
Formal Proofs
for

Computer Arithmetics

Laurent Théry
Marelle Project INRIA SophiaAntipolis

Computer Arithmetics – p.1

Computer arithmetics

Numbers are everywhere:
Billing system
Weather forecast
Computer vision
Cryptography
. . .

Computer Arithmetics – p.2

Computer arithmetics

Different flavours:
Integer Arithmetic: a ∈ N

Rational Arithmetic: a ∈ Q

FloatingPoint Arithmetic: a ∈ F

Interval Arithmetic: [a, b] ∈ F× F

Exact Arithmetic: a ∈ R

. . .
Computer Arithmetics – p.3

Formal Proofs

Therac25:
Arithmetic overflows could cause the software to bypass safety checks.

Patriot Missile:
The calculation of the time since boot was inacurate.

Pentium FDIV
Some division operations were wrong by a very small amount.

Ariane 5:
A conversion 64 bit floatingpoint number to 16 bit signed integer failed.

Computer Arithmetics – p.4

Outline

• A simple example that illustrates various
aspects of formal verification.

• An overview of the formalisation of
floatingpoint arithmetic.

Computer Arithmetics – p.5

An Example

Take a program that given a parameter n

returns the list of the first n prime
numbers

Prove it correct

Knuth: The Art of Computer Programming

Computer Arithmetics – p.6

Natural Numbers

Inductive N: Set :=
O : N

| S : N→N.

O, S(O), S(S(O)), ...

P (O)

∧ ⇒ ∀n, P (n)

∀n, P (n) ⇒ P (S(n))

Computer Arithmetics – p.7

Addition

Fixpoint + [a,b:N] : N :=
match a with

O => b

| S a′ => S(a′ + b)
end.

Computer Arithmetics – p.8

Multiplication

Fixpoint * [a,b:N] : N :=
match a with

O => O
| S a′ => b + (a′ * b)
end.

Computer Arithmetics – p.9

Divisibility

Definition a|b := ∃c, b = c * a.

Computer Arithmetics – p.10

Primality

Definition prime(p) :=
∀n, n|p ⇒ n = 1 ∨ n = p

∧
p 6= 1.

Computer Arithmetics – p.11

Program Correctness

Verification Condition Generator

Program + Annotations ⇒ Conditions

Krakatoa: Java −→ Coq

Computer Arithmetics – p.12

Program Correctness

{ Pre-conditions }
P

{ Post-conditions }

Example
{ odd(x) }
x = x + 2;

{ odd(x) }

Generated condition:

∀x, odd(x) ⇒ odd(x + 2)

Computer Arithmetics – p.13

Program Correctness

Loop:
while (C) {
{ invariant I

variant V
}

P

}

Computer Arithmetics – p.14

Program Correctness

Example:
while (0 < i--) {

{ invariant odd(x)
variant i

}
x = x + 2

}

Generated conditions:
∀x. odd(x) ⇒ odd(x + 2)

∀i. 0 ≤ i− 1 < i
Computer Arithmetics – p.15

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];

return res;
}

{

}

∀k. 0 ≤ k < n ⇒ prime(res[k])

∧
∀k, j. 0 ≤ k < j < n ⇒ res [k] < res [j]

∧

∀k. ∧
0 ≤ k ≤ res[n − 1]

prime(k)
⇒ ∃j. ∧

0 ≤ j < n

res [j] = k

Computer Arithmetics – p.16

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
int number = 2;
boolean isPrime;
for (int i = 0; i < n; i++) {
while (true) {
isPrime = true;
for (int j = 2; j < number; j++) {

if (number % j == 0) {
isPrime = false;
break;

}
}
if (isPrime) break;
number++;

}
res[i] = number;
number++;

}
return res;

}

2
2
3

3
4X5

5
6X7

7
8X9X10X 11
11

∀p, prime(p) ⇒ 2 ≤ p

∀n, ∃p, n < p ∧ prime(p)

∀m n, m|n ∧ n 6= 0 ⇒ m < n

Computer Arithmetics – p.17

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
int number = 2;
boolean isPrime;
for (int i = 0; i < n; i++) {
while (true) {
isPrime = true;
for (int j = 0; j < i; j++) {

if (number % res[j] == 0) {
isPrime = false;
break;

}
}
if (isPrime) break;
number++;

}
res[i] = number;
number++;

}
return res;

}

2
2
3

3
4X5

5
6X7

7
8X9X10X 11
11

∀n, 2 ≤ n ⇒
(∀p, prime(p) ∧ p < n ⇒ ¬(p|n)) ⇒

prime(n)

Computer Arithmetics – p.18

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
res[0] = 2;
int number = 3;
boolean isPrime;
for (int i = 1; i < n; i++) {
while (true) {
isPrime = true;
for (int j = 1; j < i; j++) {

if (number % res[j] == 0) {
isPrime = false;
break;

}
}
if (isPrime) break;
number += 2;

}
res[i] = number;
number += 2;

}
return res;

}

2
3

3
5

5
7

7
9X 11

11

prime(2)

∀p, prime(p) ⇒ p = 2 ∨ odd(p)

Computer Arithmetics – p.19

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
res[0] = 2;
int number = 3, snum;
boolean isPrime;
for (int i = 1; i < n; i++) {
while (true) {
isPrime = true;
snum = (int) Math.sqrt(number);
for (int j = 1; j < i && res[j] <= snum; j++) {

if (number % res[j] == 0) {
isPrime = false;
break;

}
}
if (isPrime) break;
number += 2;

}
res[i] = number;
number += 2;

}
return res;

}

2
3

3
5

5
7

7
9X 11

11

∀n p q, n = p ∗ q ⇒ p ≤
√

n ∨ q ≤
√

n

Computer Arithmetics – p.20

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
res[0]=2;
int number=3, snum;
boolean isPrime;
for (int i=1; i<n; i++) {
while (true) {
isPrime=true;
snum = (int)Math.sqrt(number);
for(int j=0; res[j]<= snum; j++) {

if (number%res[j]==0) {
isPrime=false;
break;

}
}
if (isPrime) break;
number+=2;

}
res[i]=number;
number+=2;

}
return res;

}

res[i] res[i]2

n n22n

∀n, 2 ≤ n ⇒
∃p, prime(p) ∧ n < p < 2 ∗ n

Computer Arithmetics – p.21

Bertrand Postulate
For n greater than 2, there is always at least
one prime number strictly between n and 2n.

Proof by Contradiction (Erdös)

Upper Bound:
(2n

n

)

< (2n)
√

2n/2−142n/3

Lower Bound: 4n ≤ 2n
(2n

n

)

Necessary Condition: 4n/3 < (2n)
√

2n/2

Computer Arithmetics – p.22

Example of properties

Upper Bound on the Product of Prime Numbers
∏

p≤n

p < 4n

By Strong Induction on n

2 < 42

If n is odd,
∏

p≤n+1 p =
∏

p≤n p < 4n < 4n+1

If n is even,
∏

p≤2m+1 p = (
∏

p≤m+1 p) (
∏

m+1<p≤2m+1 p)
∏

p≤2m+1 p < 4m+1 (
∏

m+1<p≤2m+1 p)
∏

p≤2m+1 p < 4m+1
(2m + 1

m + 1
)

∏

p≤2m+1 p < 4m+14m

∏

p≤2m+1 p < 42m+1

Computer Arithmetics – p.23

Necessary Condition

4n/3 < (2n)
√

2n/2

Logarithmic Scale
n
3 ln(4) <

√
2n
2 ln(2n)

Simplification:√
8n ln(2)− 3 ln(2n) < 0

Computer Arithmetics – p.24

Function Analysis

Inequality:
√

8n ln(2)− 3 ln(2n) < 0

Function: f(x) =
√

8x ln(2)− 3ln(2x)

Evaluation: f(27) = 25ln(2)− 3.23ln(2) > 0

Derivative: f ′(x) =

√
2x ln(2)− 3

x

Conclusion: For n ≥ 27, ok.

Computer Arithmetics – p.25

Remaining cases

The theorem is true for n < 27

Computing inside Coq:

Write a program that checks the property

Prove it correct

Run it

Computer Arithmetics – p.26

Proof Map

Knuth Program

Krakatoa

VC VCBertrand

2
7 ≤

n

Real Analysis

n
<

2 7

Computing

Computer Arithmetics – p.27

Little Problem
Sort the numbers from 1 to 2n in pairs (ai, bi)

such that each ai + bi is prime ?

1 2 3 4 5
20 6
19 7
18 8
17 9
16 10

15 14 13 12 11
Computer Arithmetics – p.28

FloatingPoint Arithmetic

FloatingPoint Numbers:
R

0 F

Correct Rounding (IEEE 754):

a⊕ b = ◦(a + b)

Computer Arithmetics – p.29

FloatingPoint Numbers

s

sign

e

exponent

f

mantissa

Normal (e > 0): (−1)sβe−B(1 +
∑p−1

i=1 fiβ
−i)

Subnormal (e = 0): (−1)sβ1−B
∑p−1

i=1 fiβ
−i

x	 y = 0 ⇐⇒ x = y

Computer Arithmetics – p.30

FloatingPoint Numbers

Number as pair:
Definition F := Z× Z.

Projections:
Definition m(p) := let (x,_) = p in x.

Definition e(p) := let (_,y) = p in y.

Computer Arithmetics – p.31

FloatingPoint Numbers

Value:
Definition v(p) := m(p) ∗ βe(p).

Equivalence:

Definition p ' q := v(p) = v(q).

Computer Arithmetics – p.32

Bound

Bound as pair:
Definition B := N× N.

Projections:
Definition M(b) := let (x,_) = b in x.

Definition E(b) := let (_,y) = b in y.

Computer Arithmetics – p.33

Bound

Bounded number:
Definition Bb(p):= |m(p)| ≤ M(b) ∧ −E(b) ≤ e(p).

R
0 F

Computer Arithmetics – p.34

Rounding

Rounded Mode:
Toward +∞, Toward ∞, Toward 0, Closest.

Rounded as a Predicate:

R:R → F → Prop

Computer Arithmetics – p.35

Rounding: Min Max

Elements on the left and on the right:
Definition isMin(r, p) :=
Bb(p) ∧ p ≤ r ∧ ∀q, Bb(q) ∧ q ≤ r ⇒ q ≤ p.

Definition isMax(r, p) :=
Bb(p) ∧ r ≤ p ∧ ∀q, Bb(q) ∧ r ≤ q ⇒ p ≤ q.

Rounding chooses one of those:
Definition MinOrMax(R) :=

∀p r, R(r, p) ⇒ isMin(r, p) ∨ isMax(r, p).

Computer Arithmetics – p.36

Rounding: Monotone

Rounding is non decreasing:
Definition Monotone(R) :=
∀p1 p2 r1 r2, R(r1, p1)∧R(r2, p2)∧ r1 < r2 ⇒ p1 ≤ p2.

Rounding is total:
Definition Total(R) := ∀r, ∃p, R(r, p).

Rounding is compatible:
Definition Compatible(R) :=

∀p1 p2 r, R(r, p1) ∧ Bp(p2) ∧ p1 ' p2 ⇒R(r, p2).
Computer Arithmetics – p.37

Example: Malcolm Test

float malcolmTest() {

float x = 1;

float y = 1;

while (((x + 1) - x) == 1) {

x = 2 * x;

}

while (((x + y) - x) != y) {

y = y + 1;

}

return y;

}

x = (, 0)

x = (, 1)

1 = (1, 0) β = (1, 1)
(m + 1, e) 	 (m, e) = (1, e)

(m, e) ⊕ (1, e) ' (m + 1, e)
(m1, e) 	 (m2, e) = (m1 − m2, e)

Computer Arithmetics – p.38

Example: Expansion

Ordered list of nonoverlapping floats:

11011000111000000000011111110000010

(11011,29);(11100,21);(11111,9);(11000,4);(10000,-3)

Addition:

p

q

p⊕ q

∆ = p + q − (p⊕ q)

Computer Arithmetics – p.39

Example: Expansion

p1

q1 q2 . . . qn

r1

. . .

p2

r2

. . .

... ...
pm . . .

Computer Arithmetics – p.40

Pencil and Paper Proof

J. Demmel and Y. Hida,
Accurate floating point summation

19 page proof

Computer Arithmetics – p.41

Pencil and Paper Proof
Property B: The leftmost leading bit of ̂SUM I+1 through ̂SUMn is to the left of the leading bit

of SUMI : maxk>I Ek > EI .

Now we may consider six cases, labeled 1A, 1B, 2A, 2B, 3A and 3B, according to which pair
of properties holds. We may also have subcases of these cases depending on the size of n. There
may be further subcases depending on when the exponents ek and Ej further decrease below their
initial levels.

We would like to believe a simpler proof exists, but have not managed to find one.

8.1 Case 1A - n ≤ n̄ + 1

Property 1 means eI+1 ≤ EI − F + f − 1, so let K be the smallest integer in the range I ≤ K ≤ n
such that ek ≤ EI−F +f−2 for all k > K. In other words, eI+1 through eK are all EI−F +f−1,
and eK+1 through en are all at most EI − F + f − 2. Note that either list, but not both, can be
vacuous. Thus we have the bounds

|sk| ≤

{
2EI−F+f (1− 2−f) for I + 1 ≤ k ≤ K
2EI−F+f−1(1− 2−f) for K + 1 ≤ k ≤ n

(9)

Property A implies Ek ≤ EI for all k ≥ I, so let J be the largest integer in the range I ≤ J ≤ n
such that EJ = EI but Ej < EI for all j > J . In other words ̂SUMJ is the last computed partial
sum with the exponent EI . This enables us to bound 1 ulp on the partial sums:

ulp(̂SUM j) ≤

{
2EI−F+1 for I ≤ j ≤ J
2EI−F for J + 1 ≤ j ≤ n

(10)

We consider the cases J ≤ K and K < J separately.

8.1.1 Case J ≤ K

In this case, we have 1 ≤ I ≤ J ≤ K ≤ n. The additions of sI+1 through sJ , resulting in ̂SUM I+1

through ̂SUMJ , can yield a maximum roundoff error of half an ulp in each of ̂SUM I+1 through
̂SUMJ , which is at most 2EI−F each. If K ≥ J+1, then addition of sJ+1 causes no roundoff, since
̂SUMJ+1 is computed by exact cancellation. Additions of sJ+2 through sK to the partial sums
̂SUMJ+1 through ̂SUMK−1, resulting in the partial sums ̂SUMJ+2 through ̂SUMK , also causes

no roundoff, since all the numbers involved occupies the same F -bit range. Finally, the additions
of sK+1 through sn can cause roundoff errors at most 2EI−F−1 each. Thus we have the roundoff
error bounds

|εi| ≤

2EI−F for I + 1 ≤ i ≤ J
0 for J + 1 ≤ i ≤ K
2EI−F−1 for K + 1 ≤ i ≤ n

(11)

Thus we can bound the total roundoff error

| ̂SUMn − S| ≤
n∑

i=I+1

|εi|

≤ (J − I)2EI−F + (n−K)2EI−F−1

= (2J − 2I + n−K)2EI−F−1

= 2EIN1A, J≤K(I, J,K, n), (12)

19

Computer Arithmetics – p.42

Pencil and Paper Proof
where

N1A, J≤K(I, J,K, n) = (2J − 2I + n−K)2−F−1.

We now bound | ̂SUMn| from below by noting that | ̂SUMJ | ≥ 2EI and using the triangle
inequality:

| ̂SUMn| = | ̂SUMJ + (sJ+1 + · · ·+ sn) + (εJ+1 + · · · + εn)|

≥ | ̂SUMJ | −
n∑

i=J+1

|si| −
n∑

i=J+1

|εi|

≥ 2EI − (K − J)2EI+f−F (1− 2−f)− (n−K)2EI+f−F−1(1− 2−f)− (n−K)2EI−F−1

= 2EI

[
1− (K − 2J + n)2f−F−1(1− 2−f)− (n−K)2−F−1

]

= 2EID1A, J≤K(J,K, n), (13)

where
D1A, J≤K(J,K, n) = 1− (K − 2J + n)2f−F−1(1− 2−f)− (n−K)2−F−1.

The relative error is then bounded by

| ̂SUMn − S|

| ̂SUMn|
≤

N1A, J≤K(I, J,K, n)

D1A, J≤K(J,K, n)
≡ RE1A, J≤K(I, J,K, n). (14)

Note that I = J < K cannot occur since means that EI+1 < EI − 1 and ̂SUM I+1 is computed
without roundoff by exact cancellation, contradicting our choice of I. Hence we must have either
I = J = K or I < J ≤ K, and the worst case relative error is bounded by the maximum of
RE1A, J≤K(I, J,K, n) over the domain U = {(I, J,K) | 1 ≤ I = J = K ≤ n or 1 ≤ I < J ≤ K ≤
n}:

| ̂SUMn − S|

| ̂SUMn|
≤ max

(I,J,K)∈U
RE1A, J≤K(I, J,K, n).

We consider the two cases I = J = K and I < J ≤ K separately.

8.1.1.1 Case I = J = K. We first note that the denominator D1A, J≤K(I, I, n) becomes

D1A, J≤K(I, I, n) = 1− (n− I)2f−F−1.

Since (n− I) ≤ n̄, we can use bound (7) to get

D1A, J≤K(I, I, n) ≥ 1− n̄2f−F−1 > 1−
2−1 + 2f−F−1

1− 2−f
≥ 1−

2−1 + 2−2

1− 2−2
= 0.

Thus n ≤ n̄+ 1 implies that the denominator is positive.
If (n− I) ≤ n̄− 1 (implied by n ≤ n̄), then

RE1A, J≤K(I, I, I, n) ≤
(n̄− 1)2−F−1

1− (n̄− 1)2f−F−1

=
2−1−f − 2−F−1−r

(1− 2−f)− (2−1 − 2f−F−r−1)

20

Computer Arithmetics – p.43

Pencil and Paper Proof
=

2−f (1− 2f−F−r)

1− 21−f + 2f−F−r

<
2−f

1− 21−f
. (15)

If (n− I) = n̄ (implying n = n̄+ 1), then

RE1A, J≤K(I, I, I, n) ≤
n̄2−F−1

1− n̄2f−F−1

=
2−1−f + (1− 2−f − 2−r)2−F−1

(1− 2−f)− 2−1 − (1 − 2−f − 2−r)2f−F−1

=
2−f

[
2−1 + (1− 2−f − 2−r)2f−F−1

]

(1− 2−f)− 2−1 − (1 − 2−f − 2−r)2f−F−1

=
2−f

[
1 + (1− 2−f − 2−r)2f−F

]

1− 21−f − (1− 2−f − 2−r)2f−F
. (16)

To bound the last line in the above inequality, we consider the cases F − f = 1 and F − f ≥ 2
separately. If F − f = 1, then r = f − 1, and so

RE1A, J≤K(I, J,K, n) ≤ 2−f

[
1 + (1− 2−f − 2−r)2f−F

1− 21−f − (1− 2−f − 2−r)2f−F

]

= 2−f

[
1 + (1− 2−f − 21−f)2−1

1− 21−f − (1− 2−f − 21−f)2−1

]

= 2−f

[
3(1 − 2−f)

1− 2−f

]

= 3 · 2−f . (17)

If F − f ≥ 2, then

RE1A, J≤K(I, J,K, n) ≤ 2−f

[
1 + (1− 2−f − 2−r)2f−F

1− 21−f − (1− 2−f − 2−r)2f−F

]

≤ 2−f

[
1 + (1− 21−f)2−2

1− 21−f − (1− 21−f)2−2

]

= 2−f 1

3

[
1 +

4

1− 21−f

]

≤ 3 · 2−f . (18)

Hence in either case, RE1A, J≤K(I, J,K, n) ≤ 3 · 2−f .

8.1.1.2 Case I < J ≤ K. We maximize RE1A, J≤K as follows. First, we need to confirm
that the denominator D1A, J≤K(I, J,K, n) remains positive over the range of parameters, so that
RE1A, J≤K(I, J,K, n) is bounded. Then we compute the derivatives of RE1A, J≤K(I, J,K, n) with
respect to J and K in order to find the maximum.

21

Computer Arithmetics – p.44

Benefits

Finding bugs in proof

typos
missing cases
missing sideconditions
large versus strict inequalities
. . .
−→ Effective?

Computer Arithmetics – p.45

Benefits

Library of validated facts

statements as general as possible
explicit sideconditions

Example (Sterbenz)

if 1
2y ≤ x ≤ 2y then x	 y = x− y

Computer Arithmetics – p.46

Benefits

Improved Results

Example (Fast Two Sum)

b	 ((a⊕ b)	 a) = (a + b)− (a⊕ b)

if |a| ≤ |b|
if ea ≤ eb where a = ma2

ea and b = mb2
eb

if ea ≤ eb where a = ma2
ea and b = mb2

eb

Computer Arithmetics – p.47

Benefits

Alternative Proofs

Different metric

Completly new proofs

Computer Arithmetics – p.48

Challenges

Pencil and Paper Proof + Formal Proof

Single Program Library

Proof Checking Computer Aided Proof

Computer Arithmetics – p.49

Pencil and Paper Proof

Proof + Annotations ⇒ Conditions

CYP tool: text −→ Coq

Computer Arithmetics – p.50

Colouring Proof
Theorem Sterbenz: Let p and q such that bounded(p) and bounded(q), if
q/2≤p≤2 ∗ q then bounded(p− q).

The proof proceeds like this. First of all, we restrict ourselves to the case

q≤p≤2 ∗ q because of the symmetry of the problem. For the exponent, by

definition of the substraction, e(p− q) = min(e(p), e(q)), so e(p− q)≥− E(bound)

since both p and q are bounded. For the mantissa, we do a case analysis on the value

of min(e(p), e(q)). If min(e(p), e(q)) = e(q), the initial equation can be rewritten as

0≤p− q≤q and since e(p− q) = e(q), we obtain 0≤m(p− q)≤m(q). As bounded(q),

we have 0≤m(p− q) < M(bound). Similarly if min(e(p), e(q)) = e(p), we can

rewrite the initial equation as 0≤p− q≤q≤p and since e(p− q) = e(p) we have

0≤m(p− q)≤m(p). In both cases we have 0≤m(p− q) < M(bound). The mantissa

and the exponent are then bounded, so we have bounded(p− q).

Computer Arithmetics – p.51

Related Works
Floating point arithmetic
Barrett (Z), Miner (Pvs), Russinoff (Acl2), Harrison
(Hol), Boldo & al (Coq)

Interval arithmetic
Melquiond (Coq)

Multiprecision arithmetic
Bertot & al (Coq), Bondyfalat (Coq)

Exact arithmetic
Ciaffaglione & al (Coq), Lester & al (Pvs), Niqui (Coq)

Computer Arithmetics – p.52

Little problem

Sort the numbers from 1 to 2n in pairs (ai, bi)

such that each ai + bi is prime ?

0 2n 4npp− 2n

p is prime
p− 2n is odd
p− 2n− 1 is even

Computer Arithmetics – p.53

