
Isabelle/HOL Exercises

1 Counting occurences

Define a function occurs, such that occurs x xs is the number of occurrences of the
element x in the list xs.

consts occurs :: "’a ⇒ ’a list ⇒ nat"

Prove or disprove (by counter example) the lemmas that follow. You may have to prove ad-
ditional lemmas first. Use the [simp] -attribute only if the equation is truly a simplification
and is necessary for some later proof.

lemma "occurs a xs = occurs a (rev xs)"

lemma "occurs a xs <= length xs"

Function map applies a function to all elements of a list: map f [x1, . . .,xn] = [f x1, . . .,f

xn].

lemma "occurs a (map f xs) = occurs (f a) xs"

Function filter :: (’a ⇒ bool) ⇒ ’a list ⇒ ’a list is defined by

filter P [] = []

filter P (x # xs) = (if P x then x # filter P xs else filter P xs)

Find an expression e not containing filter such that the following becomes a true lemma,
and prove it:

lemma "occurs a (filter P xs) = e"

With the help of occurs, define a function remDups that removes all duplicates from a list.

consts remDups :: "’a list ⇒ ’a list"

Find an expression e not containing remDups such that the following becomes a true lemma,
and prove it:

1

lemma "occurs x (remDups xs) = e"

With the help of occurs define a function unique, such that unique xs is true iff every
element in xs occurs only once.

consts unique :: "’a list ⇒ bool"

Show that the result of remDups is unique.

2 Tree traversal

Define a datatype ’a tree for binary trees. Both leaf and internal nodes store information.

datatype ’a tree =

Define the functions preOrder, postOrder, and inOrder that traverse an ’a tree in the
respective order.

consts
preOrder :: "’a tree ⇒ ’a list"

postOrder :: "’a tree ⇒ ’a list"

inOrder :: "’a tree ⇒ ’a list"

Define a function mirror that returns the mirror image of an ’a tree.

consts
mirror :: "’a tree ⇒ ’a tree"

Suppose that xOrder and yOrder are tree traversal functions chosen from preOrder,
postOrder, and inOrder. Formulate and prove all valid properties of the form
xOrder (mirror xt) = rev (yOrder xt) .

Define the functions root, leftmost and rightmost, that return the root, leftmost, and
rightmost element respectively.

consts
root :: "’a tree ⇒ ’a"

leftmost :: "’a tree ⇒ ’a"

rightmost :: "’a tree ⇒ ’a"

Prove or disprove (by counter example) the lemmas that follow. You may have to prove
some lemmas first.

lemma "last(inOrder xt) = rightmost xt"

lemma "hd (inOrder xt) = leftmost xt"

2

lemma "hd(preOrder xt) = last(postOrder xt)"

lemma "hd(preOrder xt) = root xt"

lemma "hd(inOrder xt) = root xt"

lemma "last(postOrder xt) = root xt"

3 Natural deduction

3.1 Propositional logic

The focus of this exercise are single step natural deduction proofs. The following restric-
tions apply:

• Only the following rules may be used:
notI: (A =⇒ False) =⇒ ¬ A,
notE: [[¬ A; A]] =⇒ B,
conjI: [[A; B]] =⇒ A ∧ B,
conjE: [[A ∧ B; [[A; B]] =⇒ C]] =⇒ C,
disjI1: A =⇒ A ∨ B,
disjI2: A =⇒ B ∨ A,
disjE: [[A ∨ B; A =⇒ C; B =⇒ C]] =⇒ C,
impI: (A =⇒ B) =⇒ A −→ B,
impE: [[A −→ B; A; B =⇒ C]] =⇒ C,
mp: [[A −→ B; A]] =⇒ B

iffI: [[A =⇒ B; B =⇒ A]] =⇒ A = B,
iffE: [[A = B; [[A −→ B; B −→ A]] =⇒ C]] =⇒ C

classical: (¬ A =⇒ A) =⇒ A

• Only the methods rule, erule und assumption may be used.

lemma I: "A −→ A"

lemma "(A ∨ B) = (B ∨ A)"

lemma "(A ∧ B) −→ (A ∨ B)"

lemma "((A ∨ B) ∨ C) −→ A ∨ (B ∨ C)"

lemma K: "A −→ B −→ A"

lemma "(A ∨ A) = (A ∧ A)"

lemma S: "(A −→ B −→ C) −→ (A −→ B) −→ A −→ C"

lemma "(A −→ B) −→ (B −→ C) −→ A −→ C"

lemma "¬ ¬ A −→ A"

lemma "(¬ A −→ B) −→ (¬ B −→ A)"

lemma "((A −→ B) −→ A) −→ A"

lemma "A ∨ ¬ A"

3

3.2 Predicate logic

You may now use the followinh additional rules:

exI: P x =⇒ ∃ x. P x

exE: [[∃ x. P x;
∧
x. P x =⇒ Q]] =⇒ Q

allI: (
∧
x. P x) =⇒ ∀ x. P x

allE: [[∀ x. P x; P x =⇒ R]] =⇒ R

For each of the following formulae, find a proof or explain why it is not true.

lemma "(∀ x. P x −→ Q) = ((∃ x. P x) −→ Q)"

lemma "(∀ x. ∀ y. R x y) = (∀ y. ∀ x. R x y)"

lemma "((∃ x. P x) ∨ (∃ x. Q x)) = (∃ x. (P x ∨ Q x))"

lemma "((∀ x. P x) ∨ (∀ x. Q x)) = (∀ x. (P x ∨ Q x))"

lemma "(∀ x. ∃ y. P x y) −→ (∃ y. ∀ x. P x y)"

lemma "(∃ x. ∀ y. P x y) −→ (∀ y. ∃ x. P x y)"

lemma "(¬ (∀ x. P x)) = (∃ x. ¬ P x)"

3.3 A puzzle

Prove the following proposition with pen and paper, possibly using case distinctions:

If every poor person has a rich father,
then there is a rich person with a rich grandfather.

theorem
"∀ x. ¬ rich x −→ rich (father x) =⇒
∃ x. rich (father (father x)) ∧ rich x"

Translate your proof into a sequence of Isabelle rule applications. Case distinctions via
case tac are allowed.

4 Context-free grammars

This exercise is concerned with context-free grammars (CFGs). Please read section 7.4 in
the tutorial which explains how to model CFGs as inductive definitions. Our particular
example is about defining valid sequences of parantheses.

4

4.1 Two grammars

The most natural definition of valid sequences of parantheses is this:

S → ε | ′(′ S ′)′ | S S

where ε is the empty word.

A second, somewhat unusual grammar is the following one:

T → ε | T ′(′ T ′)′

Model both grammars as inductive sets S and T and prove S = T .

4.2 A recursive function

Instead of a grammar, we can also define valid sequences of paratheses via a test function:
traverse the word from left to right while counting how many closing paretheses are still
needed. If the counter is 0 at the end, the sequence is valid.

Define this recursive function and prove that a word is in S iff it is accepted by your
function. The =⇒ direction is easy, the other direction more complicated.

5

	Counting occurences
	Tree traversal
	Natural deduction
	Propositional logic
	Predicate logic
	A puzzle

	Context-free grammars
	Two grammars
	A recursive function

