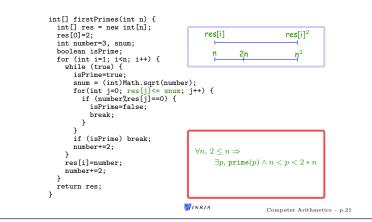


Knuth Algorithm



Example of properties

Upper Bound on the Product of Prime Numbers

$$\prod_{p \le n} p < 4$$

 $\begin{array}{l} \text{By Strong Induction on } n \\ 2 < 4^2 \\ \text{If } n \text{ is odd, } \prod_{p \leq n+1} p = \prod_{p \leq n} p < 4^n < 4^{n+1} \\ \text{If } n \text{ is even, } \prod_{p \leq 2m+1} p = (\prod_{p \leq m+1} p) \quad (\prod_{m+1 < p \leq 2m+1} p) \\ \prod_{p \leq 2m+1} p < 4^{m+1} \quad (\prod_{m+1 < p \leq 2m+1} p) \\ \prod_{p \leq 2m+1} p < 4^{m+1} \binom{2m+1}{m+1} \\ \prod_{p \leq 2m+1} p < 4^{m+1} 4^m \\ \prod_{p \leq 2m+1} p < 4^{2m+1} \end{array}$

Bertrand Postulate

For n greater than 2, there is always at least one prime number strictly between n and 2n.

Proof by Contradiction (Erdös) Upper Bound: $\binom{2n}{n} < (2n)^{\sqrt{2n}/2-1}4^{2n/3}$ Lower Bound: $4^n \le 2n\binom{2n}{n}$ Necessary Condition: $4^{n/3} < (2n)^{\sqrt{2n}/2}$

MINRIA 🛛

Necessary Condition

 $4^{n/3} < (2n)^{\sqrt{2n}/2}$

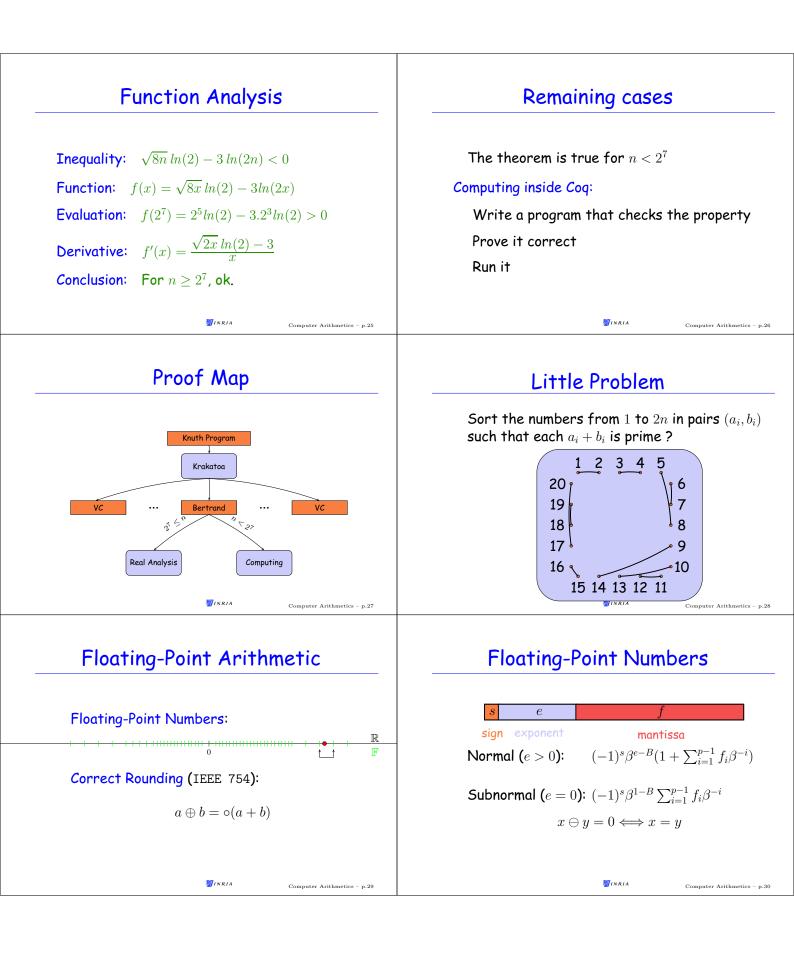
Logarithmic Scale $\frac{n}{3}\ln(4) < \frac{\sqrt{2n}}{2}\ln(2n)$

Simplification: $\sqrt{8n} \ln(2) - 3 \ln(2n) < 0$

MINRIA 🛛

Computer Arithmetics - p.24

Computer Arithmetics - p.22



Rounding: Monotone

Rounding is non decreasing:

 $\begin{array}{l} \text{Definition Monotone}(\mathcal{R}) := \\ \forall p_1 \, p_2 \, r_1 \, r_2, \, \mathcal{R}(r_1, p_1) \wedge \mathcal{R}(r_2, p_2) \wedge r_1 < r_2 \Rightarrow p_1 \leq p_2. \end{array}$

Rounding is total: Definition Total(\mathcal{R}) := $\forall r, \exists p, \mathcal{R}(r, p)$.

Rounding is compatible:

Definition Compatible(\mathcal{R}) :=

 $\forall p_1 \, p_2 \, r, \, \mathcal{R}(r, p_1) \land \mathcal{B}_p(p_2) \land p_1 \simeq p_2 \Rightarrow \mathcal{R}(r, p_2).$ $\forall p_1 \, p_2 \, r, \, \mathcal{R}(r, p_1) \land \mathcal{B}_p(p_2) \land p_1 \simeq p_2 \Rightarrow \mathcal{R}(r, p_2).$ Computer Arithmetics – p.37

Example: Expansion

Ordered list of non-overlapping floats:

<u>11011</u>000<u>11100</u>00000000<u>1111111000</u>001<u>0</u>

(11011,29); (11100,21); (11111,9); (11000,4); (10000,-3)

Addition:

$$p \longrightarrow p \oplus q$$
$$\Delta = p + q - (p \oplus q)$$

Computer Arithmetics – p.39

Computer Arithmetics - p.41

Pencil and Paper Proof

MINRIA

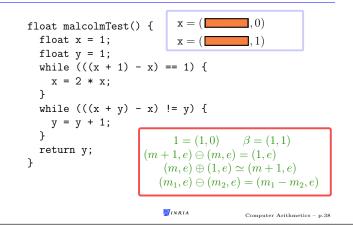
J. Demmel and Y. Hida,

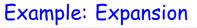
 $Accurate\ floating\ point\ summation$

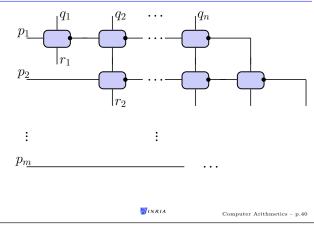
MINRIA

19 page proof

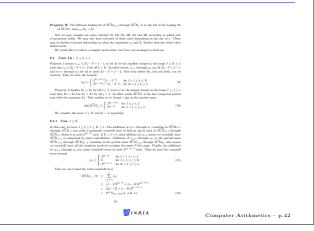
Example: Malcolm Test

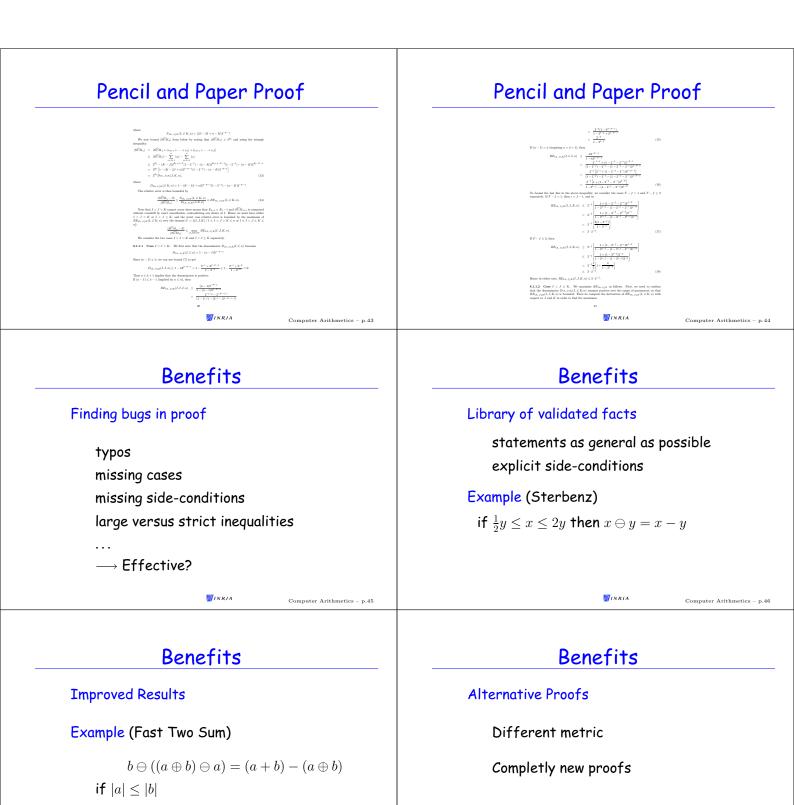






Pencil and Paper Proof





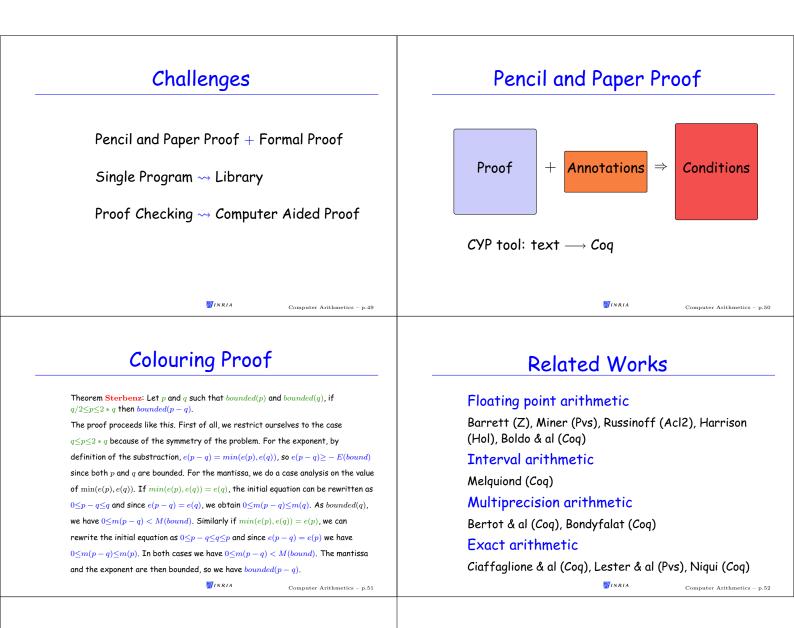
if $e_a \leq e_b$ where $a = \overline{m}_a 2^{e_a}$ and $b = \overline{m}_b 2^{e_b}$ if $e_a \leq e_b$ where $a = m_a 2^{e_a}$ and $b = m_b 2^{e_b}$

MINRIA

Computer Arithmetics – p.47

MINRIA

Computer Arithmetics – p.48



Little problem

Sort the numbers from 1 to 2n in pairs (a_i, b_i) such that each $a_i + b_i$ is prime ?

