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Abstract. Conventional security policies for software applications are adequate
for managing concerns on the level of access control. But standard abstraction
mechanisms of mainstream programming languages are not sufficient to express
how information is allowed to flow between resources once access to them has
been obtained. In practice we believe that such control - information flow control
- is needed to manage the end-to-end security properties of applications.
In this paper we present Paragon, a Java-based language with first-class support
for static checking of information flow control policies. Paragon policies are spec-
ified in a logic-based policy language. By virtue of their explicitly stateful nature,
these policies appear to be more expressive and flexible than those used in previ-
ous languages with information-flow support.
Our contribution is to present the design and implementation of Paragon, which
smoothly integrates the policy language with Java’s object-oriented setting, and
reaps the benefits of the marriage with a fully fledged programming language.
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1 Introduction

The general goal of this work is to construct innovative design methods for the con-
struction of secure systems that put security requirements at the heart of the construc-
tion process, namely security by design. To do this we must (i) understand how we can
unambiguously formulate the policy aims for secure systems, and (ii) develop technol-
ogy to integrate these goals into design mechanisms and technologies that enable an
efficient construction or verification of systems with respect to those policies.

We address this challenge using a programming language-centric approach, present-
ing a full-fledged security-typed programming language that allows the programmer to
specify how data may be used in the system. These security policies are then enforced
by compile-time type checking, thus requiring little run-time overhead. Through this
we can guarantee that well-typed programs are secure by construction.

But which security policies might we want for our data, and why do we need spe-
cial support to express them? Certain security policies, for example access control, are
relatively easy to express in many modern programming languages. This is because
limiting access to resources is something that good programming language abstraction
mechanisms are designed to handle. However, access control mechanisms are often a
poor tool to express the intended end-to-end security properties that we wish to impose
on our applications.



Consider a travel planner “app” which permits you to plan a bus journey, and even
add your planned trip to your calendar1. In order to function, the app must have access
to the network to fetch the latest bus times, and must have access to your calendar in
order to add or remove schedules. But an app with these permissions can, for example,
send your whole calendar to anywhere on the net.

What we want is to grant necessary access, but limit the information flows. In this
case we want to at least limit the information flows from the calendar to the network
while retaining the app’s ability to read and write to both.

Research on controlling these information flows has progressed over the last decades.
In this paper we identify three generations of security properties and control mecha-
nisms for information-flow:

Information-Flow Control In the 70’s, Denning & Denning pioneered the idea of cer-
tifying programs for compliance with information flow policies based on military-style
secrecy classifications [7,8]. They used program analysis to validate that information
labelled with a given clearance level could never influence output at any levels lower in
the hierarchy – so for example a certified program could never leak top-secret informa-
tion over a channel labelled as public.

The language FlowCAML [24], a variant of ML with information-flow types and
type inference, represents the state-of-the-art in support for static Denning-style confi-
dentiality policies.

Beyond Mandatory Information Flow Control Although a rigid, static hierarchy of
security levels may be appropriate in a military message-passing scenario, it became
quickly apparent that such a strict and static information flow policy is too rigid for
modern software requirements. In practice we need a finer-grained and more dynamic
view of information flow.

The concept of declassification – the act of deliberately releasing (or leaking) sensi-
tive information – is an important example of such a requirement. Without a possibility
to leak secrets, some systems would be of no practical use.

For example an information purchase protocol reveals the secret information once
a condition (such as “payment transferred”) has been fulfilled. Yet another example is a
password checking program that inevitably leaks some information: even when a login
attempt fails the attacker learns that the guess is not the password.

With this in mind, the Jif programming language [17,20] can be seen as the next
milestone after the pure Denning-style approach. Jif is a subset of Java extended with
information flow labels.

As well as implementing an important distributed view of data ownership, the so-
called Decentralised label model [18,19], Jif included the possibility of declassification,
which provides a liberal information flow escape hatch for programs which would oth-
erwise be rejected.

1 The example is based on a family of actual Android apps
(e.g. de.hafas.android.vasttrafik).



Paragon, a Third-Generation IF Language Declassification, in many shapes and
forms, has been widely studied in the research community in recent years [23]. The
large variety of declassification concepts is testament to the fact that there is simply no
single right way to control the flow of information that goes against the grain. Moreover,
it is not always natural to view information flow policies as consisting of “good flows
plus exceptional cases” at all; in some situations there is no obvious base-line policy,
and the flows which are deemed acceptable may depend on the state of the system at
any given moment.

In earlier work [5] we introduced a new highly versatile policy language, Paralocks,
based around the idea of Flow Locks. We demonstrated its ability to model a wide
variety of policy paradigms, from classical Denning-style policies to Jif’s decentralised
label model, as well as the capability to model stateful information flow policies. But
the idea of using Paralocks as types in a statically-checked programming language was
only demonstrated for a toy language. The question whether a Flow Locks-based policy
language could feasibly scale to inclusion in a full-fledged programming language, to
allow practical programming with information flow control, was left open.

The main contribution of this paper is to answer that question with an emphatic yes.
We present the new programming language Paragon, which extends the Java program-
ming language with information flow policy specifications based on an object-oriented
generalisation of Paralocks. Not only does it turn out to be feasible, but the marriage
of our stateful policy mechanism and Java’s encapsulation facilities yields a whole that
is greater than the sum of its parts: it allows for the creation of complex policy mecha-
nisms as libraries, giving even stronger control over flows and declassification than the
policy language alone.

The remainder of the paper is structured as follows. Section 2 presents the language
Paragon: its policy language and integration in Java; followed by a simple showcase of
Paragon in Section 3. In Section 4 we give an overview of the enforcement mechanism
and details of our implementation. Section 5 discusses our experience from two larger
case studies. Related work in Section 6 and conclusions in Section 7 round out the
paper.

2 The Language Paragon

Paragon is largely an extension to the Java language and type system. Our choice for
Java is motivated by its relatively clear semantics and the wide adoption of Java in
both commercial and academical settings. In addition, it allows us to reuse existing
ideas from, and simultaneously compare Paragon with, Jif [17,20], the only (other) java-
based full-fledged security-typed programming language to date. We discuss Paragon’s
relation to Jif in more detail in § 6. We do not, however, rely on any particular features of
Java for the integration of our policy language to work, and posit that it would be equally
feasible to do this for other statically typed languages with safe memory management,
e.g. ML or Scala.

In this section we give a high-level overview of Paragon and its various components,
leaving more technical features, such as extending Java Generics, to the technical report
version of this paper [1].



2.1 The Paragon Policy Language

The subjects of Paragon policies are the information-flow relevant entities, which we
refer to as actors. An actor could be a user, a resource, a system component, an infor-
mation source or sink, etc.; any entity that has an information-flow concern.

In Paragon, these entities are represented by object references. For instance, the code
fragment below creates regular instances of the User and File class, where alice and
f1 can play a dual role; both as program variables, and as actors in Paragon policies.

User alice = new User();
User bob = new User();
File f1 = new File();
File f2 = new File();

A paragon policy is used to label information containers in the program (fields, local
variables), and specifies to which actors the information in that container is allowed to
flow. A policy consists of a set of clauses, each specifying one particular actor, or one
group of actors of a particular type.

For example, the policy p1 states that information may flow to the specific users
Alice and Bob, while the policy p2 states that information may flow to any file:

policy p1 = { alice: ; bob: };
policy p2 = { File f: };

This makes the policy { Object o: } the most permissive, and the policy with no
clauses (denoted {:}) the most restrictive paragon policy.

A clause may have a body that constrains the states in which the information may
flow to the actors specified in the head. These constraints come in the form of locks;
typed predicates representing the policy-relevant state of the system.

A lock can be opened or closed for given actor arguments. Viewing a lock as a
predicate, opening a lock corresponds to assigning it the value true. Below we define
two locks, one for modelling the ownership of files, and another for the organisational
hierarchy among users.

lock Owns(File, User);
lock ActsFor(User, User);
policy p3 = { File f: Owns(f, alice) } ;
policy p4 = { (User u) File f: Owns(f, u), ActsFor(u, alice) };

The policy p3 expresses that information can flow to any file owned by Alice, while
the policy p4 states that u ranges over users, and that information having this policy
may flow to any file f for which f is owned by some u such that u acts for alice.
Note that variables that are mentioned in the head of a clause are universally quantified,
whereas those only appearing in the body are existentially quantified.

A lock can be declared to have properties. A property specifies conditions under
which some locks are implicitly open. For example, we might want to express that the
acts-for relation is transitive and reflexive.

This requirement can be stated at the point of declaration by replacing line 2 in the
above with:



lock ActsFor(User, User)
{ (User x) ActsFor(x,x):
; (User x y z) ActsFor(x,y): ActsFor(x,z), ActsFor(z,y) }

Transitivity and reflexivity properties (as well as symmetry) are a common pattern, so
Paragon provides syntactic sugar for these:

reflexive transitive lock ActsFor(User, User);

The Paragon Policy Language is an object-based generalisation of Paralocks [5,29],
and is described in more detail in the technical report [1].

2.2 Information-flow policies in Paragon

The various flows of information that need to be controlled in Paragon are essentially
the same as the ones occurring in Java. As is common in information-flow analysis we
make a distinction between direct and indirect information flows.

Direct flows The typical direct flow is an assignment, where information flows directly
from one location to another. Direct flows also happen at method calls (arguments flow
to parameters), returns (the return value flows to the caller) and exception throws (an
exception value flows to its enclosing catch clause).

Continuing in the style of the examples from the previous section, let x be a variable
with the policy {File f:Owns(f, alice)} and y a variable with the policy {f1:}

in the assignment y = x;. Whether or not the assignment will be flagged as an error
by the Paragon compiler depends on the lock state in which the direct flow occurs.

If the Owns(f1,alice) lock is statically determined to be closed the compiler
raises an error, since the information stored in x, according to its policy, should only
flow into file f1 when the file is owned by Alice, whereas the information in y can
always flow to f1. In other words, the assignment has insecure information flow because
it moves information to a place where it becomes visible to more actors than its policy
declares. If, however, the lock is determined to be open, i.e. declaring that alice owns
f1, the assignment occurs in a state where f1 can already read the information in x,
and so the program compiles successfully.

Indirect flows An indirect flow is one where the effect of evaluating one term reveals
information about a completely different term that was evaluated previously. The typ-
ical indirect flow is a side-effect happening in a branch that reveals which branch was
chosen, which in turn reveals the value of the conditional expression that was branched
on. Indirect flows also arise from other control flow constructions (including loops and
exceptions), and field updates or instance method-calls (possibly revealing the object
they belonged to).

Due to the delayed nature of these information flows, the lock state in effect at the
time of the indirect flow might be different to that in effect at the point at which it is
revealed. Therefore, indirect flows are handled conservatively, by not allowing the lock
state to affect which of these flows are considered secure.



2.3 Policy annotations

When integrating the policy language into Java, the two core design issues are (i) how
policies are to be associated to data, and (ii) how the lock state is specified, updated,
and queried.

Policies as modifiers In Paragon every information container (field, variable, param-
eter, lock) has a policy detailing how the information contained therein may be used.
Every expression has an effective policy which is (an upper bound on) the conjunction
of all policies on all containers whose contents affect its resulting value – we refer to
this as the expression’s read effect.

Paragon separates policies from base (Java) types syntactically by having all policy
annotations as modifiers. A modifier ?pol denotes a policy on an information container,
and the read effect of accessing that container. When used on a method we refer to it
as the return policy, as it is the read effect on the value returned by the method. Using
modifiers for policies allows for a clean separation of concerns, allowing us to analyse
base types and policies separately.

Similarly, every expression (and statement) has a write effect, which is (a lower
bound on) the disjunction of all policies on all containers whose contents are modified
by the expression. Write effects allow us to control implicit information flows, by lim-
iting the contexts in which expressions with side-effects may occur. A modifier !pol
denotes a write effect, and is used to annotate methods.

Policy modifiers are also placed on exceptions declared to be thrown by a method.
A read effect modifier on an exception denotes the read effect of inspecting the thrown
and caught exception object. More interesting is the write effect modifier, which serves
two purposes in relation to indirect flows. First, it restricts the contexts in which the
exception may be thrown within the method. Second, it imposes a restriction of its own
on all subsequent side-effects until the point where the exception has been caught and
handled. Together, these two restrictions ensure that no information leaks can occur by
observing whether or not an exception has been thrown.

All exceptions in Paragon must be checked, i.e. declared to be thrown by methods
that may terminate with such exceptions. This implies the need for analyses that can
rule out the possibility of exceptions, in particular for null pointers, to avoid a massive
blow-up in the number of potential exceptions that must be declared. Paragon adds the
modifier notnull for fields, variables and method parameters that may never be null,
to aid the null-pointer analysis.

To reduce the burden on the programmer to put in policy annotations, Paragon at-
tempts either to infer, or to supply clever defaults for, policies on variables, fields and
methods. We omit the details of policy defaulting, and discuss the inference mechanism
in § 4.

Lock state analysis Manipulation of the lock state is done programmatically through
the use of the Paragon-specific statements open and close. The compiler performs a
lock state analysis which conservatively approximates the set of locks guaranteed to be
open at any given program point.

In cases where we cannot know statically that a lock is open, we allow runtime lock
queries to guide the analysis: A lock can be used syntactically as an expression of type



boolean, with the value true if the lock is currently open. If a lock query appears
as the condition to e.g. an if statement, the analysis can include the knowledge of the
lock’s status when checking the respective branches.

To facilitate modularity, Paragon introduces three modifiers, used on methods and
constructors, to specify their interaction with the lock state:

• +locks says that the annotated method will open the specified lock(s), for every
execution in which the method returns normally. We call this the opens modifier.
• -locks, dubbed the closes modifier, says that the method may close the specified

lock(s), for some execution.
• ˜locks, the expects modifier, says that the specified lock(s) must be open whenever

the method is called.

The opens and closes modifiers are also used to annotate each exception type thrown
by a method, to signal to the analysis what changes to the lock state can be assumed if
the method terminates by throwing an exception of that type.

As a middleground between private and public locks, Paragon introduces the mod-
ifier readonly for locks, indicating that outside the class the lock can be queried, but
not opened or closed.

3 Brief Example

To illustrate the language features of Paragon we present the scenario of a simple social
network. In the network, users can befriend each other and share messages in the form
of posts that can be read by their friends. The scenario contains two information flow
policies that we want Paragon to enforce.

First, posts can only be read by a direct friend of the poster or, if the poster so
indicates, by friends of friends of the poster. A user can decide, per post, whether it
should be shared with friends-of-friends or not. Paragon should thus enforce that the
network properly checks the friendship relations before allowing a user to read a post.

Second, to prevent injection or scripting attacks, a message should be properly sani-
tised before it is stored in the network. That is, we want to enforce the policy that all
posted messages first pass through a sanitising function.

The Paragon implementation of this network is shown in Figure 1. Some policy
annotations are omitted in the implementation, since Paragon provides default policies
in these cases. For example, all fields that do not specify a read effect automatically get
the least restrictive policy {Object x:}.

To establish the first policy we define the Friend lock to model friendships. Sim-
ilarly we create a lock FoFriend to model friend-of-friend relations. Since the User

class does not explicitly open or close this lock and exports it as readonly we know
that it models a purely derived property of the Friend lock, and thus one that will
evolve correctly as the friendship status changes over time.

With the locks in place we can now create the desired policy as messagePol, which
we use for the read-effect on a post’s content. We assume that the correct Friend
instances are opened elsewhere in the program. Turning sharing with friends-of-friends
on per post is handled in the post method by opening the ShareFoF lock for that post.



1 public class User {
2 public reflexive symmetric lock Friend(User, User);
3 public readonly lock FoFriend(User, User)
4 { (User x y z) FoFriend(x,y) : Friend(x,z), Friend(z,y) };
5 public void receive(?{this:} String data) {
6 ... // User receives provided data
7 }
8 }
9

10
11 public class Post {
12 public lock ShareFoF(Post);
13 public final User poster;
14 public static final policy messagePol =
15 { User x : User.Friend(x, poster)
16 ; User x : User.FoFriend(x, poster), ShareFoF(this) };
17 public final ?messagePol String message;
18 public Post(?{Object x:} User p, ?messagePol String m) {
19 this.poster = p;
20 this.message = m;
21 }
22 }
23
24
25 public class Sanitiser {
26 private lock Sanitised;
27 public static final policy unsanitised = {Object x : Sanitised};
28 public static ?{Object x:} String sanitise (?unsanitised String s) {
29 open Sanitised {
30 return /* Sanitised string */ ;
31 }
32 }
33 }
34
35
36 public class Network {
37 private static Post[] posts = new Post[10]; // Shifting list of posts
38 private static int index = 0; // Where to place the next post
39
40 !{Object x:} static void post( ?{Object x:} User user
41 , ?Sanitiser.unsanitised String message
42 , ?{Object x:} boolean shareFoF ) {
43 String sM = Sanitiser.sanitise(message);
44 Post p = new Post(user, sM);
45 if (shareFoF)
46 open Post.ShareFoF(p);
47 posts[index] = p;
48 index = (index + 1) % posts.length; // Next time overwrite oldest post
49 }
50
51 static void read(?{Object x:} User user, ?{Object x:} int i) {
52 ?{user:} String res = null;
53 Post p = posts[i];
54 if (p != null) {
55 if (User.Friend(user, p.poster))
56 res = p.message;
57 if (Post.ShareFoF(p))
58 if (User.FoFriend(user, p.poster))
59 res = p.message;
60 }
61 user.receive(res);
62 }
63 }

Fig. 1. A simple social network application written in Paragon.



As an effect of calling this method the array posts is changed (among others). Any
observer that may notice this change (i.e. of level {Object x:} and above) may thus
notice that this method has been called. To prevent this method from being called in a
context where these side-effects result in implicit flows, we are required to annotate the
method with the corresponding write effect.

The user’s receive method lets the user read the provided information, therefore
arguments to this method should be allowed to flow to that user. All combined, we
get Paragon’s enforcement ensuring that the policy-relevant state is properly checked
before sharing a post with another user.

Leveraging on Java’s encapsulation mechanism we are able to provide the ingredi-
ents for the sanitisation policy entirely as a separate library. The lock Sanitised is
private to the class, meaning that no code outside the class is able to open, close or even
mention the lock. Therefore, any data labelled with the unsanitised policy cannot
lose its Sanitised constraint, other than by actually sanitising the data by calling the
exported sanitise method. With this library we can thus easily enforce our second
policy by labelling each newly incoming message as unsanitised.

The example demonstrates the three different generations of information-flow con-
trol policies and how Paragon models them.

As per traditional non-interference, some flows are never allowed in the network.
For example, Paragon enforces that a posted message can only flow to users in the net-
work, and not to any other channel. We see an example of the exceptional information
declassification pattern in the sanitiser library: the sanitise function serves as a de-
classifier, deliberately allowing the provided argument to flow to more actors. Finally,
the locks used to model friendships exemplify third-generation information-flow poli-
cies. There is no explicit declassification of information, rather flows are allowed or not
depending on the state of the system – in this case the state of the social network.

4 Enforcement of Paragon Policies

Enforcement of information flow policies in Paragon is no small task, and presenting the
information flow type system in its entirety is beyond the scope of this paper. Instead,
we sketch a high-level overview of the most important analyses involved, presented as a
sequence of phases, and focus on the last phase in which information flows are tracked.

Phase 1: Type checking The first phase roughly corresponds to ordinary Java type
checking, albeit with some additions for Paragon-specific constructs. Particularly, we
must assure that arguments to locks are type correct, and that policy expressions used
in modifiers are indeed of type policy. This phase also checks that potential (runtime)
exceptions are properly handled.

Phase 2: Policy type evaluation Locks, policies, and object references all play a dual
role, both as type-level and value-level entities. In this phase the values of each of
these entities are statically approximated. For locks we ensure that, whenever a lock is
queried, the information in the query is propagated to the respective branch (or loop
body).



For fields and variables holding actors, i.e. object references, approximating their
runtime values means performing an alias analysis. Our present analysis is simple but
has performed well enough in practice. However, work is in progress to improve its
precision by adapting the work by Whaley and Rinard [30].

Since policies can be used as values at runtime, and dynamically hoisted to the
type level, our analysis needs to approximate policies as singleton types, similar to
the analysis of actors. For each field or variable storing a policy, and for each policy
expression appearing in a modifier, we thus calculate upper and lower bounds on the
policy held by that variable at runtime.

Further, we need ways to relate policies that are not known statically to other (static
or dynamic) policies, to improve precision. Similar to runtime lock queries, we thus let
our policy analysis be guided by inequality constraints between policies appearing as
the condition in if statements and conditional ?: expressions. This problem has been
studied by Zheng and Myers in the context of Jif [32], and our solution closely follows
theirs.

Phase 3: Lock state evaluation The next sub-phase approximates the lock state, i.e.
it calculates the set of locks which we can statically know to be open, at each program
point. This amounts to a dataflow analysis over the control flow graph, to properly
capture the influence of method calls and exceptions, and to handle loops. Each program
point where a direct flow takes place is annotated with the lock state in effect at that
point.

Phase 4: Policy constraint generation The constraint generation phase will result in
a set of constraints on the form p vLS q where p and q are policy expressions and
LS is the lock state (calculated in Phase 3) at the program point where the constraint
was generated (omitted if empty). As argued in §2.2 the lock state is only taken into
account for direct flows. Policy expressions possibly contain meta-variables, for which
the constraint solving phase then solves.

Phase 5: Policy constraint solving The last phase solves the generated constraints,
on a per-method basis. A solution to a set of constraints is an assignment of policies to
constraint variables that satisfies all the policy comparison constraints. The algorithm
needs only determine whether there exists a solution, and does not need to actually
produce one. The constraint solver is based on the algorithm presented by Rehof and
Mogensen [21].

4.1 Paragon implementation

We have implemented Paragon in a compiler that performs type checking for policies,
and compiles policy-compliant programs into vanilla Java code. Once we know that a
given program satisfies the intended information flow properties, we can safely remove
all Paragon-specific type-level aspects of policies, locks and actors.

We must still retain the runtime aspects, such as querying the lock state and perform-
ing inequality comparisons between policies. The Paragon runtime library provides Java
implementations for locks and properties, including operations for opening, closing and



querying locks to which the Paragon open, close and query statements are compiled.
Similarly, the library provides Java implementations for policies and operations for per-
forming runtime inequality comparisons between them.

Compiler statistics Our Paragon compiler is written in Haskell and comprises roughly
16k lines of code, including comments. Approximately half of that code is due to our
policy type checker, and only a small fraction, just over 600 lines of code, deals with
generation of Java code and the Paragon interface files needed for modular compilation.
On top of that, some 1500 lines of Java code are written for our runtime representations
of Paragon entites. The compiler can be downloaded from our Paragon website [1], or
from the central Haskell “hackage” repository using the command cabal install

paragon.

Runtime overhead Supporting lock queries and policy comparisons at runtime yields
a negligible overhead on Paragon programs. Most of the additional generated code han-
dles the initalisation of policies and locks upon class or object instantiation, as well
as the opening and closing of locks, which should not give any significant perfor-
mance penalty. More involved are the lock queries and policy comparisons themselves
since they resemble essentialy Datalog program evaluation and respectively contain-
ment [29]. However, our experience shows that clause bodies consist of just a few
atoms, and have yet to find an example involving locks with arity higher than two,
so in practice we posit that this overhead is negligible as well.

5 Case Studies

We put the compiler to the test with two case studies, both based on applications written
in the Jif programming language, to which we further relate in §6.

Mental Poker In [3], a non-trivial cryptographic protocol for playing online poker
without a trusted third party is implemented in Jif. During the distribution of the cards,
players communicate cards encrypted with a per-player, per-game symmetric key. That
is, the receiving player cannot decrypt the received card. At the end of the game the
players reveal their symmetric key such that the other player may verify the outcome
of the card distribution. For the purpose of non-repudiation each player signs outgoing
messages with her private key.

From an information-flow perspective we desire an implementation of this protocol
to satisfy various policies. The public key of a player is visible to everyone, as it is
used to verify the player’s signatures, but the private key should never leave the player’s
client. The cards to be communicated should not be sent before they are encypted with
the symmetric key and then signed. The symmetric key should remain confidential to
the player until the end of the game.

The value of the symmetric key leaks partially when performing encryption. In our
Paragon implementation (6.5k lines) this leak is controlled by a lock private to the class
performing the encryption, similar to the approach taken in the sanitiser class from the
example in §3. That is, the class ensures that only the result of the operation is released



and not the value of the key involved. The symmetric key is protected with a policy
guarded by this private lock. A similar approach is used to protect the private key, to
only reveal the outcome of the signing operation in which it was involved. The cards to
be encrypted are protected with both the private locks of the encryption and the signing
operation, indicating that they have to go through both declassifiers before they can be
sent to the other player. The symmetric key is also allowed to be released when the
EndGame lock is open. That is, this lock is used to represent a policy-relevant state of
the application.

By constrast, Jif uses owner-based policies. The Jif policies here can simply state
whether the data is owned by a given player or not, and cannot, in an obvious way,
express anything beyond that. The fact that a Jif program has access to exactly one de-
classification mechanism prevents it from distinguishing or controlling different forms
of declassification. In this case study it cannot make a distinction between declassifi-
cations that are allowed due to encryption, and those due to signing. In addition, Jif
does not provide a means to write temporal policies and needs to rely on programming
patterns to prevent declassifications occuring in a state where they are not supposed to
be allowed.

JPMail The second case study implements a functional e-mail client based on JPMail
[11]. In JPMail the user can specify a mail-policy file, partly dictating the information-
flow policies that the mail client has to enforce.

JPMail ensures that an e-mail is only sent if its body has been encrypted under an
algorithm that is trusted by the receiver of the e-mail. Which encryption algorithms
are trusted by what JPMail users is specified in the mail-policy file. In addition JPMail
needs to enforce more static policies, e.g. preventing the login credentials from flowing
anywhere else than to the e-mail server.

In the Paragon implementation (2.6k lines) these latter, static policies are easily
modelled as specifying only the e-mail server as a receiving actor. The partly dynamic
policy on the e-mail body is represented by a set of clauses of the form:

(User u) server: Receiver(mail, u), AESEncrypted(mail), TrustsAES(u)

That is, the e-mail can be sent to the mail server only if it has been encrypted un-
der AES and the receiver of that e-mail trusts AES encryption. The TrustsAES and
similar locks representing the user-specific policies are opened after parsing the mail-
policy file, during initialisation of the client. The Receiver lock is opened based on
the To-field information, and the AESEncrypted lock is encapsulated analogous to the
encryption / signing locks of the previous case study.

The issues for the Jif implementation in the mental poker case study show up in the
JPMail example [11] as well. Moreover, stateful policies are central to this example and
are challenging to model in Jif; Hicks et al’s solution involves generating the policy part
of the Jif source code from the mail-policy file, hardcoding the user-specific policies
in the client. This implies that if a mail-policy file changes, the only way for the Jif
solution to handle it is by recompilation of the code. By contrast, Paragon handles
policy change mechanisms naturally (by opening and closing locks) without stopping
the code or recompiling.



6 Related Work

In this section we consider the related work on languages and language support for ex-
pressive information flow policies. We focus on actual systems rather than theoretical
studies on policy mechanisms and formalisms. We note, however, that there are several
policy languages in the access control and authorisation area which have some superfi-
cial similarity with the Paragon Policy Language, since they are based on datalog-like
clauses to express properties like delegation and roles, see e.g. [4,9,13,14]. Key differ-
ences are (i) the information flow semantics that lies at the heart of Paragon, and (ii) the
fact that the principal operation in Paragon is comparison and combination of policies,
whereas in the aforementioned works the only operation of interest is querying of rules.

Languages with explicit information-flow tracking Two “real-sized” languages stand
out as providing information-flow primitives as types, namely FlowCAML and Jif – as
discussed in the introduction.

Comparing Paragon to Jif is inevitable, being at the same time a competitor and
a source of inspiration. Due to the unique position Jif has enjoyed in the domain of
information flow research over many years, much research has been done using Jif for
context and examples. It is thus natural to ask how research done on or with Jif can
carry over to Paragon.

The main advantage of Paragon over Jif is undoubtedly the flexibility of the con-
cept of locks, including their stateful nature. Where Jif has a single declassify con-
struct, Paragon can provide different declassifying methods to work on different data,
as needed by the domain at hand, and relate that declassification to the state of the pro-
gram. Jif rigidly builds in some stateful aspects in the form of authority and delegations,
which in Paragon would just be special cases of working with locks.

In many aspects, our work on Paragon has greatly benefitted from Jif’s trailblazing,
as well as research done in the context of Jif. Policy defaulting mechanisms, handling
of runtime policies, and having all exceptions checked, are all features where we have
been able to adopt Jif’s solution directly.

In separate work, as of yet unpublished, we have conducted a complete and in-depth
comparison between the two languages and all their features, including a Paragon li-
brary that gives a complete implementation of Jif, but the full details of that comparison
are out of scope for this paper.

Compilers performing IF tracking Information flow tracking can be performed in
a language which has no inherent security policies, lattice-based or otherwise. In such
a setting one tracks the way that information flows from e.g. method parameters to
outputs. Examples of tools performing such analysis are the Spark Examiner operating
over a safety-critical subset of Ada [6], and Hammer and Snelting [10] explain how
state-of-the-art program slicing methods can support a more accurate analysis of such
information flows in Java (e.g. both flow sensitive and object sensitive).

Dynamic Information Flow Tracking with Expressive Policies Runtime informa-
tion flow tracking systems have experienced a recent surge of interest. The most rele-
vant examples from the perspective of the present paper are those which perform full



information flow tracking (rather than the semantically incomplete “taint analysis”),
and employ expressive policies. The first example is Stefan et al’s embedding of in-
formation flow in Haskell [25]. In principle one could also use Paralocks in a dynamic
context, and we are currently investigating a stateful extension of their LIO framework
which could be instantiated with the generalised Paralocks described in this work.

Yang et al’s Jeeves language [31] focusses on confidentiality properties of data ex-
pressed as context-dependent data visibility policies. The Jeeves approach is notewor-
thy in it’s novel implementation techniques and greater emphasis on the separation of
policy and code.

Encoding Information Flow Policies with Existing Type Systems With suitably ex-
pressive type systems and abstraction mechanisms, static information flow constraints
can be expressed via a library [15,16,22].

A number of recent expressive languages are aimed at expressing a variety of rich
security policies, but do not have information flow control as a primitive notion (as
Paragon or Jif) [12,28]. F* [27], a full-fledged implementation of a dependently typed
programming ML-stye programming language, is perhaps the most successful in this
class, with a large number of examples showing how security properties can be encoded
and verified by typing.

Typestate The way that Paragon tracks locks is related to the concept of typestate [26].
Typestate acknowledges that the runtime state of e.g. an object often determines which
methods are safe to call. For example, for a Java File object, the method read() can
only be called if the file has first been opened with the open() method. Systems with
typestate, such as Plaid [2], support formal specification of typestate properties, and
enforce that programs correctly follow the specifications. In Paragon, typestate prop-
erties can be specified through the use of lock state modifiers. Paragon cannot express
features that depend on Plaid’s first-class states, e.g. “an array of open files”, but can
otherwise express solutions to their motivating examples.

7 Conclusions and Further Work

It is our expectation that one day programming languages with built-in support for ex-
pressing and enforcing information-flow concerns become widely deployed. Paragon’s
strong integration with Java and its relatively natural yet expressive policy specification
language lowers the threshold for adopting information-flow aware programming out-
side the research community. Still, much work is left to be done before Paragon can
become a serious competitor to existing programming.

One notable direction for future work in the Paragon language is concurrency sup-
port. This direction requires both theoretical and practical work, in particular if de-
classification mechanisms are shared among threads. Another planned direction is to
present a more substantial formalisation of Paragon’s type system, including a proof of
soundness with respect to information flow security.
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Online resources

Additional material can be found on the Paragon website

http://www.cse.chalmers.se/research/group/paragon

Here can be found:

• The Paragon compiler (source and binary)
• Various example programs, including the one presented in this paper
• The case studies from § 5



• Earlier papers on the Paralocks policy language and semantics

The Paragon compiler can also be tested online in a browser. We provide an interface
and some tutorials on the Paragon language on

http://teachmeparagon.nowplea.se

A The Generalised Flow Locks Framework

We introduce the basic building blocks in the policy language framework: actors, locks,
clauses and distinguished actor sets.

Actors ranged over by a, b, etc. are policy-relevant entities with information flow con-
cerns. Unlike Paralocks, in this framework we are agnostic to how actors are represented
concretely. For the purposes of information flow analysis, the only relevant information
associated with an actor is its identity, and the only criteria that an actor representation
needs to fulfil are that actor identifiers are:

• abstract, in the sense that it is not possible to create new actor identifiers in a way
not presented by the domain,

• opaque, in the sense that nothing can be assumed on the implementation of the
identifier, and

• immutable, in the sense that the same actor identity always identifies the same actor.

In previous work we used these criteria constructively, to generate an abstract set of ac-
tor identities. Here we present a more general view, allowing us to use already exisiting
entities as actors.

Distinguished actor sets ranged over byA,B, etc. are subsets on the domain of actors
A. Not all actor sets may be valid in a given instantiation of the framework, so the set
of distinguished actor sets D is a subset of P(A). We futher assume that the join (t) is
well-defined onD, possibly resulting in an empty set,⊥ (note: the join of two sets does
not have to be the exact intersection of these sets). Where it exists, we use > to denote
the superset containing all actors.

Locks denote policy-relevant facts. A lock family is a predicate σ(A1, . . . , An) over
actor sets Ai. A lock is a term σ(a1, . . . , an) where ai ∈ Ai. For a given assignment
of truth values to these terms we say that a lock is open if it is assigned true, and it
is closed otherwise. A lock state is such an assignment represented as a set of all the
locks that are open. We say that arity(σ) = n. Σ,Σ′, etc. range over sets of locks (not
necessarily of the same family).

Clauses ranged over by c1, c2, etc. are terms of the form

∀a ∈ A,∀〈b1, . . . , bn〉 ∈ B1 × · · · ×Bn.a : Σ

where the locks in Σ may contain one or more of the quantified variables. We refer
to a as the head, and Σ as the body of the clause. Intuitively, actors in the head of a
clause can be seen as observers to whom information may flow, in the presence of some
assignment in which all predicates in the body hold (for some instantiation of bi), i.e. a
lock state in which all locks in Σ are open.



Policies are sets of clauses, denoted by {c1; . . . ; c2}.

Lock properties are rules of the form

∀〈a1, . . . , an〉 ∈ A1 × · · · ×An,
∀〈b1, . . . , bm〉 ∈ B1 × · · · ×Bm.

σ(a1, . . . , an) : Σ

that allow for locks to be implicitly opened. For example, the property ∀x ∈ A,∀y ∈
B.L(x) : M(x, y) under any lock set automatically opens the lock L for each actor in
set A, for which the lock M in relation to some y ∈ B is open. A set of lock properties
is referred to as the global policy G.

A.1 Semantics and Operations in GFL

In [29] we presented a semantics for Paralocks based on Datalog, a logic programming
based query language [CGT89]. We update this semantics to match the Generalised
Flow Locks framework. In short, we reserve a unary predicate Flow and transform
policies into Datalog programs, where the head a of the clause becomes a conclusion of
the fact Flow(a). The semantics of a policy is then simply defined as the set of actors
on which its Datalog transformed form can conclude the Flow predicate.

We define the semantics of the necessary lattice operations in similar terms. The
meet (u) of two policies is the union of Flow facts derived by each individual policy,
whereas the join (t), being the dual, matches the intersection. One policy is ordered
less restrictive than another policy (v) if its set of Flow facts form a superset of the
other.

We define the semantics of policies and the operations on them in more detail in
appendix B, including the presence of a global policy and lock states. In appendix C we
show that our implementations of the lattice operations are sound for the GFL frame-
work, and sound and complete for the framework’s specialization to the Paragon policy
language, which is discussed next.

B Flow Locks framework: semantics and operations

B.1 Flow Locks Semantics

In [29] it was identified that the high similarity with Datalog programs provides a nat-
ural semantics for Paralocks policies. A Datalog program is a set of declarative logic
rules where function symbols are absent, forming a decidable fragment of Horn logic.
We shortly define the Datalog semantics and then provide a semantics to Flow Locks
policies by transforming them into Datalog programs.

In Datalog an atom is of the form R(T ) and if the vector T does not contain any
free variables, the atom is called a fact. A set of facts is called an interpretation. A rule
is of the form R0(T 0) :− R1(T 1), . . . , Rn(T n) and a program is a set of these rules.



Definition 1 (Direct Consequence Operator). The direct consequence operator δ takes
a Datalog programΠ , an interpretation I and produces another interpretation δ(Π, I) =
I ′. The interpretation I ′ is computed as I ′ = I ∪ N . For each rule R0(T 0) :−
R1(T 1), . . . , Rn(T n) ∈ Π and any ground substitution θ such that ∀i > 0.Ri(T i)θ ∈
I , we have R0(T 0)θ ∈ N .

Intuitively δ can be thought of as ‘applying all rules once’ on a database of facts,
and returning the old database extended with the newly derived facts.

Definition 2 (Models, |=). A model for a Datalog program Π is an interpretation M
such that δ(Π,M) = M . A model is called minimal iff M ⊆ M ′ for any model M ′ of
Π . We write Π |= f iff f ∈M and M is a minimal model for Π .

To guarantee that we do arrive at a minimal fixed point each rule has to be safe: each
variable appearing in the head of the rule must appear in the body of the rule as well.

Returning to Flow Locks, we transform a Flow Locks policy to a Datalog program
as follows. Given S the set of defined actor sets, we assume the presence of a reserved
predicate (lock) inAi(Ai) for each Ai ∈ S that is open for exactly those actors that
make up the set Ai. We further reserve the unary lock Flow(>) which can be opened
for any actor. Then the function τ converts clauses and lock properties to Datalog rules,
(global) policies and lock states to Datalog programs as follows:

τ(∀a ∈ A : Σ) = Flow(a) :− inA(a), Σ

τ(∀〈a1, . . . , an〉 ∈ A1 × · · · ×An.σ(a1, . . . , an) : Σ) =

σ(a1, . . . , an) :− inA1(a1), . . . , inAn(an), Σ

τ(p) = {τ(c) | c ∈ p} τ(G) = {τ(lp) | lp ∈ G}
τ(LS) = {σ(a) :− ∅ |σ(a) ∈ LS}

For brevity we omit the variables only occurring in clause bodies. Note that the
inA(a) predicate guarantees that all rules in the resulting program are safe.

We now define the semantics of a policy p in the presence of global policy G and
lock state LS as:

JpKGLS = {a | τ(p) ∪ τ(G) ∪ τ(LS) |= Flow(a)}

That is, a policy can be semantically considered as the set of actors for which it can
derive the Flow predicate, using additional rules in G and facts in LS.

B.2 Lattice operations

With this semantics for policies, the semantics for the lattice of Flow Locks policies is
readily defined (we omit the G and LS annotations):

Jp t qK = JpK ∩ JqK
Jp u qK = JpK ∪ JqK
Jp v qK = JpK ⊇ JqK

For the meet and join operation we can provide the following algorithms.



Definition 3 (Meet). Since policies are sets of clauses, we simply compute p u q :=
p ∪ q.

Definition 4 (Join). The join p t q is the cross-product of clauses in p and q, with the
join of two individual clauses computed as:

(∀a ∈ Ap, bpi∈Bpi.a : Σp)t(∀a ∈ Aq, bqi∈Bqi.a : Σq)

= (∀a ∈ Ap tAq, bpi∈Bpi, bqi∈Bqi.a : Σp ∪Σq)

For the purpose of the proof of completeness, we remove those clauses whereAp tAq =
∅.

For the policy ordering operation we use the uniform containment operation for
Datalog programs, as proposed by Sagiv in [Sag88].

Definition 5 (Policy Ordering). We compute p vG,LS q as τ(q) vU τ(p) ∪ τ(G) ∪
τ(LS).

By [Sag88], Π1 vU Π2 iff for each rule R0(T 0) :− Σ ∈ Π1 the following holds.
Let θ be a substitution replacing all variables in the rules with skolem constants. It
should hold that Π2 ∪Σθ |= R0(T 0)θ.

All three operations were shown to be sound and complete for Paralocks. In the
presence of distinguised actor sets we lose completeness of the join operator and the
ordering comparison. However we regain that completeness when using Java’s class
hierarchy for the actor sets, as we do in Paragon. The soundness and completeness, in
the Paragon setting, is proven in Appendix C.

It can be easily shown that both the Flow locks language from our early work
[BS06], and its Paralocks [5] successor, are both specialisations of the Generalized
Flow Locks Framework. We show the details in appendix B.3.

Logic-based languages with typing By extending the Flow Locks framework with
actor sets our policy language goes beyond standard, single-domain Datalog. Adding
types to Datalog or similar logic-based languages has been considered before. An early
suggestion is an extension to Prolog by Mycroft and O’Keefe [MO84], based on Hindley-
Milner. For Datalog Fruhwirth et al. [FSVY91] introduce a type system where types are
presented as unary predicates, much like we use in the semantics of our policies. A sim-
ilar approach is presented by Zook et al. [ZPSS09] but with a different, more efficient,
way of enforcing the types. However, none of these perfectly matches the Flow Locks
framework. The clauses in our policies have variables rather than predicates as heads,
the types of which can be arbitrarily constrained. This property in particular does not
yet seem to exist in other logic-based languages.

B.3 Flow Locks and Paralocks as instances of Generalised Flow Locks

Paralocks The only difference between Paralocks and GFL is the introduction of
distinguished actor sets. Hence, by simply instantiating this with only one set, call it
Actor, we get the same specification as Paralocks.



Flow Locks The previous Flow Locks language can be seen as an instance of Paralocks,
and therefore by transitivity as an instance of the Flow Locks Framework. It simply is
the same language as Paralocks, in which locks are unary and therefore no variables can
occur in policies.

C Lattice operations proofs

In this appendix we show that our implementations of the lattice operations are both
sound and complete in the setting of Paragon. To simplify the proofs we first introduce
a tighter relation between the semantics of a policy and the direct consequence operator
δ.

We introduce the assisting function

M(G,LS) = {f | τ(G) ∪ τ(LS) |= f}

giving the minimal model of τ(G) ∪ τ(LS). By our restrictions, we know that this
minimal model never contains a predicate on Flow . For any policy p, its transformation
τ(p) only concludes facts on Flow . No rule in G has Flow in its body, so adding τ(p)
to τ(G) ∪ τ(LS) will strictly extend the minimal model with facts on Flow . We can
thus safely replace τ(G) ∪ τ(LS) with its minimal model as follows:

{f | τ(p) ∪ τ(G) ∪ τ(LS) |= f} =
{f | τ(p) ∪ τ(M(G,LS)) |= f}

Furthermore, since Flow does not appear in the body of clauses in p, we have that

{f | τ(p) ∪ τ(M(G,LS)) |= f} = δ(τ(p),M(G,LS))

This means that we can conclude:

JpKGLS = {a | Flow(a) ∈ δ(τ(p),M(G,LS))} (1)

C.1 Soundness and completeness of u

Since the meet of two policies is defined as being simply the union of the clauses in
those policies, we have to show that

Jp ∪ qKGLS = JpKGLS ∪ JqKGLS

for any global policy G and any lock state LS. Let m = M(G,LS), τ(p) = P and
τ(q) = Q. By definition of δ,

δ(P ∪Q,m) = δ(P,m) ∪ δ(Q,m)

From which we conclude:

{a | Flow(a) ∈ δ(P ∪Q,m)} =
{a | Flow(a) ∈ δ(P,m)} ∪ {a | Flow(a) ∈ δ(Q,m)}

Which, by (1), is what we had to show.



C.2 Soundness and completeness of t

The join of two policies p, q is computed as {cp t cq | cp ∈ p, cq ∈ q}, where t is
defined on two clauses as

(∀a ∈ Ap, bpi∈Bpi.a : Σp)t(∀a ∈ Aq, bqi∈Bqi.a : Σq)

= (∀a ∈ Ap tAq, bpi∈Bpi, bqi∈Bqi.a : Σp ∪Σq)

We show that this implementation is both sound and complete in the context of Paragon.
That is

Jpt qKGLS = JpKGLS ∩ JqKGLS
Let m = M(G,LS), τ(p) = P , τ(q) = Q and τ(pt q) = PQ. By (1) proving this
property is equivalent to showing that for any constant x:

Flow(x) ∈ δ(P,m) and Flow(x) ∈ δ(Q,m) ⇐⇒
Flow(x) ∈ δ(PQ,m)

Soundness (⇐) By having Flow(x) ∈ δ(PQ,m) and by the definition of t
and τ we know that

∃rpq ∈ PQ such that rpq = Flow(a) :− inApq(a), Σp, Σq

and ∃θpq such that aθpq = x and
{inApq(x)} ∪Σpθpq ∪Σqθpq ⊆ m

∃rp ∈ P such that rp = Flow(a) :− inAp(a), Σp

∃rq ∈ Q such that rq = Flow(a) :− inAq(a), Σq

Where Apq = Ap tAq . Hence by having the assumption that the inA locks are always
appropriatly opened, we can deduce from inApq(x) ∈ m that also inAp(x) ∈ m and
inAq(x) ∈ m. Thus, the rules rp and rq can each derive the fact Flow(x) given m, and
therefore Flow(x) ∈ δ(P,m) and Flow(x) ∈ δ(Q,m) which is what we had to show.

Completeness (⇒) By having Flow(x) ∈ δ(P,m) and Flow(x) ∈ δ(Q,m)
we know that

∃rp ∈ P such that rp = Flow(a) :− inAp(a), Σp and
∃θp such that aθp = x and
{inAp(x)} ∪Σpθp ⊆ m

∃rq ∈ Q such that rq = Flow(a) :− inAq(a), Σq and
∃θq such that aθq = x and
{inAq(x)} ∪Σqθq ⊆ m

By the definition of t and τ , we also know that there has to be a rule rpq ∈ PQ
such that rpq = Flow(a) :− inApq(a), Σp, Σq where Apq = Ap tAq . Since we do
not constrain the join operation on actor sets to be the exact intersection of sets, it
could be that x is in the set Ap and the set Aq , but not in the set Apq . Therefore, this
implementation operation is not complete in general. However, in Paragon we use the



Java class hierarchy in which we do always get the exact intersection of sets. To be
precise Apq is always either the same as Ap or as Aq . That is, in order for an element to
be both in Ap and Aq , one class has to be a subtype of the other (consider for example
File t Object = File). Without loss of generality we say that Apq = Ap. Then,
assuming disjointness of variables in Σp and Σq apart for a, we construct θpq = θp · θq .
We now have that {inApq(a)θpq} ∪ Σpθpq ∪ Σqθpq ⊆ m. Therefore, rpq can derive
Flow(a) on m, and thus Flow(a) ∈ δ(PQ,m) – which is what we had to show.

C.3 Soundness and completeness of v

(Sketch) In [Sag88] Sagiv shows that the uniform containment operation is both sound
and complete, if in Π1 vU Π2 program Π1 is a non-recursive Datalog program. This
is the case for our policy ordering check (definition 5), since Π1 = τ(p), which cannot
be recursive.

Sagiv’s proof operates on a standard, single domain Datalog setting and consists of
showing that for each databaseD for whichΠ1 can derive some fact,Π2 should be able
to derive that same fact. In the Flow Locks framework we have multiple domains but
translate this back to single-domain Datalog by modelling each domain as a reserved
predicate. Therefore, Sagiv’s proof will consider databases that are not possible to exist
in the Flow Locks setting and is thus not complete.

For example, consider the domain of numbers, which we divide in the sets Neg of
negative numbers, N of natural numbers and Z of integers. Note that Neg ∪N = Z. We
define two policies p and q and their transformations:

p = {∀a : Neg .a;∀a : N.a}
τ(p) = {Flow(a) :− inNeg(a);Flow(a) :− inN(a)}

q = {∀a : Z.a}
τ(q) = {Flow(a) :− inZ(a)}

To compare τ(p) vU τ(q) we could assume the database D = {inNeg(x)}, which
is a valid database in Datalog. τ(p) can derive the fact Flow(x) from this, τ(q) can not.
Therefore the check concludes that the ordering does not hold. However, on the Flow
Locks level we know that the database D can never exist, since every negative number
is an integer, and we assume the approriate locks to be open. I.e., in Flow Locks, if
inNeg(x) is open, then inZ(x) is known to be open as well. To enforce this is standard
Datalog we add appropriate lock properties.

In the other direction however, this does not work. To compare τ(q) vU τ(p) we
could assume the database D = {inZ(x)} from which τ(q) can derive Flow(x), but
τ(p) cannot. Again, we know that in Flow Locks D cannot exist, because either the
lock for negative number or for natural numbers has to be open as well. But here we
cannot use lock properties to model this – it is therefore that the uniform containment
check is not complete in the general Flow Locks context.

Fortunately in Paragon we have instantiated the distinguished actor sets by Java’s
class hierarchy. And since any class can be extended we never arrive at a situation such



as described here where we know that certain subclasses entirely make up the super-
class. Therefore, the uniform containment check is still complete when specializing
Flow Locks to Paragon’s policy language.

D Additional Language Features

In this section we present some more technical features of the Paragon language.

D.1 Type parameters

Java, since the introduction of “Generics” in Java 5.0, allows types and methods to
be parametrised by types, giving Java parametric polymorphism. Paragon introduces
several new entities – actors, policies and locks – that affect typing in various ways. It
is natural to extend the polymorphism to also include these aspects.

Thus in Paragon ordinary reference types have the implicit kind type. Type param-
eters of kind type need not be annotated, like in vanilla Java. For the Paragon-specific
entities we introduce kind annotations, to separate them from each other and from ordi-
nary types. type as its kind. For policies we can simply reuse their type as kinds as well.
We can do the same for locks though we need to be able to parametrise over not just
single locks, but rather sets of locks. To avoid introducing new keywords, we reuse the
syntax for arrays for this purpose, i.e. the kind annotation on parameters taking sets of
locks is lock[]. The following example represent a class that is parametrised on one
actor of kind File, a policy and a base type:

1 public class C<File f, policy p, G> { ... }

The names f, p and G can be used inside the class body wherever members of their kind
can occur. In addition, f is also passed as a regular instance of the File class.

D.2 Exceptions and indirect control flow

The static policy type system in Paragon tracks two kinds of information flows: direct
flows arising from assignments, and indirect flows arising from control flow. It makes no
attempt to track flows arising from termination – it is termination insensitive. If excep-
tions could not be caught, an exception would be the same as (premature) termination,
which means we would not need to care about them. However, the catch mechanism
makes exceptions rather a kind of control flow primitive, needing special attention.

In Java, subclasses of RuntimeException are unchecked. This means that meth-
ods need not declare if they could terminate with such an exception. Examples of run-
time exceptions are ArithmeticException which for instance arises from division
by 0, ArrayOutOfBoundsException and NullPointerException.

It should be obvious that any exception that can be caught is a potential channel for
information flow, which means that in Paragon all exceptions must be checked. This
in turn implies the need for analyses that can rule out the possibility of exceptions, in
particular a null pointer analysis is needed to avoid that every instance field or method
use incurs the need to declare a possible NullPointerException.



E Paragon type system

In this appendix we give the type system for the parts of the analysis corresponding to
lock state approximation and policy constraint generation, for a sizeable subset of Java.
Our implementation covers a larger subset still, but here we leave out a number of fea-
tures that do not add anything to the presentation. The features left out are enums, static
fields, arrays (as in the syntactic sugar), inner classes, casts, most operators, labeled
statements, as well as expressions and statements whose typing would be very similar
to those already covered (e.g. do is very similar to while).

Lock state approximation Let us first look at lock states, and define some convenient
operations. First, in our analysis a lock state is represented concretely as the set of locks
being open in that state. We will also have use for the concept of an unreachable state,
represented with the distinguished value ⊥. We let LS range over values in the domain
of lock states including ⊥.

Next, we will have use for the concept of a lock modification, representing a set
of changes to be applied to a lock state. We model this concretely as a tuple (Lo, Lc),
where Lo is a set of locks to be opened, and Lc is a set of locks to be closed. Here we
overload ⊥ and identify it with the tuple (∅,∅), i.e. no modifications.

We now need two (overloaded) operations, � and �, respectively corresponding to
sequential and parallel composition of lock states and lock modifications. We have that:

LS1 � LS2 = LS1 ∩ LS2

LS � (Lo, Lc) = (LS \ {L(a1, . . . , an) | L(b1, . . . , bn) ∈ Lc, bi ' ai}) ∪ Lo
(Lo1, Lc1) � (Lo2, Lc2) = (Lo1 ∩ Lo2, Lc1 ∪ Lc2)
(Lo1, Lc1)� (Lo2, Lc2) = (Lo2 ∪ (Lo1 � (∅, Lc2)), Lc2 ∪ (Lc1 \ Lo1))

The above definitions hold when the lock state operands are not ⊥. We have that ⊥
is the identity element for �, and the 0-element (annihilator) when appearing as the
left-hand operand of �.

Now we can turn to the analysis itself. The behaviour of the annotating analysis is
captured by the following declarative judgment, covering both expressions and state-
ments:

LS ` e; LS′, X

where

• LS and LS′ are the lock states prior to and after evaluating e,
• X maps exception types (and pseudo-exceptions) to the delayed lock states that will

hold once the appropriate catch-clause is reached. If no exceptions can be caused
by the term under scrutiny, we omit X in the rule. We let X be total, where for
every exception type τ not explicitly mentioned, X(τ) = ⊥.

We also assume a global environment M , which is a mapping from reference types
and method names to a four-tuple, where the first three components are the locks that



method respectively expects, opens and closes, and the final component, LX , is a map-
ping from exception types to lock modifications should the method terminate excep-
tionally. Again we let LX be total such that for every exception type τ not mentioned,
LX(τ) = ⊥.

Further, a rule for this judgment is valid only if each occurence of the mentioned
language constructs is annotated with the correct lock state.

We will consistently use superscripts (sometimes in conjunction with square brack-
ets for scoping) to denote annotated information, while subscripts or primes serve to
disambiguate terms. Technically, an expression e will also be annotated with informa-
tion from previous passes. We will omit such annotations when they are not needed by
the rule.

Looking at expressions first, we omit the rules for literals, the expressions this and
null, and variables; they do nothing interesting in this context. We further omit the
rules for binary operators as they do nothing but inductively call their sub-components,
and for instance creation which is very similar to method calls. This leaves the rules for
method calls, assignments, and the conditional ?: operator. The rule for assignments is
as follows, where the only interesting part to note is the lock state that the assignment
gets annotated with, which will later be used by the constraint generation.

LS ` e; LSe;X

LS ` x =LSe e; LSe;X
(Assign)

This rule deals with variable assignment. Nothing changes for field assignments; for
primary field assignments (where the object is calculated from an expression) or ar-
ray updates, the only difference is that the sub-expressions of those left-hand sides are
analysed first.

The rule for method calls is more involved:

LS ` e; LS0;X0

LSi−1 ` ei ; LSi;Xi

M(τ,m) = (Le, Lo, Lc, LX) Le ⊆ LSn
LS ` eτ .m(e1, . . . , en)

LSn ; LS′;X ′
(Call)

where LS′ = LSn � (LO, LC), and X ′ = X0 � . . . �Xn � LX . Again, note the lock
state annotation method call. As noted, the rule for instance creation is near identical
(assuming that M also stores lock state signatures for constructors).

Finally (for expressions), the rule for the conditional operator:

LS ` ec ; LSc;Xc

LSc � Li ` ei ; LSi;Xi

LS ` ec?(L1,L2)e1 : e2 ; LS1 � LS2;Xc �X1 �X2

(Cond)

The interesting thing to note here is that we expect the condition to be annotated, from
a previous phase, with any locks known to be open or closed if the condition is true
and false, respectively, and we take this into account when analysing and annotating the
expressions in the branches.

Turning to statements, empty statements and expression statements add nothing in-
teresting, and if statements are very similar to the conditional operator, so we omit



these. Further, many of the pseudo-exceptions all follow the same pattern: continue,
break and return without a value – we show only the first of these. Apart from these
we have while, throw, return with a value, try-catch-finally, and the Paragon-
specific open and close statements.

The rules for open and close were already shown in the main paper, but we repeat
them here for completeness:

LS ` open L(a1, . . . , an);; LS ∪ {L(a1, . . . , an)}
(Open)

LS ` close L(a1, . . . , an);; LS \ {L(b1, . . . , bn) | bi ' ai}
(Close)

The rule for while-loops is as follows:

LS � LSs �Xs(continue) ` ec ; LSc;Xc

LSc � Lt ` s; LSs;Xs

LS ` while(Lt,Lf ) (ec) do s; (LSc ∪ Lf ) �Xs(break);X
′

(While)

where X ′ = Xc[continue 7→ ⊥, break 7→ ⊥]. First, note the annotations on the
condition which affect the analysis of both the loop body and the lock state after the
loop ends. Second, note the circular dependency between the lock state in effect after
the body is executed and the lock state at the beginning of the condition (it is possible to
unroll the loop and check the condition twice, to get an algorithmic version – only one
unrolling is necessary, due to the pessimistic approximation of lock states). Third, the
evaluation of the body s may have been prematurely aborted through a continue or
break, and execution continued at the relevant places. In the exception state after the
loop we want to reset the registered lock states for these pseudo-exceptions to what they
were before the loop, in case there are nested loops. In effect, the while-loop serves as
(two nested) try-catch for the two pseudo-exceptions.

For thrown exceptions we have the following rule:

LS ` e; LSe;Xe

LS ` throwLSe eτ ;; ⊥;Xe[τ 7→ Xe(τ) � LSe]
(Throw)

Three things to note: first, the lock state after this point is ⊥, marking an unreachable
state (“dead code”); second, the throw is annotated with the lock state; third, we regis-
ter in the outgoing exception map that an enclosing catch block might start in the lock
state in effect here, LSe. Since an exception of the same type could be thrown in several
places within the same try-catch, we must also take previously registered exception
states into account.

The rules for the pseudo-exceptions are simpler versions of this, so we omit them
here.

Finally we have the rules for try-catch-finally blocks. Here we assume for
simplicity that all such statements are unrolled to have either a single catch block, or a
finally block. We then look at the two cases separately:

LS ` st ; LSt;Xt

Xt(T ) ` sc ; LSc;Xc

LS ` try st catch (Tx) sc ; LSt � LSc;X ′
(TryCatch)



where X ′ = Xc �Xt[T 7→ ⊥]. If we reach the start of the catch-block, the lock state in
effect must be that which was registered by a corresponding throw (or several) inside
st. All exceptions are still valid after the whole try-catch completes, except the one
caught, as mirrored by the outgoing exception map.

The rule for try-finally is then as follows:

LS ` st ; LSt;Xt

LS′ ` sf ; LSf ;Xf

LS ` try st finally sf ; LSt � LSc;Xt �Xf
(TryFinally)

where LS′ = LSt � {X(T ) | T is a reference type}. The finally-block will be
executed regardless of what exceptions that may have been thrown inside the try-
block, so we must assume that any of them may be the cause of the lock state in effect.

Policy constraint generation This phase is captured by the following judgment, where
we assume that the expression e has been properly annotated from the lock state approx-
imation phase:

EX; pcB;PCE ` e : p; PCE′, θ

where

• p is the effective policy of the expression.
• EX is an environment containing registered policies of enclosing exception han-

dlers – catch blocks, or exceptions declared to be thrown in the enclosing method
signature. We omit it for the rules that do not use it.

• pcB is a policy serving as a so called program counter, whose purpose is to con-
strain side-effects to prevent indirect flows. Such constraints are induced by being
at a point in the control flow graph that was reached due to branches and/or (the
presence or absence of) exceptions. pcB deals with branches, and since branches
are lexically scoped, so pcB need only appear on the left-hand side.

• PCE deals with the indirect flows due to exceptions. Since separate exceptions
have separate areas of influence, we need to know the influence of each exception
separately in order to be able to turn them off appropriately. PCE is thus a map
from exception types to policies, each of which serves as a program counter. Unlike
branches, the influence of exceptions on the other hand follows the execution path,
so PCE is propagated as a state that is successively updated.

• θ is the set of constraints that must hold for this expression to adhere to the stated
information flow policies.

The judgment for statements is similar, only statements have no effective policy.
We implicitly assume an environment E containing policy signatures for fields,

variables, methods and locks, as well as the declared return policy of the enclosing
method. We also assume a set of global lock properties G, which would formally be
added as a subscript to every constraint, e.g. p vG,LS q, however we omit it since it
appears the same everywhere.

The rules for literals, this and null are uninteresting. The rule for field derefer-
encing is as follows:

pcB;PCE ` e : pe ; PCE′, θe E(τ, f) = pf

pcB;PCE ` eτ .f : pe t pf ; PCE′, θe
(Field)



The only interesting thing to note is that the policy is the join of the policies of the
containing object and the field. The rule for binary operators is very similar:

pcB;PCEi−1 ` ei : pi ; PCEi, θi
pcB;PCE0 ` e1 ⊕ e2 : p1 t p2 ; PCE2, θ1 ∪ θ2

(Field)

In the rule for conditionals we extend the branch PC to constrain indirect flows in the
branches:

pcB;PCE ` ec : pc ; PCEc, θc
pcB t pc;PCEc ` ei : pi ; PCEi, θi

pcB;PCE ` ec?e1 : e2 : pc t p1 t p2 ; PCE1 t PCE2, θc ∪ θ1 ∪ θ2
(Cond)

An assignment constitutes an actual information flow, so the rule for assignments is
where many of the constraints arise:

pcB;PCE ` eo : po ; PCEo, θo
pcB;PCEo ` e : pe ; PCEe, θe

pcB;PCE ` eτo .f =LS e : po t pf ; PCEe, θo ∪ θe ∪ θ
(FieldAssign)

where pf = E(τ, f) and θ = {pe vLS pf ,
⊔
PCEe t pcB v pf , po v pf}. The three

constraints generated at this rule have the following purposes:

• pe vLS pf checks that the policy of the data flowing into field f is no more restric-
tive than the policy declared in the signature of f , relative to the lock state to allow
for declassification.
• pcB t PCEe v pf ensure that no indirect flows arise due to enclosing branches

(pcB) or by being within the area of influence of some expression(s) (PCEe),
respectively.
• po v pf ensures that the value of the object expression o cannot indirectly be

revealed, in a so called laundering attack, by changing a field whose policy is less
restrictive than that of the object.

Finally, the rule for method calls:

EX; pcB;PCE ` eo : po ; PCE0, θo
EX; pcB;PCEi−1 ` ei : pi ; PCEi, θi

EX; pcB;PCE ` eτo .m(e1, . . . , en)
LS : po t pm ; PCE′, θo ∪

⋃
θi ∪ θ ∪ θx

(Call)

Here we assume E(τ,m) = (pm, pw, PP, PX), where PP is a mapping from pa-
rameter positions to the parameter policy signatures of the method, and PX is a map-
ping from the method’s checked exception types (and pseudo-exceptions) to policies.
We then have that θ = {pi vLS PX(i), pcB t PCEn v pw, po v pw}, θx =⋃
{{PX(τ) v EX(τ), EX(τ) v PX(τ)} | τ is an exception type}, andPCE′(τ) =

PCEn(τ)t PX(τ) for all exception types τ .
The constraints in θ here are similar in spirit to the ones for assignment, only here

the write effect of the method, pw, is used instead of the policy of the updated field, and
there are several direct flows from argument values to parameters. The constraints in θx
check that the policies of the exceptions potentially thrown by the method match those



expected by the environment. Since the policies are used both as constraints of effects
in the area of influence, and as the effective policy of the exception value being thrown,
the inequality must hold in both directions.

The outgoing exception PC map is updated to take into account all exceptions po-
tentially thrown by the method.

For statements, the rules for empty statements and expression statements are unin-
teresting, and the rule for if statements mirrors that for conditional expressions.

The rule for while-loops is as follows:

pcB t pc;PCE′ ` ec : pc ; PCEc, θc
pcB t pc;PCEc ` s; PCEs, θs

pcB;PCE ` while (ec) do s; PCE′′, θc t θs
(While)

where

• PCE′(continue) = ⊥ and PCE′(τ) = PCE(τ)t PCEs(τ) for all other τ ,
• PCE′′ = PCEc[continue 7→ ⊥, break 7→ ⊥],

Note in particular that the entire loop, including the condition itself, is constrained
by the policy of the condition.

The rules for return and throw are near identical, we show only that for return:

EX; pcB;PCE ` e : pe ; PCEe, θe

EX; pcB;PCE ` returnLS e; PCEe[return 7→ EX(return)], θe t θ
(Return)

where θ = {pe vLS EX(return)}. Here we have a direct flow of the returned value
back to the caller of the enclosing method, and thus the lock state is taken into account.
The expected policy of the returned value is found in the enclosing exception environ-
ment.

The rules for the pseudo-exceptions are even simpler, so we omit them.
For try-catch-finally, again we assume an unrolling so that each block is ei-

ther try-catch or try-finally.

EX[T 7→ px]; pcB;PCE ` st ; PCEt, θt
EX; pcB;PCEt[T 7→ PCE(T )] ` sc ; PCEc, θc

EX; pcB;PCE ` try st catch (Txpx) sc ; PCEc, θt ∪ θc
(TryCatch)

Note first that we assume the parameter of the catch block to be annotated with its
calculated policy px from a previous phase. This policy then serves as the expected
policy of thrown exceptions of type T in the try block. The catch block is only in the
area of influence from exceptions of type T if they were already thrown before reaching
this try-catch.

pcB;PCE ` st ; PCEt, θt
pcB;PCE ` sf ; PCEf , θf

pcB;PCE ` try st finally sf ; PCE′, θt ∪ θf
(TryCatch)

where PCE′(τ) = PCEt(τ)t PCEf (τ). Here, the interesting thing to note is that
we analyse the finally-block under the same exception PC map, PCE, as the try-
block. The reason is that the finally-block will always be executed no matter what



exceptions are thrown in the try-block, so it will not be in the area of influence of any
of those. Any code following this try-finally statement will still be within the area
of influence of any as-of-yet uncaught exceptions from within the try-block, which is
mirrored by the outgoing exception PC map, PCE′.

Finally we look at the Paragon-specific statements open and close. Locks too have
policies, and opening or closing a lock is an effect visible at the level of that policy,
hence we must take implicit flows into consideration:

pcB;PCE ` open L(a1, . . . , an) ; PCE, {
⊔
PCE t pcB v E(L)}

(Open)

The rule for closing is identical.
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