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Abstract Such policies are only useful if we have a precise speci-
Dynamic information flow policies, such as declassification cation —a semantic model — of what we are trying to en-
force. A semantic model gives us insight into what a policy

are essential for practically useful information flow canhtr X )
systems. However, most systems proposed to date that han@ctually guarantees, and defines the precise goals of any en-

dle dynamic information flow policies suffer from a common forcement mechanism. . L .

drawback. They build on semantic models of security which U_nfortunately, semantic modgls of declassn‘lcatlor_w —n

are inherently flow insensitive, which means that many sim- Particular those that try to specify more that jueat is

ple intuitively secure programs will be considered insecur declassified — can be both inaccurate and difficult to under-
In this paper we address this problem in the context of a Stand- _ . .

particular system, flow locks. We provide a new flow sen- We addre_ss this proplem for one specific but rather flexi-

sitive semantics for flow locks based on a knowledge-style ble information flow policy approacfipw locks

definition (following Askarov and Sabelfeld), in which the -
knowledge gained by an actor observing a program run is The quw Sen.s.'u.wty Problem _The mo_st commonly used.
semantic definition of secure information flow — at least in

constrained according to the flow locks which are open at the lanauade-based setting — involves the comparison of two
the time each observation is made. We demonstrate the ap- guag g b

plicability of the definition in a soundness proof for a sieapl runs of a system. The ideais to define security by comparing

flow lock type system. We also show how other systems can any two runs of a system in environments that only differ

" ., In their secrets (such environments are usually referred to
be encoded using flow locks, as an easy means to provldebein low e uivglen), A system is secure cnoniynterferin
these systems with flow sensitive semantics. 9 9 Y 9

if any two such runs are indistinguishable to an attacker.
Categories and Subject Descriptors F.3.2 [Logics and These “two run” formulations relate to the classical notion
Meanings of Progranis Semantics of Programming Lan-  of unwindingin [GM82].

gauges Many semantic models for declassification — in particular
those which have a “where” or “when” dimensidn [S505] —

are built from adaptations of such a two-run noninterfeeenc
Keywords Information Flow Control, Declassification, Se-  condition i

General Terms Languages, Security

curity Type System Such adaptations are problematic. Consider the first point
] in a run at which a declassification occurs. From this point
1. Introduction onwards, two runs may very well produce different observ-

Information flow policies that evolve over time (including, ~able outputs. A declassification semantics must constain t

for example, declassification) are widely recognised as andifference at the declassification point in some way (this is
essential ingredient in useable information flow contralsy ~ specific to the particular flavour of declassification at hand
tems. and further impose some constraint on the remainder of the
computation. So what constraint should be placed on the re-
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of the systems so as to restore the low-equivalence of envi-
ronments at the point after a declassification.

We refer to this as theesetting approacto declassifica-
tion semantics.

The down-side of the resetting approach is that ftas/
insensitive This implies that the security of a program
containing a reachable subprogrghrequires that) be se-
cure independently dP. For example, consider the program

declassifyh in {¢ := h};¢:=h

whereh is a high security variable arfds low. In the seman-

Finally we discuss encodings of other systems, and in par-
ticular we show (Sectidd 6) that Askarov and Sabelfeld’s ba-
sic gradual releaseproperty is soundly and completely rep-
resented by the flow locks encoding of simple declassifica-

tion [BS064].

2. Preliminaries

In this section we review the basic flow locks idea, some of
the issues with its previous semantic model, and outline the
knowledge-based alternative style of semantics that we wil

use to provide a new semantic model.

tics of e.g. [BCROB] this would be deemed insecure becauseg|qy, |ocks: the basic idea Suppose we have a program

of the insecure subprografn= h — even though in all runs

this subprogram will behave equivalently to the obviously
secure program := £. Similar examples can be constructed
for all of the approaches cited above. Another instanceef th

which deals with twaoactors a vendor and a customer. The
program has access to the vendor’s secret data — a software
activation key — which should not be permitted to flow to the
customer unless the customer has paid for the software. To

problem is that dead code can be viewed as semantically sig-,odel the payment act we have a special boolean flag called

nificant, so that a program will be rejected because of some
insecure dead code. Note that flow insensitivity might be a
perfectly reasonable property for a particurforcement

alock. Let us call this particular lockPaid”.
The Paid lock, and locks in general, are used solely to
specify when information may flow from storage locations

mechanism such as a type system — but in a sequential ety actors. The lock is a special variable in the sense that the

ting it has no place as a fundamental semantic requirement.

The resetting approach is not without merits though. In
particular it is able to handle shared-variable concuryenc
in a compositional way[[MS04,_AB05]. However, the use of
resetting for compositionality and its use for giving a sema
tics to declassification are orthogonal, and the flow insensi
tivity problem carries over to those parts of the environtnen
which are not shared across threads.

Overview In this paper we tackle the problem of providing
a semantics for “dynami”information flow policies for
one particular approacfipw locks Flow locks (reviewed in
Sectior®) were introduced with the intention of providing a
core calculus for expressing dynamic flow policies. We can

only interaction between the program and the lock is via the
instructions toopenor closethe lock. In this way locks can

be seen as a purely compile-time entity used to specify the
information flow policy.

In the case of the program we would need to associate
the opening of thé’aid lock with the actual confirmation of
payment in the code.

The idea is that security policies are associated with the
storage locations in a program. In the case of a software key,
the policy would then be written as

{vendor; Paid = customer}

The data contained in a storage location with this policy may

encode a wide range of declassification mechanisms usingﬂOW freely to the Vendor, but should not flow to the customer

flow locks, which we have shown il [BSU6a, BSD6b].

The earlier semantic model for flow locks suffers from
the flow insensitivity problem described above. Perhaps due
to its generality it is also overly complex and unintuitive.
The key to recovering flow sensitivity and to drastically sim
plifying the semantics is to follow the lead of Askarov and
Sabelfeld [ASO7] who move away from a “two run” view
of security semantics, and focus instead on how an explicit

until the paid lock is open.

If at some later point the lock was closed again, perhaps
because the customer’s access to the software key was only
for a limited period of time, the data should no longer be ac-
cessible to the customer, though they would not be required
to forget what they have already learnt.

Note that flow locks is an information flow poligpeci-
ficationmechanism — it allows the programmer to specify a

representation of the attacker's knowledge evolves as com-flow policy in a program, and get guarantees that the pro-

putation proceeds. This approach is reviewed in SeEtion 2.
Using this approach we craft our new semantics (Section
B) and discuss some of the basic properties of the definition
(Sectior}) from the declassification perspective [$S05].
We go on to show that the definition is useable by apply-
ing it to a concrete instance and a simple type system for
flow lock security (Sectiofl5).

2For the purposes of this paper we use dynamic to refer to aypafnich
varies at runtime. Other notions of dynamic policy not cdastd in this
work include, for example, runtime principals 1TZ04] or &b [ZM01].

gram correctly conforms to the policy as stated. Flow locks
makes no attempts to address the issue of whether the policy
itself is correctly stated, i.e., that the opening and clgsif
locks is done in the right places, and that data is labelldidl wi
the proper policies. This is largely an orthogonal problem
handled by external analyses and verification mechanisms.

Flow Lock Encodings One aim of the flow locks approach

is to provide a general language into which a variety of in-
formation flow mechanisms can be encoded. As a simple ex-
ample of such an encoding from [BS06a], consider a system



with data marked with "high” or "low”, and a single state-
ment/ := declassify(h) taking high data im. and down-
grading it to low variablg. We can encode this using flow
locks by letting low variables be marked wifthigh; low }
(readable by actoréigh and low). High variables would
then be given the policyhigh; Decl = low}, and the state-
mentl := declassify(h) can be encoded with the sequence
of statements

open Decl; ¢ := h; close Decl

Let us consider one further example of a policy relating
to dynamic change of an information flow lattice. Consider
Figure[d which depicts three information-flow lattices.

Alice

romote Alice romote Bob Bob
‘p/—\ Alice Bob P
Bob Alice
demote Alice demote Bob

Joe

Figure 1. Example Dynamic Policy

In the leftmost lattice Alice is the top element. While
Alice is “boss” all information may flow to her. If she is
demoted, however, then the information flow lattice changes

of flow-lock policies to variables. Here we highlight some
additional issues with this semantics. We will not introduc
the definition in its full and gory detail, referring instetul
[BSO6hH] which provides a lengthy stepwise development of
the definition.

In common with many of the approaches cited above,
flow lock security is defined using a resetting approach based
on a flow insensitive version of noninterference cafiedng
securityintroduced by Sabelfeld and SanfsSIS00]. This is
based on the idea of a bisimulation between any two runs
which differ only on the initial values of secrets. Programs
P and( are bisimilar if whenever they are given attacker-
equivalent memory states the next computation step’ of
will be matched by and result in low-equivalent states, and
the resulting programs will also be bisimilar. This embadie
an “aggressive” resetting in that it quantifies over all pair
low equivalent memories at each step of the bisimulation.

A number of complications in the flow-lock semantics
are due to the underlying flow-insensitivity. In particullae
definition built in two conceptsfuture sensitivityand past
awarenessThe notion of future sensitivity required that at
each step of the bisimulation the security condition had to
ensure that any changes to memories would be sa#dl in
possiblefuture lock states, even though there is always one
specific lock state that would be sufficient to discover such

to the central figure. From there either Bob or Alice can problems. While future sensitivity catches “bad flows” that

be promoted to be the boss. Let us consider how to encod
this intended scenario with flow locks. A semantics for this
policy is then provided by the flow locks semantics presented
in the remainder of the paper.

To represent this dynamic flow policy with flow locks we
begin, not surprisingly, by assuming three actéiie, Bob,
andJoe To model the transitions between policies we use
two locks: promoteAand promoteB The events of promo-

tion and demotion are modelled by the respective opening

and closing of these locks. Wh@nomoteAis open then Al-
ice is boss. ClosingromoteA(respectivelypromoteB cor-
responds to demoting Alice (resp. Bob).

To complete the picture we need to describe the corre-
sponding policies for the data to be associated with Alice,

Bob, and Joe. Joe is the simplest case, and his data has po?

icy {Joe; Alice; Bob} — i.e. it is readable by everyone at alll
times. Alice’s data has policy Alice; promoteB = Bob}
and Bob has the symmetric poli¢yromoteA = Alice; Bob}.
For Bob this means that his data is readable by Alice only
when Alice has been promoted. Note that if both locks are
open then we have a situation not modelled in the figure:
Alice and Bob become equivalent from an information flow
perspective. If we want to rule this out we cannot do so us-
ing the policy on data. We must enforce this via an invariant
property of the locks themselves.

Problems with the Flow Lock Security In our previous
work we introduced a definition of what it means for a

emight happen in the futur@ast awarenesdeals with per-

mitting “good flows” from the past even though they might
appearbad at some point in the future. The past-awareness
problem forced us to adopt a non-standard semantics where
data from control-flow branch points had to be remembered,
so that certain programs were not incorrectly flagged as in-
secure. We will not go into further details of the previous
definition here, referring instead tb_[BS06b]. By recover-
ing flow-sensitivity, our revised definition will simplifyhe
notion of future sensitivity and eliminate the need for past
awareness altogether.

A Knowledge-based Approach One of the fundamental
difficulties in the bisimulation-style definition is thatitiilds

n a comparison between two runs of a system. While this is
airly intuitive for standard noninterference, in the prese

of policy changes such as the opening or closing of locks (in
our work) or declassification (in other work) it can be hard
to see how the semantic definition really relates to what we
can say about an attacker.

One recent alternative to defining the meaning of declas-
sification is to use a more explicit attacker model whereby
one reasons about what an attacker learns about the initial
inputs to a system as computation progresSes [AS07]. The
formulation we use here will be closest [ [AHSS08].

The basic idea builds on a notion of noninterference de-
scribed by[[DEGO6] and can be explained when considering
the simple case of noninterference between an initial mem-

program to be secure with respect to a given assignmentory state, which is considered secret, and public outptits. T



model assumes that the attacker knows the program fiself  value L to denote the least restrictive policy, for variables
Now suppose that the attacker has observed some (possiblyhat all actors can see at all times. The opposite is the pol-
empty) trace of public outputs In such a case the attacker icy T, which is simply the empty set of clauses, meaning no
can, at best, deduce that the possible initial state is otfteeof ~ actor could ever see the data of a variable marked with that
following: policy. To join two policies means combining their respec-
tive clauses. We define
K; = {N | RunningP on N can yield trace }
Now suppose that after observinthe attacker observes the ~ P1HP2 = {(Z1UD:=alfi=acp, B2=a€pa}

further outputu. Then the attacker knowledge is
It should be intuitively clear that the join of two policies

K5 = {N | RunningP on N can yield trace followed byu } is at least as restrictive as each of the two operands, i.e.
. p C p Uy forall p, p'. In contrast, forming the union of
We will call K7 and K, knowledge setsand order knowl- o policies, i.e. the meet, correspondingrtp makes the

edge sets by’ T K’ <= K’ C K. Note thatin  result less restrictive, so we hawe1p’ T p for all p, p'.

the aboveK; T K3: the attackers knowledge increases as Both 1 andu are clearly commutative and associative.

the computation proceeds. However, for the program to be  \we also need the concept of a policy specialized (nor-
considered noninterfering, in all such cases we must haVemaIized) to a particular lock state, denotg(t), mean-
K1 = K, since we require the knowledge to not increase at jng the policy that remains if we remove from all guards
all throughout the program execution. the locks which are present . So for example, ifp is

This style of definition is the key to our new flow lock  {puid = customer}, thenp({Paid}) = { customer}. For-
semantics. The core idea will be to determine what part of mally, p(2) = {(A\Z) = a | A= a € p}.

the knowledge must remain constant on observing the output
u by viewing the trace from the perspective of the lock-state Operational Semantics To keep our presentation reason-

in effect at that time. ably concrete we will consider imperative computation mod-
) elled by a standard small-step operational semantics define
3. Flow Lock Security over configurations of the fori, ¢, M) wherec (¢/, d etc.)

In this section we motivate our flow sensitive definition of iS @ command)/ is a memory (store) — a finite mapping
flow-lock security. The definition is phrased in terms of a from variables to values, arid is the lock state — the set of
labelled transition system where labels represent obskerva  locks that are currently open.

events. We assume an imperative computation model involv- We assume that each channel and variable, ...is
ing commands and stores (memories), but the definition is assigned a fixed policy, whegel(x) denotes the policy of

otherwise not specific to a particular programming language - ,
Transitions in the semantics are labell&d, ¢, M) —

3.1 Preliminaries (A,d, N) where/ is either a distinguishesilent actionr,

We begin by recalling the precise language of policies and Or an observableaction of the formz(v), wherez is a

introduce the base assumptions about the operational semarthannel and is the value observed on that channel. We let
tics of the language. w, w' etc range over observable actions, amé vector of

o ) ] such. We assume the existence of commands which change
Policies Ingeneral golicypis aset oblauseswhereeach  he |ock state. The open and close commands used in the
clause of the form = o states the circumstances)(under o crete earlier work are sufficient, although other lotzktes
which actora may view the data governed by this policy. changing commands are possible. We do, however, assume
2 is a set of locks which we name tigeiard of the clause, 4t whenever the lock state changes then there is no output
and interpret it as a conjunction. Thus for the guard to be or memory change, i.e. S, ¢, M) A AN S £ A

satisfied, all the locks € 2 mu_st be open. . then we must havéd/ = N and/ = 7. Given the labelled
In concrete examples we will often simplify the notation, o : - :
transition system we define some auxiliary notions.

so that for example we will write (as we did in the introduc-

tion) {vendor; Paid = customer} instead of DEFINITION 3.1 (Visibility).
{9 = vendor;{Paid} = customer} . e We say that: may be visible tax if ¥ =« € pol(x) for
someX; otherwise we say that it isever visible
~ Apolicy pisless restrictivehan a policyy, writtenp L g, « We say that is visible toa at A if £ =« € pol(z) for
if for every clauseX = « in ¢ there is a claus&’ = « in someX C A; otherwise we say that it isot visible atA.

p whereX’ C X. For example{vendor; customer} is less o .
restrictive than{ vendor; Paid = customer} which in turn ~ We extend these definitions to outputs) in the same way,
is less restrictive thafivendor}. We use the distinguished —and we say that the silent outpuis never visible.



3.2 Maotivating the security definition We define attacker visibility as a natural extension of
actor visibility, by saying that: is visible to A = (o, A)
¢iff x is visible toa atA.
For each attacker we then define thebservable transi-
tion (3, ¢, M) % 4 (A, d, N) by absorbing transitions which
are not visible to attacked.

To motivate our definition we will first look at some proper-
ties that we expect it to have. First we consider the case o
simple declassification from the introduction. Consider th
program{ := declassify(h);¢ := h, which would be en-
coded as as

open Decl; £ := h; close Decl; £ := h DEFINITION 3.3 (4-observable transitionsyVe can define

_ ) ) _ the transition relation™, as the least relation satisfying the
The intended meaning of closing a locknistthat an actor  fg|lowing rules:

should forget all they learned while the lock was open. Thus

we expect this program to be considered secure, since the (X,¢, M) =% (A,d,N) wis visible toA
value of 4 is already known at the point of the second (S, e, M) 0 (A, d, N)
assignment. In other words, as we argued in sefion 2, we T T

expect our definition to be flovsensitive as opposed to (3, ¢, M) 4 (X', ¢, M’y  {is notvisible toA
our previous, bisimulation-based definition. Practicatiis (X, ¢, M"Y 54 (A, d,N)

means that our semantic definition cannot be a purely local
stepwise definition, but requires us to inspect all knowtedg
gained by an attacker up to a certain assignment. Then wewe now define some useful compounttansitions. Firstly
must validate that assignment in the context of the attackerdefine(3, ¢, M) =4 (A, d, N) if there is a sequence of zero
having that knowledge. or more transitions from{X, ¢, M) to (A, d, N') with labels
Another feature to note is that our flow locks system not visible toA. Now we define the multi-step-observable
allows fine-grained flows, in which a secret may be leaked in transitions:w>A for some sequence of output labelsby
a series of unrelated steps. The following policy and prnogra equating==s4 with =4 (where= denotes the empty vector),
exhibits this: and by inductively defining
x: {{Day, Night} = o} y:{Night =a} z:{a}

open Day; y := z ;close Day; open Night; z :=y

(X, ¢, M) 54 (A,d,N)

w w

(2, ¢, M) =2y (X7, ¢/, M) 5p (A, d, N)
(2, ¢, M) 22, (A, d, N)

Here (and in subsequent examples) we assume each assign-
ment generates an observable action — i.e. each variable is ) @
viewed as an output channel. Here the secret contained in Ve use the notationi%, ¢, M)==x4 as a shorthand for
is leaked into: via y. But at the point where the assignment 3A,d, N. (X, ¢, M) ==4 (A, d, N), i.e. when we don't care
to » is made, the lockstate in effect does not allow a direct What the resulting configuration is.

flow from « to z sinceDay is closed. In addition, at the point To reason about attacker knowledge we need to be able to

where the assignment pis made,y is not visible at the  focys on the parts of a memory which are visible to a given
current lockstate. To verify that this program is allowe@, W gtiacker.

need to validate the flows at each "level” that the secret flows )
to, where a level corresponds to a certain set of locks guard-DEFINITION 3.4 (4-low memory,A-equivalence).
ing a location from a given actor. We note that these levels Memory L is A-low for some attackerd if dom(L) =

correspond to the points in the lattigetors x P(Locks). {z | zis visible toA}. We say that two memoriéd and N
This leads us to our formal attacker model: are A-equivalent, writtenM ~ , N if their A-low projec-
tions are identical — i.e. they agree on all variables tht

DEFINITION 3.2 (Attacker).An attackerA is a pair of an
actor o and a set of locksa\, formally

can see.

We will adopt the convention that/ and N will range
A = (a,A) € Actors x P(Locks) over total memories (i.e. their domain will be the set of all
We refer to the lockstate component of an attacker as hisvariables). With this we can formalize the notion of attacke
capability, and assume that can observe locations guarded knowledgeas follows:

from o only by locks inA. DEFINITION 3.5 (Attacker knowledge).
Intuitively we may think of an attacker as an actor who ¢ knowledge gained by an attackdr = (a, A) from

may open the locka at some point in the future, leading to observing a sequence of outpuisof a programe starting
afuture-sensitivenoddl that enables us to build secure com- with a A-low memoryL written k 4 (@, ¢, L), is defined to be

mands by sequential composition from secure commandsihe set of all possible starting memories that could have lea
(see Sectiohl4). to that observation:

3 Future sensitivity is the one component of the originalrbigation-based . i
definition that is retained in this new semantics. ka(@,c,L) = {M|M ~, L,(¥,c, M)==x}




3.3 Flow Lock Security DEFINITION 3.9.

With this attacker model in hand, we can now formalise (Termination Insensitive Flow Lock Security)

our security requirement. Intuitively, for a program to be A Programec is said to be termination-insensitive-flow

flow lock secure we must consider the perspective of each!0ck secure, writte'/F'LS(Z, ¢) iff for all attackersA =

possible attacker!, and how his knowledge of the initial (@ 4), all A-low memoriesl, and any two rungww, {2)

memory evolves as he observes successive outputs. and (@', ') in Runa(X, ¢, L) such thatk ¢ A we have
The requirement for each output thus observed is that that ~ ~

knowledge of the initial memory only increases if the at- ka(@w, e, L) = ka(aw', ¢, L)

tacker’s inherent capabilities are weaker than the programin this variant we allow some knowledge to be gained by

lockstate in effect at the time of the output. The intuition the last step of the output, but no more than simply learning

here is that an attacker whose capability includes the pro-that thereis an observable output. S€e [AHS$08] for more

gram lock state in effect should already be able to see the lo-details. Note that by symmetry we compare the knowledge

cations used when computing the value that is output. Thussets under botR and$)’.

no knowledge should be gained by such an attacker. To for-

malize this intuition we first, for convenience, introdubet 4. Basic Properties of Flow Lock Security

notion of arun. Arunis just an output trace together_wnh In this section we look at some basic properties of the defini-
the lockstate in effect at the time of the last output in the 5, o flow lock security. We inspect the basic properties of
sequence. the definition via theorinciples of declassificatioas stated
DEFINITION 3.6 (Runs)The setofallruns of acommand DY Sabelfeld and Sands[SS05], since flow locks are intended
starting with lock stat&> and with a starting memory whose ~ © model various forms of declassification (or more gengrall

A-low projection isL, are defined reclassification).
Conservativity The conservativity principle states that in
Runa(X,¢,L) = {(Ww,A) | M ~, L, the absence of any declassification the security condition

should revert to noninterference. As noted[in_[BS06a], we
can model standard information-flow lattices by policies
which contain sets of unguarded actors, so that for exam-
ple in the two-point latticel.ow < High we would define
two actorslow andhigh, and thenLow data would be mod-
DEFINITION 3.7 (X Flow Lock Security).A program c is elled by the policy{@ = low; & = high}, whereasHigh

(S0, M) =Sy (5, ¢/, M"Y 0 (A, d, N)}

We can now define our security requirement in terms of
runs as follows:

said to beX-flow lock secure, writted” LS (%, ¢), iff for all would correspond td @ = high}. In the presence of such
attackersA = (a, A), all A-low memoried., and all runs unguarded policies it is straightforward to see that the no-
(Ww, Q) € Runa (X, ¢, L) such that? C A we have tion of flow lock security reduces to the knowledge-based

definition of noninterference from JAHSS08].

Monotonicity of release This principle states that adding
more declassification to a “secure” program should never
render it insecure. In the setting of flow locks, “adding more
declassification” is naturally interpreted apening more
locks A secure program which is modified to open more
locks (but is otherwise unchanged) will still be secure sinc
it is straightforward to see that the more locks are openén th
lockstate at any given point in a trace, the weaker the flow
lock security requirement at that point.

Formally we can state the principle of monotonicity as
rfollows:

This definition directly captures the intuition that we star
out with. An attacker whose capabilities includes the auirre
lockstate in effect at the time of the output should learn
nothing new when observing that output. Attackers who do
not fulfill this criterion have no constraint on what they may
learn at this step. But note that this cannot lead to unctiecke
flows because we quantify ovell attackers including, in
particular, those with sufficient capabilities.

At the top level we can define security for a self-contained
program, i.e. one that doesn’t assume any locks are ope
before it starts: PrROPOSITION4.1 (Monotonicity of flow lock security)lf

DEFINITION 3.8 (Top-level Flow Lock Security)A  pro- FLS(Z,c)and%’ 2 X thenFLS(Z, c).
gram ¢ is said to be flow lock secure, writtefiLS(c), iff The proof can be found in the appendix.

the program isz-flow lock secure, i.e"L5(2, ). Semantic consistency This states that the notion of secu-

The above definitions are terminatisensitivesince they rity should be preserved by any semantics-preserving-trans
require that no knowledge is gained by the simple observa-formations to a program, and this is true for the semantics
tion that there is an output at all. Following TAHS$08] we we define. One such example is dead code elimination. As
can define a terminationsensitiveversion: mentioned in the introduction, lack of flow sensitivity make



security definitions sensitive to dead code. Here the defini- The second minor obstacle to secure sequential compo-
tion of flow lock security can never be sensitive to dead code sition is the lock state component. For this let us introduce
since it only quantifies over possible traces of a system — andHoare-like triples{X}¢{X’}, which state that if any compu-
these, by definition, are insensitive to dead code. tation ofc begins with at least locks open, on termination

It is worth noting that semantic consistency is relative to at least locks>’ will be open.
a particular semantics; in the concrete example that we con-
sider in the next section we assume a semantics in which
the effect of assignments are directly observable (to an ap-
propriate attacker), something which does not hold for the FLS(Z,c1) A{X}a{¥'} FLS(X, c)
usual operational semantics. This is referred to seaantic FLS(S, c1;c0)
anomal\SS05%], and is common to many security definitions
which are phrased in terms of sequences of assignments. 5. Applicability: A Sound Type System

Non-occlusion The non-occlusion principle is the most In this section we will illustrate our definition of flow lock
vague. It tries to capture the requirement that one declas-security to a specific language and type system, and prove
sification operation should not be able to mask an arbitrary that the type system guarantees flow lock security as given
amount of future insecure information flow. In our system by the definition in the previous section. For the sake of
we can argue for non-occlusion as follows. In our defini- brevity we treat just a simple while-language, but in princi
tion each assignment is considered in isolation, and the pre ple we can apply the same approach to the higher-order lan-
sumed knowledge gained from observing an assignment isguage and type system in the style of that studied in [BISO6a].
exact. Therefore any further knowledge gained by observ-
ing any future assignment must still be subject to the same
constraints (modulo the knowledge gained by the earlier as-
signment) with respect to the lock state and policies indorc
at that time. Adding declassifications therefore cannotimas
future unintended flows.

PrRoPOSITION4.2. The following proof rule is sound, as-
suming the concrete semantics uses visible termination:

5.1 Language

n, M) n (xz,M)]| Mz

(e1, M) L v1  (ea, M) | va
Hookup Properties for Sequential Composition In addi- (e1 @ €2, M) | v1 @ v2
tion to the basic principles, it is useful to study compasiti ’
principles (sometimes calldibok-upproperties[[McC87]):

when can we build secure programs from secure compo- (3, 0pen 0, M) = (S U{o}, skip, M)
nents.

Here we briefly consider the most basic composition prin- (%, close o, M) 5 (¥ \{c}, skip, M)
ciple corresponding to sequential composition. Let us sup-
pose that we have a sequential composition operator (either (e, M) | v
directly or encodable) with the usual semantics (see the nex @ (v)

section for example). (8,2 := e, M) = (8, skip, M[z - o])
The termination sensitive condition has a technical prob- (e, M) v ve{true,false}
lem that prevents it from composing sequentially: a program
which ends in a silent loop is indistinguishable from one

(¥, 1f e then Cirye €1S€ Cratse, M) — (X, ¢y, M)

which terminates. This difference is revealed by composing (¥,while (e) ¢, M) &

the program with one which performs output. Termination (¥,1f e then c;while (e) c else skip, M)
insensitive flow lock security would consider the above com-

position secure, but still suffers from a problem, though fo (3, ¢q, M) X (3 ¢y, M)

a different class of programs. A program that either sijentl 2

terminates or produces one last output before terminagion i (3, e1500, M) = (X, ch5 00, M)
considered secure, since the silent termination is forwal p .

poses equivalent to a silent loop. Composing such a program (X, skip; e, M) = (E, c2, M)

with one that performs an output again reveals the diffezenc

and causes the previous output to be considered insecure. Figure 2. Operational Semantics

To obtain secure composition, the concrete semantics
used may thus not have silent termination, i.e. all programs  The simple while language presented in Figllke 2 will
must produce a distinguished visible output if and only if serve as the basis of our presentation. The only two non-
they terminate. We say that such programs hasible ter- standard features are statemesyten o andclose o for
mination Our security definition from the previous section manipulating the program’s lock state.here ranges over
is agnostic as to whether visible termination is used or not. single locks. The notion of observable action is defined (as



discussed in the previous section) as the action of asgjgnin sures that no indirect flows leak information about a "sécret
to a variable. conditional expression to "public” locations. Similarlgrf
the testr C w in thewhile rule.

For theif rule, to compute a safe approximation to the
locks that will be open it suffices to take the intersection
of the resulting lock states of the branches. Thele rule
needs to use a fix point for the resulting lock state since one
iteration of the loop may close locks that would then not be
open in subsequent iterations.

YFopeno~ T,2U{c} Xtcloseo~ T,%\{o} We note that there is a natural subtyping in the lock state
Feir r(Z)C pol(x) component of this type system. Formally

Yhskip~T,%  Ykz:i=e~ pol(z),X Shre~ow,Y NADY = Alc~w,AANA DY
Fe:r YFce~w,X, rCwMws
Y if e then ¢; else ¢y ~ w1y MNMwsg, X1 N Yo

5.2 Type System

Fel:r1 Fea:irg
Fn:l Fa:pol(z) Fer®ex:riUrg

This is easily proved by looking at all the uses of the lock
states in the rules, and in particular noting thas covariant
Fe:r TNYFc~w rCw inr(X) C pol(z) in the rule for assignment.

Y Fwhile (e) c~ w, X' NY Further, we can formalize our claim that the resulting lock
state in the type system is a safe approximation of running
the command as follows:

Ei—clvwl,El Ell—CQM’wQ,EQ

Yk ocr; e~ wy Mws, Yo
PROPOSITIONS.1 (Lockstate Safety} + ¢ ~» w, X' im-

H ! ;
% (Top level judgement)  Plies{Z}c{X'}.
The proof of this is a straightforward induction over the-typ

ing derivations. We of course also want to prove soundness
with respect to progress and preservation. We have that

The type system we use can be found in figlire 3. To sim- proposITIONS.2 (Progressif £ + ¢ ~ w, A andc¢ #
pllify the presentation we use only int as base type forexpre; skip then(S, ¢, M) KX (3, ¢, M').
sions, and commands have no base type, so we can restrict
ourselves to only the flow locks aspects of the system. How- PROPOSITION5.3 (Preservation)f ¥ + ¢ ~ w, A and

Figure 3. Flow Lock Type System

ever, for convenience we use the boolean vafisgase and (X, ¢, M) N (3, ¢, M’y thenX! + ¢ ~ w', A’ for some
true as shorthands for the val@e and any valuer # 0, w JwandA’ O A.
respectively. ) )

For expressions we have judgements of the ferm: p Proof of Progress is a straightforward case on the syntax of

where the policy, called theread effectis the join of the ~ commands. Proof of Preservation is much more involved and
policies on all variables whose contents are used to producec@n be found in the appendix.

its result. Finally we can state the main proposition of this section,

For commands the main judgements have the f&rm which is that the type system implies flow lock security. The
¢~ p, Y. HereX is an assumption about what locks will be ~ tYPe system is formulated in a termination insensitive way,
open before execution of The policyp is the so calledvrite in particular we allow low assignments after high loops, so

effectof a command, which is the union of the policies on all that s the formulation we will prove.

variables whose contents might be changed when executingTyeorem5.1 (Well typed programs are flow lock secure).

the command. This plays a similar role to the “PC” level in |t 2 ¢ thenT IFLS(Z, ¢).

many information flow type systems. The final component

Y’ is a safe approximation (i.e. an underestimation) of the

locks that will be open after execution af .
Since the rules typically mention a number of different 6. Example Encodings

policies, we use andw to range over read effect and write Many declassification ideas can now be encoded using flow

effect policies respectively, to simplify the presentatio locks — see[[BS06b] for some examples. By such an encod-
Looking more closely at some of the rules, we note that, ing we now obtain a weaker flow-sensitive semantics for the

unsurprisinglyopen andclose are the only commands di-  corresponding declassification mechanism.

rectly affecting the lock state. In the rule for assignmgtiis o )

checkr () C pol(z) ensures that the assignment is valid ©-1 Delimited Non-Disclosure

under the current lock stade, thereby ruling out leaks from  As a simple example let us take a more recent declassifi-

direct flows. In the rule fodf, the checkr C w; Mwy en- cation mechanisngelimited non-disclosuffBCRO8]. In its

The proof is given in the appendix.



simplest form we have variables of eithéigh or Low secu-

rity levels, and a local block-structured declassificaiom- (M,e) 4 n pol(z) # Low
manddeclassify h in ¢ which allows a local weakening (M,z :=¢e) — (M[z — v],skip)
of the policy so that: is treated as low for the computation B

of command:. This is a variable-centric variant of Almeida (M) § n_pol(x) = Low

Matos and Boudol’s nondisclosure constriict [AB05]. (M,z :=¢) 2(v) (M[z — v], skip)
To encode this idea using flow locks we need to use (M,e) |} n
one lock Decl;, per high variableh. Then we assign the . iz (v) .
policy pol(¢) = {high,low} for each low variable, and (M, x := declassify(e)) — (M[x  v],skip)
pol(h) = {high, Decl;, = low} for each high variablé.
The encoding ofieclassify h in c is then the obvious Figure 4. Operational semantics for Gradual Release

open Decly,; c; close Decly, ) )
release eventdenoted by : 2:(v). Assignments to variables

For this encoding we need to assume that there are no nestefarked with High do not yield any outputs at all.
declassifications over the same variable. Thisisnotaeealr  The set of all possible low event sequences of a program
striction since the inner declassification would be redunda 1S defined as follows:

in that case. DEFINITION 6.1 (Low event sequencesjhe set of all pos-

The semantics of delimited non-disclosure is bisimulation sible low event sequences that programay generate start-
based with memory resetting, so suffers from flow insensi- jng from a low memory. is

tivity (see the example in Secti@h 2). We conjecture that our
encoding gives a strictly weaker semantics, but that erccode GRRun(c, L) = {@ | M =yow L, (M, c) =ﬁ><M’, !
programs typable in our simple type system are also typable

in the system given i [BCRO8]. This is because our type where=,,, is equivalence on the low part of the memory.

system is too simple to take advantage of flow sensitivity. For a program to satisfy Gradual Release, it needs to fulfill

6.2 Gradual Release the following property:

A more interesting example is provided by tBeadual Re- DEFINITION 6.2 (Gradual Release\ commandc satis-
leaseproperty from [ASOF]. This is interesting because the fiesGradual Releasewritten GR(c), if for all low projec-
style of definition used there was the inspiration for our ap- tions of memoried., and all pairs of sequences., wu’ €
proach. Surprisingly we are able to show that, when spe- GRRun(c, L), we have
cialised to the case of simple declassification, our dediniti
coincides exactly with gradual release. k(c, L, tiu) = k(c, L, iu')

We will begin by presenting their core operational seman- i ) )
tics, as well as the Gradual Release security requirement fo 10w Locks Encoding - The language displayed here is as
programs. We will then present a simple encoding of their Noted already very similar to that shown in Secfign 5 and
language using flow locks, and show that for the class of the_encodlng is s_tra|ghtf0_r\ivard as previously descnbg@_l. w
flow locks programs conforming to the encoding, the two define an encoding functiohover commands, and policies
operational semantics and security requirements are &quiv etc.

lent. We will also show that their type system is equivalentt ~ First we need to represent the security levels High and
the type system given for the example language in Seglion 5,-0W- AS before we introduce two actorsjw s only al-
for that same class of programs. lowed to see public (Low) data, whiléigh is allowed

The language used iiJAS07] is a simple while language to see any.(.jata_\. We also introduce a labkcl! to han-
similar to the one presented in sectldn 5. It uses a simple dIé declassification. We can then encode the two levels as
two-level lattice. = {Low, High} with Low C High and ~ High = {high; Decl= low} andLow = {high; low}. We
High Z Low. As expected data may flow freely from loca- haveLow C High andHigh Z Low, as expected. We ex-
tions marked with Low to locations marked with High, but tend the encoding to variables)(and memoriesX/) in the
not the other way around. The specilclassify com-  Obvious way, by encoding all policies involved.
mand allows a program to leak data from High to Low. Secondly, we need to encode declassification. As previ-

The relevant parts of the operational semantics for this ously the command
language can be found in Figuké 4. There should be no
surprises apart from the outputs arising from assignments x := declassify(e)
and. deCIaSSIflcatlon.S' These are Iabel_IEd differently abr 4 We take the liberty of presenting the definitions frém [ABSD74 style that
assignments to variables marked with Low cause outputsnore closely resembles those which we have used for our ofimitis.
of the formx(v) whereas declassifications output so called Our presentation is not different in any substantial way.




is represented with the sequence of commands For declassification the rule from Gradual Release is sim-
ply

open Decl;x := e; close Decl e T

And that is all we need. Fer @ := declassify(e) ~ pol(x)

Equivalence Our main goal here is to show that our encod- 1.€. no constraints on the respective security labels arfid
ing of the Gradual Release primitives leads to a systemghat i =. For the encoded equivalent,

equivalent to the original Gradual Release system predente
in [AS04]. In particular, we want to show that a program will

be deemed secure according to Gradual Release if and only, o ~4n simply construct the derivation and everything

open Decl; x := e; close Decl

ifits encoding is deemed flow lock secure. is trivially typeable, with the exception of the constraint
GR(c) = TIFLS(2,¢) r({Decl}) T pol(z) arising from the assignment in the

middle. Since we know from the domain thatis either

To do this,_we first note that on thg flpw locks side {high; low} or { high; Decl = low}, we have that({ Decl}) =
the only possible lockstates at any point in the program {high; low} — Low. Since for alll, Low C I, the constraint

are P(Locks) = {@,{Decl}}, and the only actors are . )
Actors = {high,low}. Further we note that for all at- Low C pol(x) is always fulfilled, and we are done.

tackersA € Actors x P(Locks), the only attacker that  Discussion What we hope to show with this encoding is
would not have perfect knowledge of the memory at all that this could have been a feasible (not to say easy) way to
times isA = (low, o). We can then specialise the defini- prove properties about Gradual Release. The proofs hdre tha
tion of flow lock security, to say that an encoded program Gradual Release is a specialisation of Flow Locks are much
¢ is termination insensitive flow lock secure iff for attacker less involved than the proofs in the Gradual Release paper,
A = (low, @), for all A-low memoriesL, and all pairs of even though those are quite simple to begin with.
runs(ww, @), (dw', Q) € Runa(2,¢, L) we have that Gradual Release is a special case in that it is already flow
Y - IS sensitive, SO we get an exact equivalence between the origi-
ka(ww,e, L) = ka(ww',c, L) nal semantics and the flow locks induced one. We could not

Next we note that we have a simple correspondance be-get such a correspondence with a flow insensitive system.
tween the definitions of runs. However, we argue that most other systems are not inher-
ently flow insensitive, and that giving a flow sensitive seman
tics to them via a flow locks encoding is not only feasible,
but also beneficial since it makes it easier to relate various
semantics and enforcement mechanisms.

Reasoning about flow locks is greatly simplified by the
The proof of this is a straighforward inspectioncof new form of semantics. But what we have not done in these

Applying lemmal&ll to our specialized version of flow examples is take advantage of the fact that the semantic
lock security above, we end up with exactly definitionl 6.2, condition is not only simpler but also more liberal: in fawét
which is what we wanted to prove. type system we have presented is very similar to that which

Type system equivalence We can also show that the type W€ previously verified against a floimsensitivesemantics.
system presented iR[AS07] is equivalent to the type system Flow sensitivity would be useful in cases where the type

presented in Sectidd 5. The typing judgements and rules forSYStém also needs to track properties of values — for example
expressions in the gradual release system are identical td’ We wanted to extend the typings to additionally verifytha

those in our type system. For commands, we have that openings of locks only occurred in specific states, or reléas
' specific parts of some data (cf_[BNRO08]). Any resetting-

brc~w = G FC~ W, 0 style semantics would not be able to track such properties

LEMMA 6.1 (Correspondence between rung).(du) €
GRRun(c, L) then (dw,Q) € Runa(2,¢,L) for A =
(low, @), and furtherQ = {Decl} iff u is a release event,
otherwise(2 = @.

This is trivial to show for all commands except for assign- through a computation.
ments and declassifications.
For assignments the rule for the Gradual Release system7' Related Work

states that As mentioned previously, the knowledge based approach
Fere:r 1 £ pol(z) used in this paper is inspired by the Gradual Release work
Fer 1= €~ pol (1) [AS04]. Similar uses of knowledge sets appear earlier — e.g.

and we have a direct correspondence with the type rule for[DEG0@] — and many of the classic noninterference defini-
assignments from Sectidd 5, specialised to encoded com-tions have a knowledge or “deducability” flavour. However

mands: . [AS04] appears to be the first to use this style of definition
Fe:7 7L pol(x) to reason about the semantics of declassification. Gradual

OL e ]@(?% > release ha_s als_o been exte_ndedIE[B]_S_ROS_] in a rather or-
thogonal direction, by allowing declassifications to caary
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logical specification ofvhatis declassified, and under what
condition.

The notion of flow (in)sensitivity comes from the static
analysis world, where it is used to characterise program
analysesand is not used to describe the underlying semantic
property.

The flow insensitivity problem arising in the papers
mentioned in the introduction [MSDZ, ER05, EP03,"ABO05,
[Dam06, [MROV,[[BCRO8[_LMU8] all come about through
somewhat related bisimulation-like definitions. But flow in
sensitivity can arise, in varying degrees, in other styles o
model too. For example[ [SHTZ06] deals with a detailed
model of information flow policy updating. The semantics
is phrased in terms of the trace segments in between policy[BCROS]
updates, and asserts noninterference for the programs at th
beginning of each of these segments. This is a resetting ap-
proach since it reasserts noninterference at intermegiiate
gram points, and thus becomes flow insensitive. As another[BNROS]
example, flow insensitivity also arises in the definition of
qualified robust declassification from [MSZ04] which uses
a “scrambling” semantics for endorsement (upgrading of
integrity) which nondeterministically resets the valueaof
variable after its endorsement.

Flow locks do not deal directly with the questionwalhat
information is released (e.g. the length of a cryptographic
key or the first four digits of a credit card number), and that
is one natural direction for further work. In general policy
mechanisms that deal withhatis released are more exten-
sional and therefore less prone to problems of context sen-
sitivity. However a knowledge-style semantics can be usefu
in that setting too: a recent approach to expressive pslicie [pamog]
by Banerjeeet al [BNROE] uses a generalisation of grad-
ual release which is able to express policies which describe
what is released (relative to the current state) at speeific r
lease points in the code. The policies include regular pro-
gram assertions and can thus also constrain the conditfons o
releash.

[ABO5]

[AHSS08]

[AS07]

[BS06a]

[BS06b]

[DEG06]
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[GM82]

51n it is claimed in passing (p351) that the flow lockspeoach

“is subsumed by our approach.” It is somewhat unclear in wkate flow
locks are subsumed, but presumably this refers to the fattfithw locks

can be viewed as boolean shadow variables, and as such casethaéou
express a conditional release policy in their setting. ttolious to us how
subsumes flow lock policies in any general senseedineir work

(i) only deals with a two-level low-high lattice, so canndtedtly model

multilevel security, integrity, and their combination)(dnly deals with

declassification, and not e.g. upgrading of data or revocadf a principal’s

clearance level, (iii) only allows declassification at aonaic step, and (iv)
only deals with a termination sensitive security condition

[LMOS]

[McC87]
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Appendix for somei € {1,2}, and we have that I- ¢; ~ w;, ¥; and
w; Jwp Mwg andX; O 3 N Xs.

This appendix is not included in the published proceedings Casec — while (¢) ¢: We have that

version of the paper. It includes proofs of the main results
from the paper. Fe:r YNYFcec~w,X rCw

Proof of PropositionZl We need to show that Yk while (e) c~ w, X’

and

FLS(X,¢) AX C Y = FLS(Y, ¢)

AssumeF LS(Y%, ¢). That means that for all attackess = (E,while (e) ¢, M)

(o, A), and allA-low memoried., we have that ifww, 2) € £ (X,if e then ¢;while (e) ¢ else skip, M)
Runa (X, ¢, L)thenQ C A = ka(wWw, ¢, L) = ka(w,c, L)
We make the following observations for usikg > : We can then construct the following derivation:

Changing the lock state will not affect control flow of
a program, which means there will be a direct one-to-one Fe:r . Lk Skipf” X
mapping between elements in the two traces, with the same EFguhile (¢) e~ w, X rEw
last element of the output sequence. Y I if e then ¢jwhile () c else skip~ w, X' N XY
For each elementww,QY) € Runa(X',c¢,L) with a
correspondingww, Q) € Runa(X,c, L), we will have
thatY’ D Q. The larger lock state is because adding more
locks at the start can never lead to fewer locks open at any YkFe~w, X Y Ewhile (e) e~ w, Y
subsequent point in the program. Y F ¢ while (e) ¢~ w, X

To prove that the sequential composition can indeed be typed
we continue with
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The first premise in this deriviation holds because of subtyp The proof follows directly from the construction of

ing for lock sets, together with the observation thad >N
3. By the subtyping rule we then also know that O .
To show the second premise we observe that

¥ ke~ w Y rCw
¥” Fwhile (e) ¢~ w, X' NY”

Fe:r

and note that this is an equivalent statement skfte ¥’ =
¥/ due toX” D Y.

Remains to show that’ - ¢ ~ w, ¥’. SinceX’ D ¥'NY
we can show by subtyping of the original premise that-
c~ w,X” whereX”” D Y. To see thab”’ = ¥/ we note
that by the subtyping rule we have that

LS CY\(ZNE) =Y\ T

and the only way to satisfy that inequation i&if' \ ¥ = &,
henceX”" C ¥’ and we are done.

Casec = c3;c9: We have two cases, either = skip
or ¢c; # skip. In the former case the conclusion follows
trivially from the typing derivation and semantic rule, et
interesting case is the latter. We then have that

Ei—clvwl,El
Y1~ wy Mwg, Yo

El H Co wg,Eg

and
<E,Cl;CQ,M> i’ <E/acll;027M/>

where the induction hypothesis gives us that
e ~ow, B AW Jwp AX DY

We then have by subtyping th&4 + ¢y ~ wo, X}, where
¥, D ¥,, and thus we have that

Yk e~ wy Mwg, 5 AwiMy 1 Mg A XH D Xy
and we are done.

DEFINITION .1 (Bounded iteration)We define a bound on
iteration of while-loops as follows:

[while (e) c]p = skip
[while (e) ¢]r = if e then ¢;[while (e) ¢]x—1 else skip

LEMMA .1 (Consistent run).
If (W,A) € Runa(X,c, M\ 4) and

<E7 C7 M> éA <EI7 Cl? M/>

then(w, A) € Runa (X', M'\ 4)
Also, if (www’, A) € Runa (X, ¢, M\ 4) and

<E7 C7 M> E>14 <E/7 Cl? M/>

then(ww', A) € Runa (', ¢, M'\ 4)
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Runa(X,c, M\ 4). Note also that this extends naturally to

the case where we take more than one step and/or produce

more than one output along the way.

LEMMA .2 (Contexttyping)lf ¥ + E[¢] ~ w,’, then
ke~ we, X withw C w.

Proof: Straighforward induction on the typing derivatian f
E[c].

LeEmMMA .3 (Deterministic expression evaluatioff).
Fe:randrisvisible to Aande, M) |} vthenvM' ~, M
we have thate, M’) |} v

Proof: By induction on the structure of e.

Casee = n: We have(n, M) | n for all M so the
conclusion always holds.

Casee = x: We have tha{z, M) | (M|[x]), and since
pol(x) is visible to A andM’ ~ , M we know thatM'[z] =

Casee = e; ®eq: By the assumption and the type rule for
operators we know that LI is visible to A, which implies
thatr; is visible to A,i € {1,2}. We apply the induction
hypothesis to the subterms, and combine that witheing
deterministic, and we are done.

LEMMA .4 (Silent evaluation)lf X F ¢ ~ w, A andw is
not visible to A, then running with any starting memory
will not produce any A-visible output, and will not change
the memory in any way visible to A. Formal{)/ we have
either

(X, ¢, M) =4 (¥, skip, M)

with M ~ , M, or (X,¢, M) fra

Proof: By induction on the height of the typing derivation of
Yke

Casec = x := e: We have
r(2) C pol(z)
YFx:=e~pol(z),X

Fe:r

Sincepol(x) is not visible to A, for the transition
(3, z:=e, M) LN (%, skip, M|z — v])

where(e, M) |} v, L is not visible to A, andV/ [z — v] ~ 4
M.
Casec = if e then ¢ else c3: We have

El—ci«»wi,Ei
Y if e then ¢y else ¢y ~» wi MMwsg, X1 N Yo

Fe:r r C wi Mws

Neitherw; norws, are visible to A, so we can take a transi-
tion step

(¥, if e then ¢; else co, M) 5 (X, ¢;, M)

using either transition rule for conditionals. We apply the
induction hypothesis to the resulting term and we are done.



Casec = while (e) ¢’: We have

Fe:r INYFcd~wY

Y Fwhile (e)  ~w, X' NY

rCw

To prove this case we need a contradiction. Assume that

runningc will produce a first output visible to A on theth
iteration, i.e. after first performing—1 silent iterations. This
means that up to the point of the first output, runningill
be equivalent to running a bounded iteratjehile (e) /]
such that:

(%, [while (e) |, M) = (A, ; skip, M)
with M’ ~ , M. We must then have
(A, s skip, M) =% (A, ¢ skip, M)

since the output cannot have come from #xep. But by
the induction hypothesis and the typing ©fve know that
runningc cannot produce any output visible to A, and we
have our contradiction.

Casec = c1;co: We apply the induction hypothesis to
both subterms and we are done.

The remaining cases fercan never produce any output
or change the memory so they are trivial.

LEMMA .5 (Deterministic output).

X b, M~ N, (S, ¢, M) 22, (3, ¢/, M) and

(S, ¢, NY 22, (27 ¢, N') thenc’ = ¢” and M’ ~ , N'.
Proof: By induction on the length of the transition sequence

producing@w when running with memory/.
Casec = E[z := e]: We have
Fe:r r(X)LCpol(x)

YFkax:=e~ pol(x),X

and we identify two cases:
i) pol(x) is visible to A. We must then have

(S, Elz = e], M) "Dy (S, E[skip], M]z — v])

and
z(v)

(3,E[z :=e], N) —4 (3,E[skip], N[z — v])

where we haveM [z — v] ~, Nz — v]. If this was

the final output then we are done, and that forms our base

case for the induction. Otherwise we apply the induction
hypothesis to the resulting configurations.
ii) pol(z) is not visible to A. We then get

(2,E[z == ¢], M) 5 (%, E[skip], M[z — v])

and

(S, Elz .= ¢, N) & (S, E[skip], N[z — v'])
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where neithel nor !’ are visible to A, and\/[z — v] ~,
N[z — v']. We continue by applying the induction hypoth-
esis to the resulting configurations.

Casec = E[if e then ¢; else cp]: We have

Fe:r El—ci«»wi,Ei

Y if e then ¢y else ¢y ~» wi MMwsg, X1 N Yo

r Cw; Mws

and we identify two cases:

i) r is visible to A. Then by the deterministic expression
evaluation lemma we have, M) || v = (e, N) || v. We
must have

(3, E[if e then ¢; else 3], M) 5 (X, E[c;], M)
and
(3, E[if e then ¢; else ¢z, N) = (%, Ele], N)

for the same € {1, 2}. We continue by applying the induc-
tion hypothesis to the resulting configurations.

i) r is not visible to A, which means; M ws is not
visible to A. Then by the silent evaluation lemma, and the
fact that we know the computations cannot silently diverge
before producing the output we seek, we must have that

(X,E[if e then ¢ else co|, M) =4 (X', E[skip], M")
and
(X,E[if e then ¢y else c2|, N) = (X", E[skip], N')

whereM’ ~, M ~, N ~, N'. Since the lockstate cannot
interfere with the evaluation or output, we can continue
by applying the induction hypothesis to the configurations
(3, E[skip], M) and(X’, E[skip], N').

All other cases are trivial since only one transition rule
applies, and that transition does not change the memory or
produce any output. We simply perform that transition and
apply the induction hypothesis to the resulting configura-
tions.

LEMMA .6 (Deterministic silent termination)f X + ¢ and
M ~, N and

(¥, ¢, M) =4 (¥, skip, M")
then either

(X, ¢, N)y = (X" skip, N')

or (X,¢,N) fa.

Proof: By induction on the length of the transition sequence
leading to termination when running with memavy.

Casec = skip: This case is only interesting since it
forms the base case for the inductiakip trivially con-
verges taskip in O steps with no output.



Casec = E[x := ¢]: Since we know the computationis We prove this by showing that we must hawe= w’, by
silent we must have thail(x) is not visible to A. We then  induction on the length of the computation leadingde.
have We identify two cases:

, i) « has length greater than 0. Then by the deterministic
(X, Elz := ¢], M) — (%, E[skip], M[z — v]) output lemma, and the fact that we know both computations
will produce more output and so cannot diverge, we must

and have that foll/ ~ , N:

(£,E[z := ¢], N) & (2, E[skip], N[z — v']) (.0 1) oy (¢ AT

for somew, v’. We have that neithdrnor !’ are visible to

and
A andM[z — v] ~, Nz — v'], and we can apply the @ "o oA
induction hypothesis to the resulting configurations. (8,6, N) = (57, ¢, )
Casec = E[if e then ¢; else co]: We have where M’ ~, N’. By the consistent run lemma, subject
reduction and non-interference of lockstates we then know
'_.e v Ehei~w, X rEw Nw thaty I ¢ and(w, Q), (w', Q") € Runa (X', ¢, L’), where
% 1 if ethen ¢ else ¢y~ wy Mwy, 31 N Xy L' is the commom4-low projection of M’ and N’, and we
and we identify two cases: can anIy the induction hypothesis to get= w'.
i)  is visible to A. Then by the deterministic expression 1) @ has length O..We then proceed to case:on
evaluation lemma we have, M) || v = (e, N) || v. We Caser = E[z := ¢]: We have
must have Fe:r r(X)C pol(x)
(3, E[if e then ¢; else o], M) 5 (X, E[c;], M) Lk ai=enpol(r),X

and we identify two cases:

and i) pol(x) is not visible to A. Then

(3, E[if e then ¢; else ¢z, N) = (X, E[c], N) p
(3,Elx :=e], M) = (X, E[skip], M [z — v])
for the same € {1, 2}. We continue by applying the induc-
tion hypothesis to the resulting configurations.

ii) ris notvisible to A, which means; Mws, is not visible
to A. Then by the silent evaluation lemma we must have that

and
(S,Elz = ¢|, N) & (S, E[skip], N[z — v'])

We have that neithdrnor{’ are visible to A, and

. / . ’
<E,E[1f e then c; else CQ]a M> — <E ,E[Sklp]v M > M[:Z? N 1)] ~4 N[:Z? N ’Ul], and by the consistent run lemma

and either we must have(w, ), (w',Q') € Runa(E,E[skip|,L)
where L is the commonA-low projection of the resulting
(X, E[if e then c¢; else ca], N) =4 (X", E[skip], N') memories. We can apply the induction hypothesis to get
w=w.
whereM' ~, M ~, N ~, N', or i) pol(z) is not visible to A. Then the next transition will

(3, E[if e then c; else ¢z, V) fha. In the latter case we  generate the visible output, So we must h&ve- Q' = X.
are done, in the former we apply the induction hypothesis to Then byr(X) C pol(z) andA D X we know that- is visible
the resulting configurations. to A. Then by the deterministic expression evaluation lemma

All other cases are trivial since only one transition rule we know(e, M) |} v => (e, N) || v, s0 we must have
could apply, and that transition does not change the memory

nor produce any output. We simply perform that transition (S, B[z := ¢], M) mﬁi)A (2, E[skip], M [z — v])
and apply the induction hypothesis to the resulting configu-

rations. and

Proof of Theorem , repeated here for convenience. (S, E[z = ¢], N) wg)A (S, E[skip], N[z — v])
What we want to prove i& - ¢ = TIFLS(c), which ’ ’ ’ ’
expanded means We havew = w’ = z(v) and we are done.

. L Casec = E[if e then ¢; else co]: We have
VA = (o, A), L, (0w, Q), (Ww', ') € Runa(X, ¢, L)

Fe:r Ykc~w,X; rCw Mws
we have that Y. F if e then ¢; else co ~» wy Mwsg, X1 N o

AD Q= ka(e, L,ww) = ka(c, L, ww") and we identify two cases:
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i) r is not visible to A. Then by the silent evaluation
lemma andr T w; M we we know the subterms cannot
produce A-visible output. We must have

(X,E[if e then ¢y else co|, M) = (X', E[skip], M")
and
(X, E[if e then ¢; else ca], N) = (X", E[skip], N')

with M ~, M ~, N ~, N'. By the consistent run
lemma we must also have, 2), (w’, Q") €
Run (X', E[skip], L) and we can apply the induction hy-
pothesis to getv = w’'.

ii) r is visible to A. Then by the deterministic expression
evaluation lemma we knove, M) | v = (e, N) |} v and
we must have

(3, E[if e then ¢; else o], M) = (X, E[c;], M)
and
(S, E[if e then ¢; else 3], N) = (X, E[¢], N)

for somei € {1,2}. By the consistent run lemma we must
have (w,Q?), (v, Q") € Runa(X,E[¢],L) and we can
apply the induction hypothesis to get= w’.

All other cases are trivial since only one transition rule
applies, and that transition does not change the memory
or produce any output. We simply perform that transition,
note that the consistent run lemma applies, and apply the
induction hypothesis to the resulting configurations.
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