KRAKATOA

Reasoning on Java Programs

Christine Paulin-Mohring (with Claude Marché)
INRIA Futurs & Université Paris Sud, Orsay, France

Proofs of Programs and Formalisation of Mathematics
TYPES Summer School 2005

Warning

o KRAKATOA is based on the WHY tool and uses a model in
CoQq.

e WHY and CoqQ will be presented next week ...

These lectures mainly focus on (an example of) applying type

theory to programming language modeling and program verification

’)/7")

Outline

Introduction

Modeling JAva
o KRAKATOA

Conclusion

Demo on Saturday

3/72

Lecture 1

Introduction

Motivations

Tools & methods which improve the quality of software

development

Programs are :
e manipulated (compiled, executed) by a computer
e written and read by a human

We need :
e Less runtime errors

e Explicit link between documentation and code

5/72

Possible solutions

e Type-checking at compile time detects a certain class of errors
and reduce the number of dynamic checks

e Many common errors are undecidable :
— non-termination, division by zero ...

Abstract interpretation can help detecting certain errors

e Many more properties can be interesting for the programmer

— an array is sorted, a linked structure does not contain cycles

Logical assertions to be proved.

6/72

How to prove programs 7

e Proving programs requires to analyse a mathematical model of
the program and its specification.

e Find an apropriate model (many different semantics)
— Denotational: mathematical functions on domains
— Operational: execution steps

— Axiomatic: relation between programs and properties of
states

— Monads: pure functional terms on complex data

e Proofs can be informal on paper or formal on computer

7/72

Formal proofs on computers

Language for specifications

— Understandable by both computers and humans

A formal mathematical model for the specification language

A formal correctness relation between programs and

specifications

Support for building the mathematical model of both program
and specification and checking correctness

Which programming and specification language 7

e Most programming languages have complex syntax and

semantics

e Semantics is not always abstractly defined but can be compiler

dependent (requires a low level model of execution)

e Specification languages should be used during development and

consequentely well accepted by the programmer

9/72

What about Type Theory ?

Type theory is definitely one solution:

e Programs are purely functional terms, with a natural
mathematical model (strong termination)

e Dependent types are a natural specification language

(can express directly properties of objects and programs)

e Curry-Howard : correctness is type-checking
(of course with additional proof information)

More on this during Summer School !
The world is not yet ready to use Type Theory for programming!

10/72

What about JAVA ?

A high-level language designed for secure applications

(mobile code executed on different platforms)
e garbage collection
e strong typing at compile time
e static checking of byte-code

e dynamic checking

— security policies (sandbox, firewall)

11/72

JAVACARD

e A subset of JAVA designed for smartcards

(sequential, no dynamic loading ...)

e Additional features for smartcards :
(atomic transactions, persistent data, API ...)
e JAavACARD is a good target for verification
— simple applets ...
— evidence of security required (Common Criteria)

— many smartcards based on JAVACARD or similar

technologies

Lecture 1

Modeling JAVA (JAVACARD)

e More on strong typing
e Different approaches (deep versus shallow embedding)

e Our model of Java

14/72

Modeling JAvA

Strong typing

About strong typing

Type soundness :
ML a terminating program of type list evaluates to nil or cons

JAVA access to a field or a method of a non-null object always

succeeds
Other dynamic errors may occur :

e access to fields or methods of a null object

(raises NullPointerException)

e incorrect instantiation of arrays (raises ArrayStoreException)

Instantiation of arrays : static view

Typing rule for arrays : B < A implies B[] < Al

class A { int a; }

class B extends A { int b; }

public static void main (String args|]) {
A arrA[] ; B arrB|[| = new B[1];
arrB[0]|=new B();
arrA=arrB;
arrA [0]=new A();
System.out. println (arrB[0].b);

17/72

Instantiation of arrays : dynamic view

BrolR{@H e wmB(3 [tdises ArrayStoreException

arrB a=20
e Bl ~b=0
arrA 7 nulr/
i A
a=20

18/72

Modeling JAvA

Different approaches

Studying the JAVA or JAVACARD platforms

Type theory is a good framework to formally study the underlying
definitions, algorithms and properties.

e Type soundness
e Operational and axiomatic semantics

o JAvA & JAvACARD virtual machines

Byte-code verifiers

Sandbox or Firewall mechanisms

References

Models of plaform components using proof assistants:

e Bali Project (T. Nipkow, Munich) using Isabelle/HOL
http://isabelle.in.tum.de/Bali/

e Formavie project (Trusted Logic, Axalto) using COQ
- certification at level EAL7

- non-interference properties

e Certicartes (G. Barthe, Sophia-Antipolis) using COQ
http://www-sop.inria.fr/lemme/verificard/

Functional definition of semantics (JAKARTA)

21/72

Applications

e Better understanding of semantics

e Useful for program verification
— correct model of programs
— identify properties valid from type-checking and properties

which need logical verification

e Compilers, verifiers are programs that are likely to be written

in a functional way

22 /72

Proving a specific JAVA program

e Deep embedding : formalisation of the programming language

(can reuse the work on platforms)
— Abstract syntax tree formalised in the proof assistant
— Translation from syntax to semantics done by an internal
function
e Shallow embedding : direct representation of the program as a
logical object
— Programs constructions interpreted as notations

— Translation from syntax to semantics done at the meta-level

23/72

Example

‘ Concrete Syntax‘

expr :=var | cte | expr.field | expr op expr

Semantics

Values are integers, null object or references in the heap

Example : deep embedding

Abstract syntax trees

type expr = Var of var | Cte of int |
Acc of expr * field |
Bin of expr * op * expr

Values
type value = Int of int | Null | Ref of addr
Stack and heap

type env = var — value
type store = addr — (field — value)

25/72

Relational semantics

sem(s:env,h:store,e;expr,v:value) inductively defined

sem(s, h,Var(v),s(v)) sem(s,h,Cte(n),Int(n))

sem(s, ha ¢, Ref (a))
sem(s, h,Acc(e, f), h(a, f))

sem(s, h,el, Int(nl)) sem(s,h,e2, Int(n2))
sem(s, h,Bin(el, op, €2), Int(semop(nl,n2)))

26 /72

Functional semantics

sem(s:env,h:store,eiexpr) value option recursively defined

sem(s,h,Var(v)) = Some(s(v))
sem(s,h,Cte(n)) Some (Int(n))
sem(s,h,Acc(e,f)) = match sem(s,h,e) with

None = None

| Some(Null) = None

| Some(Ref(a)) = Some(h(a,f))

| Some(Int(n)) = None %Should not happen

sem(s,h,Bin(el,op,e2)) =
match sem(s,h,el),sem(s,h,e2) with
Some (Int(n1)),Some(Int(n2)) = Some(Int(semop(ni,n2)))
[= None

27/72

Shallow embedding

Can use static analysis for a more direct functional interpretation

e Expressions of static type integer are interpreted as logical
integers
e Objects are interpreted as reference values

type value = Null | Ref of addr

e Stack and heap are splitted in two parts

type envo = var — value

type envi = var — int

type store = addr — (field—value) * (field—int)

Functional interpretation Remarks

[€lii,s0,n = 10t option e[0, 1 value option e Shallow embedding takes advantage of static analyses;
it avoids syntactic encodings
[n]:isi so,h — Some (n)
R . . . e Dependent types allows to attach static types to expression
[61 op 62].191' so,h — match ([el]éi so,h>? [62]?91' s0 h) with . P . . .
(Some(,n ’) Some(nz)) = S;mé(semop,(n’ n2)) | - = None and avoid the value disjoint union in deep embedding
1), 2 1,702 -

[V]E; oo p = Some(si(v)) [V]%i s0,n = Some(so(v))

[e-f]ii,sa,h = match ([e]g; ,) with e A shallow embedding of JAavA in PVS has been done in the
Some(Ref(a)) = let (-, hi) = h(a) in hi(f) | - = None Loop project (B. Jacobs, Nijmegen)

http://www.sos.cs.ru.nl/research/loop/

29/72 30/72

Basic model : types and values

Classes classId, Object:classId

Modeling JAvA simple inheritance : super:classId —classId option

Types primitive types : int, bool, float ...

o reference types : arrays indexed by types, classes.
Formalising JAVA programs
Primitive values represented by logical values of type boolean,

integer, reals ...

Reference values represented by an address (type addr) in the

heap or the null value (type value)

State

An implicit set of locations containing values :
Stack Local variables, parameters
Global variables corresponding to static fields

Heap One cell for an address of an object and a field, or for the

address of an array and an index

Each allocated address is associated to a tag which gives dynamic
type information: object (class) or array (size, type of elements).
A table of allocations (type store) contains a finite set of allocated

addresses with corresponding tags.

33/72

Computation

e reads and writes state, returns a value

e possible exceptional behavior
(still returns the exceptional value and a state)
exceptions are also useful to model control flow
(break, continue ...)

Idea

JAVA programs can be translated in a (CAML-like) language with

functional values, references and exceptions.

This is what WHY provides and what is used in KRAKATOA.

34/72

Logical functions

Corresponding to primitive JAVA operations

e arraylength : value —int
get information from the tag in the allocation table,
0 as a default value

e instanceof : value —javaType —bool
assume super does not generate infinite chains, uses the
allocation table to look at the dynamic type of value

e new_ref : value
allocate : value —tag —unit
update the store

35,72

Examples with exceptions

exception JavaExc of value
try{ .. .raise (JavaExc (Exci ())) ...}

try{ ...throw new Exci () ...} with JavaExc e —

catch(Excl e){ ...}

catch(Exc2 e){ ...} if instanceof e Excl then ...

else if instanceof e Exc2 then ...
else raise (JavaExc e)

try while test
while (test) {...break; ...} do ...raise Break ...done
code with Break —();
code

More on the state

Functional interpretation of modifiable variables = : «
r=a|ANz:a)—a
Proving P(xz) holds after executing program p

Vx.P(p(x))

37/72

Alias problem

With different variables :

(2,9) = (@,0) | Mz : @)(y : B) = (a,D)

Correct when different variables correspond to different locations.
Proving = # y after (z,vy) := (0,1) is not just 0 # 1

| Possible solution |

A(s : state) = s{z := a[s(£) /€],y := b[s(€) /€]}

Reasoning on a variable z requires analysing s{&; := ¢;}(z)

38/72

Memory model in JAVA

e Different left-values (z, e.f, e[i]) can refer to the same location
e Variables are separate locations (call by value)

e No possible conversion between basic types and references

Different fields correspond to different locations a.f # b.g

a.f only expression for the location corresponding to a field f

a.f interpreted as f[a]

with £ a new global state variable for each field f.
Following Burstall (see also Bornat, Nipkow. ..)

Example

39/72

Standard JAvA memory model

I

array(3,int)
class A = { int f; A g } 0
x=1 0
int x = 1;
— 0

y =
int = int [3];
int y[] = new int[3] L cass(A)
A z = new A; f—0
stack

g=null

heap

Example: KRAKATOA memory model

The heap is structured in separate maps indexed by addresses,

containing primitive values or references or arrays.

Lecture 2

1 0 | 1 | | f : addr~>int
€1 null | 1 | . | g : addr—>value
0 1 arrayint : addr— (int—int) KR,AKATOA
0
x =1 e
Y= 1 1 | 1 | | arrayobj : addr—>(intr>value)
27 N array(3,int) class(A) | NA | | alloc : addr+— tag
stack
41/72
Outline
How to do proofs of JAvA programs ? KRAKATOA

e JML presentation
o KRAKATOA architecture based on WHY

e Interpreting JAva/JML programs in WHY

e Solving proof obligations

4372

JML presentation

JML : JAVA Modeling Language

http://www. jmlspecs.org

e Strongly related to the programming language:
includes JAvVA boolean expression without side effects

e Integrated to the source code : special comments, ignored by
the JAvA compiler

e Different classes of specifications:
pre and post conditions, class invariants, frame conditions,

ghost variables . ..

e Special additional operators (\forall, \old, \result ...)

A5/72

JML example : an electronic purse

class Purse {

int balance;

public void credit(int s) {

balance += s;

}

46/79

Exceptional behavior

public void withdraw(int s) throws NoCreditException {
if (balance >= s) { balance -= s; }
else { throw new NoCreditException(); }

47/72

Loops

public static int sqrt(int x) {

int count = 0, sum = 1;

while (sum <= x) {
count++;
sum = sum + 2*%count+1;

}

return count;

Tools using JML

Reference: An overview of JML tools and applications
Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. (STTT, 2005).

e Documentation (jmldoc), test (jmlunit)

e Dynamic checking (defensive code) (jmlc, jass)

e Partial automatic verification (ESC/Java(2), Chase)

e Total interactive verification (Loop, JIVE, Jack, Krakatoa)

Also JML specification of JavaACArD API (E. Poll, Nijmegen)

49/72

KRAKATOA

Architecture based on WHY

The WHY tool

A generic language for proving annotated programs
J.-C. Fillidtre, http://why.lri.fr

e Specification : multi-sorted predicate logic

e Body of programs : functions, references, exceptions, labels,

assertions ...

e Signature of programs : extended with pre & post-conditions,

+ effects (read & written variables, exceptions)

WHY advantages

51/72

e A modular view of programs and specifications
e Generates sufficient proof obligations (pre, post, assertions)

e Proof obligations generated for interactive or automatic
theorem provers : PVS, Coq, HOL, Mizar, Simplify, haRVey. ..

KRAKATOA approach

Model the JAvA program (see before)
Model the JMIL specification

Translate Java/JML programs into WHY annotated programs

(preserving semantics)

Proof that the program meets its specification by generating

proof obligations in WHY

53/72

KRAKATOA general architecture

|Generic Model of JAvA in PROVERl |source Java+JML

Instanciation KRAKATOA

ProOVER Model

WHy Specs WHhY code

WHY

| Proof Obligations |

Interactive/Automatic proof with PROVER

54/72

KRAKATOA

WHY model of programs

WHY parametric theory

parameter alloc : store ref

(c:classId) — { 7
value reads alloc writes alloc

{ result# Null and fresh(alloc@, result)

and typeof(alloc, result, ClassType(c))

parameter alloc_new_obj

and store_extends(alloc@,alloc)}

external logic fresh : store, value — prop

external logic store_extends : store, store — prop

external logic Null : — value

external logic ClassType : classId — javaType

Body of programs

external parameter new_ref : store — value
external parameter allocate : store — value — tag — store
external parameter Obj : classId — tag

let alloc_new_obj = fun (c:classId) — { }
let this = new_ref !alloc in
begin alloc := allocate !alloc this (Obj c); this end
{ result# Null
and fresh(alloc@, result)
and typeof(alloc, result, ClassType(c))
and store_extends(alloc@,alloc)

57/72

Translation of expressions

Conditions to protect access and avoid runtime exceptions

e.f {e#Null} (acc !f)

ef=v | {e#Null} f:=(update !f e v)

eli {e#Null A 0<i<(arraylength alloc)}
(array_acc larrayint e i)

elil=v | {e#Null A 0<i<(arraylength alloc e)

A instanceof alloc v (arrayelemtype alloc e)}

arrayobj:=(array_update larrayobj e i v)

Handling methods

e Find a Wny specification for each JAvA method

— Computes which variables are read or written

(field variables, array variables, alloc ...)

— Transforms the JML specification into pre/post conditions
e Keep a local and modular approach

e Handle partial correctness of recursive methods

59/72

WHY specification for methods

parameter Purse_credit_parameter :
this:value — s:int —
{ s >0 A this # Null
A instanceof (alloc,this,ClassType(Purse))
A Purse_invariant (Purse_balance,this)}
unit reads Purse_balance,alloc writes Purse_balance
{ acc(Purse_balance,this)=acc(Purse_balance@,this)+s
A Purse_invariant (Purse_balance,this)
A modifiable(alloc@,Purse_balance@,Purse_balance,
value_loc(this))}

KRAKATOA

Solving proof obligations

The corresponding CoQ theory

Inductive tag:Set := Obj: classId— tag | Arr: N— kind— tag.
Definition store := (fmap.t tag).

Definition alive (h:store) (v:value) :=
match v with Null => True | Ref a => find h a # None end.

Definition store_extends (h h’:store) :=
V v:value, alive h v — tag_of h v = tag_of h’> v.

Lemma typeof_extends_stable
V (h h’:store) (t:javaType) (v:value),
typeof h v t — store_extends h h’ — typeof h’ v t.

62 /72

Frame condition modeling

Variable A : Set

Definition memory := map.t value A.
Definition mod_loc := value — Prop.
Definition unchanged (ml:mod_loc) (v:value) := ml v.

Definition modifiable (h:store) (m m’:memory) (ml:mod_loc)

Vv:value,alive h v — unchanged ml v — acc m v = acc m’ v.

Definition value_loc (v: value)
Lemma value_loc_intro

Vvl v:value, vl # v -> unchanged (value_loc vl) v.

: mod_loc := fun w = v # w.

63/72

CoQ theory generated for a particular program

Inductive classId : Set :=

Object : classId | Math : classId | Purse : classId ...

Definition super (i:classId) : option classId :=
match i with

| Object => None | Math => Some Object

| Purse => Some Object |

end

Definition Purse_invariant (Purse_balance:memory Z) (this:value)

:= (acc Purse_balance this) >= 0.

Automatic proofs

e Extract an axiomatic first-order theory from the COQ model

e Use an automatic prover (mainly SIMPLIFY) in order to

validate proof obligations

Good results on small programs (sorting, sets, purse . ..)

65/72

Lecture 2

Conlusion

Related work

Remarks on KRAKATOA

Tools with similar goals

e ESC/Java (Compaq) : only partial correctness, errors

KeY (Chalmers, Karlsruhe) : UML specification, dynamic logic

LOOP (Nijmegen) : shallow embedding in PVS

JIVE (Hagen): ad-hoc axiomatic semantics, global memory,

interface

Jack (Gemplus, INRIA) : obligations originally for the B

prover, nice interface

67/72

A good combination of known techniques
e A rigorous approach
e Specification and proofs are integrated in real programs
e Proofs are partly automated
e Experimented on two JAVACARD applets
A very preliminary tool under development
e Many important features of JAvA are not (yet) covered

e The interface is not really user-friendly

Choice of architecture

e An open-source system
e Each step of translation is readable

e WHY language (functions, references and exceptions) is a

powerful language for representing operational semantics

e The same architecture can be used for other input
programming languages:
Capucgeus for C, J.-C. Fillidtre & C. Marché

e The best of each theorem provers can be used (even combined)

69/72

More on specifications

Writing apropriate specifications can be as hard as writting

programs and proofs ...

The tool should help you in this process

70/72

How convenient are JML specifications ?

e Some relations are not easily defined by pure JAvA programs
but would be naturally specified inductively.
Example:A linked structure does not contains loops

e Global security properties :

— Security automata : control the correct sequences of method
calls

— Non interference properties : we cannot infer secret

information from looking at public variables

Can be checked using JAva/JML technology
(Everest project, Sophia-Antipolis)

71/72

That is the end ...

See the demo on Saturday!

