system and
its users (implementor, admins). Thus, many ideas relevant in one
domain are equally applicable to the other, at least on a high level.

In the access control domain there exists plenty of research
regarding policy specification mechanisms. Such mechanisms have
traditionally been categorized into two separate groups: Mandatory
(or static) access control (MAC), where an outside administrator
assigns static privileges to principals, and Discretionary access
control (DAC), where principals themselves can grant and revoke
privileges to and from other principals. A later addition to the
family of models is Role-based access control (RBAC) [SCFY96],
which has become very popular and has seen wide-spread adoption
both commercially and academically.

On the information flow control side, there has been far less
focus on policy specification. We surmise that this has a very
natural cause. In access control, which deals with the interfaces to a
system, policy specification is the one core issue and a prerequisite
for any further aspects of security. Information flow control on the
other hand is more naturally focused towards issues of semantic
security with respect to a policy, and most research in the domain
has been devoted in that direction.

Papers on information flow control issues typically fall into one
of two categories where the policy mechanism used is concerned. In
the first category we find those that use a simple model built around
a lattice of principals or sets of principals, going back to Denning’s
early ground-breaking work. The other category is the research that
builds on the Decentralised Label Model (DLM), which is today
something of a flagship of information flow control through its
implementation in JIF. These two categories can somewhat crudely
be said to correspond to the MAC (static Denning-style lattice) and
DAC (decentralised and discretionary) models.

Interestingly and perhaps surprisingly there has been almost no
work on marrying a fundamentally role-based model to information
flow control (the exceptions being [SHTZ06, BWW08] which are
discussed further in Section 8), despite the massive attention RBAC
has received in the access control domain, both commercially and
academically. The use of roles in an information-flow setting is
discussed in Section 2.

In this paper we present Paralocks (Section 3), a language for
building expressive but statically verifiable fine-grained informa-
tion flow policies. Paralocks is based on the simple and expressive
idea of Flow Locks [BS06] extended with the ability to express
policies modelling roles (in the style of RBAC) and run-time prin-
cipals.

The extension (parameterisedlocks) turns out to provide much
more than just the ability to model roles: we show (Section 4) how

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 1 2009/11/4

relations such as delegation in discretionary access control can be
represented by policies, and use this to give a sound and complete
encoding of theDecentralised Label Model[ML97].

Unlike theDecentralised Label Modelwe also provide an infor-
mation flow semantics for Paralocks (Section 5). This defines what
it means for a program (whose state components are labelled with
policies) to be secure.

As an illustration of how paralocks can be integrated into a
programming language we give (Section 6) an example of a small
programming language with a paralock type system for which we
show that well-typed programs satisfy the semantic information
flow condition.

Finally (Section 7) we outline a logically natural extension to
the paralocks policy language to include recursively specified locks
(DATALOG rules).

Our aim with this work is really two-fold. On the one hand we
present the policy specification language Paralocks. We show how
Paralocks naturally models roles, but also actors, groups and gen-
eral relationships in a simple and structured way. On the other hand,
we also present Paralocks as a very general framework for infor-
mation flow control. This aspect lets us use Paralocks to reason
about and give meaning to other mechanisms both current and fu-
ture. Paralocks thus serves as a platform that can greatly simplify
further research into various aspects of information flow control,
such as specialised policy specification languages, and the relation-
ship between information flow control and programming language
design.

2. Roles and Information Flow
Roles are a natural concept in an organisational structure and are
just as naturally tied to information flow controls as to access
control. Consider a department consisting of managers, personnel
and sales. These roles form a hierarchy as illustrated in the Hasse
diagram below:

Manager
/ \

Personnel Sales

In role-based access control each role represents a set of users (later
we will use the neutral termactors) endowed with a set of permis-
sions. The hierarchy illustrated in the figure (roles + hierarchies are
referred to as RBAC1 in the RBAC96 model [FSG+01]) represents
the intention that the permissions granted to higher roles subsume
those granted to lower roles.

Let us suppose that we take an information flow perspective
on roles and we assume data is labelled with a role, representing
the permission to gain information about that data. Then role-
based information flow control would simply be the constraint that
information may only flow upwards in the hierarchy. This is simply
the Denning lattice-based model [Den76] with a relaxation on the
requirements that the hierarchy forms a complete lattice.

In this setting the assignment of users to roles is of little direct
concern from an information flow perspective, since users do not
possess their own data, and are defined purely by the roles to which
they are assigned. Inputs and outputs of the system would then be
bound to roles, and some external mechanism would mediate the
connection between roles and users.

However, if we admit the possibility of personal data then the
information flow perspective becomes considerably richer. For ex-
ample, if we had I/O channels directly to users then we would have
an information flow problem with a dynamic policy: information
flows to and from a given actor would depend on her current role.

Consider another scenario involving personal data: an auction
site managing sealed-bid auctions for ana priori unspecified num-
ber of users. In such a scenario the roles of seller and bidder, re-

spectively, immediately spring to mind. Other constraints on the
auction influence the intended information flows:

• the seller can set a reserve price which is initially only visible
to the seller;

• bidders provide sealed bids and can see their own bid but cannot
see each others’ bids;

• bidders learn of the winning bid, but only at the end of the
auction;

• if the reserve price is not met then there is no winning bid;

• sellers cannot also be bidders for the same item.

In summary, to verify that code managing such auctions is well
behaved raises a number of general challenges from an information
flow perspective:

1. We need to model dynamic actors – actors whose concrete
identity is not known or may not exist until runtime.

2. The data associated with a role (e.g. the bids) belongs to the
actor and not the role (because bidders should not be able to see
all bids - only their own bid).

3. Permissions associated with roles are assigned dynamically (in
this example, the ability to read a winning bid is only granted
after the auction is complete).

4. Declassification is required: the winning bid (or its absence)
provides partial information about the secret reserve price of
the seller.

5. We must be able to impose role constraints (a la RBAC2) to
ensure that the seller cannot become a bidder on the same item.

In the next section we develop a policy language which is aimed
at meeting these challenges. The policy language is built on top
of flow locks, a versatile policy language for dynamically changing
information-flow policies. The extension in question is motivated
by the addition ofroles. As we will show in the subsequent section
(4), the extension turns out to provide considerably more than just
the ability to represent roles.

3. Flow Locks and Roles
Flow locks are a simple security policy specification mechanism.
Flow locks themselves are “policy neutral” – they do not presup-
pose any particular labels, information flow levels, or fixed hierar-
chy. The core idea is to logically specify the conditions under which
a given actor in the system may gain information about some data.
We use the phrase “gain information” rather than “access” at this
point to stress that this is an information flow notion rather than
an access control one. The conditions are specified using so called
locks, which are boolean variables that may be manipulated by the
execution of the program. A policy is then a set of logical clauses of
the formΣ⇒ a (so called Horn clauses), where each clause spec-
ifies the conditions (Σ) under which data labelled with that policy
may flow to actora. Σ is a set of locks, which we interpret as a
conjunction, i.e., fora to have access to the data then all locks inΣ
must be true. The set of clauses is itself interpreted as a conjunction,
so for an actor to have access it is enough that one clause allows it
(a conjunction of implications is equivalent to a disjunction of the
premises).

Consider a simplified form of the auction example in which we
have two known buyersB1 andB2 and a single sellerS and where
the bidders may see each other’s bids once they have placed their
own. We associate two locks,bid1 andbid2 with the placing of
bids byB1 andB2 respectively;bid i will be assumed to become

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 2 2009/11/4

true onceBi has placed his bid. Then the policy forB1’s bid is

{S; B1; bid2 ⇒B2} .

This says that theB1’s bid may flow toS andB1 unconditionally,
and may flow toB2 only whenB2 has placed a bid (as modelled
by lockbid2).

Using the terminology of flow locks, when a condition repre-
sented by a lock becomes true, we say that the lock isopened. Sim-
ilarly when is becomes false we say that it isclosed.

Consider a further example from [BS09] represented in Figure
1 which depicts three Denning-style information-flow lattices.

Figure 1. Example Dynamic Policy

In the leftmost lattice Alice is the top element. While Alice is
“boss” all information may flow to her. If she is demoted, how-
ever, then the information flow lattice changes to the central figure.
From there either Bob or Alice can be promoted to be the boss. Let
us consider how to encode this intended scenario with flow locks.
To represent this dynamic flow policy we begin, not surprisingly,
by assuming three actors:Alice, Bob, andJoe. To model the transi-
tions between policies we use two locks:promoteAandpromoteB.
The events of promotion and demotion are modelled by the respec-
tive opening and closing of these locks. WhenpromoteAis open
then Alice is boss. ClosingpromoteA(respectively,promoteB) cor-
responds to demoting Alice (resp. Bob).

To complete the picture we need to describe the corresponding
policies for the data to be associated with Alice, Bob, and Joe. Joe
is the simplest case, and his data has policy{Joe;Alice;Bob} –
i.e. it is readable by everyone at all times. Alice’s data has pol-
icy {Alice; promoteB ⇒Bob} and Bob has the symmetric policy
{Bob; promoteA⇒Alice}. For Bob this means that his data is
readable by Alice only when Alice has been promoted. Note that
if both locks are open then we have a situation not modelled in the
figure: Alice and Bob become equivalent from an information flow
perspective. If we want to rule this out we cannot do so using the
policy on data, instead we must enforce this via an invariant prop-
erty of the locks themselves.

The reason for keeping the guards as simple boolean flags rather
than arbitrary logical expressions is that this makes it possible to
mechanically check that programs conform to a flow lock policy
using a type system. Ensuring that locks are open at appropriate
times is an application-specific problem that can be seperately
verified using a general purpose theorem prover, for example.

To track information flow in a program, data labelled with some
policy p1 is allowed to flow to a location with a different policy
p2, assuming thatp2 is more restrictivethanp1. This ordering of
policies, which we writep1 ⊑ p2, corresponds naturally to logical
entailment when viewing policies as Horn clauses. In fact, it is
easy to show that policies form a lattice, where the join and meet
of two policies correspond to logical disjunction and conjunction
respectively, and the partial ordering is logical implication as noted.

But whether a flow is permitted obviously also depends on the
current lock state, to allow for e.g. declassification. To this end
we express the comparison of policies in a specific context by
specialisinga policyp to a particular set of locksΣ that are known
to be open. Formally this is defined for flow locks as

p(Σ) = {∆ \ Σ⇒x | ∆⇒x ∈ p}

and we allow data labelled with policyp1 to flow to a location with
policy p2 provided thatp1(Σ) ⊑ p2, whereΣ is the lock state in
effect at the time of the flow.

3.1 Modelling roles

A naive approach to supporting roles with Flow locks could be
to simply let the actorsbe the roles, and not have conventional
actors at all. This would work with no changes to the current policy
language, however as our examples in the previous section have
shown, we often need to reason about both roles (or groups)and
individual actors.

Thus we need a different approach to roles that retains the
notion of an actor. Looking at what it means for some data to be
accessible to a roleR, the natural interpretation is that an actor
may gain information about that data if the actor is a member ofR.
How do we express this as a flow lock policy? We need a lock that
captures the condition that “a is a member of roleR”, which we
henceforth writeR(a). But clearly the policy we want is not just
for some specific actora, but rather any actorx for which R(x)
holds. Logically we could easily write this as∀x. R(x) =⇒ x. A
role thus has a natural representation as a lockfamily, parametrised
by actors.

To achieve this we propose two separate – though synergistic –
extensions to the basic formulation of flow locks from [BS06]:

Parameterised LocksLocks which are parameterised over actors
represent role memership. For example the roleSeller is rep-
resented as parameterised lock family, so ifa is an actor then
Seller(a) is a lock which modelsa being a member of the seller
role. Data labelled with the policy{Seller(a)⇒ a} is permit-
ted to flow toa providing thata is a seller.

Actor Polymorphism To make parameterised locks practically
useful we also need to be able to quantify overall actors, so
that we could instead write the policy as

{∀x.Seller(x)⇒x}

– meaning that data labelled with this policy may flow toany
seller.

With this interpretation of roles, and these extensions to the policy
specification language, we can easily formulate the policies from
the examples in the previous section using flow locks. Let us then
return to the challenges offered by those examples:

1. Actors whose concrete identity is not known until run-time
can be handled by policies with actor polymorphism. As a
simple example, the policy{∀x. x} is the most liberal policy,
permitting its data to flow to any actor at all times. This does
not require us to know the identity of all actors at policy creation
time (as would be required using the original basic flow locks
mechanism).

2. Fine grained policies at the level of individual actors combine
easily with roles. For example, suppose we wish to generalise
the scenario in Figure 1 to an organisation of 1000 employees –
or a situation with an unknown number. Here we must combine
a role (the boss) with the requirement that non-bosses cannot
obtain information from each other (with the exception of Joe).
The data of Joe would have policy∀x. x – it can flow to
anyone. The data for any other individuala would have the
policy {a; ∀x.Boss(x)⇒x}, which means that data labelled
with this policy can flow toa and anyone who is a boss (at the
time of the flow).

3. Permissions associated with roles are assigned dynamically
by using standard (non-parameterised) locks. For example, the

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 3 2009/11/4

largest bid might be stored in a variable with policy

{∀x. {AuctionClosed ,Bidder(x)}⇒x}

where the vanilla lockAuctionClosed represents the property
that the auction is complete and the reserve has been met. So
in effectAuctionClosed represents the condition under which
the Bidder role is assigned the permission to learn about the
winning bid.

4. Declassification is inherited from the standard flow locks
model. For example, the reserve price is available to the seller,
but is declassified to bidders providing there is a winning bid:

{Seller ; ∀x. {AuctionClosed ,Bidder(x)}⇒x}

5. Role constraints – here the requirement that e.g. there is a single
seller, and that seller and buyer cannot be the same actor –
can be established by runtime invariants for flow locks. These
can either be verified statically or enforced dynamically using
a runtime representation of locks. In Section 7 we describe
an extension which permits certain constraints on roles to be
specified as part of the policy.

3.2 The Paralocks Policy Language

Now it is appropriate to summarise the policy language of this
paper, and define its lattice structure. In summary, the policy
language generalises flow locks policies with actor-parametrised
locks, hence the name:Paralocks. The ordering on policies is based
on a straightforward and natural logical interpretation of policies.

DEFINITION 3.1 (Paralock Policies).

• Policies are built fromactor identifiers, ranged over bya, b,
etc. andparameterised locks, ranged over byσ, σ′ etc. Each
parameterised lock has a fixed arity,arity(σ) ≥ 0.

• A lock is a termσ(a1, . . . , an), wherearity(σ) = n. LetΣ, Σ′

range over sets of locks.
• A clausec is a term of the form∀a1, . . . , an. Σ⇒ a.
• A policy p is a set of clauses written{ c1; . . . ; cn}.

We have already adopted a number of syntactic abbreviations in
earlier examples: we write justσ instead ofσ() in the case that
arity(σ) = 0. Similarly we drop the quantifier on clauses when
there are no quantified variables. When the lock setΣ in a clause
is empty, as in∀a1, . . . , an. ∅⇒ a we write ∀a1, . . . , an. a. We
will routinely write ~a to denote some sequencea1, . . . , an. Such
a sequence will be treated as a set{a1, . . . , an} when the context
permits us to do so without ambiguity.

Policies have a natural reading as conjunctions of definite first-
order Horn clauses. Each clause

∀a1, . . . , an. { σ1(~b1); . . . ; σm(~bm)}⇒ a

can be read as the Horn clause

∀a1, . . . , an. (σ1(~b1) ∧ · · · ∧ σm(~bm))⇒Flow(a)

whereFlow is a single unary predicate disjoint from the parame-
terised locks, representing the “may flow to” property.

Using this logical interpretation we obtain a natural lattice
structure on policies, where the policy ordering (⊑) on individ-
ual clauses is just logical entailment. Specifically, we definep ⊑ q
wheneverp, viewed as a first order formula, entailsq. We will write
p |= q to denote this logical interpretation.

Following this natural interpretation we have the following def-
inition:

DEFINITION 3.2 (Policy ordering).Policy p1 is less restrictive
thanpolicy p2, written p1 ⊑ p2, if ∀c2 ∈ p2. ∃c1 ∈ p1. c1 ⊑ c2,
where the ordering⊑ on clauses is defined to be the least partial
order (reflexive and transitive relation) satisfying the following:

• if c1 and c2 are equal up to (i) capture-free renaming of∀-
bound actors (ii) reordering of quantified actors and (iii) dele-
tion of∀-bound actors not occurring in the body of the clause,
thenc1 ⊑ c2;

• ∀a1, . . . , an. Σ1 ⇒ b ⊑ ∀a1, . . . , an. Σ2 ⇒ b if Σ1 ⊆ Σ2.
• ∀a0, a1, . . . , an. Σ⇒ a ⊑ ∀a1, . . . , an. ((Σ⇒ a)[a0 := b]),

where[a0 := b] denotes the unconstrained substitution ofb for
a0.

We do not present a formal proof that this corresponds to the logical
interpretation (in fact we did not spot the connection directly), but
we note that clauses are equivalent to so-calledconjunctive queries
[CM77], and a policy thus a union of conjunctive queries. The
ordering on clauses defined above can be seen as a construction
of a containment mapping[Ull90]. The fact that∀c2 ∈ p2. ∃c1 ∈
p1. c1 ⊑ c2 is necessary and sufficient to check logical entailment
of unions of conjunctive queries was established in [SY80].

At any point during program execution, the permitted flows will
depend on the locks which are open at that point. To determine
whetherp ⊑ q in the context of some open locksΣ, we check
the logical implicationΣ ∧ p |= q. In the type system given in
Section 6 we implement this check via thespecialisationof policy
p to a lock stateΣ, writtenp(Σ); we then check thatp(Σ) ⊑ q.

The meet operation on policies is simple to define as it corre-
sponds exactly to conjunction of (sets of) Horn clauses. In our lan-
guage, that means taking the union of the clauses of two policies,
i.e.p1 ⊓ p2 = p1 ∪ p2.

The join operation however is more tricky. Logically it corre-
sponds to a best approximation of disjunction of Horn clauses,
since in general (sets of) Horn clauses are not closed under dis-
junction. I.e.p⊔ q is the least policy such thatp ∨ q |= p⊔ q. We
can define the join directly as follows:

DEFINITION 3.3 (LUB). In the following it is convenient to parti-
tion actor variables in to∀-bound variables ranged over byx, ~y,
and free actor variables (i.e. actor constants) ranged over bya and
b. We writeΣ⇒ b to denote the policy∀~y. Σ⇒ b where~y are the
∀-bound variables ofΣ⇒ b.

Letp andq be policies. We will assume, without loss of general-
ity, that all ∀-bound variables appearing in the head of any clause
are namedx, and that any other∀-bound variables in any clause
fromp are distinct from the∀-bound variables ofq.

Then we define

p⊔ q = {Σp ∪ Σq ⇒x | Σp ⇒x ∈ p; Σq ⇒x ∈ q}

∪ {Σp ∪ Σq ⇒ a | Σp ⇒ a ∈ p; Σq ⇒ a ∈ q}

∪ {Σp ∪ (Σq[x := a])⇒ a | Σp ⇒ a ∈ p; Σq ⇒x ∈ q}

∪ {(Σp[x := a]) ∪ Σq ⇒ a | Σp ⇒x ∈ p; Σq ⇒ a ∈ q}

It can be shown that the set of paralock policies (quotiented by the
equivalence relation generated from⊑) form a complete lattice.
We will not go into the proof here, but simply note the least (most
liberal) policy ⊥ = {∀x. x} and the greatest (most restrictive)
policy⊤ = { }, which will be needed later.

The reader may have noticed that the policy language defined
here can contain locks parameterised over more than a single actor.
This gives us more expressive power than just roles. In the next
section we motivate and illustrate this generalisation.

4. From Roles to Relations: Encoding the
Decentralized Label Model

Using actor-indexed lock families we have shown how we can
model roles along-side specific actors in a natural logical setting,
and how the two can co-exist in the same program. In this section
we will show how, using a natural generalisation, we can model

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 4 2009/11/4

policies where information flow can depend onrelationsbetween
actors. Such relations are useful in the description of a decentralised
discretionary security model.

The core components of a decentralised discretionary model
is the concept ofownership, and anacts-for relationship (some-
times referred to asdelegationor aspeaks-forrelation [LABW91]),
where an actora who acts forb enjoys the same rights asb. In
particular if actora owns some data thenb has full access to
that data ifb acts fora. The condition under whichb may access
the data is thus that “b acts fora”. Logically this is easily mod-
elled with a binary relationship between actors, which in the flow
locks setting would naturally correspond to a lock family withtwo
parameters. The policy mentioned here could then be written as
{a; ∀x.ActsFor(a, x)⇒x}.

Going from one to two parameters, or indeed ton-ary lock fam-
ilies, is a straight-forward generalisation. There are no additional
technical difficulties involved, and we already have the mechan-
ics for quantification in place. (We have no immediate examples of
lock families with more than two parameters, but see no reason to
exclude them.)

Typically, acts-for relationships are modelled with two other
properties, namely reflexivity and transitivity. Each actor acts for
himself. If a acts forb andb acts forc, then models typically as-
sume implicitly thata acts forc as well. With Paralocks, proper-
ties like transitivity and reflexivity are not built in. Locks are just
boolean variables with no additional predefined semantics attached
to them. If we want a transitive property for a particular relation
like ActsFor , we must handle this explicitly.

A naive attempt could be to try to handle this on the policy level,
e.g. by specifying the policy as

{a; ∀x.ActsFor(a, x)⇒x;

∀x, y.ActsFor(a, x),ActsFor(x, y)⇒ y}

This is not a viable approach since the above policy only works
for one step of transitivity; for full transitivity we would need
to explicitly list the transitive closure, and this would be at best
cumbersome, and impossible if we could not statically enumerate
all actors. There are two routes to deal with this issue. The first
is to extend the expressive power of the policy language to enable
such global invariants to be expressed as part of the policy. This
is explored in Section 7. For now we take a simpler route, and
view transitivity not as a property of a policy, but rather an intended
invariant on the set of locks open at any given time. This invariant
can easily be maintained at runtime by suitably encapsulating lock
manipulation operations.

So if we ensure that any program using a policy involving
delegation maintains the transitivity property ofActsFor , then it
is enough for the policy to be stated (as before) as simply

{a; ∀x.ActsFor(a, x)⇒x}.

4.1 Encoding the Decentralized Label Model

To show the flexibility of our model, we show how it can be used
to encode the Decentralized Label Model (DLM) of Myers and
Liskov [ML97] 1.

The core component of the DLM is thelabel. Data is decorated
with labels that govern how that data may be used. A labelL
specifies theownersof some data, writtenowners(L), and for each
owner the set ofreadersallowed by that owner,readers(L, o). The
intuition behind the owners is that data, at its origins, has a single

1 In the earlier flow locks work [BS06] we sketched a possible DLM encod-
ing, but the encoding there required all principals to be known statically, so
that all relations between principles could be “hard wired”into the policy.

owner who specifies its readers. The label on a piece of data reflects
the various potential origins of the information in that data.

The decentralisation relates to the readers. Each owner can
independently specify who they consider trusted to view the data.
The effective readersof some data are those for whom all the
owners have agreed may read it, i.e. the intersection of the separate
reader sets for all owners. A label for some data may look like

{o1 : r1, r2 ; o2 : r2, r3}

whereo1 ando2 are owners andr1, r2 andr3 are readers. Such
data might be obtained by combining data fromo1 ando2 in some
way. The effective readers in this example is justr2.

A label L2 is said to be more restrictive than labelL1, written
L1 ⊑DLM L2, if it has at least the same owners, and each of those
owners list fewer potential readers. Formally it is defined [ML97]
as

L1 ⊑DLM L2 = owners(L1) ⊆ owners(L2) ∧

∀o ∈ owners(L1). readers(L1, o) ⊇ readers(L2, o)

Data may berelabeledin two ways, through an assignment:

• Data with labelL1 can always be assigned to a storage location
(a container) with labelL2 if L2 is more restrictive thanL1, i.e.
L1 ⊑ L2.

• Data can bedeclassifiedby adding more readers for a given
owner. In the DLM this can be done freely providing that the
current process runs on behalf of the owner in question.

Apart from labels, there is one other important component to
the DLM, namely theprincipal hierarchyand its associated acts-
for relationship. The DLM lets principals represent both individual
users and other notions like roles and groups, and membership for
a user in a role can thus be modelled by letting the user act for that
role. The acts-for relationship is transitive and reflexive.

This has two effects on the security of a program. First, ifa acts
for b andb is listed as a reader in a label, thena is also implicitly a
reader. Second, if a piece of code runs on behalf ofa, then it also
implicitly runs on behalf ofb, so code running on behalf ofa may
conduct declassifications inb’s name.

To encode the DLM using Paralocks, we need to represent a
number of things explicitly that are implicit in the DLM. The first
of these is the acts-for relationship, which we’ve already discussed
how to model earlier in this section. If the principal hierarchy states
thatb acts fora, then we expect theActsFor(a, b) lock to be open.
We can account for changes to the hierarchy during execution by
opening or closing the appropriate locks. We expect a concrete
semantics to maintain the invariants for transitivity and reflexivity
for theActsFor relationship as previously discussed.

Second, to account for declassification being possible only
when the process runs with the authority of the owner of the declas-
sified data, we need a lock familyRunsFor(a). We expect the ap-
propriate locks to be open for those actors for whom the code runs.
Further, we also expect the invariant that wheneverActsFor(a, b)
and RunsFor(b) is open thenRunsFor(a) is also open, again
making the implicit relationship explicit.

Third, since Paralocks take the perspective of the reader, as op-
posed to the owner as in in DLM, the policy needs to be explicit
about the potential future readers to whom the data may be de-
classified. With respect to a given owner, we can freely add new
readers as long as the code executes with that owner’s authority.
We can thus model the label{o :}, i.e. data owned byo with no
added readers, with the policy

{∀x.RunsFor(o)⇒x}

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 5 2009/11/4

The intuition here is that in code running witho’s authority, this
data may be declassified to any actorx. 2 Adding a reader to the
above policy, we get{o : r}, which we would represent as

{∀y.ActsFor(r, y)⇒ y; ∀x.RunsFor(o)⇒x}

The first clause here corresponds to the readerr. By reflexivity we
will always haveActsFor(r, r) open, and hencer, and anyone else
who acts forr, will be able to read data labelled with this policy.

To handle the general case of the encoding we need to deal with
the case of apotential reader(a reader who is a reader for one but
not all owners). For these readers we need to consider the owners
who donot permitr to read the data.

DEFINITION 4.1 (Label Encoding).Suppose thatr is a (potential
or effective) reader for some labelL, andO is a subset of owners
for L. We say that the pair(O, r) is aconflict pairfor labelL if

O = {o | o ∈ owners(L), r 6∈ readers(L, o)} .

Intuitively,O are the owners who have not permittedr to read data
labelledL.

Now we can define the general encoding of Labels as policies
[[·]] : Label → Policy by

[[L]] = {∀x. {RunsFor(o) | o ∈ owners(L)} ⇒x}

∪ {∀y.RunsFor(o1), . . . ,RunsFor(on),ActsFor(r, y)⇒ y

| ({o1, . . . , on} , r) is a conflict pair forL}

The first clause in the definition of[[L]] says that data can be
declassified to anyone providing it is in a context which runs with
the authority of all owners. Otherwise a potential readerr (or
anyone who acts forr) may read providing it does so in a context
which runs with the authority of those owners who did not grant
explicit access tor.

As an example, consider the encoding of the empty label:

[[{ }]] = {∀x. {} ⇒x} ∪ {} = {∀x. x}

The empty label has no owners, so implicitly anyone can read data
with that label – as expressed explicitly in the flow locks encoding.

When combining labels from different data sources, the DLM
simply performs the union of the respective owner policies, leaving
the effective reader set implicit as the intersection of all readers. In
our encoding the difference between effective and potential readers
is rendered more explicit. Consider combining the two policies
representing{o1 : r1, r2} and{o2 : r2, r3}, which are

[[{o1 : r1, r2}]] =

{∀x.RunsFor(o1)⇒x;

∀y.ActsFor(r1, y)⇒ y; ∀y.ActsFor(r2, y)⇒ y}

[[{o2 : r2, r3}]] =

{∀x.RunsFor(o2)⇒x

∀y.ActsFor(r2, y)⇒ y; ∀y.ActsFor(r3, y)⇒ y}

2 Note that in a programming language enforcing a DLM (such as JFlow/Jif
[Mye99, MZZ+06]) one might want to additionally constrain that declassi-
fication occurs at explicitly declared places in the code. This is easily mod-
elled using regular flow locks by associating aDeclassifylock with the por-
tion of code which is designated as a declassification. This,however, is not
part of the DLM model.

we get[[{o1 : r1, r2}⊔DLM{o2 : r2, r3}]]

=[[{o1 : r1, r2 ; o2 : r2, r3}]]

={∀x.RunsFor(o1),RunsFor(o2)⇒x;

∀y.ActsFor(r2, y)⇒ y;

∀y.RunsFor(o2),ActsFor(r1, y)⇒ y;

∀y.RunsFor(o1),ActsFor(r3, y)⇒ y}

=[[{o1 : r1, r2}]]⊔[[{o2 : r2, r3}]]

Finally we can show that the lattice of labels in the DLM is a
sublattice of the Paralocks policy lattice:

THEOREM 4.1. L1 ⊑DLM L2 if and only if [[L1]] ⊑ [[L2]].
Further, [[L1 ⊔DLM L2]] = [[L1]]⊔[[L2]], and similarly for ⊓.

The proof of these properties is given in the extended version of the
paper. The relationship between⊑ and⊑DLM amounts to saying
that the encoding is sound and complete with respect to the DLM
rule for relabelling data.

What we have given here is an encoding of the DLM policy
specification language only. One might expect to see a deeper com-
parison, in which we also compare the impact of the two on the
security of programs, i.e. the formal semantic security definitions.
The problem is that the DLM, or more accurately its implementa-
tion in JIF, does not have a formal semantic security model. There
exist models for subsets or restricted scenarios for DLM, but it has
never been covered in full. But with our encoding here, we are ac-
tually able to do just that, to provide a semantic security model for
programs that use the DLM for their information flow control. Our
full semantic model will be presented in the next section.

5. Paralock Security
In previous work [BS09] we have developed a simple and accu-
rate context-sensitive security model for flow locks based on un-
derstanding when an attacker’s knowledge about initial data values
is permitted to increase, developed as a generalisation of the simple
gradual releasedefinition [AS07].

The semantic model developed in this section is an extension of
the simple flow locks model from [BS09]. The difference is that we
must handle both runtime actor allocation and runtime querying of
the lock state, both of which may be sources of information flow.

5.1 Computation Model

We assume an imperative computation model – a labelled transition
system – involving commands and states, but the definition is
otherwise not specific to a particular programming language. We

assume transitions of the form〈c, S〉
ℓ
−→ 〈c′, S′〉 where c is a

program andS is the program state. We assume that the semantics
signals any flow of information, i.e. changes to the state, using
labels l, where l is either a distinguished silent outputτ (when
there is no state update), or a valueu corresponding to the value of
the updated part of the state. So for example a simple assignment
x := 42 would generate a

42
→ transition. We further assume that the

state includes at least the following three components:

• A memory, i.e. a mapping from locations to the values they
contain. We denote the memory of stateS by Mem(S), and
range over memories using variablesM, N .

• A lock state, which is the set of all locks currently open. We
denote the lock state of stateS by LS(S), and useΣ,∆ to
range over lock states.

• An actor mapping, keeping track of the concrete run-time rep-
resentation of actors that the actor variables in the program rep-

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 6 2009/11/4

resent. We denote the actor mapping part of stateS by Act(S)
useΛ to range over actor mappings.

Just as with program variables, actors have concrete representations
at runtime, which differ from their representations in the program
code. This is so we can handle e.g. dynamic creation of actors in a
loop, where the same actor variable name is reused for a new actor
each time around the loop. We call the runtime representations
concrete actors, as opposed to theabstract actors(actor identifiers)
found in the program code and policies.

As a consequence, since locks can take actors as arguments, at
runtime locks will be parametrised by concrete actor representa-
tions. We refer to a lock with concrete actor parameters as acon-
crete lock. The lock state component of the state consists of the set
of concrete locks currently open.

For both actors and lock sets we adopt the convention to use
bold face identifiers when denoting concrete entities. For instance,
Σ would represent a set of abstract locks in e.g. a policy stated in
the program, whileΣ ranges over sets of concrete locks. For actors,
Λ ranges over sets of abstract actors, while (with a slight abuse of
our convention)Λ will denote an actor mapping, and henceΛ(a)
denotes the concrete actor corresponding to abstract actora. We
will also apply actor mappings to sets of abstract actors and to
abstract locks and lock sets; the effect in each case is to replace
each abstract actor with the corresponding concrete one.

One other important thing to realise is that since actors and locks
have runtime representations, and can be manipulated and queried
at runtime, they are subject to the same possibilities for information
flows as the memory. This means that to ensure that all information
flows are properly specified and tracked, locks and actors must have
policies too, to govern how they may be used in a program. For a
given state componentt we writepol(t) to denote the policy oft.

5.2 Validating flows

To ensure correct information flow in a program, all flows must
be validated at each possible “level” that data can flow to. This is
not specific to our setting, but a very general statement regarding
information flow control. Each of these levels can be thought of as
a potential attacker. For each such attacker, we must ensure that the
attacker does not learn more than intended about the initial data.

The way to do this is, for each possible attacker, to split the
state into ahigh and alow portion – the low portion being the part
directly visible to the attacker. The security goal is to ensure that
the attacker, by observing the low part, does not learn more than
intended about thehigh part of the state. For standard noninterfer-
ence the goal is that the attacker learns nothing. For gradual release
[AS07] the goal is to ensure that nothing is learned for the observa-
tions that are not labelled as declassifications.

Since flow locks permit fine-grained flows where data can be
effectively declassifed to an actor in a series of steps, each remov-
ing one condition (i.e. lock) that needs to be fulfilled, our “levels”
need to account for both actors and lock sets. We thus define an
attackerA to be an actor paired with a set of locks which we de-
note thecapabilityof that attacker. The intuition is that an attacker
A = (a,Σ) may see any data guarded from actora by at mostΣ.
Formally,

A ∈ Actors × P(Locks)

We writeCap(A) for the capability ofA. Note in particular that
attackers observe concrete things at runtime, so they represent
concrete actors with concrete capability sets.

To formulate security in a “knowledge evolution” style, follow-
ing [AS07, BS09], we first need a number of auxiliary definitions.

A trace is a sequence of labels denoting changes to the state.
An A-observable traceis a trace where we mask out changes to
pieces of the state that the attackerA cannot see. We say that an

attacker(a,Σ) can seesome part of the state with policyp iff
p ⊑ {Σ⇒a}. A transition isvisible toA if A can see the portion
of the state involved in the change. We write〈c, S〉

u
−→A 〈c′, S′〉

when〈c, S〉
u
−→ 〈c′, S′〉 and the transition is visible toA, and

〈c, S〉
~u

=⇒A 〈c′, S′〉

when there exists a sequence~ℓ of labelled transitions between the
respective configurations, where the projection of~ℓ to the non-
silentA-visible transitions is equal to~u. We sometimes omit result
configurations if we only care about the output of a program, as in

〈c, S〉
~u

=⇒A . Note that the series of execution steps generating a
trace need not be maximal, so the set of allA-observable traces of
a given program-state pair for a given attackerA is prefix closed.

An A-low stateis a projection of a state to exactly those parts
visible to attackerA. Two states areA-equivalent, writtenS ∼A T ,
if their A-low projections are equal.

With these definitions in hand, we can define the notion of
attacker knowledgeas follows:

DEFINITION 5.1 (Attacker knowledge).The knowledge an at-
tacker has of the starting memory after observing trace~u of pro-
gramc with a starting state who’sA-low projection isL is

kA(~u, c, L) =
n

S | S ∼A L, 〈c, S〉
~u

=⇒A

o

i.e., the set of all possible starting states that might lead to that
trace.

Note that knowledge grows (uncertainty decreases) during execu-
tion, so we always have thatkA(~uu, c, L) ⊆ kA(~u, c, L).

5.3 Security

To validate that all information flows in a program are secure
according to the stated policies, each output must be examined in
the context it takes place, which in our flow locks setting means
the lock state in effect at the time of the output. Consider for
example the simple programx := y, wherepol(x) = {a} and
pol(y) = {σ⇒ a}. Clearly this program is insecure in isolation,
since the policy onx is less restrictive than that ony, but it would
be secure providing thatσ was already open.

To help with our definition, we first define the notion of an
A-observable runof a program to be a non-emptyA-observable
trace of the program, paired with the lockstate in which the last
output of that trace takes place. We formally define the set of all
A-observable runs that could arise from a given programc starting
in a state whoseA-low projection isL, as

DEFINITION 5.2 (A-observable run).

RunA(c, L) =
n

(~uu,LS(S′)) | S ∼A L, 〈c, S〉
~u

=⇒A 〈c′, S′〉
u
−→A

o

Now, for a given attacker, representing a particular split of
the state into high and low portions, who observes an output, the
requirement is that this output may not signify a data flow from
“high” to “low” portions of the state, unless the lock state permits
such flows. Note that a single attacker is a very course-grained
representation of security, as it isonly able to distinguish between
“high” and “low”, but no nuances. As a consequence,anylockstate
that would allowsomeflow from high to low will do. The split of
high and low depends on the capability of the attacker, so for an
attackerA we have that some lockstateΣ allows flows from high
to low as long asΣ 6⊆ Cap(A). If Σ ⊆ Cap(A) then the only
flows that are allowed fall completely inside the parts of the state
thatA considers low.

The fine granularity is obtained by quantifying over all possible
such attackers, since for any bad flow there must exist an attacker

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 7 2009/11/4

for which the flow is from “high” to “low”, but without a permissive
enough lockstate.

Our formal definition of top-level security for a program, de-
notedPLS(c), can then be defined in terms of runs as follows:

DEFINITION 5.3 (Paralock security).A program is said to bepar-
alock secure, written PLS(c), if for all attackersA, for all A-
low statesL, for all runs (~uu,∆) ∈ RunA(c, L) we have that
if ∆ ⊆ Cap(A) then

kA(~uu, c, L) = kA(~u, c, L)

Informally, if the lock state at the time of the update would not
allow any flows from “high” to “low” portions of the state, then no
knowledge may be gained about the initial state.

In practice we also need a generalised definition which accounts
for subprograms that are secure in the context they appear, where
“context” here means the actors which exist and the locks which
are open. For space reasons we omit this generalisation here, but
note that it is needed in the proof for the type system presented in
the next section. The generalisation can be found in the appendix.

The above definition of security is termination sensitive – a pro-
gram is insecure if high data can influence termination behaviour.
We get a weaker but more easily verifiedtermination insensitive
version following the formulation from [AHSS08] as follows:

DEFINITION 5.4 (Termination-insensitive security).A programc
is said to be termination insensitive secure, writtenPLSTI(c),
if for all attackers A, for all A-low statesL, for all pairs of
runs which differ only at the last output(~uu,∆), (~uu′,∆′) ∈
RunA(c, L) we have that if∆ ⊆ Cap(A) then

kA(~uu, c, L) = kA(~uu
′
, c, L)

Here we do allow some knowledge to be gained by observing the
next output, but only by the fact that there is an output in the first
place.

6. Enforcement: An Example Paralocks Type
System

In this section we give an example of how Paralocks can be com-
bined with a concrete programming language, and present a type
system which guarantees that well-typed programs are (termination
insensitive) paralock secure. The underlying language we present is
as simple as possible while still using the full expressive power of
Paralocks, to focus on the interesting parts of the interaction.

Expressions: e ::= n | x[~a] | e ⊕ e

Commands:
c ::= x[~a] := e | if e then c else c | while (e) c | skip

| c1; c2 | open σ(~a) | close σ(~a) | newactor a in c
| when σ(~a) do c else c | forall σ(~a) do c

Internal Commands: c ::= for σ(~a) in Σ do c

Figure 2. Example language syntax

The language, found in Figure 2, is at its core a sequential im-
perative language, with assignments, conditionals and loops. Data
sinks and sources are kept abstract and are uniformly represented
as references, with each reference having an attached policy. For
simplicity the only basic type is the integers. The internal com-
mand (for) is not part of the surface syntax and only arises in the
operational semantics.

To manipulate locks we introduce the commandsopen σ(~a) and
close σ(~a). These are the only commands in the language that can
change the lock state component of the state. Unlike in the basic

flow locks language, locks here will have runtime representations
and can carry information, so the runtime use of locks will also be
governed by policies. Thewhen command is a conditional which
queries the the state of a particular lock.

New actors can be introduced dynamically using thenewactor a
command, which generates a fresh concrete actor and brings a new
actor variablea into scope for the enclosed subcomputation. Note
that this could for instance be placed inside a loop, so the same
variable name introduced by the samenewactor command can
represent many different concrete actors during execution.

In order to keep the language and in particular the type system
simple, actors are not first class entities. To regain some of the lost
expressive power from this choice, we reuse lock families as a sort
of storage for actors. A lock family can be viewed as a “named
collection of actors”, and to access the contents of such a collection
we introduce theforall command, which loops over all open
locks in some family, bringing the relevant actors into scope in the
loop body for each iteration. We assume that the order in which
locks are looped over is deterministic.

The creation and use of actors may also be a conduit for infor-
mation flow at runtime, so like references and locks we could re-
quire actor variables to have policies too. For simplicity though, we
assume that all actors introduced bynewactor commands are pub-
lic, i.e. with a policy{∀x. x}. Actor variables bound by aforall
command will carry information about the lock family used in the
loop, so we assume they inherit the policy of that lock.

Regarding policies, it is important to note that the runtime poli-
cies on runtime entities will talk about concrete actors and locks,
while in the program code the policies will mention abstract enti-
ties. We have no explicit declaration of references in the language,
instead we assume that they are globally available. But since actor
variables arenot globally defined, this has the effect that policies
on references (and locks) cannot contain free actors, as that could
lead to name capture problems. In many settings this would be too
restrictive, since it would preclude actor-specific data.

To enable actor-specific data while avoiding all the extra ma-
chinery that would have been needed to track scoping and name-
capture problems for policies, we instead make this explicit at the
top level by having actor-parametrisedfamiliesof references. For
full flexibility we allow any number of parameters on a family of
references, just as with locks.

Locks are also globally available, and may have actor parame-
ters. However, for simplicity we do not allow the policies on lock
families to mention the actor parameters, and thus may not con-
tain any free actor variables. In other words, for a family of ref-
erences we could have different actors having access to each in-
dividual reference, e.g.pol(x[a]) = {a}, whereas for families
of locks we only allow a single policy for the entire family, e.g.
pol(σ) = {∀x. σ(x)⇒x}.

With all this in place, there is no need for any control that actors
in policies refer to the proper runtime actors, since they cannot
appear free in policies.

To illustrate these language features consider a simple sealed-
bid auction scenario. For example, if we wanted a ’bid’ variable
for each bidder in a sealed-bid auction, we could model that with
a family of referencesbid[a], parametrised by actors. Policies on
such families can then use the actor parameter, so we could have

pol(bid[a]) = {a; ∀x. AuctionClosed⇒x}

where the policy on the individual references in the ’bid’ family
depends on the actor in question. As an example, the code repre-
senting the registration of a new bidder might be written:

1 newactor b i n
2 open Bidder(b)
3 bid[b] := getBid

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 8 2009/11/4

where we assume thatgetBid is an input channel from the actor
in question, represented as a reference. The policy on the reference
bid[b] would be{b; ∀x. {Bidder(x), AuctionClosed}⇒x}, stat-
ing that all bidders can gain information about this bid once the
auction is completed.

The code fragment for concluding the auction and publishing
the winning bid (the first of the largest bids) could then be written

1 maxBid := 0
2 f o r a l l Bidder(x) do
3 i f bid[x] >= maxBid then
4 maxBid := bid[x]
5 f o r a l l Winner(y) do c l o s e Winner(y)
6 open Winner(x)
7 e l s e s k i p
8 open AuctionClosed

To be able to compute the maximum bid before the auction is
marked as closed (as in this example) we would givemaxBid the
policy {∀x. {Bidder(x), AuctionClosed}⇒x}. We use a separate
lock family to denote the winning actor, and by (line 5) closing all
previous winners and then opening the lock for the new winner, we
are assured that we only ever have (at most) one winner. We could
then loop over all actorsa for whom theWinner(a) lock is open,
to do specific things relating to the winner.

Again we stress that while some of the language design choices
here are unorthodox, this is just a consequence of keeping the lan-
guage and type system relatively small. In a more realistic pro-
gramming language incorporating Paralocks, there are a number
of other language design considerations. Supporting first-class dy-
namic actors would be a more natural route in a richer language,
and this would be naturally supported in the type system using sin-
gleton types. From the expressiveness viewpoint support for poli-
cies not known until runtime (cf. DLM runtime labels [ZM07])
could well prove useful, but would require more language features
to enable static checking. However, the issues involved there are
largely problems ofenforcement. While interesting in their own
right, they are orthogonal to the core issues of this work, namely
the Paralocks policy specification language and its associated defi-
nition of security.

6.1 Operational Semantics

The operational semantics of our example language can be found
in Figure 3. Transitions occur between configurations of the form
〈c, S〉, wherec is the command andS is the program state. This
state is a triplet of an actor mapping (Act(S)), a lock state
(LS(S)) and a memory (Mem(S)). For simplicity we lift up-
dates on individual components to the full state, so for instance
we write e.g.S[x 7→ v] to update the value of a variable in the
memory, orS ∪ σ to add an open lock to the lock state. Since the
three components have disjoint domains there should be no risk for
confusion.

Apart from the labels on transitions, there should be no surprises
in the rules for the ordinary imperative constructs. Regardingopen
and close, the only thing of note is that we need to map actor
variables in locks to their concrete representations before updating
the lock state.

Thewhen command is very similar to the standardif, the only
difference being thatwhen queries the lock state instead of the
memory.

Thenewactor command generates a fresh concrete actor repre-
sentation and binds it to the variable name given. Since we assume
all actors bound this way are public, we don’t need to care about
the particulars of the generation scheme. Syntactically the variable
is scoped, but in the semantics we don’t bother to remove it once

〈n, S〉 ⇓ n
〈e1, S〉 ⇓ v1 〈e2, S〉 ⇓ v2

〈e1 ⊕ e2, S〉 ⇓ v1 ⊕ v2

〈x[~a], S〉 ⇓ Mem(S)[x[~a]]

〈open σ(~a), S〉
open σ(~a)
−−−−−−→ 〈skip, S ∪ {σ(~a)}〉

〈close σ(~a), S〉
open σ(~a)
−−−−−−→ 〈skip, S \ {σ(~a)}〉

〈e, S〉 ⇓ v

〈x[~a] := e, S〉
x[~a](v)
−−−−→ 〈skip, S[x[~a] 7→ v]〉

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

~a = Act(S)(~a)

〈e, S〉 ⇓ v v ∈ {true, false}

〈if e then ctrue else cfalse, S〉
τ
−→ 〈cv, S〉

〈while (e) c, S〉
τ
−→ 〈if e then (c; while (e) c) else skip, S〉

〈c1, S〉
ℓ
−→ 〈c′1, S

′〉

〈c1; c2, S〉
ℓ
−→ 〈c′1; c2, S

′〉
〈skip; c2, S〉

τ
−→ 〈c2, S〉

〈newactor a in c, S〉
a(a)
−−−→ 〈c, S[a 7→ a]〉 (a fresh)

〈when σ(~a) do c1 else c2, S〉
τ
−→

(

〈c1, S〉 σ(Act(~a)) ∈ LS(S)

〈c2, S〉 otherwise

Σ = {~a | σ(~a) ∈ LS(S)}

〈forall σ(~a) do c, S〉
τ
−→ 〈for σ(~a) in Σ do c, S〉

〈for σ(~a) in {~a} ∪ Σ do c, S〉
~a(~a)
−−−→ 〈c; for σ(~a) in Σ do c, S

′〉

~a = a1, . . . , an S
′ = S[a1 7→ a1, . . . , an 7→ an]

〈for σ(~a) in ∅ do c, S〉
τ
−→ 〈skip, S〉

Figure 3. Operational Semantics

we leave the scope, instead we rely on the type system to ensure
that there can be no accidental capture.

Finally, the most complex command semantically is theforall,
which loops over all locks in some particular family. Its execution is
done in two steps. First, the set of locks in the family that are open
is (deterministically) calculated, and second that set is looped over,
one lock at a time. For this we need to extend the language with
an internal commandfor σ(a1, . . . , an) in Σ do c, to handle
the actual looping. The transition rule forforall is then simple:
gather all open locks in the relevant lock family and go to the next
step, thefor.

In thefor we bind the relevant actors to the provided variables
and then proceed to execute the body. Just like with thenewactor
rule, we don’t care where the scope of the variables ends syntacti-
cally, relying on the type system to handle the scoping details.

The transition arrows are labeled with outputs that signal all
direct information flows that take place during execution, which in
this simple language means all changes to the program state. These
are purely for the sake of reasoning about security and otherwise
have no effect on the computation. The commands that have an
effect on the state are assignments for the memory andopen and

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 9 2009/11/4

close for the lock state. For the actor mapping, thenewactor
command can introduce a single new actor in scope, while the
forall loop, via the auxiliary internalfor construct, can bind a
number of names in one transition step. All other base rules have
no effect on the state, and thus yield the silent outputτ .

6.2 Type System

To enforce security we use the type system in Figure 4. Since we
only have integers as the base type for values, we don’t need to
track base types at all, so our type system only handles the security
component.

For expressions, the typing judgement is simplyΛ ⊢ e : r,
where r is a paralock policy which we call theread effectof
the expression, as it intuitively specifies who may read data from
references with this policy. In effect it will be the least upper bound
of the policies on references used to compute the expressione.
There should be no surprises in how this read effect is computed,
though note that the rule for references handles both parametrised
and unparametrised references, as we allow the vector of actors to
be of length0.

The typing judgement for commands is a bit more involved, but
the various components should come as no surprise. The judgement
is

Λ; Σ ⊢ c ; w, Σ′

wherec is the command to type andw is a policy we call thewrite
effectof the command. Intuitively this policy specifies who would
be able to notice that the command was executed, by observing
its effects on the state. It is thus the greatest lower bound of all
policies on references, locks and actor variables whose values are
affected by the command. The purpose of this policy is to track
indirect flows, similar to the use of a “program counter” in many
other systems. This can be seen in the rules for the commands that
affect control flow, namelyif, while, when andforall. All these
rules compare the policy of the branching expression or lock with
the write effect of the body of the command.

The write effect is straightforward to compute for most rules.
For assignments,open andclose it is simply the policy of the af-
fected location or lock. Thenewactor command introduces actor
variables with the policy⊥, which is thus its write effect, as⊥ is
clearly at least as liberal as any write effect of the body. The most
interesting rule in this regard is that of theforall command. We
cannot in general know exactly which actors will be referenced in
the loop iterations, so we assume it may be any of them, meaning
that actors introduced by theforall that appear in the write ef-
fect of the body must be universally quantified. However, since the
forall also binds actors to the relevant variables, and these vari-
ables inherit the policy of the lock, the write effect of the whole
command will be exactly the policy of the lock, since we require
that to be more liberal than any write effect of the body.

Λ is the set of actors in scope, for both commands and expres-
sions, and thenewactor and forall commands introduce new
actors into this scope as expected. We use it only to ensure that any
mention of actor variables as arguments to references and locks are
done in a correct way, and that no variable names clash.

Σ is the set of locks assumed to be open when the command
starts executing, andΣ′ is a lower bound on the locks that will
be open afterwards. The one place whereΣ is actually used is in
the assignment rule. In this rule we must determine whether the
policy of the expression is compatible with the policy of the vari-
ablerelative to the current lock state. The idea is the same as with
flow locks – but the details are more complex. For example, sup-
pose we have a policyp = {a, ∀x.Actsfor(a, x)⇒x}. Intuitively
this says thata may always read the data, and that for any ac-
tor x, if the lock Actsfor(a, x) (“flow from a to x is permitted”)
thenx may also read. If we specialise this policy to a lock state

Σ = {Actsfor(a, b)} then the policy in force at that statep(Σ)
is {a, ∀x.Actsfor(a, x)⇒x, b}. I.e. in that state,b is also uncon-
ditionally permitted to see the data. Specialisation is most easily
understood in logical terms:p(Σ) is just the most liberal policy
which is entailed by the conjunction ofp andΣ.

In the definitions that follow we distinguish∀-bound actor vari-
ables syntactically, using metavariablex.

DEFINITION 6.1 (Matching).Let θ be a substitution from bound
actor variables to free actor varibles. We say thatΣ matchesΣ′

with θ if and only if the set of bound actors inΣ is equal to the
domain ofθ, andΣθ ≡ Σ′.

For example,{Actsfor(a, x)} matches {Actsfor(a, b)} with
x ::= b.

DEFINITION 6.2 (Specialisation).For a policyp and a lock state
Σ, we define the normalisation ofp at Σ, writtenp(Σ), as

p(Σ) =
[

c∈p

{c · Σ} , where

(∀~x. ∆⇒ b) · Σ
def

= {∀~x. ∆2θ⇒ bθ | ∆ ≡ ∆1 ∪ ∆2; Σ1 ⊆ Σ;
∆1 matchesΣ1 with θ }

Note thatp(Σ) always containsΣ (to see this take∆1 andΣ1 to be
the empty set in the auxilliary definition above) – i.e.p(Σ) ⊑ p –
normalising a policy always yields a more liberal policy.

Computing the outgoing lock state is straightforward in most
cases, but a few rules are slightly complex. Actors introduced
by newactor andforall are scoped, and when their respective
scopes end we need to forget about any locks mentioning those
actors, to avoid name clashes with potential future scopes reusing
the same actor variable.

Most interesting perhaps is the rule forclose, which has to
account for potential aliasing issues between actor variables. Hence
it is maximally pessimistic, and assumes that not only the lock
that is explicitly mentioned will be closed, but also any other
lock in the same family where the actor arguments may point
to the same concrete actors at runtime. Two variables introduced
by newactor commands can never be aliases of each other as
they must represent fresh concrete actors. A variable introduced
by aforall could alias any other variable though. We assume an
implicit predicatealias wherealias(a) = true if a in the current
scope is introduced by aforall construct, otherwisefalse. The
result clearly depends on the context in which the function is called.
We then define a simple may-alias relation as

a ≃ b
def

= alias(a) ∨ alias(b) ∨ a = b.

We extend this relation to equal-length vectors of actors in a point-
wise manner. Using this may-alias relation, the rule forclose
is suitably pessimistic about what abstract locks may actually be
closed at runtime.

6.3 Security

We show that well typed programs are paralock secure. The proof
can be found in the accompanying online appendix. Here we just
note the main technical stepping stones – the first of which is the
standard property that reduction preserves typability:

LEMMA 6.1 (Preservation).Let us say that stateS is compatible
with Σ if LS(S) ⊇ Act(S)(Σ). Similarly we say that stateS is
compatible with an actor setΛ if dom(Act(S)) ⊇ Λ.

Now suppose thatΛ; Σ ⊢ c ; w, ∆ and 〈c, S〉
ℓ
−→ 〈c′, S′〉.

Then ifΛ andΣ are compatible withS thenΛ′; Σ′ ⊢ c′ ; w′, ∆′

for someΛ′ andΣ′ compatible withS′, w ⊑ w′ and∆ ⊆ ∆′.

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 10 2009/11/4

Λ ⊢ n : ⊥

~a ⊆ Λ ∀a ∈ ~a. pol(a) ⊑ pol(x[~a])

Λ ⊢ x[~a] : pol(x[~a])

Λ ⊢ e1 : r1 Λ ⊢ e2 : r2

Λ ⊢ e1 ⊕ e2 : r1 ⊔ r2

~a ⊆ Λ

Λ; Σ ⊢ open σ(~a) ; pol(σ), Σ ∪ {σ(~a)}

~a ⊆ Λ

Λ; Σ ⊢ close σ(~a) ; pol(σ), Σ \ {σ(~b) | ~a ≃ ~b}

Λ; Σ ⊢ skip ; ⊤, Σ

Λ ⊢ e : r r(Σ) ⊑ pol(x[~a]) ~a ⊆ Λ

Λ; Σ ⊢ x[~a] := e ; pol(x[~a]), Σ

Λ ⊢ e : r Λ; Σ ⊢ ci ; wi, Σi r ⊑ w1 ⊓ w2

Λ; Σ ⊢ if e then c1 else c2 ; w1 ⊓ w2, Σ1 ∩ Σ2

Λ ⊢ e : r Λ; Σ ∩ Σ′ ⊢ c ; w, Σ′ r ⊑ w

Λ; Σ ⊢ while (e) c ; w, Σ′ ∩ Σ

Λ; Σ ⊢ c1 ; w1, Σ1 Λ; Σ1 ⊢ c2 ; w2, Σ2

Λ; Σ ⊢ c1; c2 ; w1 ⊓ w2, Σ2

Λ; Σ ∪ {σ(~a)} ⊢ c1 ; w1, Σ1 Λ; Σ ⊢ c2 ; w2, Σ2 pol(σ) ⊑ w1 ⊓ w2 ∀a ∈ ~a. pol(a) ⊑ pol(σ)

Λ; Σ ⊢ when σ(~a) do c1 else c2 ; w1 ⊓ w2, Σ1 ∩ Σ2

Λ ∪ ~a; Σ ∩ Σ′ ⊢ c ; w, Σ′ pol(σ) ⊑ ∀~a. w ~a ∩ Λ = ∅

Λ; Σ ⊢ forall σ(~a) do c ; pol(σ), Σ′ ∩ Σ \ {σ(~b) | ~a ∩~b 6= ∅}

Λ ∪ {a}; Σ ⊢ c ; w, Σ′

Λ; Σ ⊢ newactor a in c ; ⊥, Σ′ \ {σ(~b) | a ∈ ~b}

Λ; Σ ⊢ c ; w, Σ′

Λ; Σ ⊢ c
(Top level judgement)

Figure 4. Flow Lock Type System

The second basic property is the global (“big step”) property of
the effect components of the typing derivation. Stated informally
(to convey the intuition without all the technicalities), they say that
wheneverΛ; Σ ⊢ c ; w, ∆ then

• If data labelledw is not visible to attackerA then any compu-
tation ofc in any start state compatible withΣ will not produce
anyA-visible output (and hence will not modify the parts of the
state with policyw or stronger).

• A terminating computation ofc in a state with at least locksΣ
open will result in at least locks∆ being open.

Finally we have proven the main theorem of this section, namely
that a well-typed program is guaranteed to be secure by our se-
mantics for Paralocks. Since the type system as stated is ter-
mination insensitive, for instance it allows “high loops” to pre-
cede “low writes”, we formally have that well-typed programs are
termination-insensitive paralock secure:

THEOREM 6.1. If ∅; ∅ ⊢ c thenc is termination-insensitive par-
alock secure (PLSTI(c)).

This in turn is a corollary of a theorem involving a generalisation
of the PLSTI property. Again, the details are available in the
appendix.

7. Recursive Paralocks
In Section 4 we presented an encoding of the DLM. One aspect of a
DLM policy was the treatment of theActsFor relation; implicitly
we required that whenever we open a lockActsFor(a, b) then we
must also open all transitive consequences. It is intended that this
invariant is implemented explicitly by encapsulating the open op-
eration appropriately within a program which uses a DLM policy.

In this section we explore an extension to the policy language
which allows us to specify such properties explicitly, avoiding the
need to encode them explicitly in the program. The extension is a
natural logical one: allow relations between locks and flows to be
specified recursively as part of a global policy component.

In this section we briefly explore the implications of this exten-
sion to the questions ofpolicy (c.f. §3.2),expressiveness(c.f. §4),
semantics(c.f. §5), andenforcement(c.f. §6).

7.1 Policy

Policies will now consist of two parts. Firstly we have policies on
memory objects just as before: collections of clauses which have
an actor variable (bound of free) as their head. For the purposes of
this section it will be useful to write a clause∀a1, . . . , an. Σ⇒ a
as ∀a1, . . . , an. Σ⇒Flow(a), thus making the “may flow to”-
predicate explicit. The extension we make is to add aglobal policy
G which is also a set of clauses. These clauses differ in that their
heads may be locks – and thus they may be recursive. For example,
in a DLM encoding we would include the following two clauses in
the global policy:

∀y.ActsFor(y, y);

∀x, y, z.ActsFor(x, y),ActsFor(y, z)⇒ActsFor(x, z)

This style of policy specification is already familiar in a security
context: it amounts to the use of DATALOG programs as policy
specifications, and has been used in numerous logics for access
control policies – e.g., [Jim01, DeT02, LMW02]. We permit one
further useful feature: global policies, in addition to using locks,
may also use the distinguishedFlow predicate in their specification
(see Section 7.2 for examples).

Policy comparison To compare policiesp and q we must now
take into account the global policy. We writep ⊑G q to mean that
policy q is more restrictive than policyp in the context of global
policy G. We can define this relation by giving a straightforward
interpretation in first-order logic. As before we can interpret each
clause inp, q andG as first-order Horn clauses, and sets of clauses
are interpreted as logical conjunction. Then we define

p ⊑G q
def

= G ∧ p |= q

To see that this does “the right thing”, consider some lock stateΣ.
Suppose thatΣ ∧ G ∧ q |= Flow(a) – i.e. that in some concrete
lock state the policyq permits information to flow toa. Then it can

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 11 2009/11/4

be readily seen thatp ⊑G q ensures thatΣ ∧ G ∧ p |= Flow(a) –
i.e.,p allows any flow thatq does.

7.2 Expressiveness

Here we consider a couple of simple examples using recursive
paralocks.

Denning Lattices, Reloaded The flow locks encoding of standard
Denning-style information flow lattices involves identifying secu-
rity levels with actors, and representing a security levelj by the
(lock-free) policy {Flow(k) | j ≤ k}. Recursive Paralocks pro-
vide several alternative ways to specify this. One example is to
represent the policy for data of levelk as just{Flow(k)}. The
global policy then must define the covering relation of the lattice
(represented as a binary lock≺), together with the rule

∀x, y.Flow(x), x ≺ y⇒Flow(y).

So, for example, the three point latticeL ≤ M ≤ H would be
represented by the global policy

{L ≺ M ; M ≺ H; ∀x, y.Flow(x), x ≺ y⇒Flow(y)} .

The “Complete” DLM In the case of the DLM encoding we
already mentioned the ability to express reflexivity and transitivity
for theActsFor hierarchy. Similarly the invariant on theRunsFor
lock can then be specified as

∀x, y.ActsFor(x, y),RunsFor(x)⇒RunsFor(y)

We can also move part of each policy into the global part by
applying theActsFor hierarchy toFlow predicates:

∀x, y.ActsFor(x, y),Flow(x)⇒Flow(y)

which says that whenever flow tox is permitted then flow toy is
also permitted providingy acts forx. With this rule we no longer
need to be explicit about theActsFor relationship in the data policy
itself, so for example we can encode a label{o1 : r1; o2 : r1, r2}
more succinctly as

{∀x.RunsFor(o1),RunsFor(o2)⇒x; r1;RunsFor(o1)⇒ r2}

As an interesting side note, the original version of the DLM
([ML97]) was considered incomplete; a follow-up paper ([ML98])
identified a “complete” policy ordering. Specifically the new for-
mulation made the policy ordering more liberal by weakening it to
allow two new⊑-monotone operations on policies:

• An ownero1 may to be replaced in a label with an ownero2

that acts foro1,

• If a readerr1 is listed by some owner, andr2 acts forr1, then
we can also addr2 as a reader for that owner.

Our original encoding is faithful to the original DLM, and cannot
not handle these components, specifically because the policy order-
ing was ignorant of the transitive nature of theActsFor relation-
ship and its relation to theRunsFor property. With the extension
presented here, policy ordering becomes “complete” and thus cor-
responds to the revised version of the DLM [ML98].

7.3 Semantics

The definition of security needs only minor modifications to handle
recursive paralocks. There are just two places where the definition
needs to be modified:

• Generalise⊑ to ⊑G in the definition of the parts of a state that
the attacker can see.

• In the definition of security, generalise the comparison between
lock state∆ and attacker capabilityCap(A) to take into ac-
count the global policyG by replacing the condition

∆ ⊆ Cap(A) (logically: Cap(A) |= ∆)

by G ∧ Cap(A) |= ∆.

7.4 Enforcement

Here we consider the impact that recursive paralocks have on the
integration with the language and type system of Section 6.

The global policy is essentially DATALOG3. DATALOG and
modest extensions thereof, has proved to be a popular basis for
e.g. access control logics because, among other things, a query (the
access control mechanism itself) can be answered in polynomial
time. This is also useful in the present context. At runtime we
need to enumerate all actors in a given role (theforall-construct
in our example language), and check whether a particular lock
is open (thewhen construct). It is necessary that these can be
answered precisely and efficiently, and this is possible because they
are datalog queries.

However, type checking is another matter. We do not need to an-
swer datalog queries within the type system, we need to implement
policy comparison (⊑G). In all other regards we conjecture that the
type system given in Section 6 is sound for recursive paralocks –
providing we generalise the policy ordering and least-upper-bound
operation accordingly.

In the case of assignmentx := e, for example, wherex has
policy q, ande has policyr, and we know that at least locksΣ are
open, then we need to determine whetherΣ ∧ G ∧ r |= q. This
problem (and the similar problem of determining whetherr ⊑G q)
is the problem ofcontainmentof a non-recursive datalog program
q in a recursive oneΣ∪G∪r. This containment problem is known
to be decidable, although EXPTIME-complete (see e.g. [CV97]).
Whether this complexity is a problem in practice remains to be
seen.

Similarly we need a generalised form of least upper bound oper-
ation wherep⊔G q denotes the least policyr such thatp ∧ G |= r
andq ∧ G |= r. This kind of operation – i.e., finding a DATALOG
program which gives a best approximation to the disjunction of two
DATALOG programs – does not to our knowledge seem well stud-
ied in the DATALOG literature. However, we note that usingp⊔ q
just as before (thus ignoringG) would provide a safe upper bound
operation which would be adequate for use in the type system.

8. Related Work
Considering related work, there are two main dimensions along
which our work can be compared: policy and semantics.

Policy As mentioned, the Paralocks policy language is built on
our earlier work on Flow Locks, and flow locks themselves are
a special case of paralocks. As such paralocks can also encode
integrity policies and a variety of declassification policies. We refer
the reader to [BS06] for more examples.

The Paralocks model is policy neutral – it provides the means
to construct information flow policies but does not prescribe any
particular kind of policy. In this regard our goals are related to
the recent security policy programming language Fable [SCH08].
Fable allows programmers to specify a custom label language for
data, and constraints (via dependent types) on how programming
operations may use labelled data. Static typing ensures that there
is no way to “bypass” the policy. The Fable approach is very flex-
ible and general, but as a result it provides no general extensional
semantic security condition – one must construct these on a case-
by-case basis. Paralocks is not intended to be as general purpose as

3 Certain policies that we have used are notsafe in the DATALOG sense
(see e.g. [CGT89]) For example∀x.Runsfor(o)⇒Flow(x) is unsafe
becausex does not appear in the body of the clause, and so it generates
infinitely many instances. However, at any point during run time, the do-
mains of actors is finite and known. Hence the rule can be thought of as a
shorthand for∀x.Actor(x),Runsfor(o)⇒Flow(x).

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 12 2009/11/4

Fable (for example it does not aim to be able to encode security au-
tomata) but focuses on the higher level concept of information flow.
As a result we can give a single information-flow semantics to all
Paralock policies. It may be possible, however, to use Fable’s fine-
grained data manipulation policies as an implementation platform
for a Paralocks type system, although the only information flow en-
coding described so far in Fable [SCH08] is a standard information
flow lattice policy.

Paralocks deal with dynamic policies in the sense that permit-
ted information flows change over time. We assume that locks are
opened and closed at appropriate points in a given program in or-
der to communicate the intended changes. We could say that the
program synchronises with the policy via lock operations. An alter-
native approach is to assume that the trigger for policy change lies
outside the program itself. To some extent this is what is done with
the acts-for hierarchy in Jif (DLM) programs – and we can take
the same perspective using runtime lock checking instead of open-
ing locks from within the program. This works well if all policy
changes make the policy more liberal, but asynchronous changes
corresponding to the closing of locks are potentially problematic
[HTHZ05]. This is related to the problem tackled in the RX pol-
icy language [SHTZ06]. This work (and the more recent refine-
ment [BWW08]) is the only other language-based security work of
which we are aware which uses roles in an information-flow set-
ting. The main thrust of their approach is to specify and manage
information flows which are caused by policy changes. Role man-
agement ideas are used to control policy updates. In common with
this approach, our semantics also tracks information flows caused
by “role management” – something which was not necessary in the
earlier flow locks work due lack of run-time locks. We believe that
many features of their meta-policies can be directly encoded using
paralocks, but we have yet to investigate such examples.

One important feature of Paralocks that was not supported by
flow locks is the notion of arun-time actor. In this regard the
work of Tse and Zdancewic’s extension of the DLM withrun-time
principles[TZ04] is closely related, and our inclusion of a run-time
lock test was motivated by that work.

We note some further similarities to work on RBAC models.
Paralocks permit finer granularity than standard RBAC, with the
use of user-specific policies. This level of control appears similar
to that provided byrole templates[GI97]. Our ability to model ac-
cesses which are triggered by arbitrary state conditions (modelled
via locks) has similarities toenvironment roles[CLS+01]. Related
to this, the role activation rules of the OASIS model have a superfi-
cial similarity with paralock policies (see e.g. [BEM03]) although
these rules would be more like lock invariant specifications in our
model.

The extension to recursive paralocks described in Section 7
brings the work much closer to the logic-based access control work
(e.g. [Jim01, DeT02, LMW02]). One line of work by Dougherty et
al [DFK06] deals specifically with the issues that arise in situations
where changes in the environment entail dynamic changes to access
control policy. This is analogous to our problem of reasoning about
policies in the presence of a program which has side-effects on the
policy.

Semantics Semantic models for complex information flow poli-
cies are problematic. In some cases – e.g. in the DLM – there is
simply no information flow model. In others (e.g., [TZ04]) the se-
mantic models are simplynoninterference in the absence of pol-
icy change. For semantic models of declassification and other dy-
namic information flow policies which attempt to do more than
this (e.g. the “noninterference between policy updates” approach
in [SHTZ06, BWW08]), we have argued [BS09] that many seman-
tic models suffer fromflow insensitivity. Flow insensitivity here
means that the semantic conditions are not really fully semantic,

since they flag insecurity simply because they do not have an suf-
ficiently accurate model of the context of a given “insecure look-
ing” subcomputation. In contrast, the semantic model here is based
on a revised and much improved flow locks semantics developed
in [BS09] which in turn builds on the knowledge-style semantics
from gradual release [AS07] which avoids this pitfall.

Paralocks do not provide direct control of one of the “dimen-
sions of declassification” [SS05] – namely the specification ofwhat
information flows from a given data source. For example we might
specify thatA can read only some part of data (e.g. a checksum)
rather than all of it. Although certain simple “what” policies are
easily encoded in the Paralocks model (e.g. in the checksum exam-
ple by ensuring that the checksum is declassified to variable read-
able byA), this is clearly not the main focus of the Paralocks ap-
proach. Semantically this kind of policy falls within the PER model
[SS01] and a more constructive perspective on this kind of model
is provided by theabstract noninterferenceframework [GM04].
Recent work by Banerjee et al. [BNR08] present a language for
expressive declassification policies which broadly lie in this class.
Policies are intended to be verified by a mixture of static typing
and static verification. In common with our work, Banerjeeet al
also adopt the gradual release style of information flow semantics.

9. Conclusions and Future Work
As we noted initially, our aim with this work is really two-fold.
On the one hand we present the policy specification language Par-
alocks, and show its usefulness for handling a variety of informa-
tion flow challenges. On the other hand, Paralocks is also a very
general framework that is capable of expressing and encoding a
wide variety of information flow policy mechanisms, and impor-
tantly give such mechanisms a concrete information flow seman-
tics. It is our hope and belief that Paralocks can thus serve as a
platform that can simplify further research into policy mechanisms,
both future and present, and help give a better understanding of the
relationship between various mechanisms.

A different area of future research is to look closer into the
interplay between Paralocks and concrete programming language
constructs, with a particular focus on type systems guaranteeing
Paralock security. The example language we gave in section 6
is very simplistic in many ways, and there are many interesting
challenges in adding features like first-class actors (which would
be needed, among other things, to avoid our ad-hoc introduction of
actor-indexed data) or policies not known until runtime (c.f.runtime
labels [ZM07]).

A third potential direction for future research is to fully exploit
the connection to logic-based access control languages. Here we
can benefit from various well-behaved extensions to DATALOG
such as the addition of stratified negation and constraints on data;
see e.g., [BFG07] for an elegant authorization language combining
such extensions. But the potential here is not just the transferral
of technical results. The connection offers new opportunities to
transferpolicy conceptsfrom access control to an information flow
context.

Appendix An extended version of this article (available from the
authors) contains proofs of the main technical results stated in the
paper.

Acknowledgements Thanks to the ProSec group at Chalmers, to
Reiner Ḧahnle and Mike Hicks for useful comments and sugges-
tions. The POPL referees provided outstanding feedback, including
independently suggesting the extension outlined in Section 7. This
work was partly funded by the Swedish research agencies VR &
SSF.

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 13 2009/11/4

References
[AHSS08] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination

insensitive noninterference leaks more than just a bit. InProc.
European Symp. on Research in Computer Security, 2008.

[AS07] A. Askarov and A. Sabelfeld. Gradual release: Unifying de-
classification, encryption and key release policies. InProc.
IEEE Symp. on Security and Privacy, pages 207–221, May
2007.

[BEM03] A. Belokosztolszki, DM Eyers, and K. Moody. Policy contexts:
Controlling information flow in parameterised RBAC. InIEEE
4th International Workshop on Policies for Distributed Systems
and Networks, 2003. Proceedings. POLICY 2003, pages 99–
110, 2003.

[BFG07] Moritz Y. Becker, Ćedric Fournet, and Andrew D. Gordon. De-
sign and semantics of a decentralized authorization language.
In Proc. IEEE Computer Security Foundations Symposium,
pages 3–15. IEEE Computer Society, 2007.

[BNR08] A. Banerjee, D. Naumann, and S. Rosenberg. Expressive
declassification policies and modular static enforcement. In
Proc. IEEE Symp. on Security and Privacy, pages 339–353.
IEEE Computer Society, 2008.

[BS06] N. Broberg and D. Sands. Flow locks: Towards a core calculus
for dynamic flow policies. InProgramming Languages and
Systems. 15th European Symposium on Programming, ESOP
2006, volume 3924 ofLNCS. Springer Verlag, 2006.

[BS09] Niklas Broberg and David Sands. Flow-sensitive semantics
for dynamic information flow policies. InACM SIGPLAN
Fourth Workshop on Programming Languages and Analysis for
Security (PLAS 2009), Dublin, June 15 2009. ACM.

[BWW08] Sruthi Bandhakavi, William Winsborough, and Marianne
Winslett. A trust management approach for flexible policy
management in security-typed languages. InProc. IEEE Com-
puter Security Foundations Symposium, pages 33–47, 2008.

[CGT89] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted
to know about Datalog(and never dared to ask).IEEE Trans-
actions on Knowledge and Data Engineering, 1(1):146–166,
1989.

[CLS+01] Michael J. Covington, Wende Long, Srividhya Srinivasan,
Anind K. Dev, Mustaque Ahamad, and Gregory D. Abowd.
Securing context-aware applications using environment roles.
In SACMAT ’01: Proceedings of the sixth ACM symposium on
Access control models and technologies, pages 10–20. ACM,
2001.

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational databases. InSTOC, pages
77–90, 1977.

[CV97] Surajit Chaudhuri and Moshe Y. Vardi. On the equivalence
of recursive and nonrecursive datalog programs.Journal of
Computer and System Sciences, 54(1):61 – 78, 1997.

[Den76] D. E. Denning. A lattice model of secure information flow.
Comm. of the ACM, 19(5):236–243, May 1976.

[DeT02] John DeTreville. Binder, a logic-based security language. In
IEEE Symposium on Security and Privacy, pages 105–113,
2002.

[DFK06] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi.
Specifying and reasoning about dynamic access-control poli-
cies. InAutomated Reasoning, Third International Joint Con-
ference, IJCAR 2006, volume 4130 ofLecture Notes in Com-
puter Science, pages 632–646. Springer, 2006.

[FSG+01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard
Kuhn, and Ramaswamy Chandramouli. Proposed nist standard
for role-based access control.ACM Trans. Inf. Syst. Secur.,
4(3):224–274, 2001.

[GI97] Luigi Giuri and Pietro Iglio. Role templates for content-based
access control. InRBAC ’97: Proceedings of the second ACM
workshop on Role-based access control, pages 153–159. ACM,
1997.

[GM04] R. Giacobazzi and I. Mastroeni. Abstract non-interference:
Parameterizing non-interference by abstract interpretation. In
Proc. ACM Symp. on Principles of Programming Languages,
pages 186–197, January 2004.

[HTHZ05] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamicupdat-
ing of information-flow policies. InWorkshop on Foundations
of Computer Security, pages 7–18, June 2005.

[Jim01] T. Jim. SD3: A trust management system with certified eval-
uation. In IEEE Symposium on Security and Privacy, pages
106–115, 2001.

[LABW91] Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward
Wobber. Authentication in distributed systems: theory and
practice. InSOSP ’91: Proceedings of the thirteenth ACM
symposium on Operating systems principles, pages 165–182.
ACM, 1991.

[LMW02] N. Li, J.C. Mitchell, and W.H. Winsborough. Design ofa role-
based trust-management framework. InIEEE Symposium on
Security and Privacy, pages 114–130, 2002.

[ML97] A. C. Myers and B. Liskov. A decentralized model for infor-
mation flow control. InProc. ACM Symp. on Operating System
Principles, pages 129–142, October 1997.

[ML98] A. C. Myers and B. Liskov. Complete, safe information flow
with decentralized labels. InProc. IEEE Symp. on Security and
Privacy, pages 186–197, May 1998.

[Mye99] A. C. Myers. JFlow: Practical mostly-static information flow
control. InProc. ACM Symp. on Principles of Programming
Languages, pages 228–241, January 1999.

[MZZ+06] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001–2006.

[SCFY96] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman.
Role-based access control models.Computer, 29(2):38–47,
Feb 1996.

[SCH08] N. Swamy, B.J. Corcoran, and M. Hicks. Fable: A language for
enforcing user-defined security policies. InProc. IEEE Symp.
on Security and Privacy, pages 369–383, 2008.

[SHTZ06] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing
policy updates in security-typed languages. InProc. IEEE
Computer Security Foundations Workshop, 2006.

[SS01] A. Sabelfeld and D. Sands. A per model of secure information
flow in sequential programs.Higher Order and Symbolic
Computation, 14(1):59–91, March 2001.

[SS05] A. Sabelfeld and D. Sands. Dimensions and principles of de-
classification. InProc. IEEE Computer Security Foundations
Workshop, pages 255–269, June 2005.

[SY80] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operators.Journal
of the ACM, 27, 1980.

[TZ04] S. Tse and S. Zdancewic. Run-time principals in information-
flow type systems. InProc. IEEE Symp. on Security and
Privacy, pages 179–193, 2004.

[Ull90] Jeffrey D. Ullman. Principles of Database and Knowledge-
Base Systems: Volume II: The New Technologies. W. H. Free-
man & Co., New York, NY, USA, 1990.

[ZM07] L. Zheng and A. C. Myers. Dynamic security labels and static
information flow control.International Journal of Information
Security, 6, 2007.

To appear: Principles of Programming Languages, POPL 2010, January 17–23, 2010, Madrid, Spain. 14 2009/11/4

	Introduction
	Roles and Information Flow
	Flow Locks and Roles
	Modelling roles
	The Paralocks Policy Language

	From Roles to Relations: Encoding the Decentralized Label Model
	Encoding the Decentralized Label Model

	Paralock Security
	Computation Model
	Validating flows
	Security

	Enforcement: An Example Paralocks Type System
	Operational Semantics
	Type System
	Security

	Recursive Paralocks
	Policy
	Expressiveness
	Semantics
	Enforcement

	Related Work
	Conclusions and Future Work

