[sabelle/HOL Exercises

1 Counting occurences

Define a function occurs, such that occurs x xs is the number of occurrences of the
element x in the list xs.

consts occurs :: "’a = ’a list = nat"
Prove or disprove (by counter example) the lemmas that follow. You may have to prove ad-

ditional lemmas first. Use the [simp]-attribute only if the equation is truly a simplification
and is necessary for some later proof.

lemma "occurs a xs = occurs a (rev xs)"
lemma "occurs a xs <= length xs"

Function map applies a function to all elements of a list: map f [x1,...,x,] = [f x1,...,f

xnl.

lemma "occurs a (map f xs) = occurs (f a) xs"

Function filter :: (’a = bool) = ’a list = ’a list is defined by

filter P [] = []
filter P (x # xs) = (if P x then x # filter P xs else filter P xs)

Find an expression e not containing filter such that the following becomes a true lemma,
and prove it:

lemma "occurs a (filter P xs) = e"

With the help of occurs, define a function remDups that removes all duplicates from a list.

consts remDups :: "’a list = ’a list"

Find an expression e not containing remDups such that the following becomes a true lemma,
and prove it:

lemma "occurs x (remDups xs) = e"

With the help of occurs define a function unique, such that unique xs is true iff every
element in xs occurs only once.

consts unique :: "’a list = bool"

Show that the result of remDups is unique.

2 Tree traversal

Define a datatype ’a tree for binary trees. Both leaf and internal nodes store information.

datatype ’a tree =

Define the functions preOrder, postOrder, and inOrder that traverse an ’a tree in the
respective order.

consts
preOrder :: "’a tree = ’a list"
postOrder :: "’a tree = ’a list"
inOrder :: "’a tree = ’a list"

Define a function mirror that returns the mirror image of an ’a tree.

consts
mirror :: "’a tree = ’a tree"

Suppose that xOrder and yOrder are tree traversal functions chosen from preOrder,
postOrder, and inOrder. Formulate and prove all valid properties of the form
x0rder (mirror xt) = rev (yOrder xt).

Define the functions root, leftmost and rightmost, that return the root, leftmost, and
rightmost element respectively.

consts
root :: "’a tree = ’a"
leftmost :: "’a tree = ’a"
rightmost :: "’a tree = ’a"

Prove or disprove (by counter example) the lemmas that follow. You may have to prove
some lemmas first.

lemma "last(inOrder xt) = rightmost xt"
lemma "hd (inOrder xt) = leftmost xt"

lemma "hd(preOrder xt) = last(postOrder xt)"
lemma "hd(preOrder xt) = root xt"

lemma "hd(inOrder xt) = root xt'

lemma "last(postOrder xt) = root xt"

3 Natural deduction

3.1 Propositional logic

The focus of this exercise are single step natural deduction proofs. The following restric-
tions apply:

e Only the following rules may be used:
notl: (A = False) — — A,
notE: [- A; A] = B,
conjI: [A; Bl = A A B,
conjE: [A N B; [A; B] = C] = ¢C,
disjIl1: A = A V B,
disjI2: A = B V A,
disjE: [A V B; A = C; B = C] = C,
impI: (A = B) = A — B,
impE: [A — B; A; B = C] = C,
mp: [A — B; A] = B
iffI: [A = B; B —> A] — A = B,
iffE: [A = B; [A — B; B — A] = ¢] = ¢
classical: (- A = 4) — A

e Only the methods rule, erule und assumption may be used.

lemma I: "4 — A"

lemma "(A V B) = (B V A)"

lemma "(A AN B) — (A V B)"

lemma "((AV B) vVC — AV (BVO"
lemma K: "A — B — A"

lemma "(A V A) = (A N A"

lemma S: "(4 — B — C) — (A — B) — A — ("
lemma "(A — B) — (B — C) — A — C"
lemma "- - A — A"

lemma "(-~ A — B) — (= B — A)"
lemma "((A — B) — A) — A"

lemma "4 VvV — A"

3.2 Predicate logic

You may now use the followinh additional rules:

exI: P x — dx. P x

exE: [dx. Px; Nx. Px = Q] = @
alll: (Ax. P x) =— Vx. P x

allE: [Vx. P x; Px = R] = R

For each of the following formulae, find a proof or explain why it is not true.

lemma "(Vx. Px — @) = ((Ix. Px) — Q"

lemma "(V x. V y. Rxy) = (W y. V x. Rx y)"

lemma "((3 x. Px) V (3 x. @ x)) =(3 x. PxV Qx))"
lemma "((V x. Px) V (V x. Qx)) = (VW x. (Px V Q x))"
lemma "(Vx. Jy. Pxy) — (dy. Vx. Px y)"

lemma "(dx. Vy. Pxy) — (Vy. dx. Px y)"

lemma "(—- (V x. Px)) = (3 x. = Px)"

3.3 A puzzle

Prove the following proposition with pen and paper, possibly using case distinctions:

If every poor person has a rich father,
then there is a rich person with a rich grandfather.

theorem
"Yx. — rich x — rich (father x) —
dx. rich (father (father x)) A rich x"

Translate your proof into a sequence of Isabelle rule applications. Case distinctions via
case_tac are allowed.

4 Context-free grammars

This exercise is concerned with context-free grammars (CFGs). Please read section 7.4 in
the tutorial which explains how to model CFGs as inductive definitions. Our particular
example is about defining valid sequences of parantheses.

4.1 Two grammars

The most natural definition of valid sequences of parantheses is this:
S — e | (s | SS

where ¢ is the empty word.

A second, somewhat unusual grammar is the following one:
T N € | T /(l T /)/

Model both grammars as inductive sets S and T and prove S =T.

4.2 A recursive function

Instead of a grammar, we can also define valid sequences of paratheses via a test function:
traverse the word from left to right while counting how many closing paretheses are still
needed. If the counter is 0 at the end, the sequence is valid.

Define this recursive function and prove that a word is in S iff it is accepted by your
function. The = direction is easy, the other direction more complicated.

	Counting occurences
	Tree traversal
	Natural deduction
	Propositional logic
	Predicate logic
	A puzzle

	Context-free grammars
	Two grammars
	A recursive function

