A Compact Introduction to Isabelle/HOL

Tobias Nipkow
TU München

Overview

- 1. Introduction
- 2. Datatypes
- 3. Logic
- 4. Sets

– p. i

Overview of Isabelle/HOL

System Architecture

ProofGeneral	(X)Emacs based interface
Isabelle/HOL	Isabelle instance for HOL
Isabelle	generic theorem prover
Standard ML	implementation language

– p.3

- n 4

HOL

HOL = Higher-Order Logic HOL = Functional programming + Logic

HOL has

- datatypes
- recursive functions
- logical operators $(\land, \longrightarrow, \forall, \exists, \ldots)$

HOL is a programming language!

Higher-order = functions are values, too!

– p.5

Types and Terms

Formulae

Syntax (in decreasing priority):

$$form ::= (form) | term = term | \neg form$$

$$| form \land form | form \lor form | form \longrightarrow form$$

$$| \forall x. form | \exists x. form$$

Scope of quantifiers: as far to the right as possible

Examples

- $\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$
- $A = B \wedge C \equiv (A = B) \wedge C$
- $\forall x. Px \land Qx \equiv \forall x. (Px \land Qx)$
- $\forall x. \exists y. P x y \land Q x \equiv \forall x. (\exists y. (P x y \land Q x))$

Types

Syntax:

Parentheses: $T1 \Rightarrow T2 \Rightarrow T3 \equiv T1 \Rightarrow (T2 \Rightarrow T3)$

– p.7

Terms: Basic syntax

Syntax:

```
term ::= (term)
| a  constant or variable (identifier)
| term \ term  function application
| \lambda x. \ term  function "abstraction"
| \ldots  lots of syntactic sugar
```

Examples: $f(gx)y h(\lambda x. f(gx))$

Parantheses: $f a_1 a_2 a_3 \equiv ((f a_1) a_2) a_3$

Terms and Types

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation: $t := \tau$ means t is a well-typed term of type τ .

Type inference

Isabelle automatically computes ("infers") the type of each variable in a term.

In the presence of *overloaded* functions (functions with multiple types) not always possible.

User can help with type annotations inside the term.

Example: f (x::nat)

Currying

Thou shalt curry your functions

• Curried: $f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$

• Tupled: $f' :: \tau_1 \times \tau_2 \Rightarrow \tau$

Advantage: partial application $f a_1$ with $a_1 :: \tau_1$

Terms: Syntactic sugar

Some predefined syntactic sugar:

- Infix: +, -, *, #, @, ...
- Mixfix: if _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:

$$f x + y \equiv (f x) + y \not\equiv f (x + y)$$

Base types: bool, nat, list

- p.13

Type bool

Formulae = terms of type bool

True :: bool False :: bool

 \land , \lor , ... :: bool \Rightarrow bool \Rightarrow bool

÷

if-and-only-if: =

Type nat

0 :: nat

Suc :: $nat \Rightarrow nat$

+, *, ... :: $nat \Rightarrow nat \Rightarrow nat$

:

Numbers and arithmetic operations are overloaded:

0,1,2,... :: 'a, + :: 'a \Rightarrow 'a \Rightarrow 'a

You need type annotations: 1 :: nat, x + (y::nat)

... unless the context is unambiguous: Suc z

Type list

- []: empty list
- x # xs: list with first element x ("head") and rest xs ("tail")
- Syntactic sugar: $[x_1, \dots, x_n]$

Large library:

hd, tl, map, size, filter, set, nth, take, drop, distinct, ...

Don't reinvent, reuse!
→ HOL/List.thy

Isabelle Theories

– p.17

Theory = Module

Syntax:

theory $MyTh = ImpTh_1 + ... + ImpTh_n$: (declarations, definitions, theorems, proofs, ...)* end

- MyTh: name of theory. Must live in file MyTh. thy
- *ImpTh*_i: name of *imported* theories. Import transitive.

Unless you need something special:

```
theory MyTh = Main:
```

Proof General

An Isabelle Interface

by David Aspinall

– p.19

Proof General

Customized version of (x)emacs:

- all of emacs (info: C-h i)
- Isabelle aware (when editing .thy files)
- mathematical symbols ("x-symbols")

Interaction:

- via mouse
- or keyboard (key bindings see C-h m)

X-Symbols

Input of funny symbols in Proof General

- via menu ("X-Symbol")
- via ascii encoding (similar to LATEX): \<and>, \<or>, ...
- via abbreviation: /\, \/, -->, ...

x-symbol	\forall	3	λ	Г	^	V	\longrightarrow	\Rightarrow
ascii (1)	\ <forall></forall>	\ <exists></exists>	\ <lambda></lambda>	\ <not></not>	/\	\/	>	=>
ascii (2)	ALL	EX	%	~	&			

(1) is converted to x-symbol, (2) stays ascii.

– p.21

-

Demo: terms and types

An introduction to recursion and induction

A recursive datatype: toy lists

datatype 'a list = Nil | Cons 'a "'a list"

Nil: empty list

Cons x xs: head x :: 'a, tail xs :: 'a list
A toy list: Cons False (Cons True Nil)

Predefined lists: [False, True]

Concrete syntax

In .thy files: Types and formulae need to be inclosed in "..."

Except for single identifiers, e.g. 'a

"..." normally not shown on slides

- p.25

- p.26

Structural induction on lists

P xs holds for all lists xs if

- P Nil
- and for arbitrary x and xs, P xs implies P (Cons x xs)

Demo: append and reverse

Proofs

General schema:

```
lemma name: "..." apply (...) apply (...)
```

If the lemma is suitable as a simplification rule:

```
lemma name[simp]: "..."
```

Proof methods

- Structural induction
 - Format: (induct x)
 x must be a free variable in the first subgoal.
 The type of x must be a datatype.
 - Effect: generates 1 new subgoal per constructor
- Simplification and a bit of logic
 - Format: auto
 - Effect: tries to solve as many subgoals as possible using simplification and basic logical reasoning.

- p.2

The proof state

1.
$$\wedge$$
 $\mathbf{x}_1 \dots \mathbf{x}_p$. $[\![\mathbf{A}_1; \dots; \mathbf{A}_n]\!] \Longrightarrow \mathbf{B}$

 $x_1 \dots x_p$ Local constants

 $A_1 \dots A_n$ Local assumptions

B Actual (sub)goal

Notation

$$\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow B$$

abbreviates

$$A_1 \Longrightarrow \ldots \Longrightarrow A_n \Longrightarrow B$$

;
$$\approx$$
 "and"

. . . .

Type and function definition in Isabelle/HOL

Datatype definition in Isabelle/HOL

– p.33

The example

datatype 'a list = Nil | Cons 'a "'a list"

Properties:

- Types: Nil :: 'a list
 - Cons :: 'a \Rightarrow 'a list \Rightarrow 'a list
- Distinctness: Nil ≠ Cons x xs
- Injectivity: (Cons x xs = Cons y ys) = (x = y \land xs = ys)

The general case

datatype
$$(\alpha_1,\ldots,\alpha_n)\tau$$
 = $C_1 \tau_{1,1}\ldots\tau_{1,n_1}$ | \ldots | $C_k \tau_{k,1}\ldots\tau_{k,n_k}$

- Types: $C_i :: \tau_{i,1} \Rightarrow \cdots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_n)\tau$
- Distinctness: $C_i \ldots \neq C_j \ldots$ if $i \neq j$
- Injectivity: $(C_i \ x_1 \dots x_{n_i} = C_i \ y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and Injectivity are applied automatically Induction must be applied explicitly

case

Every datatype introduces a case construct, e.g.

(case xs of []
$$\Rightarrow$$
 ... | y#ys \Rightarrow ... y ... ys ...)

In general: one case per constructor

Same order of cases as in datatype

No nested patterns (e.g. x#y#zs)

But nested cases

Needs () in context

Case distinctions

apply(case_tac t)

creates k subgoals

$$t = C_i \ x_1 \dots x_p \Longrightarrow \dots$$

one for each constructor C_i .

– p.37

Why nontermination can be harmful

How about f x = f x + 1?

Subtract f x on both sides.

 $\implies 0 = 1$

All functions in HOL must be total

Function definition in Isabelle/HOL

– p.39

n 40

Function definition schemas in Isabelle/HOL

- Non-recursive with defs/constdefs No problem
- Primitive-recursive with primrec Terminating by construction
- Well-founded recursion with recdef User must (help to) prove termination (→ later)

primrec

- p.41

...

The example

```
primrec
```

"app Nil ys = ys"

"app (Cons x xs) ys = Cons x (app <math>xs ys)"

The general case

If τ is a datatype (with constructors C_1, \ldots, C_k) then $f :: \cdots \Rightarrow \tau \Rightarrow \cdots \Rightarrow \tau'$ can be defined by *primitive recursion*:

$$f x_{1} \dots (C_{1} y_{1,1} \dots y_{1,n_{1}}) \dots x_{p} = r_{1}$$

$$\vdots$$

$$f x_{1} \dots (C_{k} y_{k,1} \dots y_{k,n_{k}}) \dots x_{p} = r_{k}$$

The recursive calls in r_i must be *structurally smaller*, i.e. of the form f $a_1 \dots y_{i,j} \dots a_p$

nat is a datatype

datatype $nat = 0 \mid Suc \ nat$

Functions on *nat* definable by primrec!

primrec

$$f 0 = ...$$

 $f(Suc n) = ... f n ...$

Demo: trees

- p.45

- 4

Proof by Simplification

Term rewriting foundations

Term rewriting means ...

Using equations l=r from left to right As long as possible

Terminology: equation → *rewrite rule*

An example

$$0 + n = n \tag{1}$$

Equations:
$$(Suc m) + n = Suc (m+n)$$
 (2)

$$(Suc \ m \le Suc \ n) = (m \le n) \tag{3}$$

$$(0 \le m) = True \tag{4}$$

Rewriting:
$$0 + Suc \ 0 \le Suc \ 0 + x \stackrel{(1)}{=}$$

$$Suc \ 0 \le Suc \ 0 + x \stackrel{(2)}{=}$$

$$Suc \ 0 \le Suc \ (0 + x) \stackrel{(3)}{=}$$

$$0 \le 0 + x \stackrel{(4)}{=}$$

$$True$$

- p.4

- p.5

Interlude: Variables in Isabelle

Schematic variables

Three kinds of variables:

• bound: $\forall x. x = x$

• free: x = x

• schematic: ?x = ?x ("unknown")

Can be mixed: $\forall b. f ?a y = b$

- Logically: free = schematic
- Operationally:
 - free variables are fixed
 - schematic variables are instantiated by substitutions (e.g. during rewriting)

From x to ?x

State lemmas with free variables:

lemma *app_Nil2[simp]:* "xs @ [] = xs" :

done

After the proof: Isabelle changes xs to ?xs (internally):

Now usable with arbitrary values for ?xs

Term rewriting in Isabelle

- p.53

Basic simplification

Goal: 1. $\llbracket P_1; \dots; P_m \rrbracket \Longrightarrow C$

apply(simp add: $eq_1 \dots eq_n$)

Simplify $P_1 \dots P_m$ and C using

- lemmas with attribute simp
- rules from primrec and datatype
- additional lemmas $eq_1 \dots eq_n$
- assumptions $P_1 \dots P_m$

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more

.

Termination

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right.

Conditional *simp*-rules are only applied if conditions are provable.

Demo: simp

– p.57

Induction heuristics

Basic heuristics

Theorems about recursive functions are proved by induction

 $\label{eq:local_state} \mbox{Induction on argument number } i \mbox{ of } f \\ \mbox{if } f \mbox{ is defined by recursion on argument number } i \\ \mbox{}$

A tail recursive reverse

consts itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list primrec itrev [] ys = ys itrev (x#xs) ys = itrev xs (x#ys) lemma itrev xs [] = rev xs Why in this direction? Because the lhs is "more complex" than the rhs.

Demo: first proof attempt

– p.6

- p.62

Generalisation (1)

Replace constants by variables

lemma itrev xs ys = rev xs @ ys

Demo: second proof attempt

Generalisation (2)

Quantify free variables by ∀ (except the induction variable)

lemma \forall ys. itrev xs ys = rev xs @ ys

HOL: Propositional Logic

- p.65

Rule notation

Overview

- Natural deduction
- Rule application in Isabelle/HOL

 $\frac{A_1 \dots A_n}{A}$ instead of $[\![A_1 \dots A_n]\!] \Longrightarrow A$

– p.67

- n 68

Natural Deduction

Natural deduction

Two kinds of rules for each logical operator ⊕:

Introduction: how can I prove $A \oplus B$?

Elimination: what can I prove from $A \oplus B$?

- p.69

Natural deduction for propositional logic

$$\begin{array}{ll} \frac{A \quad B}{A \wedge B} \, \text{conjI} & \frac{A \wedge B \quad \llbracket A;B \rrbracket \implies C}{C} \, \text{conjE} \\ \\ \frac{A}{A \vee B} \, \frac{B}{A \vee B} \, \text{disjI1/2} & \frac{A \vee B \quad A \implies C \quad B \implies C}{C} \, \text{disjE} \\ \\ \frac{A \implies B}{A \longrightarrow B} \, \text{impI} & \frac{A \longrightarrow B \quad A \quad B \implies C}{C} \, \text{impE} \\ \\ \frac{A \implies B \quad B \implies A}{A = B} \, \text{iffI} & \frac{A=B}{A \implies B} \, \text{iffD1} & \frac{A=B}{B \implies A} \, \text{iffD2} \\ \\ \frac{A \implies False}{\neg A} \, \text{notI} & \frac{\neg A \quad A}{C} \, \text{notE} \\ \end{array}$$

Operational reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Elimination rule

If I know A_1 and want to prove A it suffices to prove $A_2 \dots A_n$.

Classical contradiction rules

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

Proof by assumption

$$\frac{A_1}{A_i}$$
 ... $\frac{A_n}{A_i}$ assumption

- p.73

Rule application: the rough idea

Applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal C:

- Unify A and C
- Replace C with n new subgoals A₁...A_n

Working backwards, like in Prolog!

Example: rule: $[?P; ?Q] \implies ?P \land ?Q$

subgoal: $1. A \wedge B$

Result: 1. A 2. B

Rule application: the details

Rule: $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$

Subgoal: 1. $[B_1; ...; B_m] \Longrightarrow C$

Substitution: $\sigma(A) \equiv \sigma(C)$

New subgoals: 1. $\sigma(\llbracket B_1; \ldots; B_m \rrbracket) \Longrightarrow A_1$

:

 $n. \ \sigma(\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow A_n)$

Command:

apply(rule <rulename>)

- p./4

Proof by assumption

apply assumption

proves

$$1. \parallel B_1; \ldots; B_m \parallel \Longrightarrow C$$

by unifying C with one of the B_i (backtracking!)

Demo: application of introduction rule

- p.77

70

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also

- unifies first premise of rule with an assumption
- · eliminates that assumption

Example:

Subgoal: 1. $[X; A \land B; Y] \Longrightarrow Z$

Unification: $?P \land ?Q \equiv A \land B \text{ and } ?R \equiv Z$ New subgoal: $1. \| X; Y \| \Longrightarrow \| A; B \| \Longrightarrow Z$

same as: 1. $[X; Y; A; B] \Longrightarrow Z$

How to prove it by natural deduction

- Intro rules decompose formulae to the right of ⇒.
 apply(rule <intro-rule>)
- Elim rules decompose formulae on the left of ⇒.
 apply(erule <elim-rule>)

- n 79

Demo: examples

- Write theorems as $[A_1; ...; A_n] \Longrightarrow A$ not as $A_1 \land ... \land A_n \longrightarrow A$ (to ease application)
- Exception (in apply-style): induction variable must not occur in the premises.

Example: $[A; B(x)] \implies C(x) \rightsquigarrow A \implies B(x) \longrightarrow C(x)$

Reverse transformation (after proof):

lemma $abc[rule_format]: A \Longrightarrow B(x) \longrightarrow C(x)$

- p.81

Demo: further techniques

HOL: Predicate Logic

Parameters

Subgoal:

1. $\bigwedge x_1 \ldots x_n$. Formula

The x_i are called parameters of the subgoal. Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over $\bigwedge x_1 \dots x_n$ and applied directly to *Formula*.

Scope

- Scope of parameters: whole subgoal
- Scope of \forall , \exists , ...: ends with ; or \Longrightarrow

- p.85

α -Conversion

Bound variables are renamed automatically to avoid name clashes with other variables.

Natural deduction for quantifiers

$$\frac{\bigwedge x. \ P(x)}{\forall \ x. \ P(x)} \ \text{all} \qquad \frac{\forall \ x. \ P(x) \qquad P(?x) \Longrightarrow R}{R} \ \text{all} E$$

$$\frac{P(?x)}{\exists \ x. \ P(x)} \ \text{exI} \qquad \frac{\exists \ x. \ P(x) \qquad \bigwedge x. \ P(x) \Longrightarrow R}{R} \ \text{exE}$$

- allI and exE introduce new parameters ($\bigwedge x$).
- allE and exI introduce new unknowns (?x).

– p.86

Instantiating rules

apply(rule_tac x = "term" in rule)

Like rule, but ?x in rule is instantiated by term before application.

Similar: erule_tac

 $oldsymbol{x}$ is in rule, not in the goal

Two successful proofs

1. $\forall x. \exists y. x = y$ apply(rule allI)
1. $\land x. \exists y. x = y$

best practice

exploration

 $apply(rule_tac\ x = "x"\ in\ exl)$

apply(rule exl)

1. $\bigwedge x$. x = ?y x

1. $\bigwedge x$. x = x apply (rule refl)

apply(rule refl)

 $\mathbf{?}\mathbf{y}\mapsto\lambda\mathbf{u}.\ \mathbf{u}$

simpler & clearer

shorter & trickier

- p.89

Safe and unsafe rules

Safe allI, exE

Unsafe allE, exI

Create parameters first, unknowns later

Demo: quantifier proofs

- p.91

n 02

Sets

Overview

- Set notation
- Inductively defined sets

Set notation

Sets

Type 'a set: sets over type 'a

- $\{e_1,\ldots,e_n\}, \{x. P x\}$
- $e \in A$, $A \subseteq B$
- $A \cup B$, $A \cap B$, A B, -A
- $\bigcup_{x \in A} Bx$, $\bigcap_{x \in A} Bx$
- {*i..j*}
- insert :: 'a \Rightarrow 'a set \Rightarrow 'a set

• ...

Proofs about sets

Natural deduction proofs:

- equalityI: $[A \subseteq B; B \subseteq A] \Longrightarrow A = B$
- subsetI: $(\land x. \ x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- ... (see Tutorial)

- p.9

Demo: proofs about sets

Inductively defined sets

- n 00

Example: finite sets

Informally:

- The empty set is finite
- Adding an element to a finite set yields a finite set
- These are the only finite sets

In Isabelle/HOL:

```
consts Fin :: 'a set set — The set of all finite set inductive Fin intros \{\} \in Fin \implies insert \ a \ A \in Fin \implies insert \ a \ A \in Fin
```

- p.101

Example: even numbers

Informally:

- 0 is even
- If n is even, so is n+2
- These are the only even numbers

In Isabelle/HOL:

```
consts Ev :: nat set — The set of all even numbers inductive Ev intros 0 \in Ev n \in Ev \Longrightarrow n+2 \in Ev
```

- p.102

Format of inductive definitions

```
consts S :: \tau \text{ set} inductive S intros  \llbracket \text{ } a_1 \in S; \dots \text{ }; \text{ } a_n \in S; \text{ } A_1; \dots; \text{ } A_k \ \rrbracket \Longrightarrow \text{ } a \in S  \vdots
```

where A_1 ; ...; A_k are side conditions not involving S.

Proving properties of even numbers

Easy: *4* ∈ *Ev*

$$0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$$

Trickier: $m \in Ev \Longrightarrow m+m \in Ev$

Idea: induction on the length of the derivation of $m \in Ev$

Better: induction on the structure of the derivation

Two cases: $m \in Ev$ is proved by

• rule $0 \in Ev$ $\Rightarrow m = 0 \Rightarrow 0+0 \in Ev$

• rule $n \in Ev \implies n+2 \in Ev$ $\implies m = n+2$ and $n+n \in Ev$ (ind. hyp.!) $\implies m+m = (n+2)+(n+2) = ((n+n)+2)+2 \in Ev$

- n 10/

Rule induction for Ev

To prove

$$n \in Ev \Longrightarrow P n$$

by *rule induction* on $n \in Ev$ we must prove

- P 0
- $P n \Longrightarrow P(n+2)$

Rule Ev. induct:

$$\llbracket n \in Ev; P 0; \bigwedge n. P n \Longrightarrow P(n+2) \rrbracket \Longrightarrow P n$$

An elimination rule

- p.105

Demo: inductively defined sets

Rule induction in general

Set *S* is defined inductively. To prove

$$x \in S \Longrightarrow Px$$

by *rule induction* on $x \in S$ we must prove for every rule

$$\llbracket \ extbf{\textit{a}}_1 \in extbf{\textit{S}}; \dots \ extit{; } extbf{\textit{a}}_n \in extbf{\textit{S}} \ \rrbracket \Longrightarrow extbf{\textit{a}} \in extbf{\textit{S}}$$

that *P* is preserved:

$$\llbracket P a_1; \ldots; P a_n \rrbracket \Longrightarrow P a$$

In Isabelle/HOL:

apply(erule S.induct)

– p.106