System F

Alexandre Miquel — PPS & U. Paris 7

Alexandre.Miquel@pps.jussieu.fr

Types Summer School 2005 August 15–26 — Göteborg

• System F: independently discovered by

• System F: independently discovered by

Girard: System F (1970)

• **System** *F*: independently discovered by

Girard: System F (1970) Reynolds: The polymorphic λ -calculus (1974)

• **System** *F*: independently discovered by

Girard: System F (1970) Reynolds: The polymorphic λ -calculus (1974)

Quite different motivations...

Girard: Interpretation of second-order logic

Reynolds: Functional programming

... connected by the Curry-Howard isomorphism

• **System** *F*: independently discovered by

Girard: System F (1970) Reynolds: The polymorphic λ -calculus (1974)

Quite different motivations...

Girard: Interpretation of second-order logic

Reynolds: Functional programming

... connected by the Curry-Howard isomorphism

Significant influence on the development of Type Theory

Interpretation of higher-order logic
 Type:Type
 Martin-Löf 1971
 Martin-Löf Type Theory
 The Calculus of Constructions
 [Coquand 1984]

Part 1

System F: Church-style presentation

System F syntax

System F syntax

Definition

Types
$$A,B ::= \alpha \mid A \rightarrow B \mid \forall \alpha \ B$$

Terms $t,u ::= x$
 $\mid \lambda x : A \cdot t \mid tu \quad \text{(term abstr./app.)}$
 $\mid \Lambda \alpha \cdot t \mid tA \quad \text{(type abstr./app.)}$

Notations

• Set of free (term) variables: FV(t)

• Set of free type variables: TV(t), TV(A)

• Term substitution: $u\{x:=t\}$

ullet Type substitution: $u\{lpha:=A\},\quad B\{lpha:=A\}$

Perform α -conversion to prevent captures of free (term/type) variables!

System F typing rules

Contexts $\Gamma ::= x_1 : A_1, \ldots, x_n : A_n$

Typing judgments $\Gamma \vdash t : A$

System F typing rules

Contexts $\Gamma ::= x_1 : A_1, \ldots, x_n : A_n$ Typing judgments $\Gamma \vdash t : A$

System F typing rules

Contexts $\Gamma ::= x_1 : A_1, \ldots, x_n : A_n$ Typing judgments $\Gamma \vdash t : A$

$$\frac{\Gamma, \ x : A \vdash t : B}{\Gamma \vdash \lambda x : A : t : A \to B} \qquad \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B}$$

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash \Lambda \alpha . t : \forall \alpha B} \qquad \frac{\Gamma \vdash t : \forall \alpha B}{\Gamma \vdash t A : B \{\alpha := A\}}$$

- Declaration of type variables is implicit (for each $\alpha \in TV(\Gamma)$)
- ullet Type variables could be declared explicitly: $\alpha:*$ (cf PTS)
- ullet One rule for each syntactic construct \Rightarrow System is syntax-directed

• Set: id $\equiv \Lambda \alpha . \lambda x : \alpha . x$

- Set: id $\equiv \Lambda \alpha . \lambda x : \alpha . x$
- One has:

id :
$$\forall \alpha \ (\alpha \to \alpha)$$

• Set: id
$$\equiv \Lambda \alpha . \lambda x : \alpha . x$$

• One has:

id :
$$\forall \alpha \ (\alpha \to \alpha)$$

 $\mathsf{id}\,\,B \quad : \quad B \to B \qquad \quad \mathsf{for any type}\,\,B$

• Set: id
$$\equiv \Lambda \alpha . \lambda x : \alpha . x$$

One has:

id :
$$\forall \alpha \ (\alpha \to \alpha)$$

$$\mathsf{id}\,B \qquad : \quad B \to B \qquad \qquad \mathsf{for\ any\ type}\ B$$

$$id B u : B$$
 for any term $u : B$

• Set: id
$$\equiv \Lambda \alpha . \lambda x : \alpha . x$$

One has:

id :
$$\forall \alpha \ (\alpha \to \alpha)$$

$$\mathsf{id}\,B \qquad : \quad B \to B \qquad \qquad \mathsf{for\ any\ type}\ B$$

$$id B u : B$$
 for any term $u : B$

ullet In particular, if we take $B\equiv orall lpha \ (lpha
ightarrow lpha)$ and $u\equiv \mathrm{id}$

• Set: id
$$\equiv \Lambda \alpha . \lambda x : \alpha . x$$

One has:

id :
$$\forall \alpha \ (\alpha \to \alpha)$$

$$id B : B \rightarrow B$$
 for any type B

$$id B u : B$$
 for any term $u : B$

ullet In particular, if we take $B \equiv orall lpha \left(lpha
ightarrow lpha
ight)$ and $u \equiv \operatorname{id}$

$$\mathsf{id}\left(\forall\alpha\;(\alpha\to\alpha)\right)\quad : \;\;\forall\alpha\;(\alpha\to\alpha)\;\to\;\forall\alpha\;(\alpha\to\alpha)$$

• Set: id
$$\equiv \Lambda \alpha . \lambda x : \alpha . x$$

One has:

id :
$$\forall \alpha \ (\alpha \to \alpha)$$

$$\mathsf{id}\,\,B \quad : \quad B \to B \qquad \quad \mathsf{for\ any\ type}\,\,B$$

$$id B u : B$$
 for any term $u : B$

ullet In particular, if we take $B \equiv orall lpha \left(lpha
ightarrow lpha
ight)$ and $u \equiv \operatorname{id}$

$$\mathsf{id} \left(\forall \alpha \ (\alpha \to \alpha) \right) \qquad : \quad \forall \alpha \ (\alpha \to \alpha) \ \to \ \forall \alpha \ (\alpha \to \alpha)$$

$$id (\forall \alpha (\alpha \to \alpha)) id : \forall \alpha (\alpha \to \alpha)$$

- Set: id $\equiv \Lambda \alpha . \lambda x : \alpha . x$
- One has:

id :
$$\forall \alpha \ (\alpha \to \alpha)$$

$$\mathsf{id}\,\,B \quad : \quad B \to B \qquad \quad \mathsf{for\ any\ type}\,\,B$$

$$id B u : B$$
 for any term $u : B$

ullet In particular, if we take $B \equiv orall lpha \left(lpha
ightarrow lpha
ight)$ and $u \equiv \operatorname{id}$

$$\mathsf{id} \left(\forall \alpha \ (\alpha \to \alpha) \right) \quad : \quad \forall \alpha \ (\alpha \to \alpha) \ \to \ \forall \alpha \ (\alpha \to \alpha)$$

$$id (\forall \alpha (\alpha \to \alpha)) id : \forall \alpha (\alpha \to \alpha)$$

⇒ Type system is impredicative (or cyclic)

 $Substitutivity \ (for \ types/terms):$

Substitutivity (for types/terms):

$$\bullet \ \Gamma \vdash u : B \quad \Rightarrow \quad \Gamma\{\alpha := A\} \vdash u\{\alpha := A\} : B\{\alpha := A\}$$

Substitutivity (for types/terms):

- $\bullet \ \Gamma \vdash u : B \quad \Rightarrow \quad \Gamma\{\alpha := A\} \vdash u\{\alpha := A\} : B\{\alpha := A\}$
- $\bullet \ \Gamma, x : A \vdash u : B, \qquad \Gamma \vdash t : A \qquad \Rightarrow \qquad \Gamma \vdash u\{x := t\} : B$

Substitutivity (for types/terms):

- $\bullet \ \Gamma \vdash u : B \quad \Rightarrow \quad \Gamma\{\alpha := A\} \vdash u\{\alpha := A\} : B\{\alpha := A\}$
- $\bullet \ \Gamma, x : A \vdash u : B, \qquad \Gamma \vdash t : A \qquad \Rightarrow \qquad \Gamma \vdash u\{x := t\} : B$

Uniqueness of type

Substitutivity (for types/terms):

- $\bullet \ \Gamma \vdash u : B \quad \Rightarrow \quad \Gamma\{\alpha := A\} \vdash u\{\alpha := A\} : B\{\alpha := A\}$
- $\bullet \ \Gamma, x : A \vdash u : B, \qquad \Gamma \vdash t : A \qquad \Rightarrow \qquad \Gamma \vdash u\{x := t\} : B$

Uniqueness of type

$$\Gamma \vdash t : A, \qquad \Gamma \vdash t : A' \qquad \Rightarrow \qquad A = A' \qquad (\alpha\text{-conv.})$$

Substitutivity (for types/terms):

- $\bullet \ \Gamma \vdash u : B \quad \Rightarrow \quad \Gamma\{\alpha := A\} \vdash u\{\alpha := A\} : B\{\alpha := A\}$
- $\bullet \ \Gamma, x : A \vdash u : B, \qquad \Gamma \vdash t : A \qquad \Rightarrow \qquad \Gamma \vdash u\{x := t\} : B$

Uniqueness of type

$$\Gamma \vdash t : A, \qquad \Gamma \vdash t : A' \qquad \Rightarrow \qquad A = A' \qquad (\alpha\text{-conv.})$$

Decidability of type checking / type inference

Substitutivity (for types/terms):

- $\bullet \ \Gamma \vdash u : B \quad \Rightarrow \quad \Gamma\{\alpha := A\} \vdash u\{\alpha := A\} : B\{\alpha := A\}$
- $\Gamma, x : A \vdash u : B, \qquad \Gamma \vdash t : A \implies \qquad \Gamma \vdash u\{x := t\} : B$

Uniqueness of type

$$\Gamma \vdash t : A, \qquad \Gamma \vdash t : A' \qquad \Rightarrow \qquad A = A' \qquad (\alpha \text{-conv.})$$

Decidability of type checking / type inference

1 Given Γ , t and A, decide whether $\Gamma \vdash t : A$ is derivable

Substitutivity (for types/terms):

- $\bullet \ \Gamma \vdash u : B \quad \Rightarrow \quad \Gamma\{\alpha := A\} \vdash u\{\alpha := A\} : B\{\alpha := A\}$
- $\bullet \ \Gamma, x : A \vdash u : B, \qquad \Gamma \vdash t : A \qquad \Rightarrow \qquad \Gamma \vdash u\{x := t\} : B$

Uniqueness of type

$$\Gamma \vdash t : A, \qquad \Gamma \vdash t : A' \qquad \Rightarrow \qquad A = A' \qquad (\alpha \text{-conv.})$$

Decidability of type checking / type inference

- **1** Given Γ , t and A, decide whether $\Gamma \vdash t : A$ is derivable
- ② Given Γ and t, compute a type A such that $\Gamma \vdash t : A$ if such a type exists, or fail otherwise.

Substitutivity (for types/terms):

- $\bullet \ \Gamma \vdash u : B \quad \Rightarrow \quad \Gamma\{\alpha := A\} \vdash u\{\alpha := A\} : B\{\alpha := A\}$
- $\Gamma, x : A \vdash u : B, \qquad \Gamma \vdash t : A \implies \Gamma \vdash u\{x := t\} : B$

Uniqueness of type

$$\Gamma \vdash t : A, \qquad \Gamma \vdash t : A' \qquad \Rightarrow \qquad A = A' \qquad (\alpha \text{-conv.})$$

Decidability of type checking / type inference

- **1** Given Γ , t and A, decide whether $\Gamma \vdash t : A$ is derivable
- ② Given Γ and t, compute a type A such that $\Gamma \vdash t : A$ if such a type exists, or fail otherwise.

Both problems are decidable

Two kinds of redexes:

Two kinds of redexes:

$$(\lambda x : A . t)u \succ t\{x := u\}$$
 1st kind redex

Two kinds of redexes:

$$(\lambda x : A \cdot t)u \succ t\{x := u\}$$
 1st kind redex
 $(\Lambda \alpha \cdot t)A \succ t\{\alpha := A\}$ 2nd kind redex

Two kinds of redexes:

$$(\lambda x : A . t)u \succ t\{x := u\}$$
 1st kind redex
 $(\Lambda \alpha . t)A \succ t\{\alpha := A\}$ 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Two kinds of redexes:

$$(\lambda x : A \cdot t)u \succ t\{x := u\}$$
 1st kind redex
 $(\Lambda \alpha \cdot t)A \succ t\{\alpha := A\}$ 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

Reduction rules

Two kinds of redexes:

$$(\lambda x : A . t)u \succ t\{x := u\}$$
 1st kind redex
 $(\Lambda \alpha . t)A \succ t\{\alpha := A\}$ 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

• One step β -reduction $t \succ t' \equiv$ contextual closure of both rules above

Reduction rules

Two kinds of redexes:

$$(\lambda x : A \cdot t)u \succ t\{x := u\}$$
 1st kind redex
 $(\Lambda \alpha \cdot t)A \succ t\{\alpha := A\}$ 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

- One step β -reduction $t \succ t' \equiv$ contextual closure of both rules above
- β -reduction $t \geq t' \equiv$ reflexive-transitive closure of \geq

Reduction rules

Two kinds of redexes:

$$(\lambda x : A \cdot t)u \succ t\{x := u\}$$
 1st kind redex
 $(\Lambda \alpha \cdot t)A \succ t\{\alpha := A\}$ 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

- One step β -reduction $t \succ t' \equiv$ contextual closure of both rules above
- β -reduction $t > t' \equiv$ reflexive-transitive closure of >
- β -convertibility $t \simeq t' \equiv$ reflexive-symmetric-transitive closure of \succ

id
$$B \ u \equiv (\Lambda \alpha . \lambda x : \alpha . x) \ B \ u$$

id
$$B \ u \equiv (\Lambda \alpha . \lambda x : \alpha . x) \ B \ u \vdash (\lambda x : B . x) \ u$$

id
$$B \ u \equiv (\Lambda \alpha . \lambda x : \alpha . x) \ B \ u \rightarrow (\lambda x : B . x) \ u \rightarrow u$$

The polymorphic identity, again

A little bit more complex example...

The polymorphic identity, again

A little bit more complex example...

$$\begin{array}{l} \left(\Lambda\alpha . \, \lambda x : \alpha . \, \lambda f : \alpha {\rightarrow} \alpha . \, \overbrace{f \left(\cdots \left(f \, x \right) \cdots \right) \right)}^{32 \, \text{ times}} \\ \left(\forall \alpha \, \left(\alpha {\rightarrow} (\alpha {\rightarrow} \alpha) {\rightarrow} \alpha \right) \right) \, \left(\Lambda\alpha . \, \lambda x : \alpha . \, \lambda f : \alpha {\rightarrow} \alpha . \, f \, x \right) \\ \left(\lambda n : \forall \alpha \, \left(\alpha {\rightarrow} (\alpha {\rightarrow} \alpha) {\rightarrow} \alpha \right) . \, \Lambda\alpha . \, \lambda x : \alpha . \, \lambda f : \alpha {\rightarrow} \alpha . \, n \, \alpha \, \left(n \, \alpha \, x \, f \right) f \right) \end{array}$$

The polymorphic identity, again

A little bit more complex example...

$$(\Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . \overbrace{f(\cdots (fx)\cdots)})$$

$$(\forall \alpha (\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha)) (\Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . f x)$$

$$(\lambda n : \forall \alpha (\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha) . \Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . n \alpha (n \alpha x f) f)$$

$$\succ^* \quad \Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . \underbrace{(f \cdots (fx) \cdots)}_{4 \ 294 \ 967 \ 296 \ times}$$

Confluence

$$t \succ^* t_1 \ \land \ t \succ^* t_2 \quad \Rightarrow \quad \exists t' \ \big(t_1 \succ^* t' \ \land \ t_2 \succ^* t' \big)$$

Confluence

$$t \succ^* t_1 \ \land \ t \succ^* t_2 \quad \Rightarrow \quad \exists t' \ (t_1 \succ^* t' \ \land \ t_2 \succ^* t')$$

Proof. Roughly the same as for the untyped λ -calculus (adaptation is easy)

Confluence

$$t \succ^* t_1 \wedge t \succ^* t_2 \quad \Rightarrow \quad \exists t' (t_1 \succ^* t' \wedge t_2 \succ^* t')$$

Proof. Roughly the same as for the untyped λ -calculus (adaptation is easy)

Church-Rosser

$$t_1 \simeq t_2 \quad \Leftrightarrow \quad \exists \, t' \; ig(t_1 \succ^* t' \; \wedge \; t_2 \succ^* t'ig)$$

Confluence

$$t \succ^* t_1 \land t \succ^* t_2 \Rightarrow \exists t' (t_1 \succ^* t' \land t_2 \succ^* t')$$

Proof. Roughly the same as for the untyped λ -calculus (adaptation is easy)

Church-Rosser

$$t_1 \simeq t_2 \quad \Leftrightarrow \quad \exists t' \ (t_1 \succ^* t' \ \land \ t_2 \succ^* t')$$

Subject-reduction

If
$$\Gamma \vdash t : A$$
 and $t \succ^* t'$ then $\Gamma \vdash t : A$

Confluence

$$t \succ^* t_1 \wedge t \succ^* t_2 \quad \Rightarrow \quad \exists t' \ (t_1 \succ^* t' \wedge t_2 \succ^* t')$$

Proof. Roughly the same as for the untyped λ -calculus (adaptation is easy)

Church-Rosser

$$t_1 \simeq t_2 \quad \Leftrightarrow \quad \exists t' \ (t_1 \succ^* t' \ \land \ t_2 \succ^* t')$$

Subject-reduction

If
$$\Gamma \vdash t : A$$
 and $t \succ^* t'$ then $\Gamma \vdash t : A$

Proof. By induction on the derivation of $\Gamma \vdash t : A$, with $t \succ t'$ (one step reduction)

Confluence

$$t \succ^* t_1 \wedge t \succ^* t_2 \quad \Rightarrow \quad \exists t' (t_1 \succ^* t' \wedge t_2 \succ^* t')$$

Proof. Roughly the same as for the untyped λ -calculus (adaptation is easy)

Church-Rosser

$$t_1 \simeq t_2 \quad \Leftrightarrow \quad \exists t' \ (t_1 \succ^* t' \ \land \ t_2 \succ^* t')$$

Subject-reduction

If
$$\Gamma \vdash t : A$$
 and $t \succ^* t'$ then $\Gamma \vdash t : A$

Proof By induction on the derivation of $\Gamma \vdash t : A$, with $t \succ t'$ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable

Confluence

$$t \succ^* t_1 \wedge t \succ^* t_2 \quad \Rightarrow \quad \exists t' \ (t_1 \succ^* t' \wedge t_2 \succ^* t')$$

Proof. Roughly the same as for the untyped λ -calculus (adaptation is easy)

Church-Rosser

$$t_1 \simeq t_2 \quad \Leftrightarrow \quad \exists t' \ (t_1 \succ^* t' \ \land \ t_2 \succ^* t')$$

Subject-reduction

If
$$\Gamma \vdash t : A$$
 and $t \succ^* t'$ then $\Gamma \vdash t : A$

Proof. By induction on the derivation of $\Gamma \vdash t : A$, with $t \succ t'$ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable

Proof. Girard and Tait's method of reducibility candidates (postponed)

Part II

Encoding data types

Encoding of booleans

Bool
$$\equiv \forall \gamma \ (\gamma \rightarrow \gamma \rightarrow \gamma)$$

Encoding of booleans

$$\begin{array}{lll} \mathsf{Bool} & \equiv & \forall \gamma \; (\gamma \to \gamma \to \gamma) \\ \mathsf{true} & \equiv & \Lambda \gamma \, . \, \lambda x \, , y : \gamma \, . \, x & : & \mathsf{Bool} \end{array}$$

Encoding of booleans

```
\mathsf{Bool} \ \equiv \ \forall \gamma \ (\gamma \to \gamma \to \gamma)
```

 $\begin{array}{llll} \mathsf{true} & \equiv & \Lambda \gamma \,.\, \lambda x , y \,:\, \gamma \,.\, x & : & \mathsf{Bool} \\ \mathsf{false} & \equiv & \Lambda \gamma \,.\, \lambda x , y \,:\, \gamma \,.\, y & : & \mathsf{Bool} \end{array}$

Encoding of booleans

```
\begin{array}{lll} \mathsf{Bool} & \equiv & \forall \gamma \; (\gamma \to \gamma \to \gamma) \\ \mathsf{true} & \equiv \; \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, x & : & \mathsf{Bool} \\ \mathsf{false} & \equiv \; \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, y & : & \mathsf{Bool} \\ \mathsf{if}_A \; u \; \mathsf{then} \; t_1 \; \mathsf{else} \; t_2 \; \equiv \; u \; A \; t_1 \; t_2 \end{array}
```

Encoding of booleans

```
\begin{array}{llll} \mathsf{Bool} & \equiv & \forall \gamma \; (\gamma \to \gamma \to \gamma) \\ \mathsf{true} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, x & : & \mathsf{Bool} \\ \mathsf{false} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, y & : & \mathsf{Bool} \\ \mathsf{if}_A \; \; u \; \; \mathsf{then} \; \; t_1 \; \; \mathsf{else} \; \; t_2 \; \; \equiv \; \; u \; A \; t_1 \; t_2 \end{array}
```

Correctness w.r.t. typing

Encoding of booleans

```
\begin{array}{llll} \mathsf{Bool} & \equiv & \forall \gamma \; (\gamma \to \gamma \to \gamma) \\ \mathsf{true} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, x & : & \mathsf{Bool} \\ \mathsf{false} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, y & : & \mathsf{Bool} \\ \mathsf{if}_A \; \; u \; \; \mathsf{then} \; \; t_1 \; \; \mathsf{else} \; \; t_2 \; \; \equiv \; \; u \; A \; t_1 \; t_2 \end{array}
```

Correctness w.r.t. typing

$$\frac{\Gamma \vdash u : \mathsf{Bool} \qquad \Gamma \vdash t_1 : A \qquad \Gamma \vdash t_2 : A}{\Gamma \vdash \mathsf{if}_A \quad u \quad \mathsf{then} \quad t_1 \quad \mathsf{else} \quad t_2 : A}$$

Encoding of booleans

```
\begin{array}{llll} \mathsf{Bool} & \equiv & \forall \gamma \; (\gamma \to \gamma \to \gamma) \\ \mathsf{true} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, x & : & \mathsf{Bool} \\ \mathsf{false} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, y & : & \mathsf{Bool} \\ & \mathsf{if}_A \; \; u \; \; \mathsf{then} \; \; t_1 \; \; \mathsf{else} \; \; t_2 \; \; \equiv \; \; u \; A \; t_1 \; t_2 \end{array}
```

Correctness w.r.t. typing

$$\frac{\Gamma \vdash u : \mathsf{Bool} \qquad \Gamma \vdash t_1 : A \qquad \Gamma \vdash t_2 : A}{\Gamma \vdash \mathsf{if}_A \quad u \quad \mathsf{then} \quad t_1 \quad \mathsf{else} \quad t_2 : A}$$

Correctness w.r.t. reduction

Encoding of booleans

$$\begin{array}{llll} \mathsf{Bool} & \equiv & \forall \gamma \; (\gamma \to \gamma \to \gamma) \\ \mathsf{true} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, x & : & \mathsf{Bool} \\ \mathsf{false} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, y & : & \mathsf{Bool} \\ & \mathsf{if}_A \; \; u \; \; \mathsf{then} \; \; t_1 \; \; \mathsf{else} \; \; t_2 \; \; \equiv \; \; u \; A \; t_1 \; t_2 \end{array}$$

Correctness w.r.t. typing

$$\frac{\Gamma \vdash u : \mathsf{Bool} \qquad \Gamma \vdash t_1 : A \qquad \Gamma \vdash t_2 : A}{\Gamma \vdash \mathsf{if}_A \quad u \quad \mathsf{then} \quad t_1 \quad \mathsf{else} \quad t_2 : A}$$

Correctness w.r.t. reduction

if $_{\mathcal{A}}$ true then t_1 else t_2 \succ^* t_1

Encoding of booleans

$$\begin{array}{llll} \mathsf{Bool} & \equiv & \forall \gamma \; (\gamma \to \gamma \to \gamma) \\ \mathsf{true} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, x & : & \mathsf{Bool} \\ \mathsf{false} & \equiv & \Lambda \gamma \, . \, \lambda x , y \, : \gamma \, . \, y & : & \mathsf{Bool} \\ \mathsf{if}_A \; \; u \; \; \mathsf{then} \; \; t_1 \; \; \mathsf{else} \; \; t_2 \; \; \equiv \; \; u \; A \; t_1 \; t_2 \end{array}$$

Correctness w.r.t. typing

$$\frac{\Gamma \vdash u : \mathsf{Bool} \qquad \Gamma \vdash t_1 : A \qquad \Gamma \vdash t_2 : A}{\Gamma \vdash \mathsf{if}_A \quad u \quad \mathsf{then} \quad t_1 \quad \mathsf{else} \quad t_2 : A}$$

Correctness w.r.t. reduction

if $_{\mathcal{A}}$ true then t_1 else $t_2 \succ^* t_1$ if $_{\mathcal{A}}$ false then t_1 else $t_2 \succ^* t_2$

Objection:

Objection: We can do the same in the untyped λ -calculus!

Objection: We can do the same in the untyped λ -calculus!

```
true \equiv \lambda x, y.x false \equiv \lambda x, y.y if u then t_1 else t_2 \equiv u \ t_1 \ t_2
```

Objection: We can do the same in the untyped λ -calculus!

```
true \equiv \lambda x, y.x false \equiv \lambda x, y.y Same reduction rules as before
```

Objection: We can do the same in the untyped λ -calculus!

$$\left.\begin{array}{ll} \mathsf{true} & \equiv & \lambda x, y \,.\, x \\ \mathsf{false} & \equiv & \lambda x, y \,.\, y \\ \\ \mathsf{if} & u & \mathsf{then} & t_1 & \mathsf{else} & t_2 & \equiv & u \,\, t_1 \,\, t_2 \end{array}\right\} \quad \begin{array}{l} \mathsf{Same} \;\, \mathsf{reduction} \\ \\ \mathsf{rules} \;\, \mathsf{as} \;\, \mathsf{before} \end{array}$$

But nothing prevents the following computation:

if
$$\underbrace{\lambda x \, . \, x}_{\text{bad bool}}$$
 then t_1 else t_2 \equiv $(\lambda x \, . \, x) \; t_1 \; t_2 \; \succ \underbrace{t_1 t_2}_{\text{meaningless result}}$

Objection: We can do the same in the untyped λ -calculus!

$$\left.\begin{array}{ll} \mathsf{true} & \equiv & \lambda x, y \,.\, x \\ \mathsf{false} & \equiv & \lambda x, y \,.\, y \\ \\ \mathsf{if} & u & \mathsf{then} & t_1 & \mathsf{else} & t_2 & \equiv & u \,\, t_1 \,\, t_2 \end{array}\right\} \quad \begin{array}{l} \mathsf{Same} \;\, \mathsf{reduction} \\ \\ \mathsf{rules} \;\, \mathsf{as} \;\, \mathsf{before} \end{array}$$

But nothing prevents the following computation:

if
$$\lambda x \cdot x$$
 then t_1 else $t_2 \equiv (\lambda x \cdot x) t_1 t_2 \succ \underbrace{t_1 t_2}_{\text{meaningless result}}$

Question: Does the type discipline of system F avoid this?

Principle (that should be satisfied by any functional programming language)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has one of the canonical forms expected by the type A.

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be true or false (i.e. the canonical forms of type bool).

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of type Bool is a term of type Bool.

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

The terms true $\equiv \Lambda \gamma . \lambda x, y : \gamma . x$ and false $\equiv \Lambda \gamma . \lambda x, y : \gamma . y$ are the only closed normal terms of type Bool $\equiv \forall \gamma \ (\gamma \rightarrow \gamma \rightarrow \gamma)$

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

The terms true $\equiv \Lambda \gamma . \lambda x, y : \gamma . x$ and false $\equiv \Lambda \gamma . \lambda x, y : \gamma . y$ are the only closed normal terms of type Bool $\equiv \forall \gamma \ (\gamma \rightarrow \gamma \rightarrow \gamma)$

Proof. Case analysis on the derivation.

Encoding of the cartesian product $A \times B$

$$\begin{array}{lll} A\times B & \equiv & \forall \gamma \; ((A \!\!\rightarrow\!\! B \!\!\rightarrow\!\! \gamma) \to \gamma) \\ \langle t_1,t_2\rangle & \equiv & \Lambda\gamma \,.\, \lambda f: A\to B\to \gamma \,.\, f\; t_1\; t_2 \\ \text{fst} & \equiv & \lambda p: A\times B \,.\, p\; A\; (\lambda x: A\,.\, \lambda y: B\,.\, x) & : \; A\times B\to A \\ \text{snd} & \equiv & \lambda p: A\times B \,.\, p\; B\; (\lambda x: A\,.\, \lambda y: B\,.\, y) & : \; A\times B\to B \end{array}$$

Encoding of the cartesian product $A \times B$

$$\begin{array}{lll} A\times B & \equiv & \forall \gamma \; ((A \!\!\rightarrow\!\! B \!\!\rightarrow\!\! \gamma) \to \gamma) \\ \langle t_1,t_2\rangle & \equiv & \Lambda\gamma \,.\, \lambda f: A\to B\to \gamma \,.\, f\; t_1\; t_2 \\ \text{fst} & \equiv & \lambda p: A\times B \,.\, p\; A\; (\lambda x: A\,.\, \lambda y: B\,.\, x) & : \; A\times B\to A \\ \text{snd} & \equiv & \lambda p: A\times B \,.\, p\; B\; (\lambda x: A\,.\, \lambda y: B\,.\, y) & : \; A\times B\to B \end{array}$$

Correctness w.r.t. typing and reduction

$$\frac{\Gamma \vdash t_1 : A \qquad \Gamma \vdash t_2 : B}{\Gamma \vdash \langle t_1, t_2 \rangle : A \times B} \qquad \qquad \text{fst } \langle t_1, t_2 \rangle \qquad \stackrel{*}{\succ} \qquad t_1 \\ \text{snd } \langle t_1, t_2 \rangle \qquad \stackrel{*}{\succ} \qquad t_2$$

Encoding of the cartesian product $A \times B$

$$\begin{array}{lll} A\times B & \equiv & \forall \gamma \; ((A \!\!\rightarrow\!\! B \!\!\rightarrow\!\! \gamma) \to \gamma) \\ \langle t_1,t_2\rangle & \equiv & \Lambda\gamma \,.\, \lambda f: A\to B\to \gamma \,.\, f\; t_1\; t_2 \\ \text{fst} & \equiv & \lambda p: A\times B \,.\, p\; A\; (\lambda x: A\,.\, \lambda y: B\,.\, x) & : \; A\times B\to A \\ \text{snd} & \equiv & \lambda p: A\times B \,.\, p\; B\; (\lambda x: A\,.\, \lambda y: B\,.\, y) & : \; A\times B\to B \end{array}$$

Correctness w.r.t. typing and reduction

$$\frac{\Gamma \vdash t_1 : A \qquad \Gamma \vdash t_2 : B}{\Gamma \vdash \langle t_1, t_2 \rangle : A \times B} \qquad \qquad \text{fst } \langle t_1, t_2 \rangle \qquad \stackrel{*}{\succ} \qquad t_1 \\ \text{snd } \langle t_1, t_2 \rangle \qquad \stackrel{*}{\succ} \qquad t_2$$

Lemma (Canonical forms of type $A \times B$)

The closed normal terms of type $A \times B$ are of the form $\langle t_1, t_2 \rangle$, where t_1 and t_2 are closed normal terms of type A and B, respectively.

Encoding of the disjoint union A + B

$$A + B \equiv \forall \gamma ((A \rightarrow \gamma) \rightarrow (B \rightarrow \gamma) \rightarrow \gamma)$$

$$inl(v) \equiv \Lambda \gamma . \lambda f : A \rightarrow \gamma . \lambda g : B \rightarrow \gamma . f \ v : A + B \quad (with \ v : A)$$

$$inr(v) \equiv \Lambda \gamma . \lambda f : A \rightarrow \gamma . \lambda g : B \rightarrow \gamma . g \ v : A + B \quad (with \ v : B)$$

$$case_{C} \ u \text{ of } inl(x) \mapsto t_{1} \mid inr(y) \mapsto t_{2} \equiv u \ C \ (\lambda x : A . t_{1}) \ (\lambda y : B . t_{2})$$

Encoding of the disjoint union A + B

$$A + B \equiv \forall \gamma ((A \rightarrow \gamma) \rightarrow (B \rightarrow \gamma) \rightarrow \gamma)$$

$$inl(v) \equiv \Lambda \gamma . \lambda f : A \rightarrow \gamma . \lambda g : B \rightarrow \gamma . f \ v : A + B \quad (with \ v : A)$$

$$inr(v) \equiv \Lambda \gamma . \lambda f : A \rightarrow \gamma . \lambda g : B \rightarrow \gamma . g \ v : A + B \quad (with \ v : B)$$

$$case_{C} \ u \text{ of } inl(x) \mapsto t_{1} \ | \ inr(y) \mapsto t_{2} \equiv u \ C \ (\lambda x : A . t_{1}) \ (\lambda y : B . t_{2})$$

Correctness w.r.t. typing and reduction

$$\frac{\Gamma \vdash u : A + B \qquad \Gamma, \ x : A \vdash t_1 : C \qquad \Gamma, \ y : B \vdash t_2 : C}{\Gamma \vdash \mathsf{case}_{C} \ u \ \mathsf{of} \ \mathsf{inl}(x) \mapsto t_1 \ | \ \mathsf{inr}(y) \mapsto t_2 \ : \ C}$$

Encoding of the disjoint union A + B

$$A + B \equiv \forall \gamma ((A \rightarrow \gamma) \rightarrow (B \rightarrow \gamma) \rightarrow \gamma)$$

$$inl(v) \equiv \Lambda \gamma . \lambda f : A \rightarrow \gamma . \lambda g : B \rightarrow \gamma . f \ v : A + B \quad (with \ v : A)$$

$$inr(v) \equiv \Lambda \gamma . \lambda f : A \rightarrow \gamma . \lambda g : B \rightarrow \gamma . g \ v : A + B \quad (with \ v : B)$$

$$case_{C} \ u \text{ of } inl(x) \mapsto t_{1} \mid inr(y) \mapsto t_{2} \equiv u \ C (\lambda x : A . t_{1}) (\lambda y : B . t_{2})$$

Correctness w.r.t. typing and reduction

$$\frac{\Gamma \vdash u : A + B \qquad \Gamma, \ x : A \vdash t_1 : C \qquad \Gamma, \ y : B \vdash t_2 : C}{\Gamma \vdash \mathsf{case}_C \ u \ \mathsf{of} \ \mathsf{inl}(x) \mapsto t_1 \ | \ \mathsf{inr}(y) \mapsto t_2 \ : \ C}$$

$$\begin{array}{llll} \operatorname{case}_{\mathcal{C}} \operatorname{inl}(v) \ \operatorname{of} & \operatorname{inl}(x) \mapsto t_1 & \operatorname{inr}(y) \mapsto t_2 & \succ^* & t_1\{x := v\} \\ \operatorname{case}_{\mathcal{C}} \operatorname{inr}(v) \ \operatorname{of} & \operatorname{inl}(x) \mapsto t_1 & \operatorname{inr}(y) \mapsto t_2 & \succ^* & t_2\{y := v\} \end{array}$$

+ Canonical forms of type A + B (works as expected)

Encoding of
$$\operatorname{Fin}_{n} (n \geq 0)$$

$$\operatorname{Fin}_{n} \equiv \forall \gamma (\underbrace{\gamma \to \cdots \to \gamma}_{n \text{ times}} \to \gamma)$$

$$\mathbf{e}_{i} \equiv \Lambda \gamma . \lambda x_{1} : \gamma . . . \lambda x_{n} : \gamma . x_{i} : \operatorname{Fin}_{n} (1 \leq i \leq n)$$

Encoding of $Fin_n (n \ge 0)$

$$\begin{array}{lll} \mathsf{Fin}_n & \equiv & \forall \gamma \; \underbrace{\left(\underbrace{\gamma \to \cdots \to \gamma}_{n \; \mathsf{times}} \to \gamma \right)}_{n \; \mathsf{times}} \\ \\ \mathsf{e}_i & \equiv & \Lambda \gamma \, . \, \lambda x_1 : \gamma \dots \lambda x_n : \gamma \, . \, x_i \; : \; \mathsf{Fin}_n \qquad (1 \leq i \leq n) \end{array}$$

Again, e_1, \ldots, e_n are the only closed normal terms of type Fin_n.

Encoding of $Fin_n (n \ge 0)$

$$\begin{array}{lll} \operatorname{Fin}_n & \equiv & \forall \gamma \ \underbrace{(\gamma \to \cdots \to \gamma}_{n \text{ times}} \to \gamma) \\ \\ \mathbf{e}_i & \equiv & \Lambda \gamma . \lambda x_1 : \gamma . . . \lambda x_n : \gamma . x_i : \operatorname{Fin}_n & (1 \leq i \leq n) \end{array}$$

Again, e_1, \ldots, e_n are the only closed normal terms of type Fin_n.

In particular:

Encoding of $Fin_n (n \ge 0)$

$$\mathsf{Fin}_n \equiv \forall \gamma \ (\underbrace{\gamma \to \cdots \to \gamma}_{n \ \mathsf{times}} \to \gamma)$$

$$\mathbf{e}_{i} \equiv \Lambda \gamma . \lambda x_{1} : \gamma ... \lambda x_{n} : \gamma . x_{i} : \operatorname{Fin}_{n} \quad (1 \leq i \leq n)$$

Again, e_1, \ldots, e_n are the only closed normal terms of type Fin_n.

In particular:

$$\mathsf{Fin}_2 \quad \equiv \quad \forall \gamma \ (\gamma \to \gamma \to \gamma) \quad \equiv \quad \mathsf{Bool} \qquad \mathsf{(type of booleans)}$$

$$\mathsf{Fin}_1 \ \equiv \ \forall \gamma \ (\gamma \to \gamma) \qquad \equiv \ \mathsf{Unit} \qquad (\mathsf{unit} \ \mathsf{data-type})$$

Encoding of $Fin_n (n \ge 0)$

$$\mathsf{Fin}_n \equiv \forall \gamma \ (\underbrace{\gamma \to \cdots \to \gamma}_{n \text{ times}} \to \gamma)$$

$$\mathbf{e}_{i} \equiv \Lambda \gamma . \lambda x_{1} : \gamma ... \lambda x_{n} : \gamma . x_{i} : \operatorname{Fin}_{n} \quad (1 \leq i \leq n)$$

Again, e_1, \ldots, e_n are the only closed normal terms of type Fin_n.

In particular:

Encoding of $\operatorname{Fin}_{n} (n \geq 0)$ $\operatorname{Fin}_{n} \equiv \forall \gamma (\underbrace{\gamma \to \cdots \to \gamma}_{n \text{ times}} \to \gamma)$ $\mathbf{e}_{i} \equiv \Lambda \gamma . \lambda x_{1} : \gamma ... \lambda x_{n} : \gamma . x_{i} : \operatorname{Fin}_{n} (1 \leq i \leq n)$

Again, e_1, \ldots, e_n are the only closed normal terms of type Fin_n.

In particular:

(Notice that there is no closed normal term of type \perp .)

Encoding of the type of Church numerals

Nat
$$\equiv \forall \gamma \ (\gamma \rightarrow (\gamma \rightarrow \gamma) \rightarrow \gamma)$$

Encoding of the type of Church numerals

Nat
$$\equiv \forall \gamma \ (\gamma \rightarrow (\gamma \rightarrow \gamma) \rightarrow \gamma)$$

 $\overline{0} \equiv \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . x$
 $\overline{1} \equiv \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f x$
 $\overline{2} \equiv \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f (f x)$
 \vdots
 $\overline{n} \equiv \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . \underbrace{f(\cdots (f x) \cdots)}_{n \text{ times}} : \text{Nat}$

Encoding of the type of Church numerals

Nat
$$\equiv \forall \gamma \ (\gamma \rightarrow (\gamma \rightarrow \gamma) \rightarrow \gamma)$$

 $\overline{0} \equiv \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . x$
 $\overline{1} \equiv \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f x$
 $\overline{2} \equiv \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f (f x)$
 \vdots
 $\overline{n} \equiv \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . \underbrace{f(\cdots (f x) \cdots)}_{n \text{ times}} : \text{Nat}$

Lemma (Canonical forms of type Nat)

The terms $\overline{0}$, $\overline{1}$, $\overline{2}$, ... are the only closed normal terms of type Nat.

Intuition: Church numeral \overline{n} acts as an iterator:

$$\overline{n} A f x \qquad \succ^* \qquad \underbrace{f \left(\cdots \left(f \times x \right) \cdots \right)}_{n} \qquad \qquad (f : A \to A, \quad x : A)$$

Intuition: Church numeral \overline{n} acts as an iterator:

$$\overline{n} A f x \qquad \succ^* \qquad \underbrace{f \left(\cdots \left(f \times x \right) \cdots \right)}_{n} \qquad \qquad (f : A \to A, \quad x : A)$$

Successor

succ
$$\equiv \lambda n : \mathsf{Nat} . \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f (n \gamma x f)$$

Intuition: Church numeral \overline{n} acts as an iterator:

$$\overline{n} A f x \qquad \succ^* \qquad \underbrace{f \left(\cdots \left(f \times x \right) \cdots \right)}_{n} \qquad \qquad (f : A \to A, \quad x : A)$$

Successor

succ
$$\equiv \lambda n : \text{Nat.} \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f (n \gamma x f)$$

Addition

plus
$$\equiv \lambda n, m : \text{Nat.} \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . m \gamma (n \gamma x f) f$$

Intuition: Church numeral \overline{n} acts as an iterator:

$$\overline{n} A f x \qquad \succ^* \qquad \underbrace{f \left(\cdots \left(f \times x \right) \cdots \right)}_{n} \qquad \qquad (f : A \to A, \quad x : A)$$

Successor

succ
$$\equiv \lambda n : \text{Nat.} \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f (n \gamma x f)$$

Addition

```
plus \equiv \lambda n, m : \text{Nat.} \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . m \gamma (n \gamma x f) f
plus' \equiv \lambda n, m : \text{Nat.} m \text{ Nat } n \text{ succ}
```


Intuition: Church numeral \overline{n} acts as an iterator:

$$\overline{n} A f x \qquad \succ^* \qquad \underbrace{f \left(\cdots \left(f \times x \right) \cdots \right)}_{n} \qquad \qquad (f : A \to A, \quad x : A)$$

Successor

succ
$$\equiv \lambda n : \text{Nat.} \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f (n \gamma x f)$$

Addition

plus
$$\equiv \lambda n, m : \text{Nat.} \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . m \gamma (n \gamma x f) f$$

plus' $\equiv \lambda n, m : \text{Nat.} m \text{ Nat } n \text{ succ}$

Multiplication

mult
$$\equiv \lambda n, m : \text{Nat.} \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . n \gamma x (\lambda y : \gamma . m \gamma y f)$$

Intuition: Church numeral \overline{n} acts as an iterator:

$$\overline{n} A f x \qquad \succ^* \qquad \underbrace{f \left(\cdots \left(f \times x \right) \cdots \right)}_{n} \qquad \qquad (f : A \to A, \quad x : A)$$

Successor

succ
$$\equiv \lambda n : \text{Nat.} \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f (n \gamma x f)$$

Addition

plus
$$\equiv \lambda n, m : \text{Nat.} \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . m \gamma (n \gamma x f) f$$

plus' $\equiv \lambda n, m : \text{Nat.} m \text{ Nat } n \text{ succ}$

Multiplication

```
\begin{array}{lll} \mathsf{mult} & \equiv & \lambda n, \, m : \mathsf{Nat} . \, \Lambda \gamma \, . \, \lambda x : \gamma \, . \, \lambda f : \gamma {\longrightarrow} \gamma \, . \, n \, \, \gamma \, \, x \, \, (\lambda y : \gamma \, . \, m \, \, \gamma \, \, y \, \, f) \\ \mathsf{mult}' & \equiv & \lambda n, \, m : \mathsf{Nat} . \, n \, \, \mathsf{Nat} \, \, \overline{0} \, \, (\mathsf{plus} \, \, m) \end{array}
```


 $\bullet \ \, \mathsf{Predecessor} \ \, \mathsf{function} \qquad \mathsf{pred} \ \, \mathsf{:} \ \, \mathsf{Nat} \to \mathsf{Nat} \\$

• Predecessor function $pred : Nat \rightarrow Nat$

$$pred : Nat \rightarrow Nat$$

$$\begin{array}{lll} \mathsf{pred} \ \overline{0} & \simeq & \overline{0} \\ \mathsf{pred} \ (\overline{n+1}) & \simeq & \overline{n} \end{array}$$

ullet Predecessor function \bullet pred : Nat o Nat

```
\begin{array}{ccc} \mathsf{pred} \ \overline{0} & \simeq & \overline{0} \\ \mathsf{pred} \ (\overline{n+1}) & \simeq & \overline{n} \end{array}
```

ullet Predecessor function \bullet Prediction \bullet Prediction

$$\begin{array}{ccc} \mathsf{pred} \ \overline{0} & \simeq & \overline{0} \\ \mathsf{pred} \ (\overline{n+1}) & \simeq & \overline{n} \end{array}$$

• Ackerman function $ack : Nat \rightarrow Nat \rightarrow Nat$

• Ackerman function $ack : Nat \rightarrow Nat \rightarrow Nat$

• Predecessor function $pred : Nat \rightarrow Nat$

$$\begin{array}{ccc} \mathsf{pred} \ \overline{0} & \simeq & \overline{0} \\ \mathsf{pred} \ (\overline{n+1}) & \simeq & \overline{n} \end{array}$$

```
\begin{array}{lll} \mathsf{fst} & \equiv & \lambda p \colon \mathsf{Nat} \times \mathsf{Nat} \cdot p \ \mathsf{Nat} \ (\lambda x, y \colon \mathsf{Nat} \cdot x) & \colon & \mathsf{Nat} \times \mathsf{Nat} \ \to & \mathsf{Nat} \\ \mathsf{snd} & \equiv & \lambda p \colon \mathsf{Nat} \times \mathsf{Nat} \cdot p \ \mathsf{Nat} \ (\lambda x, y \colon \mathsf{Nat} \cdot y) & \colon & \mathsf{Nat} \times \mathsf{Nat} \ \to & \mathsf{Nat} \\ \mathsf{step} & \equiv & \lambda p \colon \mathsf{Nat} \times \mathsf{Nat} \ (\mathsf{snd} \ p, \ \mathsf{succ} \ (\mathsf{snd} \ p)) & \colon & \mathsf{Nat} \times \mathsf{Nat} \ \to & \mathsf{Nat} \times \mathsf{Nat} \\ \mathsf{pred} & \equiv & \lambda n \colon \mathsf{Nat} \cdot \mathsf{fst} \ (n \ (\mathsf{Nat} \times \mathsf{Nat}) \ \langle \overline{0}, \overline{0} \rangle \ \mathsf{step}) & \colon & \mathsf{Nat} \ \to & \mathsf{Nat} \end{array}
```

ullet Ackerman function ${\sf ack}: {\sf Nat}
ightarrow {\sf Nat}
ightarrow {\sf Nat}$

```
\begin{array}{lll} \mathsf{down} & \equiv & \lambda f : (\mathsf{Nat} \to \mathsf{Nat}) \ . \ \lambda p : \mathsf{Nat} \ . \ p \ \mathsf{Nat} \ (f \ \overline{1}) \ f & : & (\mathsf{Nat} \to \mathsf{Nat}) \to (\mathsf{Nat} \to \mathsf{Nat}) \\ \mathsf{ack} & \equiv & \lambda n, m : \mathsf{Nat} \ . \ n \ (\mathsf{Nat} \to \mathsf{Nat}) \ \mathsf{succ} \ \mathsf{down} \ m & : & \mathsf{Nat} \ \to \ \mathsf{Nat} \ \to \ \mathsf{Nat} \end{array}
```

ullet Predecessor function ${\sf pred}$: Nat o Nat

$$\begin{array}{ccc} \mathsf{pred} \ \overline{0} & \simeq & \overline{0} \\ \mathsf{pred} \ (\overline{n+1}) & \simeq & \overline{n} \end{array}$$

```
\begin{array}{lll} \text{fst} & \equiv & \lambda p \colon \text{Nat} \times \text{Nat} \cdot p \ \text{Nat} \ (\lambda x, y \colon \text{Nat} \cdot x) & : & \text{Nat} \times \text{Nat} \to \text{Nat} \\ \text{snd} & \equiv & \lambda p \colon \text{Nat} \times \text{Nat} \cdot p \ \text{Nat} \ (\lambda x, y \colon \text{Nat} \cdot y) & : & \text{Nat} \times \text{Nat} \to \text{Nat} \\ \text{step} & \equiv & \lambda p \colon \text{Nat} \times \text{Nat} \ (\text{snd} \ p, \ \text{succ} \ (\text{snd} \ p)) & : & \text{Nat} \times \text{Nat} \to \text{Nat} \times \text{Nat} \\ \text{pred} & \equiv & \lambda n \colon \text{Nat} \cdot \text{fst} \ (n \ (\text{Nat} \times \text{Nat}) \ \langle \overline{0}, \overline{0} \rangle \ \text{step}) & : & \text{Nat} \to \text{Nat} \end{array}
```

• Ackerman function $ack : Nat \rightarrow Nat \rightarrow Nat$

```
\begin{array}{lll} \mathsf{down} & \equiv & \lambda f : (\mathsf{Nat} \to \mathsf{Nat}) \, . \, \lambda p : \mathsf{Nat} \, . \, p \, \, \mathsf{Nat} \, \left( f \, \, \overline{1} \right) \, f & : & (\mathsf{Nat} \to \mathsf{Nat}) \to (\mathsf{Nat} \to \mathsf{Nat}) \\ \mathsf{ack} & \equiv & \lambda n, \, m : \, \mathsf{Nat} \, . \, n \, \, (\mathsf{Nat} \to \mathsf{Nat}) \, \, \mathsf{succ} \, \, \mathsf{down} \, \, m & : & \mathsf{Nat} \, \to \, \mathsf{Nat} \, \to \, \mathsf{Nat} \end{array}
```

▷ SN theorem guarantees that all well-typed computations terminate

Part III

System F: Curry-style presentation

ML/Haskell polymorphism

```
Types A,B ::= \alpha \mid A \rightarrow B \mid \cdots (user datatypes)
```

Schemes $S ::= \forall \vec{\alpha} \ B$

The type scheme $\ \forall \alpha \ B$ is defined after its particular instances $B\{\alpha := A\}$

ML/Haskell polymorphism

```
Types A,B ::= \alpha \mid A \rightarrow B \mid \cdots (user datatypes)
```

Schemes $S ::= \forall \vec{\alpha} \ B$

The type scheme $\forall \alpha \ B$ is defined after its particular instances $B\{\alpha:=A\}$ \Rightarrow Type system is predicative

ML/Haskell polymorphism

Types
$$A,B ::= \alpha \mid A \rightarrow B \mid \cdots$$
 (user datatypes) Schemes $S ::= \forall \vec{\alpha} \mid B$

The type scheme $\ \forall \alpha \ B$ is defined after its particular instances $B\{\alpha:=A\}$ \Rightarrow Type system is predicative

System F polymorphism

Types
$$A,B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B$$

The type $\forall \alpha \ B$ and its instances $B\{\alpha:=A\}$ are defined simultaneously

ML/Haskell polymorphism

Types
$$A,B ::= \alpha \mid A \rightarrow B \mid \cdots$$
 (user datatypes) Schemes $S ::= \forall \vec{\alpha} \mid B$

The type scheme $\ \forall \alpha \ B$ is defined after its particular instances $B\{\alpha:=A\}$ \Rightarrow Type system is predicative

System F polymorphism

Types
$$A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha \ B$$

The type $\forall \alpha \ B$ and its instances $B\{\alpha := A\}$ are defined simultaneously

$$\forall \alpha \ (\alpha \to \alpha)$$
 and $\forall \alpha \ (\alpha \to \alpha) \to \forall \alpha \ (\alpha \to \alpha)$

ML/Haskell polymorphism

Types
$$A,B ::= \alpha \mid A \rightarrow B \mid \cdots$$
 (user datatypes) Schemes $S ::= \forall \vec{\alpha} \mid B$

The type scheme $\ \forall \alpha \ B$ is defined after its particular instances $B\{\alpha:=A\}$ \Rightarrow Type system is predicative

System F polymorphism

Types
$$A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B$$

The type $\forall \alpha \ B$ and its instances $B\{\alpha:=A\}$ are defined simultaneously

$$\forall \alpha \ (\alpha \to \alpha)$$
 and $\forall \alpha \ (\alpha \to \alpha) \to \forall \alpha \ (\alpha \to \alpha)$

⇒ Type system is impredicative, or cyclic

In Church-style system *F*, polymorphism is explicit:

```
id \equiv \Lambda \alpha . \lambda x : \alpha . x and id \, Nat \, 2
```

• Two kind of redexes $(\lambda x : A \cdot t)u$ and $(\Lambda \alpha \cdot t)A$

In Church-style system F, polymorphism is explicit:

$$id \equiv \Lambda \alpha . \lambda x : \alpha . x$$
 and $id \, Nat \, 2$

• Two kind of redexes $(\lambda x : A \cdot t)u$ and $(\Lambda \alpha \cdot t)A$

Idea: Remove type abstractions/applications/annotations

In Church-style system F, polymorphism is explicit:

$$id \equiv \Lambda \alpha . \lambda x : \alpha . x$$
 and $id \, Nat \, 2$

• Two kind of redexes $(\lambda x : A \cdot t)u$ and $(\Lambda \alpha \cdot t)A$

Idea: Remove type abstractions/applications/annotations

```
Erasing function t\mapsto |t| |x| = x |\lambda x : A \cdot t| = \lambda x \cdot |t| \qquad |\Lambda \alpha \cdot t| = |t| |tu| = |t||u| \qquad |tA| = |t|
```

In Church-style system F, polymorphism is explicit:

id
$$\equiv \Lambda \alpha . \lambda x : \alpha . x$$
 and id Nat 2

• Two kind of redexes $(\lambda x : A \cdot t)u$ and $(\Lambda \alpha \cdot t)A$

Idea: Remove type abstractions/applications/annotations

```
Erasing function t\mapsto |t| |x| = x |\lambda x : A \cdot t| = \lambda x \cdot |t| \qquad |\Lambda \alpha \cdot t| = |t| |tu| = |t||u| \qquad |tA| = |t|
```

- Target language is pure λ -calculus
- Second kind redexes are erased, first kind redexes are preserved

Erased terms have a nice computational behaviour. . .

- Only one kind of redex, easy to execute (Krivine's machine)
- Irrelevant part of computation has been removed
- The essence of computation has been preserved (to be justified later)

Erased terms have a nice computational behaviour. . .

- Only one kind of redex, easy to execute (Krivine's machine)
- Irrelevant part of computation has been removed
- The essence of computation has been preserved (to be justified later)
- ... but what is their status w.r.t. typing?

Erased terms have a nice computational behaviour. . .

- Only one kind of redex, easy to execute (Krivine's machine)
- Irrelevant part of computation has been removed
- The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

Erased terms have a nice computational behaviour...

- Only one kind of redex, easy to execute (Krivine's machine)
- Irrelevant part of computation has been removed
- The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:

The whole syntax

Erased terms have a nice computational behaviour...

- Only one kind of redex, easy to execute (Krivine's machine)
- Irrelevant part of computation has been removed
- The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

- The whole syntax
- The judgements

Erased terms have a nice computational behaviour...

- Only one kind of redex, easy to execute (Krivine's machine)
- Irrelevant part of computation has been removed
- The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

- The whole syntax
- The judgements
- The typing rules

Erased terms have a nice computational behaviour...

- Only one kind of redex, easy to execute (Krivine's machine)
- Irrelevant part of computation has been removed
- The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

- The whole syntax
- The judgements
- The typing rules
- The derivations

Erased terms have a nice computational behaviour...

- Only one kind of redex, easy to execute (Krivine's machine)
- Irrelevant part of computation has been removed
- The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

- The whole syntax
- The judgements
- The typing rules
- The derivations
- ⇒ Induces a new formalism: Curry-style system F

Church-style system F

```
Types A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha \ B

Terms t, u ::= x \mid \lambda x : A . t \mid tu \mid \Lambda \alpha . t \mid tA

Judgments \Gamma ::= [] \mid \Gamma, x : A

Reduction (\lambda x : A . t)u \succ t\{x := u\}
(\Lambda \alpha . t)A \succ t\{\alpha := A\}
```

Church-style system F

```
Types A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha \ B

Terms t, u ::= x \mid \lambda x : A \cdot t \mid tu \mid \Lambda \alpha \cdot t \mid tA

Judgments \Gamma ::= [] \mid \Gamma, x : A

Reduction (\lambda x : A \cdot t)u \succ t\{x := u\}
(\Lambda \alpha \cdot t)A \succ t\{\alpha := A\}
```

Curry-style system F [Leivant 83]

Types
$$A,B ::= \alpha \mid A \rightarrow B \mid \forall \alpha \ B$$

Terms $t,u ::= x \mid \lambda x . t \mid tu$

Judgments $\Gamma ::= [] \mid \Gamma, x : A$

Reduction $(\lambda x . t)u \succ t\{x := u\}$

Curry-style system F [Leivant 83]

Types
$$A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha \ B$$

Terms $t, u ::= x \mid \lambda x . t \mid tu$

Judgments $\Gamma ::= [] \mid \Gamma, x : A$

Reduction $(\lambda x . t)u \succ t\{x := u\}$

Remarks:

- Types (and contexts) are unchanged
- Terms are now pure λ -terms
- Only one kind of redex

Church-style system F: typing rules

Curry-style system F: typing rules

Curry-style system F: typing rules

 \Rightarrow Rules are no more syntax directed

Curry-style system F: properties

Things that do not change

Curry-style system F: properties

Things that do not change

• Substitutivity $+ \beta$ -subject reduction

Curry-style system F: properties

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

$$\Delta \equiv \lambda x . x x$$

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

$$\Delta \ \equiv \ \lambda x \,.\, x \ x \quad : \quad \forall \alpha \ (\alpha \to \alpha) \ \to \ \forall \alpha \ (\alpha \to \alpha)$$

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

```
\Delta \equiv \lambda x . x \ x \ : \ \forall \alpha \ (\alpha \to \alpha) \to \forall \alpha \ (\alpha \to \alpha): \ \forall \alpha \ \alpha \to \forall \alpha \ \alpha
```

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

```
\Delta \equiv \lambda x . x \ x \ : \ \forall \alpha \ (\alpha \to \alpha) \to \forall \alpha \ (\alpha \to \alpha): \ \forall \alpha \ \alpha \to \forall \alpha \ \alpha: \ \forall \alpha \ \alpha \to \forall \alpha \ (\alpha \to \alpha)
```

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

```
\begin{array}{ccccc} \Delta & \equiv & \lambda x . x & x & : & \forall \alpha \; (\alpha \to \alpha) \to \forall \alpha \; (\alpha \to \alpha) \\ & : & \forall \alpha \; \alpha \to \forall \alpha \; \alpha \\ & : & \forall \alpha \; \alpha \to \forall \alpha \; (\alpha \to \alpha) \\ & : & \mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool} \end{array}
```

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

A term may have several types

• No principal type (cf later)

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

- No principal type (cf later)
- Type checking/inference becomes undecidable [Wells 94]

Equivalence between Church and Curry's presentations

Equivalence between Church and Curry's presentations

• If $\Gamma \vdash t_0 : A$ (Church), then $\Gamma \vdash |t_0| : A$ (Curry)

Equivalence between Church and Curry's presentations

- If $\Gamma \vdash t_0 : A$ (Church), then $\Gamma \vdash |t_0| : A$ (Curry)
- ② If $\Gamma \vdash t : A$ (Curry), then $\Gamma \vdash t_0 : A$ (Church) for some t_0 s.t. $|t_0| = t$

Equivalence between Church and Curry's presentations

- If $\Gamma \vdash t_0 : A$ (Church), then $\Gamma \vdash |t_0| : A$ (Curry)
- 2 If $\Gamma \vdash t : A$ (Curry), then $\Gamma \vdash t_0 : A$ (Church) for some t_0 s.t. $|t_0| = t$

The erasing function maps:

Church's world Curry's world

Equivalence between Church and Curry's presentations

- If $\Gamma \vdash t_0 : A$ (Church), then $\Gamma \vdash |t_0| : A$ (Curry)
- ② If $\Gamma \vdash t : A$ (Curry), then $\Gamma \vdash t_0 : A$ (Church) for some t_0 s.t. $|t_0| = t$

The erasing function maps:

	Church's world		Curry's world	
1.	derivations	to	derivations	(isomorphism)

Equivalence between Church and Curry's presentations

- If $\Gamma \vdash t_0 : A$ (Church), then $\Gamma \vdash |t_0| : A$ (Curry)
- ② If $\Gamma \vdash t : A$ (Curry), then $\Gamma \vdash t_0 : A$ (Church) for some t_0 s.t. $|t_0| = t$

The erasing function maps:

1.	Church's world		Curry's world	
	derivations	to	derivations	(isomorphism)
2.	valid judgements	to	valid judgements	(surjective only)

Equivalence between Church and Curry's presentations

- If $\Gamma \vdash t_0 : A$ (Church), then $\Gamma \vdash |t_0| : A$ (Curry)
- ② If $\Gamma \vdash t : A$ (Curry), then $\Gamma \vdash t_0 : A$ (Church) for some t_0 s.t. $|t_0| = t$

The erasing function maps:

	Church's world		Curry's world	
1.	derivations	to	derivations	(isomorphism)
2.	valid judgements	to	valid judgements	(surjective only)

On valid judgements, erasing is not injective:

```
\begin{array}{cccc} \lambda f: (\forall \alpha \ (\alpha \rightarrow \alpha)) \ . \ f (\forall \alpha \ (\alpha \rightarrow \alpha)) f & : & \forall \alpha \ (\alpha \rightarrow \alpha) \ \rightarrow \ \forall \alpha \ (\alpha \rightarrow \alpha) \\ \lambda f: (\forall \alpha \ (\alpha \rightarrow \alpha)) \ . \ \Lambda \alpha \ . \ f (\alpha \rightarrow \alpha) (f \alpha) & : & \forall \alpha \ (\alpha \rightarrow \alpha) \ \rightarrow \ \forall \alpha \ (\alpha \rightarrow \alpha) \\ & \leadsto & \lambda f \ . \ f f & : & \forall \alpha \ (\alpha \rightarrow \alpha) \ \rightarrow \ \forall \alpha \ (\alpha \rightarrow \alpha) \end{array}
```

Second-kind redexes are erased, first-kind redexes are preserved

Second-kind redexes are erased, first-kind redexes are preserved

(Church)
$$(\Lambda \alpha . \lambda x : \alpha . x) B y \succ (\lambda x : B . x) y \succ y$$

Second-kind redexes are erased, first-kind redexes are preserved

```
\begin{array}{llll} \text{(Church)} & (\Lambda\alpha \,.\, \lambda x \,:\, \alpha \,.\, x) \, B \, y & \succ & (\lambda x \,:\, B \,.\, x) \, y & \succ & y \\ \downarrow & \text{Erasing} & & & & & & & \\ \text{(Curry)} & (\lambda x \,.\, x) \, y & & \equiv & (\lambda x \,.\, x) \, y & \succ & y \end{array}
```

Second-kind redexes are erased, first-kind redexes are preserved

Fact 1 (Church to Curry):

If $t_0, t_0' \in \mathsf{Church}$, then

$$t \succ^n t' \quad \Rightarrow \quad |t_0| \succ^p |t_0'|$$
 (with $p \le n$)

Second-kind redexes are erased, first-kind redexes are preserved

$$\begin{array}{llll} \text{(Church)} & (\Lambda\alpha\,.\,\lambda x\,:\,\alpha\,.\,x)\,B\,y & \succ & (\lambda x\,:\,B\,.\,x)\,y & \succ & y \\ \downarrow & \text{Erasing} & & & & & & \\ \text{(Curry)} & & & & & & & & \\ & & & & & & & & \\ \end{array}$$

Fact 1 (Church to Curry):

If $t_0,t_0'\in\mathsf{Church}$, then

$$t \succ^n t' \quad \Rightarrow \quad |t_0| \succ^p |t'_0|$$
 (with $p \le n$)

Fact 2 (Curry to Church):

If $t_0 \in \mathsf{Church}$, $t' \in \mathsf{Curry}$ and t_0 well-typed, then

$$|t_0| \succ^p t' \quad \Rightarrow \quad \exists t_0' \; (|t_0'| = t' \; \wedge \; t_0 \succ^n t_0') \qquad (\text{with } n \geq p)$$

Fact 3 (Combinatorial argument):

• During the contraction of a 1st-kind redex, the number of redexes of both kinds may increase

- During the contraction of a 1st-kind redex, the number of redexes of both kinds may increase
- Ouring the contraction of a 2nd-kind redex

- During the contraction of a 1st-kind redex, the number of redexes of both kinds may increase
- Ouring the contraction of a 2nd-kind redex
 - the number of 1st-kind redexes may increase

- During the contraction of a 1st-kind redex, the number of redexes of both kinds may increase
- Ouring the contraction of a 2nd-kind redex
 - the number of 1st-kind redexes may increase
 - the number of 2nd-kind redexes does not increase

- During the contraction of a 1st-kind redex, the number of redexes of both kinds may increase
- Ouring the contraction of a 2nd-kind redex
 - the number of 1st-kind redexes may increase
 - the number of 2nd-kind redexes does not increase
 - ullet the number of type abstractions ($\Lambda lpha$. t) decreases

Fact 3 (Combinatorial argument):

- Ouring the contraction of a 1st-kind redex, the number of redexes of both kinds may increase
- Ouring the contraction of a 2nd-kind redex
 - the number of 1st-kind redexes may increase
 - the number of 2nd-kind redexes does not increase
 - the number of type abstractions $(\Lambda \alpha \, . \, t)$ decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:

- All typable terms of syst. F-Church are strongly normalisable
- ② All typable terms of syst. F-Curry are strongly normalisable

In Curry-style system F, subtyping is introduced as a macro:

$$A \leq B \equiv x : A \vdash x : B$$

In Curry-style system F, subtyping is introduced as a macro:

$$A \leq B \equiv x : A \vdash x : B$$

In Curry-style system F, subtyping is introduced as a macro:

$$A < B \equiv x : A \vdash x : B$$

$$\overline{A \leq A}$$

$$\frac{A \leq B \quad B \leq C}{A \leq C}$$

In Curry-style system F, subtyping is introduced as a macro:

$$A \leq B \equiv x : A \vdash x : B$$

$$(\text{Reflexivity, transitivity}) \qquad \frac{A \leq B \quad B \leq C}{A \leq C}$$

$$(\text{Polymorphism}) \qquad \frac{A \leq B \quad B \leq C}{\forall \alpha \mid B \mid \Delta \mid B \mid \Delta \mid B} \qquad \frac{A \leq B}{A \leq \forall \alpha \mid B \mid \Delta \mid B} \qquad \alpha \notin TV(A)$$

In Curry-style system F, subtyping is introduced as a macro:

$$A \leq B \equiv x : A \vdash x : B$$

$$(\text{Reflexivity, transitivity}) \qquad \frac{A \leq B \quad B \leq C}{A \leq C}$$

$$(\text{Polymorphism}) \qquad \frac{A \leq B \quad B \leq C}{A \leq C}$$

$$(\text{Subsumption}) \qquad \frac{A \leq B}{\forall \alpha \mid B \mid A \leq B} \qquad \alpha \notin TV(A)$$

$$(\text{Subsumption}) \qquad \frac{\Gamma \vdash t : A \quad A \leq B}{\Gamma \vdash t : B}$$

• The (desired) subtyping rule for arrow-types

$$\frac{A \le A'}{A' \to B} < A \to B'$$

• The (desired) subtyping rule for arrow-types

$$\frac{A \le A'}{A' \to B} \le \frac{B'}{A \to B'}$$

is not admissible

• In particular, we have: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \not\vdash \ f: \ \forall \alpha \ \alpha \to \mathsf{Bool}$

The (desired) subtyping rule for arrow-types

$$\frac{A \le A'}{A' \to B} \le \frac{B'}{A \to B'}$$

is not admissible

• In particular, we have: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \not\vdash \ f: \ \forall \alpha \ \alpha \to \mathsf{Bool}$ but if we η -expand: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \vdash \ \lambda x \cdot fx : \ \forall \alpha \ \alpha \to \mathsf{Bool}$

The (desired) subtyping rule for arrow-types

$$\frac{A \le A'}{A' \to B} \le A \to B'$$

- In particular, we have: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \not\vdash \ f: \ \forall \alpha \ \alpha \to \mathsf{Bool}$ but if we η -expand: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \vdash \ \lambda x \cdot fx : \ \forall \alpha \ \alpha \to \mathsf{Bool}$
- This shows that:

The (desired) subtyping rule for arrow-types

$$\frac{A \le A'}{A' \to B} \le A \to B'$$

- In particular, we have: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \not\vdash \ f: \ \forall \alpha \ \alpha \to \mathsf{Bool}$ but if we η -expand: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \vdash \ \lambda x \cdot fx : \ \forall \alpha \ \alpha \to \mathsf{Bool}$
- This shows that:
 - **1** Curry-style system F does not enjoy η -subject reduction

The (desired) subtyping rule for arrow-types

$$\frac{A \le A'}{A' \to B} \le A \to B'$$

- In particular, we have: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \not\vdash \ f: \ \forall \alpha \ \alpha \to \mathsf{Bool}$ but if we η -expand: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \vdash \ \lambda x \cdot fx : \ \forall \alpha \ \alpha \to \mathsf{Bool}$
- This shows that:
 - **1** Curry-style system F does not enjoy η -subject reduction
 - This problem is connected with subtyping in arrow-types

The (desired) subtyping rule for arrow-types

$$\frac{A \le A'}{A' \to B} \le A \to B'$$

- In particular, we have: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \not\vdash \ f: \ \forall \alpha \ \alpha \to \mathsf{Bool}$ but if we η -expand: $f: \mathsf{Nat} \to \forall \beta \ \beta \ \vdash \ \lambda x \cdot fx : \ \forall \alpha \ \alpha \to \mathsf{Bool}$
- This shows that:
 - Curry-style system F does not enjoy η -subject reduction
 - 2 This problem is connected with subtyping in arrow-types

The well-typed term:
$$\lambda x \cdot fx : (\forall \alpha \ \alpha) \to \mathsf{Bool}$$
 (Curry-style) comes from the term $\lambda x : (\forall \alpha \ \alpha) \cdot f \ (x \ \mathsf{Nat}) \ \mathsf{Bool}$ (Church-style)

Extend Curry-style system F with a new rule

$$\frac{\Gamma \vdash \lambda x \cdot tx : A}{\Gamma \vdash t : A} \quad x \notin FV(t)$$

to enforce η -subject reduction

Extend Curry-style system F with a new rule

$$\frac{\Gamma \vdash \lambda x \cdot tx : A}{\Gamma \vdash t : A} \quad x \notin FV(t)$$

to enforce η -subject reduction

Properties:

Extend Curry-style system F with a new rule

$$\frac{\Gamma \vdash \lambda x \cdot tx : A}{\Gamma \vdash t : A} \quad x \notin FV(t)$$

to enforce η -subject reduction

Properties:

ullet Substitutivity, $eta\eta$ -subject-reduction, strong normalisation

Extend Curry-style system F with a new rule

$$\frac{\Gamma \vdash \lambda x \cdot tx : A}{\Gamma \vdash t : A} \quad x \notin FV(t)$$

to enforce η -subject reduction

Properties:

- ullet Substitutivity, $eta\eta$ -subject-reduction, strong normalisation
- Subtyping rule $\frac{A \leq A'}{A' \to B} < \frac{B \leq B'}{A \to B'}$ is now admissible

Extend Curry-style system F with a new rule

$$\frac{\Gamma \vdash \lambda x \cdot tx : A}{\Gamma \vdash t : A} \quad x \notin FV(t)$$

to enforce η -subject reduction

Properties:

- ullet Substitutivity, $eta\eta$ -subject-reduction, strong normalisation
- Subtyping rule $\frac{A \leq A'}{A' \to B} < A \to B'$ is now admissible

Expansion lemma

If $\Gamma \vdash t : A$ is derivable in F_{η} , then $\Gamma \vdash t' : A$ is derivable in system F for some η -expansion t' of the term t.

More subtyping

If we set

$$\begin{array}{rcl}
\bot & := & \forall \gamma \ \gamma \\
A \times B & := & \forall \gamma \ ((A \to B \to \gamma) \to \gamma) \\
A + B & := & \forall \gamma \ ((A \to \gamma) \to (B \to \gamma) \to \gamma) \\
\text{List}(A) & := & \forall \gamma \ (\gamma \to (A \to \gamma \to \gamma) \to \gamma)
\end{array}$$

then, in F_{η} , the following subtyping rules are admissible:

$$\frac{A \leq A'}{\bot \leq A} \qquad \frac{A \leq A'}{\mathsf{List}(A) \leq \mathsf{List}(A')}$$

$$\frac{A \leq A' \quad B \leq B'}{A \times B \leq A' \times B'} \qquad \frac{A \leq A' \quad B \leq B'}{A + B \leq A' + B'}$$

More subtyping

If we set

$$\begin{array}{rcl}
\bot & := & \forall \gamma \ \gamma \\
A \times B & := & \forall \gamma \ ((A \to B \to \gamma) \to \gamma) \\
A + B & := & \forall \gamma \ ((A \to \gamma) \to (B \to \gamma) \to \gamma) \\
\text{List}(A) & := & \forall \gamma \ (\gamma \to (A \to \gamma \to \gamma) \to \gamma)
\end{array}$$

then, in F_{η} , the following subtyping rules are admissible:

$$\frac{A \leq A'}{\text{List}(A) \leq \text{List}(A')}$$

$$\frac{A \leq A' \quad B \leq B'}{A \times B \leq A' \times B'} \qquad \frac{A \leq A' \quad B \leq B'}{A + B \leq A' + B'}$$

But most typable terms have no principal type

Extend system F_{η} with binary intersections

Types $A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B \mid A \cap B$

Extend system F_{η} with binary intersections

Types $A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B \mid A \cap B$

 $\frac{\Gamma \vdash t : A \qquad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : B}$

Extend system F_{η} with binary intersections

Types
$$A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B \mid A \cap B$$

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : B}$$

• $\beta\eta$ -subject reduction, strong normalisation, etc.

Extend system F_{η} with binary intersections

Types
$$A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B \mid A \cap B$$

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : B}$$

- $\beta\eta$ -subject reduction, strong normalisation, etc.
- Subtyping rules

$$\frac{A \cap B \leq A}{A \cap B \leq B} \qquad \frac{C \leq A \quad C \leq B}{C \leq A \cap B}$$

Extend system F_{η} with binary intersections

Types
$$A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B \mid A \cap B$$

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : B}$$

- $\beta\eta$ -subject reduction, strong normalisation, etc.
- Subtyping rules

$$\frac{A \cap B \leq A}{A \cap B \leq B} \qquad \frac{C \leq A \quad C \leq B}{C \leq A \cap B}$$

All the strongly normalising terms are typable...

Extend system F_{η} with binary intersections

Types
$$A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B \mid A \cap B$$

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : B}$$

- $\beta\eta$ -subject reduction, strong normalisation, etc.
- Subtyping rules

$$\frac{A \cap B \leq A}{A \cap B \leq B} \qquad \frac{C \leq A \quad C \leq B}{C \leq A \cap B}$$

- All the strongly normalising terms are typable...
 - \ldots but nothing to do with $\forall: \quad \mathsf{already} \ \mathsf{true} \ \mathsf{in} \ \lambda {\rightarrow} \cap$

Extend system F_{η} with binary intersections

Types
$$A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B \mid A \cap B$$

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : B}$$

- ullet $\beta\eta$ -subject reduction, strong normalisation, etc.
- Subtyping rules

$$\frac{C \leq A \quad C \leq B}{A \cap B \leq A} \quad \frac{A \cap B \leq B}{C \leq A \cap B}$$

- All the strongly normalising terms are typable...
 ... but nothing to do with ∀: already true in λ→∩
- All typable terms have a principal type

$$\lambda x : xx$$
. : $\forall \alpha \ \forall \beta \ ((\alpha \rightarrow \beta) \cap \alpha \rightarrow \beta)$

Part IV

The Strong Normalisation Theorem

Question: What is the meaning of $\forall \alpha \ (\alpha \rightarrow \alpha)$?

Question: What is the meaning of $\forall \alpha \ (\alpha \rightarrow \alpha)$?

First scenario: an infinite Cartesian product (à la Martin-Löf)

$$\forall \alpha \ (\alpha \to \alpha) \ pprox \ \prod_{\alpha \ \mathrm{type}} (\alpha \to \alpha)$$

Question: What is the meaning of $\forall \alpha \ (\alpha \rightarrow \alpha)$?

First scenario: an infinite Cartesian product (à la Martin-Löf)

$$\forall \alpha \ (\alpha \to \alpha) \approx \prod_{\alpha \ \text{type}} (\alpha \to \alpha)$$
$$\approx (\bot \to \bot) \times (\mathsf{Bool} \to \mathsf{Bool}) \times (\mathsf{Nat} \to \mathsf{Nat}) \times \cdots$$

Question: What is the meaning of $\forall \alpha \ (\alpha \rightarrow \alpha)$?

First scenario: an infinite Cartesian product (à la Martin-Löf)

$$\forall \alpha \ (\alpha \to \alpha) \approx \prod_{\alpha \ \text{type}} (\alpha \to \alpha)$$
$$\approx (\bot \to \bot) \times (\mathsf{Bool} \to \mathsf{Bool}) \times (\mathsf{Nat} \to \mathsf{Nat}) \times \cdots$$

Since all the types $A \rightarrow A$ are inhabited:

Question: What is the meaning of $\forall \alpha \ (\alpha \rightarrow \alpha)$?

First scenario: an infinite Cartesian product (à la Martin-Löf)

$$\forall \alpha \ (\alpha \to \alpha) \approx \prod_{\alpha \ \text{type}} (\alpha \to \alpha)$$
$$\approx (\bot \to \bot) \times (\mathsf{Bool} \to \mathsf{Bool}) \times (\mathsf{Nat} \to \mathsf{Nat}) \times \cdots$$

Since all the types $A \rightarrow A$ are inhabited:

① The cartesian product $\forall \alpha \ (\alpha \rightarrow \alpha)$ should be larger than all the types of the form $A \rightarrow A$

Question: What is the meaning of $\forall \alpha \ (\alpha \rightarrow \alpha)$?

First scenario: an infinite Cartesian product (à la Martin-Löf)

$$\forall \alpha \ (\alpha \to \alpha) \approx \prod_{\alpha \ \text{type}} (\alpha \to \alpha)$$
$$\approx (\bot \to \bot) \times (\mathsf{Bool} \to \mathsf{Bool}) \times (\mathsf{Nat} \to \mathsf{Nat}) \times \cdots$$

Since all the types $A \rightarrow A$ are inhabited:

- ① The cartesian product $\forall \alpha \ (\alpha \rightarrow \alpha)$ should be larger than all the types of the form $A \rightarrow A$
- ② In particular, $\forall \alpha \ (\alpha \rightarrow \alpha)$ should be larger than its own function space $\forall \alpha \ (\alpha \rightarrow \alpha) \rightarrow \forall \alpha \ (\alpha \rightarrow \alpha) \dots$

Question: What is the meaning of $\forall \alpha \ (\alpha \rightarrow \alpha)$?

First scenario: an infinite Cartesian product (à la Martin-Löf)

$$\forall \alpha \ (\alpha \to \alpha) \approx \prod_{\alpha \ \text{type}} (\alpha \to \alpha)$$
$$\approx (\bot \to \bot) \times (\mathsf{Bool} \to \mathsf{Bool}) \times (\mathsf{Nat} \to \mathsf{Nat}) \times \cdots$$

Since all the types $A \rightarrow A$ are inhabited:

- ① The cartesian product $\forall \alpha \ (\alpha \rightarrow \alpha)$ should be larger than all the types of the form $A \rightarrow A$
- ② In particular, $\forall \alpha \ (\alpha \rightarrow \alpha)$ should be larger than its own function space $\forall \alpha \ (\alpha \rightarrow \alpha) \rightarrow \forall \alpha \ (\alpha \rightarrow \alpha) \dots$

... seems to be very confusing!

Second scenario: In F-Curry, both rules \forall -intro and \forall -elim

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha \ B} \quad \alpha \notin TV(\Gamma) \qquad \qquad \frac{\Gamma \vdash t : \forall \alpha \ B}{\Gamma \vdash t : B\{\alpha := A\}}$$

suggest that ∀ is not a cartesian product, but an intersection

Second scenario: In F-Curry, both rules \forall -intro and \forall -elim

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha \ B} \quad \alpha \notin TV(\Gamma) \qquad \qquad \frac{\Gamma \vdash t : \forall \alpha \ B}{\Gamma \vdash t : B\{\alpha := A\}}$$

suggest that \forall is not a cartesian product, but an intersection

Taking back our example:

Second scenario: In F-Curry, both rules \forall -intro and \forall -elim

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha \ B} \quad \alpha \notin TV(\Gamma) \qquad \qquad \frac{\Gamma \vdash t : \forall \alpha \ B}{\Gamma \vdash t : B\{\alpha := A\}}$$

suggest that \forall is not a cartesian product, but an intersection

Taking back our example:

1 The intersection $\forall \alpha \ (\alpha \rightarrow \alpha)$ is smaller than all $A \rightarrow A$

Second scenario: In F-Curry, both rules \forall -intro and \forall -elim

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha \ B} \quad \alpha \notin TV(\Gamma) \qquad \qquad \frac{\Gamma \vdash t : \forall \alpha \ B}{\Gamma \vdash t : B\{\alpha := A\}}$$

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:

- **1** The intersection $\forall \alpha \ (\alpha \rightarrow \alpha)$ is smaller than all $A \rightarrow A$
- ② In particular, $\forall \alpha \ (\alpha \rightarrow \alpha)$ is smaller than its own function space $\forall \alpha \ (\alpha \rightarrow \alpha) \rightarrow \forall \alpha \ (\alpha \rightarrow \alpha) \dots$

Second scenario: In F-Curry, both rules \forall -intro and \forall -elim

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha \ B} \quad \alpha \notin TV(\Gamma) \qquad \qquad \frac{\Gamma \vdash t : \forall \alpha \ B}{\Gamma \vdash t : B\{\alpha := A\}}$$

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:

- **1** The intersection $\forall \alpha \ (\alpha \rightarrow \alpha)$ is smaller than all $A \rightarrow A$
- ② In particular, $\forall \alpha \ (\alpha \rightarrow \alpha)$ is smaller than its own function space $\forall \alpha \ (\alpha \rightarrow \alpha) \rightarrow \forall \alpha \ (\alpha \rightarrow \alpha) \dots$

... our intuition feels much better!

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules \forall -intro and \forall -elim

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha \ B} \quad \alpha \notin TV(\Gamma) \qquad \qquad \frac{\Gamma \vdash t : \forall \alpha \ B}{\Gamma \vdash t : B\{\alpha := A\}}$$

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:

- **1** The intersection $\forall \alpha \ (\alpha \rightarrow \alpha)$ is smaller than all $A \rightarrow A$
- ② In particular, $\forall \alpha \ (\alpha \rightarrow \alpha)$ is smaller than its own function space $\forall \alpha \ (\alpha \rightarrow \alpha) \rightarrow \forall \alpha \ (\alpha \rightarrow \alpha) \dots$

... our intuition feels much better!

 \Rightarrow We will prove strong normalisation for Curry-style system FRemember that $SN(F\text{-Church}) \Leftrightarrow SN(F\text{-Curry})$ (combinatorial equivalence)

Try to prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN}$$

by induction on the derivation of $\Gamma \vdash t : A$

Try to prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN}$$

by induction on the derivation of $\Gamma \vdash t : A$

$$\frac{\Gamma, \ x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} \qquad \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B}$$

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha B} \qquad \alpha \notin TV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall \alpha B}{\Gamma \vdash t : B \{\alpha := A\}}$$

Try to prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN}$$

by induction on the derivation of $\Gamma \vdash t : A$

$$\frac{\Gamma \vdash x : A}{\Gamma \vdash \lambda x . t : A \to B} \qquad \frac{\Gamma \vdash t : A \to B}{\Gamma \vdash t : B} \qquad \frac{\Gamma \vdash t : A \to B}{\Gamma \vdash t : B}$$

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha B} \qquad \alpha \notin TV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall \alpha B}{\Gamma \vdash t : B\{\alpha := A\}}$$

All the cases successfully pass the test except application

Two terms t and u may be SN, whereas tu is not $[Take <math>t \equiv u \equiv \lambda x . xx]$

Try to prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN}$$

by induction on the derivation of $\Gamma \vdash t : A$

$$\frac{\Gamma \vdash x : A}{\Gamma \vdash \lambda x . t : A \to B} \qquad \frac{\Gamma \vdash t : A \to B}{\Gamma \vdash t : B} \qquad \frac{\Gamma \vdash t : A \to B}{\Gamma \vdash t : B}$$

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha B} \qquad \alpha \notin TV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall \alpha B}{\Gamma \vdash t : B\{\alpha := A\}}$$

All the cases successfully pass the test except application

Two terms t and u may be SN, whereas tu is not $[\mathsf{Take}\ t \equiv u \equiv \lambda x \,.\, xx]$

 \Rightarrow The induction hypothesis "t is SN" is too weak (in general)

To prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN},$$

the induction hypothesis "t is SN" is too weak.

To prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN},$$

the induction hypothesis "t is SN" is too weak.

 \Rightarrow Should replace it by an invariant that depends on the type A

To prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN},$$

the induction hypothesis "t is SN" is too weak.

⇒ Should replace it by an invariant that depends on the type *A*Intuition:

The more complex the type, the stronger its invariant, the smaller the set of terms that fulfill this invariant

To prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN},$$

the induction hypothesis "t is SN" is too weak.

⇒ Should replace it by an invariant that depends on the type *A* Intuition:

The more complex the type, the stronger its invariant, the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:

To prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN},$$

the induction hypothesis "t is SN" is too weak.

⇒ Should replace it by an invariant that depends on the type *A* Intuition:

The more complex the type, the stronger its invariant, the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:

• Reducibility candidates [Girard]

To prove that

$$\Gamma \vdash t : A \Rightarrow t \text{ is SN},$$

the induction hypothesis "t is SN" is too weak.

⇒ Should replace it by an invariant that depends on the type *A* Intuition:

The more complex the type, the stronger its invariant, the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:

- Reducibility candidates [Girard], or
- Saturated sets [Tait]

• Define a suitable notion of reducibility candidate = the sets of λ -terms that will interpret/represent types (Here, we use Tait's saturated sets)

- Define a suitable notion of reducibility candidate = the sets of λ -terms that will interpret/represent types (Here, we use Tait's saturated sets)
- Ensure that the notion of candidate captures the property of strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable λ -terms as elements

- Define a suitable notion of reducibility candidate
 the sets of λ-terms that will interpret/represent types
 (Here, we use Tait's saturated sets)
- Ensure that the notion of candidate captures the property of strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable λ -terms as elements

3 Associate to each type A a reducibility candidate $[\![A]\!]$ Type constructors \rightarrow and \forall have to be reflected at the level of candidates

- Define a suitable notion of reducibility candidate
 the sets of λ-terms that will interpret/represent types
 (Here, we use Tait's saturated sets)
- Ensure that the notion of candidate captures the property of strong normalisation (which we want to prove)
 - Each candidate should only contain strongly normalisable λ -terms as elements
- **③** Associate to each type A a reducibility candidate $\llbracket A \rrbracket$ Type constructors '→' and '∀' have to be reflected at the level of candidates
- **1** Check (by induction) that $\Gamma \vdash t : A$ implies $t \in \llbracket A \rrbracket$ This is actually a little bit more complex, since we must take care of the typing context

- Define a suitable notion of reducibility candidate
 the sets of λ-terms that will interpret/represent types
 (Here, we use Tait's saturated sets)
- ② Ensure that the notion of candidate captures the property of strong normalisation (which we want to prove)
 Each candidate should only contain strongly normalisable λ-terms as elements
- **3** Associate to each type A a reducibility candidate $[\![A]\!]$ Type constructors ' \rightarrow ' and ' \forall ' have to be reflected at the level of candidates
- Check (by induction) that $\Gamma \vdash t : A$ implies $t \in \llbracket A \rrbracket$ This is actually a little bit more complex, since we must take care of the typing context
- \odot Conclude that any well-typed term t is SN by step 2.

Notations:

```
\begin{array}{lll} \Lambda & \equiv & \text{set of all untyped $\lambda$-terms (open \& closed)} \\ \text{SN} & \equiv & \text{set of all strongly normalisable untyped $\lambda$-terms} \\ \text{Var} & \equiv & \text{set of all (term) variables} \\ \text{TVar} & \equiv & \text{set of all type variables} \\ \end{array}
```

Notations:

```
\begin{array}{lll} \Lambda & \equiv & \text{set of all untyped $\lambda$-terms (open \& closed)} \\ \text{SN} & \equiv & \text{set of all strongly normalisable untyped $\lambda$-terms} \\ \text{Var} & \equiv & \text{set of all (term) variables} \\ \text{TVar} & \equiv & \text{set of all type variables} \\ \end{array}
```

ullet A reduct of a term t is a term t' such that $t \succ t'$ (one step)

The number of reducts of a given term is finite and bounded by the number of redexes

Notations:

```
\Lambda \equiv set of all untyped \lambda-terms (open & closed) 
 SN \equiv set of all strongly normalisable untyped \lambda-terms 
 Var \equiv set of all (term) variables 
 TVar \equiv set of all type variables
```

- A reduct of a term t is a term t' such that $t \succ t'$ (one step)

 The number of reducts of a given term is finite and bounded by the number of redexes
- A finite reduction sequence of a term t is a finite sequence $(t_i)_{i \in [0...n]}$ such that $t = t_0 \succ t_1 \succ \cdots \succ t_{n-1} \succ t_n$ Infinite reduction sequences are defined similarly, by replacing [0..n] by $\mathbb N$

Notations:

```
\Lambda \equiv set of all untyped \lambda-terms (open & closed) 
SN \equiv set of all strongly normalisable untyped \lambda-terms 
Var \equiv set of all (term) variables 
TVar \equiv set of all type variables
```

- A reduct of a term t is a term t' such that $t \succ t'$ (one step)

 The number of reducts of a given term is finite and bounded by the number of redexes
- A finite reduction sequence of a term t is a finite sequence $(t_i)_{i \in [0..n]}$ such that $t = t_0 \succ t_1 \succ \cdots \succ t_{n-1} \succ t_n$ Infinite reduction sequences are defined similarly, by replacing [0..n] by $\mathbb N$
- Finite reduction sequences of a term t form a tree, called the reduction tree of t

Definition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences starting from t are finite

Definition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences starting from t are finite

Proposition

The following assertions are equivalent:

- ① t is strongly normalisable
- ② All the reducts of t are strongly normalisable
- The reduction tree of t is finite

Definition (Saturated set)

(SAT1)
$$S \subset SN$$

$$(SAT2) x \in Var, \vec{v} \in list(SN) \Rightarrow x\vec{v} \in S$$

$$(SAT3) t\{x := u\} \vec{v} \in S, u \in SN \Rightarrow (\lambda x \cdot t) u \vec{v} \in S$$

Definition (Saturated set)

A set $S \subset \Lambda$ is saturated if:

(SAT1)
$$S \subset SN$$

$$(SAT2) x \in Var, \vec{v} \in list(SN) \Rightarrow x\vec{v} \in S$$

(SAT3)
$$t\{x := u\} \vec{v} \in S, \quad u \in SN \Rightarrow (\lambda x \cdot t) u \vec{v} \in S$$

• (SAT1) expresses the property we want to prove

Definition (Saturated set)

(SAT1)
$$S \subset SN$$

$$(SAT2) x \in Var, \vec{v} \in list(SN) \Rightarrow x\vec{v} \in S$$

(SAT3)
$$t\{x := u\}\vec{v} \in S, u \in SN \Rightarrow (\lambda x \cdot t)u\vec{v} \in S$$

- (SAT1) expresses the property we want to prove
- Saturated sets contain all the variables (SAT2)
 Extra-arguments v ∈ list(SN) are here for technical reasons

Definition (Saturated set)

(SAT1)
$$S \subset SN$$

$$(SAT2) x \in Var, \vec{v} \in list(SN) \Rightarrow x\vec{v} \in S$$

(SAT3)
$$t\{x := u\}\vec{v} \in S, \quad u \in SN \Rightarrow (\lambda x \cdot t)u\vec{v} \in S$$

- (SAT1) expresses the property we want to prove
- Saturated sets are closed under head β-expansion (SAT3)
 Notice the condition u∈ SN to avoid a clash with (SAT1) for K-redexes

Definition (Saturated set)

(SAT1)
$$S \subset SN$$

$$(SAT2) x \in Var, \vec{v} \in list(SN) \Rightarrow x\vec{v} \in S$$

(SAT3)
$$t\{x := u\}\vec{v} \in S, \quad u \in SN \Rightarrow (\lambda x \cdot t)u\vec{v} \in S$$

- (SAT1) expresses the property we want to prove
- Saturated sets are closed under head β-expansion (SAT3)
 Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

Proposition (Lattice structure)

Proposition (Lattice structure)

SN is a saturated set

Proposition (Lattice structure)

- SN is a saturated set
- **SAT** is closed under arbitrary non-empty intersections/unions:

$$1 \neq \emptyset, \quad (S_i)_{i \in I} \in \mathsf{SAT}^I \quad \Rightarrow \quad \left(\bigcap_{i \in I} S_i\right), \left(\bigcup_{i \in I} S_i\right) \in \mathsf{SAT}$$

Proposition (Lattice structure)

- SN is a saturated set
- **SAT** is closed under arbitrary non-empty intersections/unions:

$$1 \neq \varnothing, \quad (S_i)_{i \in I} \in \mathsf{SAT}^I \quad \Rightarrow \quad \left(\bigcap_{i \in I} S_i\right), \left(\bigcup_{i \in I} S_i\right) \in \mathsf{SAT}$$

(SAT, \subset) is a complete distributive lattice, with $\top = \mathsf{SN} \quad \text{and} \quad \bot = \{t \in \mathsf{SN} \mid t \succ^* x u_1 \cdots u_n\}$ (Neutral terms)

Proposition (Lattice structure)

- SN is a saturated set
- **SAT** is closed under arbitrary non-empty intersections/unions:

$$1 \neq \varnothing, \quad (S_i)_{i \in I} \in \mathsf{SAT}^I \quad \Rightarrow \quad \left(\bigcap_{i \in I} S_i\right), \left(\bigcup_{i \in I} S_i\right) \in \mathsf{SAT}$$

(SAT, \subset) is a complete distributive lattice, with $\top = \mathsf{SN} \quad \text{and} \quad \bot = \{t \in \mathsf{SN} \mid t \succ^* x u_1 \cdots u_n\}$ (Neutral terms)

Realisability arrow: For all $S, T \subset \Lambda$ we set

$$S \rightarrow T := \{t \in \Lambda \mid \forall u \in S \mid tu \in T\}$$

Proposition (Lattice structure)

- SN is a saturated set
- **SAT** is closed under arbitrary non-empty intersections/unions:

$$1 \neq \varnothing, \quad (S_i)_{i \in I} \in \mathsf{SAT}^I \quad \Rightarrow \quad \left(\bigcap_{i \in I} S_i\right), \left(\bigcup_{i \in I} S_i\right) \in \mathsf{SAT}$$

(SAT, \subset) is a complete distributive lattice, with

$$op = \mathsf{SN} \quad \mathsf{and} \quad \bot = \{t \in \mathsf{SN} \mid t \succ^* \mathsf{x} \mathsf{u}_1 \cdots \mathsf{u}_n\} \quad (\mathsf{Neutral\ terms})$$

Realisability arrow: For all $S, T \subset \Lambda$ we set

$$S \rightarrow T := \{t \in \Lambda \mid \forall u \in S \mid tu \in T\}$$

Proposition (Closure under realisability arrow)

If
$$S, T \in SAT$$
, then $(S \rightarrow T) \in SAT$

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Principle: Interpret syntactic types by saturated sets

ullet Type arrow A o B is interpreted by S o T (realisability arrow)

Principle: Interpret syntactic types by saturated sets

- ullet Type arrow A o B is interpreted by S o T (realisability arrow)
- ullet Type quantification $\ orall lpha$... is interpreted by the intersection $\bigcap_{S\in \mathsf{SAT}} \cdots$

Principle: Interpret syntactic types by saturated sets

- Type arrow $A \to B$ is interpreted by $S \to T$ (realisability arrow)
- ullet Type quantification $\forall lpha$.. is interpreted by the intersection $\bigcap_{S \in \mathsf{SAT}} \cdots$

Remark: this intersection is impredicative since S ranges over $\underline{\mathbf{a}||}$ saturated sets

Principle: Interpret syntactic types by saturated sets

- Type arrow $A \rightarrow B$ is interpreted by $S \rightarrow T$ (realisability arrow)
- ullet Type quantification $\ orall lpha$... is interpreted by the intersection $\bigcap_{S\in \mathsf{SAT}} \cdots$

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: $\forall \alpha \ (\alpha \to \alpha)$ should be interpreted by $\bigcap_{S \in SAT} (S \to S)$

Principle: Interpret syntactic types by saturated sets

- Type arrow $A \rightarrow B$ is interpreted by $S \rightarrow T$ (realisability arrow)
- \bullet Type quantification $\ \forall \alpha$.. is interpreted by the intersection $\bigcap_{\mathcal{S} \in \mathsf{SAT}} \cdots$

Remark: this intersection is impredicative since S ranges over <u>all</u> saturated sets

Example:
$$\forall \alpha \ (\alpha \to \alpha)$$
 should be interpreted by $\bigcap_{S \in SAT} (S \to S)$

To interpret type variables, use type valations:

Principle: Interpret syntactic types by saturated sets

- Type arrow $A \to B$ is interpreted by $S \to T$ (realisability arrow)

Remark: this intersection is impredicative since S ranges over all saturated sets

Example:
$$\forall \alpha \ (\alpha \to \alpha)$$
 should be interpreted by $\bigcap_{S \in SAT} (S \to S)$

To interpret type variables, use type valations:

Definition (Type valuations)

A type valuation is a function $\rho: \mathsf{TVar} \to \mathsf{SAT}$

The set of type valuations is written TVal (= TVar \rightarrow SAT)

By induction on A, we define a function $[\![A]\!]$: TVal \to SAT

By induction on A, we define a function $[\![A]\!]$: TVal \to SAT

$$[\![A \to B]\!]_{\rho} = [\![A]\!]_{\rho} \to [\![B]\!]_{\rho} \qquad [\![\alpha]\!]_{\rho} = \rho(\alpha)$$
$$[\![\forall \alpha \ B]\!]_{\rho} = \bigcap_{S \in \mathsf{SAT}} [\![B]\!]_{\rho;\alpha \leftarrow S}$$

Note:
$$(\rho; \alpha \leftarrow S)$$
 is defined by $\begin{cases} (\rho; \alpha \leftarrow S)(\alpha) = S \\ (\rho; \alpha \leftarrow S)(\beta) = \rho(\beta) \end{cases}$ for all $\beta \neq \alpha$

By induction on A, we define a function [A]: TVal \rightarrow **SAT**

$$[\![A \to B]\!]_{\rho} = [\![A]\!]_{\rho} \to [\![B]\!]_{\rho} \qquad [\![\alpha]\!]_{\rho} = \rho(\alpha)$$
$$[\![\forall \alpha \ B]\!]_{\rho} = \bigcap_{S \in \mathbf{SAT}} [\![B]\!]_{\rho;\alpha \leftarrow S}$$

Note:
$$(\rho; \alpha \leftarrow S)$$
 is defined by $\begin{cases} (\rho; \alpha \leftarrow S)(\alpha) = S \\ (\rho; \alpha \leftarrow S)(\beta) = \rho(\beta) \end{cases}$ for all $\beta \neq \alpha$

Problem: The implication

$$\Gamma \vdash t : A \Rightarrow t \in \llbracket A \rrbracket_{\rho}$$

cannot be proved directly. (One has to take care of the context)

By induction on A, we define a function $[\![A]\!]$: TVal \to **SAT**

$$[\![A \to B]\!]_{\rho} = [\![A]\!]_{\rho} \to [\![B]\!]_{\rho} \qquad [\![\alpha]\!]_{\rho} = \rho(\alpha)$$

$$[\![\forall \alpha \ B]\!]_{\rho} = \bigcap_{S \in \mathsf{SAT}} [\![B]\!]_{\rho;\alpha \leftarrow S}$$

Note:
$$(\rho; \alpha \leftarrow S)$$
 is defined by $\begin{cases} (\rho; \alpha \leftarrow S)(\alpha) = S \\ (\rho; \alpha \leftarrow S)(\beta) = \rho(\beta) \end{cases}$ for all $\beta \neq \alpha$

Problem: The implication

$$\Gamma \vdash t : A \Rightarrow t \in \llbracket A \rrbracket_{\rho}$$

cannot be proved directly. (One has to take care of the context)

⇒ Strengthen induction hypothesis using substitutions

Definition (Substitutions)

A substitution is a finite list $\sigma = [x_1 := u_1; ...; x_n := u_n]$ where $x_i \neq x_j$ (for $i \neq j$) and $u_i \in \Lambda$

Definition (Substitutions)

A substitution is a finite list $\sigma = [x_1 := u_1; ...; x_n := u_n]$ where $x_i \neq x_j$ (for $i \neq j$) and $u_i \in \Lambda$

Application of a substitution σ to a term t is written $t[\sigma]$

Definition (Substitutions)

A substitution is a finite list $\sigma = [x_1 := u_1; ...; x_n := u_n]$ where $x_i \neq x_j$ (for $i \neq j$) and $u_i \in \Lambda$

Application of a substitution σ to a term t is written $t[\sigma]$

Definition (Interpretation of contexts)

For all $\Gamma = x_1 : A_1; \dots; x_n : A_n$ and $\rho \in \mathsf{TVal}$ set:

$$[\![\Gamma]\!]_{\rho} = \{ \sigma = [x_1 := u_1; \dots; x_n := u_n]; u_i \in [\![A_i]\!]_{\rho} \ (i = 1..n) \}$$

Substitutions $\sigma \in \llbracket \Gamma
rbracket_{
ho}$ are said to be adapted to the context Γ (in the type valuation ho)

Lemma (Strong normalisation invariant)

If $\Gamma \vdash t : A$ in Curry-style system F, then

$$\forall \rho \in \mathsf{TVal} \qquad \forall \sigma \in \llbracket \mathsf{\Gamma} \rrbracket_{\rho} \qquad t[\sigma] \in \llbracket \mathsf{A} \rrbracket_{\rho}$$

Lemma (Strong normalisation invariant)

If $\Gamma \vdash t : A$ in Curry-style system F, then

$$\forall \rho \in \mathsf{TVal} \qquad \forall \sigma \in \llbracket \mathsf{\Gamma} \rrbracket_{\rho} \qquad t[\sigma] \in \llbracket \mathsf{A} \rrbracket_{\rho}$$

Proof. By induction on the derivation of $\Gamma \vdash t : A$.

Exercise: Write down the 5 cases completely

Lemma (Strong normalisation invariant)

If $\Gamma \vdash t : A$ in Curry-style system F, then

$$\forall \rho \in \mathsf{TVal} \qquad \forall \sigma \in \llbracket \mathsf{\Gamma} \rrbracket_{\rho} \qquad t[\sigma] \in \llbracket \mathsf{A} \rrbracket_{\rho}$$

Proof. By induction on the derivation of $\Gamma \vdash t : A$.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Lemma (Strong normalisation invariant)

If $\Gamma \vdash t : A$ in Curry-style system F, then

$$\forall \rho \in \mathsf{TVal} \qquad \forall \sigma \in \llbracket \mathsf{\Gamma} \rrbracket_{\rho} \qquad t[\sigma] \in \llbracket \mathsf{A} \rrbracket_{\rho}$$

Proof. By induction on the derivation of $\Gamma \vdash t : A$.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume $x_1 : A_1; ...; x_n : A_n \vdash t : B$

Lemma (Strong normalisation invariant)

If $\Gamma \vdash t : A$ in Curry-style system F, then

$$\forall \rho \in \mathsf{TVal} \qquad \forall \sigma \in \llbracket \mathsf{\Gamma} \rrbracket_{\rho} \qquad t[\sigma] \in \llbracket \mathsf{A} \rrbracket_{\rho}$$

Proof. By induction on the derivation of $\Gamma \vdash t : A$.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume $x_1:A_1;\ldots;x_n:A_n\vdash t:B$ Consider an arbitrary type valuation ρ (for instance: $\rho(\alpha)=\mathsf{SN}$ for all α)

Lemma (Strong normalisation invariant)

If $\Gamma \vdash t : A$ in Curry-style system F, then

$$\forall \rho \in \mathsf{TVal} \qquad \forall \sigma \in \llbracket \mathsf{\Gamma} \rrbracket_{\rho} \qquad t[\sigma] \in \llbracket \mathsf{A} \rrbracket_{\rho}$$

Proof. By induction on the derivation of $\Gamma \vdash t : A$.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume $x_1:A_1;\ldots;x_n:A_n\vdash t:B$

Consider an arbitrary type valuation ho (for instance: ho(lpha)= SN for all lpha)

We have: $x_1 \in [\![A_1]\!]_{\rho}, x_2 \in [\![A_2]\!]_{\rho}, \ldots, x_n \in [\![A_n]\!]_{\rho}$ (SAT2)

Lemma (Strong normalisation invariant)

If $\Gamma \vdash t : A$ in Curry-style system F, then

$$\forall \rho \in \mathsf{TVal} \qquad \forall \sigma \in \llbracket \mathsf{\Gamma} \rrbracket_{\rho} \qquad t[\sigma] \in \llbracket \mathsf{A} \rrbracket_{\rho}$$

Proof. By induction on the derivation of $\Gamma \vdash t : A$.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume $x_1 : A_1; ...; x_n : A_n \vdash t : B$

Consider an arbitrary type valuation ho (for instance: ho(lpha)= SN for all lpha)

We have: $x_1 \in [\![A_1]\!]_{\rho}, x_2 \in [\![A_2]\!]_{\rho}, \ldots, x_n \in [\![A_n]\!]_{\rho}$ (SAT2), hence:

$$\sigma = [x_1 := x_1; \dots; x_n := x_n] \in [x_1 : A_1; \dots; x_n : A_n]_{\rho}$$

From the lemma we get $t=t[\sigma]\in \llbracket B
rbracket_
ho$, hence $t\in \mathsf{SN}$ (SAT1)

Lemma (Strong normalisation invariant)

If $\Gamma \vdash t : A$ in Curry-style system F, then

$$\forall \rho \in \mathsf{TVal} \qquad \forall \sigma \in \llbracket \mathsf{\Gamma} \rrbracket_{\rho} \qquad t[\sigma] \in \llbracket \mathsf{A} \rrbracket_{\rho}$$

Proof. By induction on the derivation of $\Gamma \vdash t : A$.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Corollary (Church-style SN)

The typable terms of F-Church are strongly normalisable

In the SN proof, interpretation of \forall relies on the property:

```
If (S_i)_{i\in I} (I \neq \emptyset) is a family of saturated sets, then \bigcap_{i\in I} S_i is a saturated set
```

in the special case where I = SAT (impredicative intersection)

In the SN proof, interpretation of \forall relies on the property:

```
If (S_i)_{i\in I} (I \neq \emptyset) is a family of saturated sets, then \bigcap_{i\in I} S_i is a saturated set
```

in the special case where I = SAT (impredicative intersection)

In 'classical' mathematics, this construction is legal

In the SN proof, interpretation of \forall relies on the property:

```
If (S_i)_{i\in I} (I\neq\varnothing) is a family of saturated sets, then \bigcap_{i\in I} S_i is a saturated set
```

in the special case where I = SAT (impredicative intersection)

- In 'classical' mathematics, this construction is legal
 - \Rightarrow Standard set theories (Z, ZF, ZFC) are impredicative

In the SN proof, interpretation of \forall relies on the property:

```
If (S_i)_{i\in I} (I\neq\varnothing) is a family of saturated sets, then \bigcap_{i\in I} S_i is a saturated set
```

in the special case where I = SAT (impredicative intersection)

- In 'classical' mathematics, this construction is legal
 - \Rightarrow Standard set theories (Z, ZF, ZFC) are impredicative
- In (Bishop, Martin-Löf's style) constructive mathematics, this principle is rejected, mainly for philosophical reasons:
 - No convincing 'constructive' explanation
 - Suspicion about (this kind of) cyclicity

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

Standard 'abstract' method:

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

Standard 'abstract' method:

 $\textbf{ Onsider the set:} \quad \mathfrak{S} = \big\{ F; \quad F \text{ is a sub-vector space of } E \text{ and } F \supset S \big\}$

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

- ① Consider the set: $\mathfrak{S} = \{F; F \text{ is a sub-vector space of } E \text{ and } F \supset S\}$
- 2 Fact: \mathfrak{S} is non empty, since $E \in \mathfrak{S}$

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

- ① Consider the set: $\mathfrak{S} = \{F; F \text{ is a sub-vector space of } E \text{ and } F \supset S\}$
- 2 Fact: $\mathfrak S$ is non empty, since $E \in \mathfrak S$

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

- ① Consider the set: $\mathfrak{S} = \{F; F \text{ is a sub-vector space of } E \text{ and } F \supset S\}$
- 2 Fact: $\mathfrak S$ is non empty, since $E \in \mathfrak S$
- lacktriangledown By definition, S is included in all the sub-spaces of E containing S

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

- ① Consider the set: $\mathfrak{S} = \{F; F \text{ is a sub-vector space of } E \text{ and } F \supset S\}$
- 2 Fact: \mathfrak{S} is non empty, since $E \in \mathfrak{S}$
- lacktriangledown By definition, S is included in all the sub-spaces of E containing S
- **3** But \overline{S} is itself a sub-vector space of E containing S (so that $\overline{S} \in \mathfrak{S}$)

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

- ① Consider the set: $\mathfrak{S} = \{F; F \text{ is a sub-vector space of } E \text{ and } F \supset S\}$
- 2 Fact: \mathfrak{S} is non empty, since $E \in \mathfrak{S}$
- lacktriangledown By definition, S is included in all the sub-spaces of E containing S
- **3** But \overline{S} is itself a sub-vector space of E containing S (so that $\overline{S} \in \mathfrak{S}$)
- **o** So that \overline{S} is actually the smallest of all such spaces

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

Standard 'abstract' method:

- ① Consider the set: $\mathfrak{S} = \{F; F \text{ is a sub-vector space of } E \text{ and } F \supset S\}$
- 2 Fact: \mathfrak{S} is non empty, since $E \in \mathfrak{S}$
- **3** Take: $\overline{S} = \bigcap_{F \in \mathfrak{S}} F$
- lacktriangledown By definition, S is included in all the sub-spaces of E containing S
- **3** But \overline{S} is itself a sub-vector space of E containing S (so that $\overline{S} \in \mathfrak{S}$)
- **1** So that \overline{S} is actually the smallest of all such spaces

This definition is impredicative (step 3) (but legal in 'classical' mathematics)

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

Standard 'abstract' method:

- ① Consider the set: $\mathfrak{S} = \{F; F \text{ is a sub-vector space of } E \text{ and } F \supset S\}$
- 2 Fact: \mathfrak{S} is non empty, since $E \in \mathfrak{S}$
- lacktriangle By definition, S is included in all the sub-spaces of E containing S
- **5** But \overline{S} is itself a sub-vector space of E containing S (so that $\overline{S} \in \mathfrak{S}$)
- **1** So that \overline{S} is actually the smallest of all such spaces

This definition is impredicative (step 3) (but legal in 'classical' mathematics)

The set \overline{S} is defined from \mathfrak{S} , that already contains \overline{S} as an element

discovered a fortiori

But there are other ways of defining \overline{S} ...

But there are other ways of defining \overline{S} ...

• Standard 'concrete' definition, by linear combinations:

But there are other ways of defining \overline{S} ...

• Standard 'concrete' definition, by linear combinations:

```
Let \overline{S} be the set of all vectors of the form v=\alpha_1\cdot v_1+\cdots+\alpha_n\cdot v_n where (v_i) ranges over all the finite families of elements of S, and (\alpha_i) ranges over all the finite families of scalars
```

But there are other ways of defining \overline{S} ...

• Standard 'concrete' definition, by linear combinations:

```
Let \overline{S} be the set of all vectors of the form v=\alpha_1\cdot v_1+\cdots+\alpha_n\cdot v_n where (v_i) ranges over all the finite families of elements of S, and (\alpha_i) ranges over all the finite families of scalars
```

• Inductive definition:

But there are other ways of defining \overline{S} ...

• Standard 'concrete' definition, by linear combinations:

```
Let \overline{S} be the set of all vectors of the form v=\alpha_1\cdot v_1+\cdots+\alpha_n\cdot v_n where (v_i) ranges over all the finite families of elements of S, and (\alpha_i) ranges over all the finite families of scalars
```

• Inductive definition:

Let \overline{S} be the set inductively defined by:

- $0 \vec{0} \in \overline{S},$
- 2 If $v \in S$, then $v \in \overline{S}$,

But there are other ways of defining \overline{S} ...

• Standard 'concrete' definition, by linear combinations:

```
Let \overline{S} be the set of all vectors of the form v=\alpha_1\cdot v_1+\cdots+\alpha_n\cdot v_n where (v_i) ranges over all the finite families of elements of S, and (\alpha_i) ranges over all the finite families of scalars
```

• Inductive definition:

Let \overline{S} be the set inductively defined by:

- $\mathbf{0} \ \vec{0} \in \overline{S}$
- 2 If $v \in S$, then $v \in \overline{S}$,
- **3** If $v \in \overline{S}$ and α is a scalar, then $\alpha \cdot v \in \overline{S}$
- \Rightarrow Both definitions are predicative (and give the same object)

