A Compact Introduction to Isabelle/HOL

Tobias Nipkow
TU Minchen

Overview

1. Introduction
2. Datatypes

3. Logic
4. Sets

Overview of Isabelle/HOL

System Architecture

ProofGeneral (X)Emacs based interface

Isabelle/HOL Isabelle instance for HOL

Isabelle generic theorem prover

Standard ML implementation language

—pa

HOL

HOL = Higher-Order Logic
HOL = Functional programming + Logic
HOL has

datatypes

recursive functions

logical operators (A, —, V, 3, ...)
HOL is a programming language!

Higher-order = functions are values, too!

Formulae

Syntax (in decreasing priority):

form == (form) | term =term | —form
| form A form | formV form | form — form
| Vz. form | Jx. form

Scope of quantifiers: as far to the right as possible

Examples
-AABVC = (-AAB)VC
A=BAC =A=B)AC
VX.PXAQX=VX.(PXAQNX)
VX. Y. Pxy AQx =VX. (y. (Pxy A QX))

Types and Terms

Types
Syntax:
T o= (1)

| bool | nat |... base types

| 'a|’'b|... type variables

| 7=7 total functions

| 7x7T pairs (ascii: *)

| 7 list lists

| user-defined types
Parentheses: Tl=T2=T3 = Tl1= (T2=T3)

-p8

Terms: Basic syntax

Syntax:
term = (term)
| a constant or variable (identifier)
| term term function application
| Ax. term function “abstraction”
|

lots of syntactic sugar

h (A\x. f (g X))
Parantheses: fa; a;as;=((fa)) a) as

Examples: f(gx)y

Terms and Types

Terms must be well-typed
(the argument of every function call must be of the right type)

Notation: ¢ : : 7 means ¢ is a well-typed term of type r.

Type inference

Isabelle automatically computes (“infers”) the type of each
variable in a term.

In the presence of overloaded functions (functions with
multiple types) not always possible.

User can help with type annotations inside the term.

Example: f(x::nat)

Currying

Thou shalt curry your functions

Curried: fiimri=m =1
Tupled: f &7y x 19 = 7

Advantage: partial application f a; with a; :: 74

Terms: Syntactic sugar

Some predefined syntactic sugar:

Infix: +, -, *, #, @, ...
Mixfix: if _then _else , case _of, ...

Prefix binds more strongly than infix:
| tx+ey=(x)+y£fx+y) |

Base types: bool, nat, list

Type bool

Formulae = terms of type bool

True :: bool
False :: bool

A, V, ... > bool = bool = bool

if-and-only-if: =

Type nat
0 :: nat
Suc :: nat = nat

+, *, nat = nat = nat

0,1,2,...::'a, +: 'a="a="'a

You need type annotations: 1 :: nat, x + (y::nat)
. unless the context is unambiguous: Suc z

Type list

[]: empty list

X # xs: list with first element x ("head")
and rest xs ("tail")

Syntactic sugar: [Xi,...,X,]

Large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, ...

Don't reinvent, reuse!
~» HCOL/ Li st. t hy

Isabelle Theories

Theory = Module

Syntax:

t heory MyTh = ImpThy + ...+ ImpThy,:
(declarations, definitions, theorems, proofs, ...)*
end

MyTh: name of theory. Must live in file MyTh. t hy
ImpTh;: name of imported theories. Import transitive.

Unless you need something special:
theory MyTh = Main:

Proof General

An Isabelle Interface

by David Aspinall

Proof General

Customized version of (x)emacs:
all of emacs (info: C-h i)
Isabelle aware (when editing . t hy files)
mathematical symbols (“x-symbols”)

Interaction:
via mouse

or keyboard (key bindings see C-h m

X-Symbols

Input of funny symbols in Proof General

via menu (“X-Symbol”)

via ascii encoding (similar to IKTEX): \ <and>, \ <or >, ...
via abbreviation: /\,\/,-->, ...

x-symbol || V

3

A

ascii (1) || \<forall>

\<exists>

\<lambda>

\<not>

N\

\/

=>

ascii (2) ALL

EX

%

(1) is converted to x-symbol, (2) stays ascii.

Demo: terms and types

An introduction to recursion and induction

A recursive datatype: toy lists

datatype 'a list = Nil | Cons ’a "a list"
Nil: empty list

Cons x xs: head x :: 'a, tail xs :: 'a list
A toy list: Cons False (Cons True Nil)
Predefined lists: [False, True]

Concrete syntax

In . t hy files:
Types and formulae need to be inclosed in "..."

Except for single identifiers, e.g. 'a

..." normally not shown on slides

Structural induction on lists

P xs holds for all lists xs if
P Nil
and for arbitrary x and xs, P xs implies P (Cons x xs)

Demo: append and reverse

Proofs

General schema:

lemma name:

apply (. ..)
apply (...)
done

If the lemma is suitable as a simplification rule:

lemma name[Si np] :

Proof methods

Structural induction

Format: (induct x)
X must be a free variable in the first subgoal.
The type of x must be a datatype.

Effect: generates 1 new subgoal per constructor

Simplification and a bit of logic
Format: auto

Effect: tries to solve as many subgoals as possible
using simplification and basic logical reasoning.

The proof state

LAX ... Xp. [A; ... ;A] =B

Xi ... X, Local constants
A:; ... A, Local assumptions
B Actual (sub)goal

Notation

[A1; ... ;A]=1B
abbreviates
Al— ... —=A,—B

-~ “and”

Type and function definition in Isabelle/HOL

Datatype definition in Isabelle/HOL

The example

datatype 'a list = Nil | Cons ’a "a list"
Properties:
Types: Nil o alist
Cons : ’a='alist = 'alist
Distinctness: Nil # Cons x xs
Injectivity: (Cons xxs =Consyys)=(X=Yy A XS =YS)

The general case

datatype (ai,...,on)7 = CiT11...Tim
|
| Ck Tkl Thn
TyDGS: C;:: Til = = Tin; = (041, ceey an)T
Distinctness: C; ... #C; ... ifi#j
Injectivity:

(Cixy.o.tn, =Ciyr...yn,) = (@1 =11 A ... ATy, = Yn,)

Distinctness and Injectivity are applied automatically
Induction must be applied explicitly

case

Every datatype introduces a case construct, e.g.

(casexsof[] = ... |y#ys= ...y ...ys..)
In general: one case per constructor

Same order of cases as in datatype

No nested patterns (e.g. x#y#zs)
But nested cases

Needs () in context

Case distinctions

apply(case_tac t)
creates k subgoals

t:Cifrl...l’p:>...

one for each constructor C;.

Function definition in Isabelle/HOL

Why nontermination can be harmful

How aboutfx=fx+17?

Subtract f x on both sides.
—0=1

! All functions in HOL must be total !

Function definition schemas in Isabelle/HOL

Non-recursive with defs/constdefs
No problem

Primitive-recursive with primrec
Terminating by construction

Well-founded recursion with recdef
User must (help to) prove termination

primrec

(~ later)
The example The general case
primrec If 7 is a datatype (with constructors C1,...,C}) then
"app Nil ys =ys" fu---=71=...= 7 can be defined by primitive recursion:
! ns X X = Cons x X !
app (Cons x xs) ys = Cons X (app xs ys) fai...(Cryin.- Yip)...¢p = 11
fz1.. . (Cr k1. Ykm) - Tp = Tk

The recursive calls in r; must be structurally smaller,
l.e. of the form fai...vi;...qp

nat is a datatype

datatype nat = 0 | Suc nat
Functions on nat definable by primrec!
primrec

fo=..
f(Sucn)=..fn...

Demo: trees

Proof by Simplification

Term rewriting foundations

Term rewriting means ...

Using equations [= r from left to right

As long as possible

Terminology: equation ~» rewrite rule

An example

0+n = n (1)
o (Sucm)+n = Suc(m+n) (2)
Equations: (Sucm < Sucn) = (m<n) (3)
(4)

(0<m) = True 4

—~
—
~

0+ SucO < SucO+=x
Suc0 < SucO+zx

Rewriting: Suc0 < Suc (0+ z)

0 < 0+=
True

—~
[\S)
~

—~
w
~

—
IS
~

Interlude: Variables in Isabelle

Schematic variables

Three kinds of variables:

bound: Vx. x =X

free: x =X

schematic: ?x = ?x (“unknown”)
Can be mixed: vb.f?ay =D

Logically: free = schematic

Operationally:
free variables are fixed

schematic variables are instantiated by substitutions
(e.g. during rewriting)

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: "Xs @ [] = xs"

done
After the proof: Isabelle changes xs to ?xs (internally):
?Xs @ [] = ?xs

Now usable with arbitrary values for ?xs

Term rewriting in Isabelle

Basic simplification

Goal: 1.[Py;... ;P,]=C

apply(simp add: eq; ... €q,)

Simplify P, ... P,, and C using
lemmas with attribute simp
rules from primrec and datatype
additional lemmas eq; ... eq,
assumptions P, ... P,,

auto versus simp

auto acts on all subgoals
simp acts only on subgoal 1
auto applies simp and more

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Conditional simp-rules are only applied
if conditions are provable.

Demo: simp

Induction heuristics

Basic heuristics

Theorems about recursive functions are proved by
induction

Induction on argument number : of f
if /is defined by recursion on argument number ;

A tail recursive reverse

consts itrev :: 'a list = 'a list = 'a list
primrec

itrev] yS = yS
itrev (X#xs) ys = itrev xs (x#ys)
lemma itrev xs [] = rev xs
Why in this direction?
Because the |hs is “more complex” than the rhs.

Demo: first proof attempt

Generalisation (1)

Replace constants by variables

lemma itrev XS ys = rev Xxs @ ys

Demo: second proof attempt

Generalisation (2)

Quantify free variables by Vv
(except the induction variable) HOL: Propositional Logic

lemma VYS. itrev XS ys = rev Xxs @ ys

Overview Rule notation

Natural deduction A A,
Rule application in Isabelle/HOL A instead of [A;... A] = A

Natural Deduction

Natural deduction

Two kinds of rules for each logical operator &:

Introduction: how can | prove A @ B?
Elimination: what can | prove from A ¢ B?

Natural deduction for propositional logic

QAEconjl ANB [['é;B]]:>CconjE
AC‘BABBdisjlllz AV 1B AZEC B=2CyisjiE
ﬁigimﬂ A—B é B—C{ e
A=3 B=2~it1 AA;BBiffDl BA:E’AiffDZ
A — False not | 2A A GtE

-A C

Operational reading

Ar... An
A

Introduction rule:
To prove A it suffices to prove A; ... A,.

Elimination rule
If | know A, and want to prove A
it suffices to prove A ... A,.

Classical contradiction rules

- A — False SR [-A— A

cl assi cal
A A

Proof by assumption

Al ... A
A

L assunption

Rule application: the rough idea

Applying rule [Ay; ... ; A,] = Ato subgoal C:
Unify Aand C
Replace C with n new subgoals A; ... A,
Working backwards, like in Prolog!

Example: rule: [?P; ?Q] = ?P A ?Q
subgoal: 1.AAB
Result: 1. A
2.B

Rule application: the details

Rule: [A; ... ;A=A
Subgoal: 1.[By;...;B]=C
Substitution: a(A) = o(C)
New subgoals: 1.0([By;... ;Bn] = A1)
N.o([Bi; ... ;Bn] = Ay)
Command:

apply(rule <rulename>)

Proof by assumption
apply assumption
proves

1.[By;...;Bp]=C

by unifying C with one of the B; (backtracking!)

Demo: application of introduction rule

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption
Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = ?R
Subgoal: 1.[X;AAB)Y]=Z
Unification: ?P A?Q=AABand?R=Z
New subgoal: 1.[X;Y]=[A;B]=Z
sameas: 1L.[XY;A;B]=Z

How to prove it by natural deduction

Intro rules decompose formulae to the right of —-.
apply(rule <intro-rule>)

Elim rules decompose formulae on the left of —-.
apply(erule <elim-rule>)

Demo: examples

= VS —

Write theorems as [Ag; ...; Al = A

notas A; A ... AA, — A (to ease application)

Exception (in apply-style): induction variable must not
occur in the premises.

Example: [A; B(X)] = C(X) ~ A= B(X) — C(x)

Reverse transformation (after proof):
lemma abc[rule_format]: A = B(x) — C(X)

Demo: further techniques

HOL.: Predicate Logic

Parameters

Subgoal:
1. AXy ... X,. Formula

The x; are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over Ax; ... x,, and applied
directly to Formula.

Scope

Scope of parameters: whole subgoal
Scope of vV, 3, ...: ends with ; or =

AXY. [VY.Py —Qzy, QXxy]= 3IX. QXY
means

AXY. [(VY. Py — Qzyy), Qxy]= 3Ix1.QX1 Yy

a-Conversion

Bound variables are renamed automatically to avoid name
clashes with other variables.

Natural deduction for quantifiers

AX. P(X) vx.P(x) P(?X) =R
P(?x) Ix. P(x) Ax.P(X) = R
TP(X) exl R exE

al I'l and exE introduce new parameters (AX).
al | Eand exl introduce new unknowns (?x).

Instantiating rules

apply(rule_tac x = "term" in rule)

Like rule, but ?x in rule is instantiated by term before
application.

Similar: erule_tac

I xisin rule, not in the goal !

Two successful proofs

1.VX.dy.x=y

apply(rule alll)

1. AX. dy. x =y
best practice exploration
apply(rule_tac x ="x" in exl) apply(rule exl)
1. AX. X=X 1. AX. X=7?y X
apply(rule refl) apply(rule refl)

?y — AU. U

simpler & clearer shorter & trickier

Demo: quantifier proofs

Safe and unsafe rules

Safe al | |, exE
Unsafe al | E, exl

Create parameters first, unknowns later

Demo: proof methods

Sets

Set notation

Overview

Inductively defined sets

Set notation

Sets Proofs about sets

Type ’a set: sets over type 'a Natural deduction proofs:

equalityl:[ACB;BCA]— A=8B

subsetl: (AX.xe A= xeB)=ACB
(see Tutorial)

{$, {ei,....en}, X Px}
ecA ACB

AuB, AnB, A-B, -A
UxeABX, NxeaBX
{i.j}

insert :: 'a = 'a set = 'a set

Demo: proofs about sets Inductively defined sets

- p.100

Example: finite sets

Informally:
The empty set is finite
Adding an element to a finite set yields a finite set
These are the only finite sets

In Isabelle/HOL:

consts Fin :: 'a set set
inductive Fin
intros

{} € Fin

A € Fin = insert a A € Fin

— The set of all finite set

~p.101

Example: even numbers

Informally:
0 is even
If n is even, soisn + 2
These are the only even numbers

In Isabelle/HOL:

consts Ev :: nat set
inductive Ev
intros
0 eEv
neEv=—n+2ckEv

— The set of all even numbers

- p.102

Format of inductive definitions

consts S :: 7 set

inductive S
intros
[a1€S;...;a,€S;A;...;A,]=ae$S
where Aq; ...; A, are side conditions not involving S.

—p.103

Proving properties of even numbers

Easy: 4 € Ev
OckBv=2cEv=—4cEv

Trickier: m € Ev =—= m+m < Ev

Idea: induction on the length of the derivation of m € Ev
Better: induction on the structure of the derivation

Two cases: m € Ev is proved by

rule O € Ev
— m=0= 0+0 € Ev

rulen e Ev = n+2 € Ev
= m =n+2 and n+n € Ev (ind. hyp.!)
= m+m = (n+2)+(n+2) = ((n+n)+2)+2 € Ev

~p.104

Rule induction for Ev

To prove
neEv—=—Pn
by rule induction on n € Ev we must prove
PO
Pn = P(nt+2)

Rule Ev. i nduct :

[n€EV;PO; An.Pn=P(n+2) | = Pn

An elimination rule

-p.105

Rule induction in general

Set S is defined inductively.
To prove

XeS=PXx

by rule inductionon x € S
we must prove for every rule

[a,€S;...;a,€S]=ac$S
that P is preserved:
[Pa;;...;Pa,]—=Pa

In Isabelle/HOL.:
apply(erule S.induct)

- p.106

Demo: inductively defined sets

-p.107

