
TYPES Summer School 2005

Proofs of Programs

and

Formalisation of Mathematics

Lecture Notes

Volume II

August 15–26 2005

Göteborg, Sweden

Proofs of Programs

and

Formalisation of Mathematics

Lecture Notes: Volume II

Introduction to Systems

Advanced Applications and Tools

Dependently Typed Programming

Formalisation of Mathematics

TYPES Summer School

August 15–26 2005

Göteborg, Sweden

Contents

PART III: Introduction to Systems

Yves Bertot, Jean-Christophe Filliatre: Coq

Tobias Nipkow: Isabelle/HOL

PART IV: Advanced Applications and Tools

Yves Bertot: Coinduction

Jean-Christophe Filliatre: WHY system and Proofs about programs

PART V: Dependently Typed Programming

PART VI: Formalisation of Mathematics

Herman Geuvers: Fundamental theory of algebra in Coq

Freek Wiedijk: Formalisation of mathematics

PART III:

Introduction to Systems

Yves Bertot, Jean-Christophe
Filliatre:

Coq

Coq in a Hurry

Yves Bertot

June 30, 2005

These notes provide a quick introduction to the Coq system and show how it can be
used to define logical concepts and functions and reason about them. It is designed as a
tutorial, so that readers can quickly start their own experiments, learning only a few of the
capabilities of the system. A much more comprehensive study is provided in [1], which also
provides an extensive collection of exercises to train on.

1 Expressions and logical formulas

The Coq system provides a language in which one handles formulas, verify that they are
well-formed, and prove them. Formulas may also contain functions and limited forms of
computations are provided for these functions.

The first thing you need to know is how you can check whether a formula is well-formed.
The command is called Check. Here are a few examples, which use a few of the basic objects
and types of the system.

Check True.

True : Prop

Check False.

False : Prop

Check 3.

3 : nat

Check (3+4).

3 + 4 : nat

Check (3=5).

3=5 : Prop

Check (3,4).

(3,4) : nat * nat

1

Check ((3=5)/\True).

3 = 5 /\ True

Check nat -> Prop.

nat -> Prop : Type

Check (3 <= 6).

3 <= 6 : Prop

The notation A :B is uniformly used to indicate that the type of the expression A is the
expression B.

Among these formulas, some can be read as propositions (they have type Prop), others
may be read as numbers (they have type nat), others may be read as elements of more
complex data structures. You can also try to check badly formed formulas and in this case
the Coq system returns an informative error statement.

Complex formulas can be constructed by combining propositions with logical connectives,
or other expressions with addition, multiplication, the pairing construct, and so on. You can
also construct a new function by using the keyword fun, which replaces the λ symbol of
lambda calculus and similar theories.

Check (fun x:nat => x = 3).

fun x : nat => x = 3 : nat -> Prop

Check (forall x:nat, x < 3 \/ (exists y:nat, x = y + 3)).

forall x : nat, x < 3 \/ (exists y : nat, x = y + 3) : Prop

Check (let f := fun x => (x * 3,x) in f 3).

let f := fun x : nat => (x * 3, x) in f 3 : nat * nat

Please note that some notations are overloaded. For instance, the * sign is used both to
represent conventional multiplication on numbers and the cartesian product on types. One
can find the function hidden behind a notation by using the Locate command.

Locate "_ <= _".

Notation Scope

"x <= y" := le x y : nat_scope

(default interpretation)

The conditions for terms to be well-formed have two origins: first, the syntax must
be respected (parentheses, keywords, binary operators must have two arguments); second,
expressions must respect a type discipline. The Check not only checks that expressions are
well-formed but it also gives the type of expressions. For instance we can use the Check

command to verify progressively that some expressions are well-formed.

Check True.

True : Prop

2

Check False.

False : Prop

Check and.

and : Prop -> Prop -> Prop

Check (and True False).

True /\ False : Prop

In the last example, and is a function that expects an argument of type Prop and returns
a function of type Prop -> Prop. It can therefore be applied to True, which has the right
type. But the function we obtain expects another argument of type Prop and it can be
applied to the argument False. The notation

a -> b -> c

actually stands for

a -> (b -> c)

and the notation f a b actually stands for (f a) b.
The last example also shows that the notation /\ is an infix notation for the function

and.
Some constructs of the language have a notion of bound variable. Among the examples we

have already seen, the forall and exist logical quantifiers and the fun function constructor
and the let .. in local declaration construct have this characteristic. When constructs
have a bound variable, this variable can be used with some type inside some part of the
construct called the scope. The type is usually given explicitely, but it may also sometimes
be left untold, and the Coq system will infer it.

2 Defining new constants

You can define a new constant by using the keyword Definition. Here is an example:

Definition example1 := fun x : nat => x*x+2*x+1.

An alternative, exactly equivalent, definition could be:

Definition example1 (x : nat) := x*x+2*x+1.

3 Proving facts

The notation A:B is actually used for several purposes in the Coq system. One of these
purposes is to express that A is a proof for the logical formula B. This habit is usually
referred to under the name Curry-Howard Isomorphism. One can find already existing
proofs of facts by using the Search command.

3

Search True.

I : True

Search le.

le_n : forall n : nat, n <= n

le_S : forall n m : nat, le n m -> le n (S m)

The theorem le S uses a function S, this function maps any natural number to its successor.
Actually, the notation 3 is only a notation for S (S (S O)).

New theorems can be loaded from already proven packages using the Require command.
For example, for proofs in arithmetics, it is useful to load the following packages:

Require Import Arith.

Require Import ArithRing.

Require Import Omega.

Search le.

between_le: forall (P : nat -> Prop) (k l : nat),

between P k l -> k <= l

exists_le_S:

forall (Q : nat -> Prop) (k l : nat),

exists_between Q k l -> S k <= l

...

plus_le_reg_l: forall n m p : nat, p + n <= p + m -> n <= m

plus_le_compat_l: forall n m p : nat, n <= m -> p + n <= p + m

plus_le_compat_r: forall n m p : nat, n <= m -> n + p <= m + p

le_plus_l: forall n m : nat, n <= n + m

...

There is a real notion of false formulas, but it is only expressed by saying that the existence
of a proof for a false formula would imply the existence of a proof for the formula False.

A theorem that proves an implication actually is an expression whose type is a function
type (in other words, an arrow type). Thus, it can be applied to a term whose type appears
to the left of the arrow. From the logical point of view, the argument of this theorem should
be a proof of the implication’s premise. This corresponds to what is usually known as modus
ponens.

A theorem that proves a universal quantification is also an expression whose type is a
function type. It can also be applied to an argument of the right type. From the logical point
of view, this corresponds to producing a new proof for the statement where the universal
quantification is instantiated. Here are a few examples, where theorems are instantiated and
a modus ponens inference is performed:

Check (le_n 0).

le_n 0 : 0 <= 0

4

Check (le_S 0 0).

le_S 0 1 : 0 <= 0 -> 0 <= 1

Check (le_S 0 0 (le_n 0)).

le_S 0 0 (le_n O) : 0 <= 1

New theorems could be constructed this way by combining existing theorems and using
the Definition keyword to associate these expressions to constants. But this approach is
seldom used. The alternative approach is known as goal directed proof, with the following
type of scenario:

1. the user enters a statement that he wants to prove, using the command Theorem or
Lemma,

2. the Coq system displays the formula as a formula to be proved, possibly giving a
context of local facts that can be used for this proof (the context is displayed above a
horizontal line, the goal is displayed under the horizontal line),

3. the user enters a command to decompose the goal into simpler ones,

4. the Coq system displays a list of formulas that still need to be proved,

5. back to step 3.

Some of the commands sent at step 3 actually decrease the number of goals. When there are
no more goals the proof is complete, it needs to be saved, this is performed when the user
sends the command Qed. The commands that are especially designed to decompose goals
into lists of simpler goals are called tactics.

Here is an example:

Theorem example2 : forall a b:Prop, a /\ b -> b /\ a.

1 subgoal

============================

forall a b : Prop, a /\ b -> b /\ a

Proof.

intros a b H.

1 subgoal

a : Prop

b : Prop

H : a /\ b

============================

b /\ a

split.

5

2 subgoals

...

H : a /\ b

============================

b

subgoal 2 is:

a

elim H; intros H0 H1.

...

H0 : a

H1 : b

============================

b

exact H1.

1 subgoal

...

H : a /\ b

============================

a

intuition.

Proof completed.

Qed.

intros a b H.

split.

elim H; intros H0 H1.

exact H1.

intuition.

example2 is defined

This proof uses several steps to decompose the logical processing, but a quicker dialog would
simply rely on the intuition tactic directly from the start. There is an important collection
of tactics in the Coq system, each of which is adapted to a shape of goal. For instance, the
tactic elim H was adapted because the hypothesis H was a proof of a conjunction of two
propositions. The effect of the tactic was to add two implications in front of the goal,
with two premises asserting one of the propositions in the conjunction. It is worthwhile
remembering a collection of tactics for the basic logical connectives. We list these tactics in
the following table, inspired from the table in [1] (p. 130).

6

⇒ ∀ ∧ ∨ ∃
Hypothesis apply apply elim elim elim

goal intros intros split left or exists v
right

¬ =
Hypothesis elim rewrite

goal intro reflexivity

When using the tactic elim, this usually creates new facts that are placed in the result goal
as premises of newly created implications. These premises must then be introduced in the
context using the intros tactic. A quicker tactic does the two operations at once, this tactic
is called destruct.

Some automatic tactics are also provided for a variety of purposes, intuition is often
useful to prove facts that are tautologies in first-order intuitionistic logic (try it whenever
the proof only involves manipulations of forall quantification, conjunction, disjunction, and
negation); auto is an extensible tactic that tries to apply a collection of theorems that were
provided beforehand by the user, eauto is like auto, it is more powerful but also more
time-consuming, ring and ring nat mostly do proofs of equality for expressions containing
addition and multiplication (and S for ring nat), omega proves formulas in Presburger
arithmetic.

One of the difficult points for newcomers is that the Coq system also provides a type bool
with two elements called true and false. Actually this type has nothing to do with truth
or provability, it is just a two-element type that may be used to model the boolean types
that one usually finds in programming languages and the value attached to its two elements
is purely conventional. In a sense, it is completely correct (but philosophically debatable) to
define a function named is zero that takes an argument of type nat and returns false if,
and only if, its argument is 0.

4 Inductive types

Inductive types could also be called algebraic types or initial algebras. They are defined
by providing the type name, its type, and a collection of constructors. Inductive types
can be parameterized and dependent. We will mostly use parameterization to represent
polymorphism and dependence to represent logical properties.

4.1 Defining inductive types

Here is an example of an inductive type definition:

Inductive bin : Set :=

L : bin

| N : bin -> bin -> bin.

This defines a new type bin, whose type is Set, and provides two ways to construct elements
of this type: L (a constant) and N (a function taking two arguments). The Coq system

7

automatically associates a theorem to this inductive type. This theorem makes it possible
to reason by induction on elements of this type:

Check bin_ind.

bin_ind

: forall P : bin -> Prop,

P L ->

(forall b : bin,

P b -> forall b0 : bin, P b0 -> P (N b b0)) ->

forall b : bin, P b

The induction theorem associated to an inductive type is always named name ind.

4.2 Pattern matching

Elements of inductive types can be processed using functions that perform some pattern-
matching. For instance, we can write a function that returns the boolean value false when
its argument is N L L and returns true otherwise.

Definition example3 (t : bin): bool :=

match t with N L L => false | _ => true end.

4.3 Recursive function definition

There are an infinity of different trees in the type bin. To write interesting functions with
arguments from this type, we need more than just pattern matching. The Coq system
provides recursive programming. The shape of recursive function definitions is as follows:

Fixpoint flatten_aux (t1 t2:bin) {struct t1} : bin :=

match t1 with

L => N L t2

| N t’1 t’2 => flatten_aux t’1 (flatten_aux t’2 t2)

end.

Fixpoint flatten (t:bin) : bin :=

match t with

L => L

| N t1 t2 => flatten_aux t1 (flatten t2)

end.

Fixpoint size (t:bin) : nat :=

match t with

L => 1

| N t1 t2 => 1 + size t1 + size t2

end.

8

There are constraints in the definition of recursive definitions. First, if the function has more
than one argument, we must declare one of these arguments as the principal or structural
argument (we did this declaration for the function flatten aux). If there is only one ar-
gument, then this argument is the principal argument by default. Second, every recursive
call must be performed so that the principal argument of the recursive call is a subterm,
obtained by pattern-matching, of the initial principal argument. This condition is satisfied
in all the examples above.

4.4 Proof by cases

Now, that we have defined functions on our inductive type, we can prove properties of these
functions. Here is a first example, where we perform a few case analyses on the elements of
the type bin.

Theorem example3_size :

forall t, example3 t = false -> size t = 3.

Proof.

intros t; destruct t.

2 subgoals

============================

example3 L = false -> size L = 3

subgoal 2 is:

example3 (N t1 t2) = false -> size (N t1 t2) = 3

The tactic destruct t actually observes the various possible cases for t according to the
inductive type definition. The term t can only be either obtained by L, or obtained by N

applied to two other trees t1 and t2. This is the reason why there are two subgoals.
We know the value that example3 and size should take for the tree L. We can direct

the Coq system to compute it:

simpl.

2 subgoals

============================

true = false -> 1 = 3

After computation, we dicover that assuming that the tree is L and that the value of example3
for this tree is false leads to an inconsistency. We can use the following tactics to exploit
this kind of inconsistency:

intros H.

H : true = false

9

============================

1 = 3

discriminate H.

1 subgoal

...

============================

example3 (N t1 t2) = false -> size (N t1 t2) = 3

The answer shows that the first goal was solved. The tactic discriminate H can be used
whenever the hypothesis H is an assumption that asserts that two different constructors of
an inductive type return equal values. Such an assumption is inconsistent and the tactic
exploits directly this inconsistency to express that the case described in this goal can never
happen. This tactic expresses a basic property of inductive types in the sort Set or Type:
constructors have distinct ranges. Another important property of constructors of inductive
types in the sort Set or Type is that they are injective. The tactic to exploit this fact called
injection (for more details about discriminate and injection please refer to [1] or the
Coq reference manual [2]).

For the second goal we still must do a case analysis on the values of t1 and t2, we do
not detail the proof but it can be completed with the following sequence of tactics.

destruct t1.

destruct t2.

3 subgoals

============================

example3 (N L L) = false -> size (N L L) = 3

subgoal 2 is:

example3 (N L (N t2_1 t2_2)) = false ->

size (N L (N t2_1 t2_2)) = 3

subgoal 3 is:

example3 (N (N t1_1 t1_2) t2) = false ->

size (N (N t1_1 t1_2) t2) = 3

For the first goal, we know that both functions will compute as we stated by the equality’s
right hand side. We can solve this goal easily, for instance with auto. The last two goals are
solved in the same manner as the very first one, because example3 cannot possibly have the
value false for the arguments that are given in these goals.

auto.

intros H; discriminate H.

intros H; discriminate H.

Qed.

10

To perform this proof, we have simply observed 5 cases. For general recursive functions, just
observing a finite number of cases is not sufficient. We need to perform proofs by induction.

4.5 Proof by induction

The most general kind of proof that one can perform on inductive types is proof by induction.
When we prove a property of the elements of an inductive type using a proof by induction,

we actually consider a case for each constructor, as we did for proofs by cases. However there
is a twist: when we consider a constructor that has arguments of the inductive type, we can
assume that the property we want to establish holds for each of these arguments.

When we do goal directed proof, the induction principle is invoked by the elim tactic. To
illustrate this tactic, we will prove a simple fact about the flatten aux and size functions.

Theorem forall_aux_size :

forall t1 t2, size (flatten_aux t1 t2) = size t1 + size t2 + 1.

Proof.

intros t1; elim t1.

============================

forall t2 : bin, size (flatten_aux L t2) = size L + size t2 + 1

subgoal 2 is:

forall b : bin,

(forall t2 : bin, size (flatten_aux b t2) =

size b + size t2 + 1) ->

forall b0 : bin,

(forall t2 : bin, size (flatten_aux b0 t2) =

size b0 + size t2 + 1) ->

forall t2 : bin,

size (flatten_aux (N b b0) t2) =

size (N b b0) + size t2 + 1

There are two subgoals, the first goal requires that we prove the property when the first
argument of flatten aux is L, the second one requires that we prove the property when the
argument is N b b0, under the assumption that it is already true for b and b0. The proof
progresses easily, using the definitions of the two functions, which are expanded when the
Coq system executes the simpl tactic. We then obtain expressions that can be solved using
the ring nat tactic.

intros t2.

simpl.

...

============================

S (S (size t2)) = S (size t2 + 1)

11

ring_nat.

intros b IHb b0 IHb0 t2.

...

IHb : forall t2 : bin, size (flatten_aux b t2) =

size b + size t2 + 1

b0 : bin

IHb0 : forall t2 : bin, size (flatten_aux b0 t2) =

size b0 + size t2 + 1

t2 : bin

============================

size (flatten_aux (N b b0) t2) = size (N b b0) + size t2 + 1

simpl.

...

============================

size (flatten_aux b (flatten_aux b0 t2)) =

S (size b + size b0 + size t2 + 1)

rewrite IHb.

...

============================

size b + size (flatten_aux b0 t2) + 1 =

S (size b + size b0 + size t2 + 1)

rewrite IHb0.

...

============================

size b + (size b0 + size t2 + 1) + 1 =

S (size b + size b0 + size t2 + 1)

ring_nat.

Proof completed.

Qed.

4.6 Numbers in the Coq system

In the Coq system, most usual datatypes are represented as inductive types and packages
provide a variety of properties, functions, and theorems around these datatypes. The pack-
age named Arith contains a host of theorems about natural numbers (numbers from 0 to
infinity), which are described as an inductive type with O (representing 0) and S as construc-
tors. It also provides addition, multiplication, subtraction (with the special behavior that x
- y is 0 when x is smaller than y. The package ArithRing contains the tactic ring nat and
the associated theorems.

The package named ZArith provides two inductive datatypes to represent integers. The

12

first inductive type, named positive, follows a binary representation to model the positive
integers (from 1 to infinity) and the type Z is described as a type with three constructors,
one for positive numbers, one for negative numbers, and one for 0. The package also provides
orders and basic operations: addition, subtraction, multiplication, division, square root. The
package ZArithRing provides the configuration for the ring tactic to work on polynomial
equalities with numbers of type Z. The tactic omega works equally well to solve problems in
Presburger arithmetic for both natural numbers of type nat and integers of type Z.

There are a few packages that provide descriptions of rational numbers, but the support
for these packages is not as standard as for the other one. For instance, there is no easy
notation to enter a simple fraction. In a paper from 2001, I showed that the rational numbers
could be given a very simple inductive structure, but encoding the various basic operations
on this structured was a little complex.

The support for computation on real numbers in the Coq system is also quite good, but
real numbers are not (and cannot) be represented using an inductive type. The package
to load is Reals and it provides descriptions for quite a few functions, up to trigonomic
functions for instance.

4.7 Data-structures

The two-element boolean type is an inductive type in the Coq system, true and false are
its constructors. The induction principle naturally expresses that this type only has two
elements, because it suffices that a property is satisfied by true and false to ensure that
it is satisfied by all elements of bool. On the other hand, it is easy to prove that true and
false are distinct.

Most ways to structure data together are also provided using inductive data structures.
The pairing construct actually is an inductive type, and elim can be used to reason about
a pair in the same manner as it can be used to reason on a natural number.

A commonly used datatype is the type of lists. This type is polymorphic, in the sense
that the same inductive type can be used for lists of natural numbers, lists of boolean values,
or lists of other lists. This type is not provided by default in the Coq system, it is necessary
to load the package List using the Require command to have access to it. The usual cons
function is given in Coq as a three argument function, where the first argument is the type
of elements: it is the type of the second argument and the third argument should be a list
of elements of this type, too. The empty list is represented by a function nil. This function
also takes an argument, which should be a type. However, the Coq system also provides a
notion of implicit arguments, so that the type arguments are almost never written and the
Coq system infers them from the context or the other arguments. For instance, here is how
we construct a list of natural numbers.

Require Import List.

Check (cons 3 (cons 2 (cons 1 nil))).

3 :: 2 :: 1 :: nil : list nat

This example also shows that the notation :: is used to represent the cons function in an infix
fashion. This tradition will be very comfortable to programmers accustomed to languages

13

in the ML family, but Haskell addicts should beware that the conventions, between type
information and cons, are inverse to the conventions in Haskell.

The List package also provides a list concatenation function named app, with ++ as infix
notation, and a few theorems about this function.

5 Inductive properties

Inductive types can be dependent and when they are, they can be used to express logical
properties. When defining inductive types like nat, Z or bool we declare that this constant
is a type. When defining a dependent type, we actually introduce a new constant which is
declared to be a function from some input type to a type of types. Here is an example:

Inductive even : nat -> Prop :=

even0 : even 0

| evenS : forall x:nat, even x -> even (S (S x)).

Thus, even itself is not a type, it is even x, whenever x is an integer that is a type. In
other words, we actually defined a family of types. In this family, not all members contain
elements. For instance, we know that the type even 0 contains an element, this element is
even0, and we know that even 2 contains an element: evenS 0 even0. What about even

1? If even 1 contains an element, this element cannot be obtained using even0 because
0 6= 1, it cannot be obtained using evenS because 1 6= 2 + x for every x such that 0 ≤ x.
Pushing our study of even further we could see that this type, seen as a property, is provable
if and only if its argument is even, in the common mathematical sense.

Like other inductive types, inductive properties are equipped with an induction principle,
which we can use to perform proofs. The inductive principle for even has the following shape.

Check even_ind.

even_ind : forall P : nat -> Prop,

P 0 ->

(forall x : nat, even x -> P x -> P (S (S x))) ->

forall n : nat, even n -> P n

This principle intuitively expresses that even is the smallest property satisfying the two
constructors: it implies every other property that also satisfies them. A proof using this
induction principle will work on a goal where we know that even y holds for some y and
actually decomposes into a proof of two cases, one corresponding to the case where even y

was obtained using even0 and one corresponding to the case where even y was obtained
using evenS, applied to some x such that y=S (S x) and some proof of even y. In the
second case, we again have the opportunity to use an induction hypothesis about this y.

When a variable x satisfies an inductive property, it is often more efficient to prove
properties about this variable using an induction on the inductive property than an induction
on the variable itself. The following proof is an example:

14

Theorem even_mult : forall x, even x -> exists y, x = 2*y.

Proof.

intros x H; elim H.

2 subgoals

x : nat

H : even x

============================

exists y : nat, 0 = 2 * y

subgoal 2 is:

forall x0 : nat,

even x0 -> (exists y : nat, x0 = 2 * y) ->

exists y : nat, S (S x0) = 2 * y

exists 0; ring_nat.

intros x0 Hevenx0 IHx.

...

IHx : exists y : nat, x0 = 2 * y

============================

exists y : nat, S (S x0) = 2 * y

In the last goal, IHx is the induction hypothesis. It says that if x0 is the predecessor’s
predecessor of x then we already know that there exists a value y that is its half. We can
use this value to provide the half of S (S x0). Here are the tactics that complete the proof.

destruct IHx as [y Heq]; rewrite Heq.

exists (S y); ring_nat.

Qed.

In this example, we used a variant of the destruct tactic that makes it possible to choose
the name of the elements that destruct creates and introduces in the context.

If we wanted to prove the same property using a direct induction on the natural number
that is even, we would have a problem because the predecessor of an even number, for which
direct induction provides an induction hypothesis, is not even. The proof is not impossible
but slightly more complex:

Theorem even_mult’ : forall x, even x -> exists y, x = 2* y.

Proof.

intros x.

assert (lemma: (even x -> exists y, x=2*y)/\

(even (S x) -> exists y, S x=2*y)).

elim x.

split.

exists 0; ring_nat.

15

intros Heven1; inversion Heven1.

intros x0 IHx0; destruct IHx0 as [IHx0 IHSx0].

split.

exact IHSx0.

intros HevenSSx0.

assert (Hevenx0 : even x0).

inversion HevenSSx0; assumption.

destruct (IHx0 Hevenx0) as [y Heq].

rewrite Heq; exists (S y); ring_nat.

intuition.

Qed.

This script mostly uses tactics that we have already introduced, except the inversion

tactic. Given an assumption H that relies on a dependent inductive type, most frequently an
inductive proposition, the tactic inversion analyses all the constructors of the inductive,
discards the ones that could not have been applied, and when some constructors could have
applied it creates a new goal where the premises of this constructor are added in the context.
For instance, this tactic is perfectly suited to prove that 1 is not even:

Theorem not_even_1 : ~even 1.

Proof.

intros even1.

...

even1 : even 1

============================

False

inversion even1.

Qed.

This example also shows that the negation of a fact actually is represented by a function
that says “this fact implies False”.

Inductive properties can be used to express very complex notions. For instance, the
semantics of a programming language can be defined as an inductive definition, using dozens
of constructors, each one describing a kind of computation elementary step. Proofs by
induction with respect to this inductive definition correspond to what Wynskel calls rule
induction in his introductory book on programming language semantics [3].

6 Exercices

Most of the exercices proposed here are taken from [1].

Exercise 5.6 Prove the following theorems:

forall A B C:Prop, A/\(B/\C)→(A/\B)/\C

16

forall A B C D: Prop,(A→B)/\(C→D)/\A/\C → B/\D

forall A: Prop, ~(A/\~A)

forall A B C: Prop, A\/(B\/C)→(A\/B)\/C

forall A: Prop, ~~(A\/~A)

forall A B: Prop, (A\/B)/\~A → B

Two benefits can be taken from this exercise. In a first step you should try using only
the basic tactics given in the table page 7. In a second step, you can verify which of
these statements are directly solved by the tactic intuition.

Universal quantification Prove

forall A:Set,forall P Q:A→Prop,

(forall x, P x)\/(forall y, Q y)→forall x, P x\/Q y.

~(forall A:Set,forall P Q:A→Prop,

(forall x, P x\/Q x)→(forall x, P x)\/(forall y, Q y).

Hint: for the second exercise, think about a counter-example with the type bool and
its two elements true and false, which can be proved different, for instance.

Exercise 6.32 The sum of the first n natural numbers is defined with the following function:

Fixpoint sum_n (n:nat) : nat :=

match n with 0 => 0 | S p => S p + sum_n p end.

Prove the following statement:

forall n:nat, 2 * sum_n n = n*n + n

Square root of 2 If p2 = 2q2, then (2q−p)2 = 2(p−q)2, now if p is the least positive integer
such that there exists a positive integer q such that p/q =

√
2, then p > 2q − p > 0,

and (2q−p)/(p− q) =
√

2. This is a contradiction and a proof that
√

2 is not rational.
Use Coq to verify a formal proof along these lines.

7 Solutions

The solutions to the numbered exercises are available from the internet (on the site associated
to the reference [1]). The short proof that

√
2 is not rational is also available on the internet

from the author’s personal web-page.
Here are the solutions to the exercises on universal quantification.

Theorem ex1 :

forall A:Set, forall P Q:A->Prop,

(forall x, P x) \/ (forall y, Q y) -> forall x, P x \/ Q x.

Proof.

17

intros A P Q H.

elim H.

intros H1; left; apply H1.

intros H2; right; apply H2.

Qed.

Theorem ex2 :

~(forall A:Set, forall P Q:A->Prop,

(forall x, P x \/ Q x) -> (forall x, P x) \/ (forall y, Q y)).

Proof.

intros H; elim (H bool (fun x:bool => x = true)

(fun x:bool => x = false)).

intros H1; assert (H2:false = true).

apply H1.

discriminate H2.

intros H1; assert (H2:true = false).

apply H1.

discriminate H2.

intros x; case x.

left; reflexivity.

right; reflexivity.

Qed.

References

[1] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Develop-
ment, Coq’Art:the Calculus of Inductive Constructions. Springer-Verlag, 2004.

[2] The Coq development team. The Coq proof Assistant Reference Manual, Ecole Polytech-
nique, INRIA, Universit de Paris-Sud, 2004. http://coq.inria.fr/doc/main.html

[3] G. Winskel. The Formal Semantics of Programming Languages, an introduction. Foun-
dations of Computing. The MIT Press, 1993.

18

Tobias Nipkow:

Isabelle/HOL

A Compact Introduction to Isabelle/HOL

Tobias Nipkow

TU München

– p.1

Overview

1. Introduction

2. Datatypes

3. Logic

4. Sets

– p.2

Overview of Isabelle/HOL

– p.3

System Architecture

ProofGeneral (X)Emacs based interface

Isabelle/HOL Isabelle instance for HOL

Isabelle generic theorem prover

Standard ML implementation language

– p.4

HOL

HOL = Higher-Order Logic
HOL = Functional programming + Logic

HOL has
• datatypes
• recursive functions
• logical operators (∧, −→, ∀, ∃, . . .)

HOL is a programming language!

Higher-order = functions are values, too!

– p.5

Formulae

Syntax (in decreasing priority):

form ::= (form) | term = term | ¬form

| form ∧ form | form ∨ form | form −→ form

| ∀x. form | ∃x. form

Scope of quantifiers: as far to the right as possible

Examples
• ¬ A ∧ B ∨ C ≡ ((¬ A) ∧ B) ∨ C
• A = B ∧ C ≡ (A = B) ∧ C
• ∀ x. P x ∧ Q x ≡ ∀ x. (P x ∧ Q x)
• ∀ x. ∃ y. P x y ∧ Q x ≡ ∀ x. (∃ y. (P x y ∧ Q x))

– p.6

Types and Terms

– p.7

Types

Syntax:

τ ::= (τ)

| bool | nat | . . . base types
| ’a | ’b | . . . type variables
| τ ⇒ τ total functions
| τ × τ pairs (ascii: *)
| τ list lists
| . . . user-defined types

Parentheses: T1 ⇒ T2 ⇒ T3 ≡ T1 ⇒ (T2 ⇒ T3)

– p.8

Terms: Basic syntax

Syntax:

term ::= (term)

| a constant or variable (identifier)
| term term function application
| λx. term function “abstraction”
| . . . lots of syntactic sugar

Examples: f (g x) y h (λx. f (g x))

Parantheses: f a1 a2 a3 ≡ ((f a1) a2) a3

– p.9

Terms and Types

Terms must be well-typed
(the argument of every function call must be of the right type)

Notation: t :: τ means t is a well-typed term of type τ .

– p.10

Type inference

Isabelle automatically computes (“infers”) the type of each
variable in a term.

In the presence of overloaded functions (functions with
multiple types) not always possible.

User can help with type annotations inside the term.

Example: f (x::nat)

– p.11

Currying

Thou shalt curry your functions

• Curried: f :: τ 1 ⇒ τ2 ⇒ τ

• Tupled: f’ :: τ 1 × τ2 ⇒ τ

Advantage: partial application f a1 with a1 :: τ1

– p.12

Terms: Syntactic sugar

Some predefined syntactic sugar:

• Infix: +, -, * , #, @, . . .
• Mixfix: if _ then _ else _, case _ of , . . .

Prefix binds more strongly than infix:

! f x + y ≡ (f x) + y 6≡ f (x + y) !

– p.13

Base types: bool, nat, list

– p.14

Type bool

Formulae = terms of type bool

True :: bool
False :: bool
∧, ∨, . . . :: bool ⇒ bool ⇒ bool
...

if-and-only-if: =

– p.15

Type nat

0 :: nat
Suc :: nat ⇒ nat
+, *, ... :: nat ⇒ nat ⇒ nat
...

! Numbers and arithmetic operations are overloaded:
0,1,2,... :: ’a, + :: ’a ⇒ ’a ⇒ ’a

You need type annotations: 1 :: nat, x + (y::nat)

. . . unless the context is unambiguous: Suc z

– p.16

Type list

• [] : empty list

• x # xs: list with first element x ("head")
and rest xs ("tail")

• Syntactic sugar: [x1,. . . ,xn]

Large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, . . .

Don’t reinvent, reuse!
; HOL/List.thy

– p.17

Isabelle Theories

– p.18

Theory = Module

Syntax:

theory MyTh = ImpTh1 + . . .+ ImpThn:

(declarations, definitions, theorems, proofs, ...)∗

end

• MyTh: name of theory. Must live in file MyTh.thy

• ImpThi: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh = Main:

– p.19

Proof General

An Isabelle Interface

by David Aspinall

– p.20

Proof General

Customized version of (x)emacs:
• all of emacs (info: C-h i)
• Isabelle aware (when editing .thy files)
• mathematical symbols (“x-symbols”)

Interaction:
• via mouse
• or keyboard (key bindings see C-h m)

– p.21

X-Symbols

Input of funny symbols in Proof General
• via menu (“X-Symbol”)
• via ascii encoding (similar to LATEX): \<and>, \<or>, . . .

• via abbreviation: /\, \/, -->, . . .

x-symbol ∀ ∃ λ ¬ ∧ ∨ −→ ⇒

ascii (1) \<forall> \<exists> \<lambda> \<not> /\ \/ --> =>

ascii (2) ALL EX % ˜ & |

(1) is converted to x-symbol, (2) stays ascii.

– p.22

Demo: terms and types

– p.23

An introduction to recursion and induction

– p.24

A recursive datatype: toy lists

datatype ’a list = Nil | Cons ’a "’a list"

Nil: empty list

Cons x xs: head x :: ’a, tail xs :: ’a list

A toy list: Cons False (Cons True Nil)

Predefined lists: [False, True]

– p.25

Concrete syntax

In .thy files:
Types and formulae need to be inclosed in "..."

Except for single identifiers, e.g. ’a

"..." normally not shown on slides

– p.26

Structural induction on lists

P xs holds for all lists xs if
• P Nil
• and for arbitrary x and xs, P xs implies P (Cons x xs)

– p.27

Demo: append and reverse

– p.28

Proofs

General schema:

lemma name: "..."
apply (...)
apply (...)
...
done

If the lemma is suitable as a simplification rule:

lemma name[simp]: "..."

– p.29

Proof methods

• Structural induction
• Format: (induct x)

x must be a free variable in the first subgoal.
The type of x must be a datatype.

• Effect: generates 1 new subgoal per constructor
• Simplification and a bit of logic

• Format: auto
• Effect: tries to solve as many subgoals as possible

using simplification and basic logical reasoning.

– p.30

The proof state

1.
∧

x1 . . . xp. [[A1; . . . ; An]] =⇒ B

x1 . . . xp Local constants
A1 . . . An Local assumptions
B Actual (sub)goal

– p.31

Notation

[[A1; . . . ; An]] =⇒ B

abbreviates

A1 =⇒ . . . =⇒ An =⇒ B

; ≈ “and”

– p.32

Type and function definition in Isabelle/HOL

– p.33

Datatype definition in Isabelle/HOL

– p.34

The example

datatype ’a list = Nil | Cons ’a "’a list"

Properties:

• Types: Nil :: ’a list
Cons :: ’a ⇒ ’a list ⇒ ’a list

• Distinctness: Nil 6= Cons x xs
• Injectivity: (Cons x xs = Cons y ys) = (x = y ∧ xs = ys)

– p.35

The general case

datatype (α1, . . . , αn)τ = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni
⇒ (α1, . . . , αn)τ

• Distinctness: Ci . . . 6= Cj . . . if i 6= j

• Injectivity:
(Ci x1 . . . xni

= Ci y1 . . . yni
) = (x1 = y1 ∧ . . . ∧ xni

= yni
)

Distinctness and Injectivity are applied automatically
Induction must be applied explicitly

– p.36

case

Every datatype introduces a case construct, e.g.

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

In general: one case per constructor

Same order of cases as in datatype

No nested patterns (e.g. x#y#zs)
But nested cases

Needs () in context

– p.37

Case distinctions

apply(case_tac t)
creates k subgoals

t = Ci x1 . . . xp =⇒ . . .

one for each constructor Ci.

– p.38

Function definition in Isabelle/HOL

– p.39

Why nontermination can be harmful

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

! All functions in HOL must be total !

– p.40

Function definition schemas in Isabelle/HOL

• Non-recursive with defs/constdefs
No problem

• Primitive-recursive with primrec
Terminating by construction

• Well-founded recursion with recdef
User must (help to) prove termination
(; later)

– p.41

primrec

– p.42

The example

primrec
"app Nil ys = ys"

"app (Cons x xs) ys = Cons x (app xs ys)"

– p.43

The general case

If τ is a datatype (with constructors C1, . . . , Ck) then
f :: · · · ⇒ τ ⇒ · · · ⇒ τ ′ can be defined by primitive recursion:

f x1 . . . (C1 y1,1 . . . y1,n1
) . . . xp = r1

...
f x1 . . . (Ck yk,1 . . . yk,nk

) . . . xp = rk

The recursive calls in ri must be structurally smaller,
i.e. of the form f a1 . . . yi,j . . . ap

– p.44

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec
f 0 = ...
f(Suc n) = ... f n ...

– p.45

Demo: trees

– p.46

Proof by Simplification

– p.47

Term rewriting foundations

– p.48

Term rewriting means . . .

Using equations l = r from left to right

As long as possible

Terminology: equation ; rewrite rule

– p.49

An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x
(4)
=

True

– p.50

Interlude: Variables in Isabelle

– p.51

Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x
• schematic: ?x = ?x (“unknown”)

Can be mixed: ∀b. f ?a y = b

• Logically: free = schematic
• Operationally:

• free variables are fixed
• schematic variables are instantiated by substitutions

(e.g. during rewriting)
– p.52

From x to ?x

State lemmas with free variables:

lemma app_Nil2[simp]: "xs @ [] = xs"
...
done

After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

– p.53

Term rewriting in Isabelle

– p.54

Basic simplification

Goal: 1. [[P1; . . . ; Pm]] =⇒ C

apply(simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp
• rules from primrec and datatype

• additional lemmas eq1 . . . eqn

• assumptions P1 . . . Pm

– p.55

auto versus simp

• auto acts on all subgoals
• simp acts only on subgoal 1
• auto applies simp and more

– p.56

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Conditional simp-rules are only applied
if conditions are provable.

– p.57

Demo: simp

– p.58

Induction heuristics

– p.59

Basic heuristics

Theorems about recursive functions are proved by
induction

Induction on argument number i of f

if f is defined by recursion on argument number i

– p.60

A tail recursive reverse

consts itrev :: ’a list ⇒ ’a list ⇒ ’a list
primrec

itrev [] ys = ys
itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

Why in this direction?

Because the lhs is “more complex” than the rhs.

– p.61

Demo: first proof attempt

– p.62

Generalisation (1)

Replace constants by variables

lemma itrev xs ys = rev xs @ ys

– p.63

Demo: second proof attempt

– p.64

Generalisation (2)

Quantify free variables by ∀
(except the induction variable)

lemma ∀ ys. itrev xs ys = rev xs @ ys

– p.65

HOL: Propositional Logic

– p.66

Overview

• Natural deduction
• Rule application in Isabelle/HOL

– p.67

Rule notation

A1 . . . An

A instead of [[A1 . . . An]] =⇒ A

– p.68

Natural Deduction

– p.69

Natural deduction

Two kinds of rules for each logical operator ⊕:

Introduction: how can I prove A ⊕ B?

Elimination: what can I prove from A ⊕ B?

– p.70

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI A=B

A =⇒ B iffD1 A=B
B =⇒ A iffD2

A =⇒ False
¬ A

notI ¬ A A
C

notE

– p.71

Operational reading

A1 . . . An

A

Introduction rule:
To prove A it suffices to prove A1 . . . An.

Elimination rule
If I know A1 and want to prove A

it suffices to prove A2 . . . An.

– p.72

Classical contradiction rules

¬ A =⇒ False
A

ccontr ¬ A =⇒ A
A classical

– p.73

Proof by assumption

A1 . . . An

Ai
assumption

– p.74

Rule application: the rough idea

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:
• Unify A and C
• Replace C with n new subgoals A1 . . . An

Working backwards, like in Prolog!

Example: rule: [[?P; ?Q]] =⇒ ?P ∧ ?Q
subgoal: 1. A ∧ B

Result: 1. A
2. B

– p.75

Rule application: the details

Rule: [[A1; . . . ; An]] =⇒ A
Subgoal: 1. [[B1; . . . ; Bm]] =⇒ C

Substitution: σ(A) ≡ σ(C)
New subgoals: 1. σ([[B1; . . . ; Bm]] =⇒ A1)

...
n. σ([[B1; . . . ; Bm]] =⇒ An)

Command:

apply(rule <rulename>)

– p.76

Proof by assumption

apply assumption
proves

1. [[B1; . . . ; Bm]] =⇒ C

by unifying C with one of the Bi (backtracking!)

– p.77

Demo: application of introduction rule

– p.78

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

Example:
Rule: [[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

Subgoal: 1. [[X; A ∧ B; Y]] =⇒ Z
Unification: ?P ∧ ?Q ≡ A ∧ B and ?R ≡ Z

New subgoal: 1. [[X; Y]] =⇒ [[A; B]] =⇒ Z
same as: 1. [[X; Y; A; B]] =⇒ Z

– p.79

How to prove it by natural deduction

• Intro rules decompose formulae to the right of =⇒.

apply(rule <intro-rule>)
• Elim rules decompose formulae on the left of =⇒.

apply(erule <elim-rule>)

– p.80

Demo: examples

– p.81

=⇒ vs −→

• Write theorems as [[A1; . . . ; An]] =⇒ A
not as A1 ∧ . . . ∧ An −→ A (to ease application)

• Exception (in apply-style): induction variable must not
occur in the premises.

Example: [[A; B(x)]] =⇒ C(x) ; A =⇒ B(x) −→ C(x)

Reverse transformation (after proof):
lemma abc[rule_format] : A =⇒ B(x) −→ C(x)

– p.82

Demo: further techniques

– p.83

HOL: Predicate Logic

– p.84

Parameters

Subgoal:

1.
∧

x1 . . . xn. Formula

The x i are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over
∧

x1 . . . xn and applied
directly to Formula.

– p.85

Scope

• Scope of parameters: whole subgoal
• Scope of ∀ , ∃ , . . . : ends with ; or =⇒

∧
x y. [[∀ y. P y −→ Q z y; Q x y]] =⇒ ∃ x. Q x y

means
∧

x y. [[(∀ y1. P y1 −→ Q z y1); Q x y]] =⇒ ∃ x1. Q x1 y

– p.86

α-Conversion

Bound variables are renamed automatically to avoid name
clashes with other variables.

– p.87

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI

∀ x. P(x) P(?x) =⇒ R
R allE

P(?x)
∃ x. P(x)

exI
∃ x. P(x)

∧
x. P(x) =⇒ R
R

exE

• allI and exE introduce new parameters (
∧

x).
• allE and exI introduce new unknowns (?x).

– p.88

Instantiating rules

apply(rule_tac x = "term" in rule)

Like rule, but ?x in rule is instantiated by term before
application.

Similar: erule_tac

! x is in rule, not in the goal !

– p.89

Two successful proofs

1. ∀ x. ∃ y. x = y
apply(rule allI)

1.
∧

x. ∃ y. x = y
best practice exploration
apply(rule_tac x = "x" in exI) apply(rule exI)
1.

∧
x. x = x 1.

∧
x. x = ?y x

apply(rule refl) apply(rule refl)
?y 7→ λu. u

simpler & clearer shorter & trickier

– p.90

Demo: quantifier proofs

– p.91

Safe and unsafe rules

Safe allI, exE

Unsafe allE, exI

Create parameters first, unknowns later

– p.92

Demo: proof methods

– p.93

Sets

– p.94

Overview

• Set notation
• Inductively defined sets

– p.95

Set notation

– p.96

Sets

Type ’a set : sets over type ’a

• {}, {e1,. . . ,en}, {x. P x}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A - B, - A
•

⋃
x∈A B x,

⋂
x∈A B x

• {i..j}
• insert :: ’a ⇒ ’a set ⇒ ’a set
• . . .

– p.97

Proofs about sets

Natural deduction proofs:
• equalityI: [[A ⊆ B; B ⊆ A]] =⇒ A = B
• subsetI: (

∧
x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

• . . . (see Tutorial)

– p.98

Demo: proofs about sets

– p.99

Inductively defined sets

– p.100

Example: finite sets

Informally:
• The empty set is finite
• Adding an element to a finite set yields a finite set
• These are the only finite sets

In Isabelle/HOL:

consts Fin :: ’a set set — The set of all finite set
inductive Fin
intros

{} ∈ Fin
A ∈ Fin =⇒ insert a A ∈ Fin

– p.101

Example: even numbers

Informally:
• 0 is even
• If n is even, so is n + 2

• These are the only even numbers

In Isabelle/HOL:

consts Ev :: nat set — The set of all even numbers
inductive Ev
intros

0 ∈ Ev
n ∈ Ev =⇒ n + 2 ∈ Ev

– p.102

Format of inductive definitions

consts S :: τ set
inductive S
intros

[[a1 ∈ S; . . . ; an ∈ S; A1; . . . ; Ak]] =⇒ a ∈ S
...

where A1; . . . ; Ak are side conditions not involving S.

– p.103

Proving properties of even numbers

Easy: 4 ∈ Ev
0 ∈ Ev =⇒ 2 ∈ Ev =⇒ 4 ∈ Ev

Trickier: m ∈ Ev =⇒ m+m ∈ Ev
Idea: induction on the length of the derivation of m ∈ Ev
Better: induction on the structure of the derivation
Two cases: m ∈ Ev is proved by
• rule 0 ∈ Ev

=⇒ m = 0 =⇒ 0+0 ∈ Ev
• rule n ∈ Ev =⇒ n+2 ∈ Ev

=⇒ m = n+2 and n+n ∈ Ev (ind. hyp.!)
=⇒ m+m = (n+2)+(n+2) = ((n+n)+2)+2 ∈ Ev

– p.104

Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove
• P 0
• P n =⇒ P(n+2)

Rule Ev.induct:

[[n ∈ Ev; P 0;
∧

n. P n =⇒ P(n+2)]] =⇒ P n

An elimination rule

– p.105

Rule induction in general

Set S is defined inductively.
To prove

x ∈ S =⇒ P x

by rule induction on x ∈ S
we must prove for every rule

[[a1 ∈ S; . . . ; an ∈ S]] =⇒ a ∈ S
that P is preserved:

[[P a1; . . . ; P an]] =⇒ P a

In Isabelle/HOL:
apply(erule S.induct)

– p.106

Demo: inductively defined sets

– p.107

Isabelle/HOL Exercises

1 Counting occurences

Define a function occurs, such that occurs x xs is the number of occurrences of the
element x in the list xs.

consts occurs :: "’a ⇒ ’a list ⇒ nat"

Prove or disprove (by counter example) the lemmas that follow. You may have to prove ad-
ditional lemmas first. Use the [simp] -attribute only if the equation is truly a simplification
and is necessary for some later proof.

lemma "occurs a xs = occurs a (rev xs)"

lemma "occurs a xs <= length xs"

Function map applies a function to all elements of a list: map f [x1, . . .,xn] = [f x1, . . .,f

xn].

lemma "occurs a (map f xs) = occurs (f a) xs"

Function filter :: (’a ⇒ bool) ⇒ ’a list ⇒ ’a list is defined by

filter P [] = []

filter P (x # xs) = (if P x then x # filter P xs else filter P xs)

Find an expression e not containing filter such that the following becomes a true lemma,
and prove it:

lemma "occurs a (filter P xs) = e"

With the help of occurs, define a function remDups that removes all duplicates from a list.

consts remDups :: "’a list ⇒ ’a list"

Find an expression e not containing remDups such that the following becomes a true lemma,
and prove it:

1

lemma "occurs x (remDups xs) = e"

With the help of occurs define a function unique, such that unique xs is true iff every
element in xs occurs only once.

consts unique :: "’a list ⇒ bool"

Show that the result of remDups is unique.

2 Tree traversal

Define a datatype ’a tree for binary trees. Both leaf and internal nodes store information.

datatype ’a tree =

Define the functions preOrder, postOrder, and inOrder that traverse an ’a tree in the
respective order.

consts
preOrder :: "’a tree ⇒ ’a list"

postOrder :: "’a tree ⇒ ’a list"

inOrder :: "’a tree ⇒ ’a list"

Define a function mirror that returns the mirror image of an ’a tree.

consts
mirror :: "’a tree ⇒ ’a tree"

Suppose that xOrder and yOrder are tree traversal functions chosen from preOrder,
postOrder, and inOrder. Formulate and prove all valid properties of the form
xOrder (mirror xt) = rev (yOrder xt) .

Define the functions root, leftmost and rightmost, that return the root, leftmost, and
rightmost element respectively.

consts
root :: "’a tree ⇒ ’a"

leftmost :: "’a tree ⇒ ’a"

rightmost :: "’a tree ⇒ ’a"

Prove or disprove (by counter example) the lemmas that follow. You may have to prove
some lemmas first.

lemma "last(inOrder xt) = rightmost xt"

lemma "hd (inOrder xt) = leftmost xt"

2

lemma "hd(preOrder xt) = last(postOrder xt)"

lemma "hd(preOrder xt) = root xt"

lemma "hd(inOrder xt) = root xt"

lemma "last(postOrder xt) = root xt"

3 Natural deduction

3.1 Propositional logic

The focus of this exercise are single step natural deduction proofs. The following restric-
tions apply:

• Only the following rules may be used:
notI: (A =⇒ False) =⇒ ¬ A,
notE: [[¬ A; A]] =⇒ B,
conjI: [[A; B]] =⇒ A ∧ B,
conjE: [[A ∧ B; [[A; B]] =⇒ C]] =⇒ C,
disjI1: A =⇒ A ∨ B,
disjI2: A =⇒ B ∨ A,
disjE: [[A ∨ B; A =⇒ C; B =⇒ C]] =⇒ C,
impI: (A =⇒ B) =⇒ A −→ B,
impE: [[A −→ B; A; B =⇒ C]] =⇒ C,
mp: [[A −→ B; A]] =⇒ B

iffI: [[A =⇒ B; B =⇒ A]] =⇒ A = B,
iffE: [[A = B; [[A −→ B; B −→ A]] =⇒ C]] =⇒ C

classical: (¬ A =⇒ A) =⇒ A

• Only the methods rule, erule und assumption may be used.

lemma I: "A −→ A"

lemma "(A ∨ B) = (B ∨ A)"

lemma "(A ∧ B) −→ (A ∨ B)"

lemma "((A ∨ B) ∨ C) −→ A ∨ (B ∨ C)"

lemma K: "A −→ B −→ A"

lemma "(A ∨ A) = (A ∧ A)"

lemma S: "(A −→ B −→ C) −→ (A −→ B) −→ A −→ C"

lemma "(A −→ B) −→ (B −→ C) −→ A −→ C"

lemma "¬ ¬ A −→ A"

lemma "(¬ A −→ B) −→ (¬ B −→ A)"

lemma "((A −→ B) −→ A) −→ A"

lemma "A ∨ ¬ A"

3

3.2 Predicate logic

You may now use the followinh additional rules:

exI: P x =⇒ ∃ x. P x

exE: [[∃ x. P x;
∧
x. P x =⇒ Q]] =⇒ Q

allI: (
∧
x. P x) =⇒ ∀ x. P x

allE: [[∀ x. P x; P x =⇒ R]] =⇒ R

For each of the following formulae, find a proof or explain why it is not true.

lemma "(∀ x. P x −→ Q) = ((∃ x. P x) −→ Q)"

lemma "(∀ x. ∀ y. R x y) = (∀ y. ∀ x. R x y)"

lemma "((∃ x. P x) ∨ (∃ x. Q x)) = (∃ x. (P x ∨ Q x))"

lemma "((∀ x. P x) ∨ (∀ x. Q x)) = (∀ x. (P x ∨ Q x))"

lemma "(∀ x. ∃ y. P x y) −→ (∃ y. ∀ x. P x y)"

lemma "(∃ x. ∀ y. P x y) −→ (∀ y. ∃ x. P x y)"

lemma "(¬ (∀ x. P x)) = (∃ x. ¬ P x)"

3.3 A puzzle

Prove the following proposition with pen and paper, possibly using case distinctions:

If every poor person has a rich father,
then there is a rich person with a rich grandfather.

theorem
"∀ x. ¬ rich x −→ rich (father x) =⇒
∃ x. rich (father (father x)) ∧ rich x"

Translate your proof into a sequence of Isabelle rule applications. Case distinctions via
case tac are allowed.

4 Context-free grammars

This exercise is concerned with context-free grammars (CFGs). Please read section 7.4 in
the tutorial which explains how to model CFGs as inductive definitions. Our particular
example is about defining valid sequences of parantheses.

4

4.1 Two grammars

The most natural definition of valid sequences of parantheses is this:

S → ε | ′(′ S ′)′ | S S

where ε is the empty word.

A second, somewhat unusual grammar is the following one:

T → ε | T ′(′ T ′)′

Model both grammars as inductive sets S and T and prove S = T .

4.2 A recursive function

Instead of a grammar, we can also define valid sequences of paratheses via a test function:
traverse the word from left to right while counting how many closing paretheses are still
needed. If the counter is 0 at the end, the sequence is valid.

Define this recursive function and prove that a word is in S iff it is accepted by your
function. The =⇒ direction is easy, the other direction more complicated.

5

PART IV:

Advanced Applications and Tools

Yves Bertot:

Coinduction

CoInduction in Coq

Yves Bertot

June 30, 2005

When providing a collection of constructors to define an inductive type, we actually also
define a dual operation: a destructor. This destructor is always defined using the same
structure of pattern-matching, so that we have a tendency to forget that we do extend the
“pattern-matching” capability with a new destructor at each definition.

Constructors and destructors play a dual role in the definition of inductive types. Con-
structors produce elements of the inductive type, destructors consume elements of the in-
ductive type.

The inductive type itself is defined as the smallest collection of elements that is stable
with respect to the constructors: it must contain all constants that are declared to be in the
inductive type and all results of the constructors when the arguments of these constructors
are already found to be in the inductive type. When considering structural recursion, recur-
sive definitions are functions that consume elements of the inductive type. The discipline of
structural recursion imposes that recursive calls consume data that is obtained through the
destructor.

The inductive type uses the constructors and destructors in a specific way. Co-inductive
types are the types one obtains when using them in a dual fashion. A co-inductive type will
appear as the largest collection of elements that is stable with respect to the destructor. It
contains every object that can be destructed by pattern-matching.

The duality goes on when considering the definition of recursive functions. Co-recursive
functions are function that produce elements of the co-inductive type. The discipline of
guarded co-recursion imposes that co-recursive calls produce data that is consumed by a
constructor. The main practical consequence is that co-inductive types contain objects that
look like infinite objects.

This rough sketch is more of a philosophical nature. When looking at the details, there
are some aspects of co-inductive types that are not so simple to derive from a mere reflection
of what happens with inductive types.

The possibility to have co-inductive types in theorem proving tools was studied by Co-
quand [7], Paulson [19], Leclerc and Paulin-Mohring [16], and Gimenez [13]. Most of these
authors were inspired by Aczel [1]. The paper [2] provides a short presentation of terms
and (possibly infinite) trees, mainly in set-theoretic terms; it also explains recursion and
co-recursion.

In this document, we only consider the use of co-inductive types as it is provided in Coq.

1

1 Defining a co-inductive types

Since defining a set of constructors automatically defines a destructor, the definition of co-
inductive types also relies on the definition of constructors. The same rules of positivity as
for inductive types apply. Here are three simple examples of co-inductive types:

CoInductive Llist (A:Set) : Set :=

Lcons : A -> Llist A -> Llist A | Lnil : Llist A.

CoInductive stream (A:Set) : Set :=

Cons : A -> stream A -> stream A.

CoInductive Ltree (A:Set) : Set :=

Lnode : A -> Ltree A -> Ltree A -> Ltree A | Lleaf : Ltree A.

As for inductive types, this defines the type and the constructors, it also defines the
destructor, so that every element of the co-inductive can be analysed by pattern-matching.
However, the definition does not provide an induction principle. The reason for the absence
of an induction principle can be explained in two ways, philosophical or technical. Philo-
sophically, the induction principle of an inductive type expresses that this inductive type is
minimal (it is a least fixed point), but the co-inductive type is rather viewed as greatest fixed
point. Technically, the induction principle actually is a consumption tool, that consumes el-
ements of an inductive type to produce proofs in some other type, programed by recursion.
However, a co-recursive function can only be used to produce elements of the co-recursive
type, so that the only way to deduce anything from an element of a co-inductive type is by
pattern-matching.

The type Llist given above comes with constructors Lcons and Lnil. These constructors
will make it possible to produce lists, exactly like the lists that we could produce in the
inductive type list. Here are a few examples.

Implicit Arguments Lcons.

Implicit Arguments Cons.

Definition ll123 := Lcons 1 (Lcons 2 (Lcons 3 (Lnil nat))).

Require Import List.

Fixpoint list_to_llist (A:Set) (l:list A)

{struct l} : Llist A :=

match l with

nil => Lnil A

| a::tl => Lcons a (list_to_llist A tl)

end.

Definition ll123’ := list_to_llist nat (1::2::3::nil).

2

The function list to llist is recursive and produces elements in a co-inductive type, but
we did not make it rely on co-recursion. Rather, it relies on structural recursion as it is
provided with the inductive type list.

Similar examples which do not rely on co-recursion cannot be provided for the type
stream, because elements of this type cannot be given with a finite number of uses of the
constructor. There is always a need for another element of the co-inductive type. Co-
recursion is the solution.

In the coq system, co-recursion is only allowed under a form that can ensure the strong
normalization properties that are already satisfied by the inductive part of the calculus. The
decision was taken to impose a syntactic criterion: co-recursive values can only appear as
argument to constructors and inside branches of pattern-matching constructs. Here is a
simple example:

CoFixpoint ones : stream nat := Cons 1 ones.

This definition underlines a funny aspect of co-recursion: a co-recursive value is not
necessarily a function, because it is only constrained to produce an element of the co-inductive
type. The definition contains a usage of the constructor Cons and a reference to the co-
recursive value itself, but this co-recursive value is used as an argument to the constructor.

A similar value can be defined in the type Llist.

CoFixpoint lones : Llist nat := Lcons 1 lones.

Clearly, the list that we obtain is not a list that we could have obtained using the function
list to llist. The type Llist is “larger” than the type list.

Some co-recursive functions can be defined to perform exactly like similar recursive func-
tions on inductive types. Here is an instance:

Fixpoint map (A B:Set)(f:A -> B)(l:list A) {struct l} : list B :=

match l with

nil => nil

| a::tl => f a::map A B f tl

end.

CoFixpoint lmap (A B:Set)(f:A -> B)(l:Llist A) : Llist B :=

match l with

Lnil => Lnil B

| Lcons a tl => Lcons (f a) (lmap A B f tl)

end.

The two functions look similar, but we should bear in mind that the second one can also
process infinite lists like lones.

2 Computing with co-recursive values

When we manipulate elements of inductive types, we implicitely expect to look at these
values in constructor form: constructors applied to other terms in constructor form. How-
ever, attempting to put a value like lones in constructor form would require an infinity of

3

unfoldings of its value, this would make the computation non-normalizing. For this reason,
a co-recursive value is by default considered to be a normal form. This can be verified by
requesting a computation on such a value.

Eval simpl in lones.

= lones : Llist nat

However destructing a co-recursive value (with the help of a pattern-matching construct)
corresponds to a regular redex and we can check that the first element of lones indeed is 1.

Eval simpl in

match lones with Lnil => 0 | Lcons a _ => a end.

= 1 : nat

3 Proving properties of co-inductive values

It is possible to prove that two co-inductive values are equal. The usual approach, identical
to what happens in the inductive setting is to show that the two values have the same head
constructor applied to the same arguments. However, making the head constructor appear
is tricky, because the computation of co-recursive values is usually not performed. One way
to provoke this computation is to rely on the following function and theorem.

Definition Llist_decompose (A:Set)(l:Llist A) : Llist A :=

match l with Lnil => Lnil A | Lcons a tl => Lcons a tl end.

Implicit Arguments Llist_decompose.

Theorem Llist_dec_thm :

forall (A:Set)(l:Llist A), l = Llist_decompose l.

Proof.

intros A l; case l; simpl; trivial.

Qed.

Now, here is an example using this theorem:

Theorem lones_cons : lones = Lcons 1 lones.

Proof.

pattern lones at 1; rewrite Llist_dec_thm; simpl.

...

============================

Lcons 1 lones = Lcons 1 lones

trivial.

Qed.

This is not a proof by co-recursion, just a proof by pattern-matching.
There are proofs of equality that seem obvious but cannot be performed in the calculus of

inductive constructions as it is defined now. This happens when the proofs seems to require
some sort of inductive argument. Here is an instance of an impossible proof:

4

Theorem lmap_id : forall (A:Set)(l:Llist A),

lmap A A (fun x:A => x) l = l.

One would like to have an argument of the following form: if the list is nil, then the proof
is trivial, if the list is not nil, then the head on both sides of the equality are naturally the
same, and the equality for the tails should hold by some “inductive” argument. However,
there is no induction hypothesis, because there is no inductive list in this statement and the
proof of equality can only be proved by using the constructor of equality (because equality
is itself an inductive type).

The solution for this kind of problem is to use a co-inductive proposition that expresses
the equality of two lists by stating that they have the same elements. Here is the co-inductive
definition for this proposition:

CoInductive bisimilar (A:Set) : Llist A -> Llist A -> Prop :=

bisim0 : bisimilar A (Lnil A) (Lnil A)

| bisim1 : forall a l l’,

bisimilar A l l’ -> bisimilar A (Lcons a l)(Lcons a l’).

Proofs that two lists have the same elements can now also be obtained by using co-recursive
values, as long as we use the bisimilar relation instead of equality. Here is an example
of a proof, displayed as term of the calculus of inductive constructions to make the general
structure visible. Please note that rewrites using the theorems eq ind r and Llist dec thm

are performed to introduce the function Llist decompose and force the expansion of the
co-recursive function.

CoFixpoint lmap_bi (A:Set)(l:Llist A) :

bisimilar A (lmap A A (fun x:A => x) l) l :=

@eq_ind_r (Llist A) (Llist_decompose (lmap A A (fun x=> x) l))

(fun x => bisimilar A x l)

match l return bisimilar A

(Llist_decompose (lmap A A (fun x=>x) l))

l with

Lnil => bisim0 A

| Lcons a k =>

bisim1 A a (lmap A A (fun x=> x) k) k (lmap_bi A k)

end

(lmap A A (fun x => x) l)

(Llist_dec_thm A (lmap A A (fun x=>x) l))

.

The manual construction of co-inductive proofs is difficult. The alternative approach is to
use tactics. The following script performs the same proof, but relying on tactics.

Theorem lmap_bi’ : forall (A:Set)(l:Llist A),

bisimilar A (lmap A A (fun x => x) l) l.

5

cofix.

intros A l; rewrite (Llist_dec_thm _ (lmap A A (fun x=>x) l)).

case l.

intros a k; simpl.

apply bisim1; apply lmap_bi’.

simpl; apply bisim0.

Qed.

The tactic cofix is the tactic that declares that the current proof will be a co-recursive
value. It introduces a new assumption in the context so that the co-recursive value can be
used inside its own definition. However, the same constraints as before exist: the co-recursive
value can only be used as input to a constructor. In the case of lmap bi, the use of lmap bi’

at the end of the proof is justified by the previous use of the constructor bisim1: lmap bi’

is thus used to provide an argument to bisim1.
In general, the constraint that co-recursive calls are used in correct conditions is only

checked at the end of the proof. This sometimes has the unpleasant effect that one believes
to have completed a proof and is only rebuked when the Qed or Defined commands announce
that the constructed term is not well-formed. This problem is compounded by the fact that
it is hard to control the hypotheses that are used by automatic tactics. Even though we
believe the proof of a subgoal should not rely on the co-recursive assumption, it may happen
that some tactic like intuition uses this assumption in a bad way. One solution to this
problem is to use the clear tactic to remove the co-recursive assumption before using strong
automatic tactics. A second important tool to avoid this problem is a command called
Guarded, this command can be used at any time during the interactive proofs and it checks
whether illegal uses of the co-recursive tactic have already been performed.

4 Applications

Co-inductive types can be used to reason about hardware descriptions [9] concurrent pro-
gramming [14], finite state automata and infinite traces of execution, and temporal logic
[5, 8]. The guarded by constructors structure of co-recursive functions is adapted to repre-
senting finite state automata. A few concrete examples are also given in [4].

Co-inductive types are especially well suited to model and reason about lazy functional
programs that compute on infinite lists. However, the constraints of having co-recursive calls
guarded by constructors imposes that one scrutinizes the structure of recursive functions to
understand whether they really can be encoded in the language. One approach, used in [3]
is to show that co-inductive objects also satisfy some inductive properties, which make it
possible to define functions that have a recursive part, with usual structural recursive calls
with respect to these inductive properties, and guarded co-recursive parts.

5 An example: introduction to exact real arithmetics

The work presented in this section is my own, but it is greatly inspired by reading the
lecture notes [10] and the thesis [17] and derived papers [18, 15], and by [6]. These papers

6

should be consulted for further references about exact real arithmetics, lazy computation,
and co-inductive types.

We are going to represent real numbers between 0 and 1 (included) as infinite sequences of
intervals In, where I0 = [0, 1], In+1 ⊂ In and the size of In+1 is half the size of In. Moreover,
In+1 will be obtained from In in only one of three possible ways:

1. In+1 is the left half of In,

2. In+1 is the right half of In+1,

3. In+1 is the center of In+1: if a and b are the bounds of In, then a + (b − a)/4 and
a + 3(b− a)/4 are the bounds of In + 1.

We can represent any of the intervals In using lists of idigit, where the type idigit is
the three element enumerated type containing L, R, C. For instance, the interval [0,1] is
given by the empty list, the interval [1/4,3/8] can be represented by the lists L::C::R::nil,
L::R::L::nil, or C::L::L::nil. It is fairly easy to write a function of type list idigit->R

that maps every list to the lower and upper bound of the interval it represents. We are going
to represent real numbers by infinite sequences of intervals using the type stream idigit.

There is also an easy correspondence from floating-point numbers in binary representation
to this representation. Let us first recall what the binary floating-point representation is.
Any “binary” floating point is a list of boolean values. Interpreting true as the 1 bit and
false as the 0 bit, a boolean list is interpreted as a real number in the following way:

Fixpoint bit_list_to_R (l:list boolean) : Rdefinitions.R :=

match l with

nil => 0

| b::tl => let x := bit_list_to_R tl in

if b then (1+x)/2 else x/2

end.

We can inject the boolean values into the type idigit mapping true to L and false to R. It
is fairly easy to show that this correspondance can be lifted to lists of booleans and idigits,
so that the real number represented by a list is element of the interval represented by the
corresponding list.

We represent real numbers by streams of idigit elements. The construction relies on
associating a sequence of real numbers to each stream (actually the lower bounds of the
intervals) and to show that this sequence converges to a limit. To ease our reasoning, we will
also describe the relation between a stream and a real value using a co-inductive property:

CoInductive represents : stream idigit -> Rdefinitions.R -> Prop :=

reprL : forall s r, represents s r -> (0 <= r <= 1)%R ->

represents (Cons L s) (r/2)

| reprR : forall s r, represents s r -> (0 <= r <= 1)%R ->

represents (Cons R s) ((r+1)/2)

| reprC : forall s r, represents s r -> (0 <= r <= 1)%R ->

represents (Cons C s) ((2*r+1)/4).

7

We could also use infinite lists of booleans to represent real numbers. This is the usual
representation of numbers. This representation also corresponds to sequences of intervals,
but it has bad programming properties. In this representation, if we know that a number is
very close to 1/2 but we don’t know whether it is larger or smaller, we cannot produce the
first bit. For instance, the number 1/3 is represented by the infinite sequence .0101. . . and
the number 1/6 is represented by the infinite sequence .0010101. . . Adding the two numbers
should yield the number 1/2. However, every finite prefix of .010101. . . represents an interval
that contains numbers that are larger than 1/3 and numbers that are smaller than 1/3.
Similarly, every finite prefix of .0010101. . . contains a numbers that are larger than 1/6 and
numbers that are smaller. By only looking at a finite prefix of both numbers, we cannot
decide whether the first bit of the result should be a 0 or a 1, because no number larger than
1/2 can be represented by a sequence starting with a 0 and no number smaller than 1/2 can
be represented by a sequence starting with a 1.

With the extra digit, C, we can perform the computation as follows:

1. having observed that the first number has the form x = LRx′, we know that this
number is between 1/4 and 1/2,

2. having observed that the second number has the form y = LLy′, we know that this
number is between 0 and 1/4,

3. we know that the sum is between 1/4 and 3/4. therefore, we know that the sum is an
element of the interval represented by C::nil, and we can output this digit.

We can also go on to output the following digits. In usual binary representation, if v
is the number represented by the sequence s, then the number represented by the sequence
0s is v/2 and the number represented by the sequence 1s is (v + 1)/2. This interpretation
carries over to the digits L and R, respectively. For the digit C, we know that the sequence
Cs represents (2v + 1)/4. Thus, if we come back to the computation of 1/3 + 1/6, we know
that x′ is 4 ∗ x − 1, y′ is 4 ∗ y, and the result should have the form C::z, where z is the
representation of (x′ + y′ +1)/4 (since x′ + y′ +1)/4 is 1/2, we see that the result of the sum
is going to be an infinite sequence of C digits.

We are now going to provide a few functions on streams. As a first example, the function
rat to stream maps any two integers a b to a stream. When a/b is between 0 and 1, the
result stream is the representation of this rational number.

CoFixpoint rat_to_stream (a b:Z) : stream idigit :=

if Z_le_gt_dec (2*a) b then

Cons L (rat_to_stream (2*a) b)

else

Cons R (rat_to_stream (2*a-b) b)

For the second example, we compute an affine combination of two numbers with rational
coefficients. We will define the function that constructs the representation of the following
formula.

a

a′ v1 +
b

b′ v2 +
c

c′

8

The numbers a, a′, . . . are positive integers and a′, b′, and c′ are non-zero (this sign restriction
only serves to make the example shorter).

We choose to define a one-argument function, where the argument is a record holding all
the values a, a′, . . . , v1, v2. We define a type for this record and a predicate to express the
sign conditions.

Record affine_data : Set :=

{m_a : Z; m_a’ : Z; m_b : Z; m_b’ : Z; m_c : Z; m_c’ : Z;

m_v1 : stream idigit; m_v2 : stream idigit}.

Definition positive_coefficients (x:affine_data) :=

0 <= m_a x /\ 0 < m_a’ x /\ 0 <= m_b x /\ 0 < m_b’ x

/\ 0 <= m_c x /\ 0 < m_c’ x.

We define a function axbyc of type

forall x, positive_coefficients x -> stream idigit.

The algorithm contains two categories of computing steps. In computing steps of the first
category, a digit of type idigit is produced, because analysing the values of a, a′, . . .makes
it possible to infer that the result will be in a precise part of the interval. The result then
takes the form

Cons d (axbyc 〈a1, a
′
1, b1, b

′
1, c1, c

′
1, v1, v2〉)

Where d is a digit and the values of a1, a′
1, . . . depend on the digit.

1. if c/c′ ≥ 1/2, then the result is sure to be in the right part of the interval, the digit
d is R and the new parameters are chosen so that a1/a

′
1 = 2a/a′, b1/b

′
1 = 2b/b′,

c1/c
′
1 = (2c− c′)/c′, because of the following equality:

1

2
(
2a

a′ v1 +
2b

b′ v2 +
2c− c′

c′) +
1

2
=

a

a′ v1 +
b

b′ v2 +
c

c′

2. if 2(ab′c′ + ba′c′ + a′b′c) ≤ a′b′c′, then the result is sure to be in the left part of the
interval, the digit d is L and the new parameters are chosen so that a1/a

′
1 = 2a/a′,

b1/b
′
1 = 2b/b′, c1/c

′
1 = 2c/c′ (we do not detail the justification),

3. if (4(ab′c′ + ba′c′ + a′b′c) ≤ 3a′b′c′ and 4 ∗ c ≥ c′, then the result is sure to belong to
the center sub-interval, the digit d is C and the new parameters are chosen so that
a1/a

′
1 = 2a/a′, b1/b

′
1 = 2b/b′, c1/c

′
1 = (4c− c′)/2c′.

The various cases of these productive steps are described using the following functions:

Definition prod_R x :=

Build_affine_data (2*m_a x) (m_a’ x) (2*m_b x) (m_b’ x)

(2*m_c x - m_c’ x) (m_c’ x) (m_v1 x) (m_v2 x).

9

Definition prod_L x :=

Build_affine_data (2*m_a x) (m_a’ x) (2*m_b x) (m_b’ x)

(2*m_c x) (m_c’ x) (m_v1 x) (m_v2 x).

Definition prod_C x :=

Build_affine_data (2*m_a x) (m_a’ x) (2*m_b x) (m_b’ x)

(4*m_c x - m_c’ x) (2*m_c’ x) (m_v1 x) (m_v2 x).

In the second category of computing steps the values v1 and v2 are scrutinized, so that the
interval for the potential values of the result is reduced as one learns more information about
the inputs. If the values v1 and v2 have the form Cons d1 v′

1 and Cons d2 v′
2 respectively,

The result then takes the form

axbyc 〈a, 2a′, b, 2b′, c1, c
′
1, v

′
1, v

′
2〉

Only the parameters c1 and c′
1 take a different form depending on the values of d1 and d2.

The correspondance is given in the following table.

d1 d2 c1 c′
1

L L c c′

L R bc′ + 2cb′ 2b′c′

R L ac′ + 2ca′ 2a′c′

L C bc′ + 4cb′ 4b′c′

C L ac′ + 4ca′ 4a′c′

R C 2ba′c′ + ab′c′ + 4cb′a′ 4a′b′c′

C R 2ba′c′ + ab′c′ + 4cb′a′ 4b′a′c′

R R ab′c′ + ba′c′ + 2ca′b′ 2a′b′c′

C C ba′c′ + ab′c′ + 4cb′a′ 4b′a′c′

For justification, let us look only at the case where v1 = Rv′
1 and v2 = Cv′

2. In this case we
have the following equations:

a

a′ v1 +
b

b′ v2 +
c

c′ =
a

a′ (
1

2
v′

1 +
1

2
) +

b

b′ (
1

2
v′

2 +
1

4
) +

c

c′

=
a

2a′ v
′
1 +

b

2b′ v
′
2 +

2ba′c′ + ab′c′ + 4cb′a′

4a′b′c′

This category of computation is taken care of by a function with the following form:

Definition axbyc_consume (x:affine_data) :=

let (a,a’,b,b’,c,c’,v1,v2) := x in

let (d1,v1’) := v1 in let (d2,v2’) := v2 in

let (c1,c1’) :=

match d1,d2 with

| L,L => (c, c’)

| L,R => (b*c’+2*c*b’, 2*b’*c’)

| R,L => (a*c’+2*c*a’, 2*a’*c’)

10

| L,C => (b*c’+4*c*b’, 4*b’*c’)

| C,L => (a*c’+4*c*a’, 4*a’*c’)

| R,C => (2*a*b’*c’+b*a’*c’+4*c*a’*b’, 4*a’*b’*c’)

| C,R => (2*b*a’*c’+a*b’*c’+4*c*b’*a’, 4*b’*a’*c’)

| R,R => (a*b’*c’+b*a’*c’+2*c*a’*b’, 2*a’*b’*c’)

| C,C => (b*a’*c’+a*b’*c’+4*c*b’*a’, 4*b’*a’*c’)

end in

Build_affine_data a (2*a’) b (2*b’) c1 c1’ v1’ v2’.

From the point of view of co-recursive programming, the first category of computing steps
gives regular guarded-by-constructor corecursive calls. The second category of computing
steps does not give any guarded corecursion. We need to separate the second category in an
auxiliary function. We choose to define this auxiliary function by well-founded induction.
The recursive function performs the various tests with the help of an auxiliary test function:

Parameter axbyc_test :

forall x,

positive_coefficients x ->

m_c’ x <= 2*m_c x+

2*(m_a x*m_b’ x*m_c’ x +

m_b x*m_a’ x*m_c’ x + m_a’ x*m_b’ x*m_c x)<=

m_a’ x*m_b’ x*m_c’ x+

4*(m_a x*m_b’ x*m_c’ x +

m_b x*m_a’ x*m_c’ x + m_a’ x*m_b’ x*m_c x)<=

3*m_a’ x*m_b’ x*m_c’ x /\ m_c’ x <= 4*m_c x+

m_a’ x < 8*m_a x m_b’ x < 8*m_b x.

In the first three cases, the recursive function just returns the value that it received, together
with the proofs of the properties. To carry these agregates of values and proofs, we defined
a specific type to combine these values and proofs.

Inductive decision_data : Set :=

caseR : forall x:affine_data, positive_coefficients x ->

m_c’ x <= 2*m_c x -> decision_data

| caseL : forall x:affine_data, positive_coefficients x ->

2*(m_a x*m_b’ x*m_c’ x +

m_b x*m_a’ x*m_c’ x + m_a’ x*m_b’ x*m_c x)<=

m_a’ x*m_b’ x*m_c’ x -> decision_data

| caseC : forall x:affine_data, positive_coefficients x ->

4*(m_a x*m_b’ x*m_c’ x +

m_b x*m_a’ x*m_c’ x + m_a’ x*m_b’ x*m_c x)<=

3*m_a’ x*m_b’ x*m_c’ x -> m_c’ x <= 4*m_c x ->

decision_data.

The recursive function will thus have the type

forall x, positive_coefficient x -> decision_data.

11

The definition has the following form:

Definition axbyc_rec_aux (x:affine_data)

: (forall y, order y x ->

positive_coefficients y -> decision_data)->

positive_coefficients x -> decision_data :=

fun f Hp =>

match A.axbyc_test x Hp with

inleft (inleft (left H)) => caseR x Hp H

| inleft (inleft (right H)) => caseL x Hp H

| inleft (inright (conj H1 H2)) => caseC x Hp H1 H2

| inright H =>

f (axbyc_consume x)

(A.axbyc_consume_decrease x Hp H)

(A.axbyc_consume_pos x Hp)

end.

Definition axbyc_rec :=

well_founded_induction A.order_wf

(fun x => positive_coefficients x -> decision_data)

axbyc_rec_aux.

The definition of axbyc rec of course relies on proofs to ensure that axbyc consume preserves
the sign conditions and make the measure decrease, we do not include these proofs in these
notes.

The main co-recursive function relies on the auxiliary recursive function to perform all
the recursive calls that are not productive, the value returned by the auxiliary function is
suited to produce data and co-recursive calls are then allowed.

CoFixpoint axbyc (x:affine_data)

(h:positive_coefficients x):stream idigit :=

match axbyc_rec x h with

caseR y Hpos H => Cons R (axbyc (prod_R y) (A.prod_R_pos y Hpos H))

| caseL y Hpos H => Cons L (axbyc (prod_L y) (A.prod_L_pos y Hpos))

| caseC y Hpos H1 H2 =>

Cons C (axbyc (prod_C y) (A.prod_C_pos y Hpos H2))

end.

This function relies on auxiliary functions to perform the relevant updates of the various
coefficients. For instance, here is the function prod C:

Definition prod_C x :=

Build_affine_data (2*m_a x) (m_a’ x) (2*m_b x) (m_b’ x)

(4*m_c x-m_c’ x) (m_c’ x) (m_v1 x) (m_v2 x).

For each of these functions, it is also necessary to prove that they preserve the sign conditions,
these proofs are fairly trivial.

12

It requires more work to prove that the function is correct, in the sense that it does
produce the representation of the right real number, but this proof is too long to fit in these
short tutorial notes. More work is also required to make the function more efficient, for
instance by dividing a (resp. b, c) and a’ (resp. b’, c’) by they greatest common divisor
at each step.

The representation for real numbers proposed in [10] is very close to the representation
used in these notes, except that the initial interval is [-1,1], and the three digits are inter-
preted as the sub-intervals [-1,0], [0,-1], [-1/2,1/2]. The whole set of real numbers is then
encoded by multiplying a number in [-1,1] by an exponent of 2 (as in usual scientific, floating
point notation). The work presented in [17] shows that both the representation in these
notes and the representation in [10] are a particular case of a general framework based on
overlapping intervals and proposes a few other solutions. In these notes, we have decided to
restrict ourselves to affine binary operations, which makes it possible to obtain addition and
multiplication by a rational number, but the most general setting relies on homographic and
quadratic functions, which make it possible to obtain addition, multiplication, and division,
all in one shot.

The method of separating a recursive part from a co-recursive part in a function defini-
tion was already present in [3]. However, the example of [3] is more complex because the
functions are partial: there are streams for which eventual productivity is not ensured and
a stronger description technique is required. This stronger technique is described in [4] as
ad-hoc recursion. The papers [11, 12] propose an alternative foundation to functions that
mix recursive and co-recursive parts.

6 Exercises

increasing streams Define a co-inductive predicate that is satisfied by any stream such
that, if n and m are consecutive elements, then n ≤ m.

Fibonnacci streams Define a co-inductive predicate, called local fib, that is satisfied by
any stream such that, if n, m, p are consecutive elements, then p = n + m. Define a
co-recursive function that constructs a fibonacci stream whose first two elements are
1. Prove that the stream that is created satisfies the two predicates (increasing and
local fib).

13

7 Solutions

Require Export Omega.

CoInductive increasing : stream nat -> Prop :=

ci : forall a b tl, a <= b -> increasing (Cons b tl) ->

increasing (Cons a (Cons b tl)).

CoInductive local_fib : stream nat -> Prop :=

clf : forall a b tl, local_fib (Cons b (Cons (a+b) tl)) ->

local_fib (Cons a (Cons b (Cons (a+b) tl))).

CoFixpoint fibo_str (a b:nat) : stream nat := Cons a (fibo_str b (a + b)).

Definition str_decompose (A:Set)(s:stream A) : stream A :=

match s with Cons a tl => Cons a tl end.

Implicit Arguments str_decompose.

Theorem str_dec_thm : forall (A:Set)(s:stream A), str_decompose s = s.

Proof.

intros A [a tl];reflexivity.

Qed.

Implicit Arguments str_dec_thm.

Theorem increasing_fibo_str :

forall a b, a <= b -> increasing (fibo_str a b).

Proof.

Cofix.

intros a b Hle.

rewrite <- (str_dec_thm (fibo_str a b));simpl

assert (Heq:(fibo_str b (a+b))=(Cons b (fibo_str (a+b) (b+(a+b))))).

rewrite <- (str_dec_thm (fibo_str b (a+b)));simpl;auto.

rewrite Heq.

constructor.

assumption.

rewrite <- Heq.

apply increasing_fibo_str.

omega.

Qed.

Theorem increasing_fib : increasing (fibo_str 1 1).

Proof.

14

apply increasing_fibo_str;omega.

Qed.

Theorem local_fib_str :

forall a b, local_fib (fibo_str a b).

Proof.

cofix.

intros a b.

assert (Heq :

(fibo_str b (a+b)) =

(Cons b (Cons (a+b)(fibo_str (b+(a+b))((a+b)+(b+(a+b))))))).

rewrite <- (str_dec_thm (fibo_str b (a+b))); simpl.

rewrite <- (str_dec_thm (fibo_str (a+b) (b+(a+b)))); simpl;auto.

rewrite <- (str_dec_thm (fibo_str a b)); simpl.

rewrite Heq.

constructor.

rewrite <- Heq.

apply local_fib_str.

Qed.

Theorem local_fib_fib : local_fib (fibo_str 1 1).

Proof.

apply local_fib_str.

Qed.

References

[1] Peter Aczel. Non-Well-Founded Sets. CSLI Lecture Notes, volume 14, 1988.

[2] Yves Bertot. Algebras and Coalgebras. Algebraic and Coalgebraic Methods in the Math-
ematics of Program Construction, volume 2297 of Lecture Notes in Computer Science,
Springer-Verlag, 2002.

[3] Yves Bertot. Filters on CoInductive Streams, an Application to Eratosthenes’ Sieve.
Typed Lamdba-Calculi and Applications’05, volume 3461 of Lecture Notes in Computer
Science, Springer-Verlag, 2005.

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Develop-
ment, Coq’Art:the Calculus of Inductive Constructions. Springer-Verlag, 2004.

[5] Pierre Castéran and Davy Rouillard. Reasoning about parametrized automata. In
Proceedings, 8-th International Conference on Real-Time System, volume 8, pages 107–
119, 2000.

15

[6] Alberto Ciaffaglione and Pietro Di Gianantonio. A Co-Inductive Approach to Real
Numbers. Types for Proofs and Programs, volume 1956 of Lecture Notes in Computer
Science, Springer-Verlag, 2000.

[7] Thierry Coquand. Infinite objects in Type Theory. Types for Proofs and Programs,
volume 806 of Lecture Notes in Computer Science, Springer-Verlag, 1993.

[8] Solange Coupet-Grimal. An axiomatization of linear temporal logic in the calculus of
inductive constructions. Journal of Logic and Computation, 13(6):801–813, 2003.

[9] Solange Coupet-Grimal and Line Jakubiec. Hardware verification using co-induction
in coq. In TPHOLs’99, volume 1690 of Lecture Notes in Computer Science. Springer-
Verlag, 1999.

[10] Abbas Edalat and Reinhold Heckmann. Computing with Real Numbers. Applied se-
mantics, volume 2395 of Lecture Notes in Computer Science, Springer-Verlag, 2002.

[11] Pietro di Gianantonio and Marino Miculan. A unifying approach to recursive and co-
recursive definitions. In Herman Geuvers and Freek Wiedijk, editors, Types for Proofs
and Programs, volume 2646 of LNCS, pages 148–161. Springer Verlag, 2003.

[12] Pietro di Gianantonio and Marino Miculan. Unifying recursive and co-recursive defini-
tions in sheaf categories. In Igor Walukiewicz, editor, Foundations of Software Science
and Computation Structures (FOSSACS’04), volume 2987 of LNCS. Springer Verlag,
2004.

[13] Eduardo Giménez. Codifying guarded definitions with recursive schemes. Types for
Proofs and Programs, volume 996 of Lecture Notes in Computer Science, Springer-
Verlag, 1994.

[14] Eduardo Giménez. An Application of Co-Inductive Types in Coq: Verification of the
Alternating Bit Protocol. Types for Proofs and Programs, volume 1158 of Lecture Notes
in Computer Science, Springer-Verlag, 1995.

[15] Jesse Hughes and Milad Niqui. Admissible digit sets. To appear in Theoretical Computer
Science, special issue on real numbers and computers, 2005.

[16] François Leclerc and Christine Paulin-Mohring. Programming with streams in coq. A
case study: the sieve of Eratosthenes. Types for Proofs and Progams, volume 806 of
Lecture Notes in Computer Science, Springer-Verlag, 1993.

[17] Milad Niqui. Formalising Exact Arithmetic: Representations, Algorithms and Proofs.
Raadboud University, Nijmegen, 2004.

[18] Milad Niqui. Formalising Exact Arithmetic in Type Theory. First conference on com-
putability in Europe, CiE2005, volume 3526 of Lecture Notes in Computer Science,
Springer-Verlag, 2005.

16

[19] Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive definitions.
Conference on Automated Deduction, volume 814 of Lecture Notes in Artificial Intelli-
gence, Springer-Verlag 1994.

17

Jean-Christophe Filliatre:

WHY system and Proofs about
programs

TYPES summer school 2005

Program Verification using Coq

Introduction to the WHY tool

Jean-Christophe Filliâtre

CNRS – Université Paris Sud

Contents

Introduction 3

1 Verification of purely functional programs 4
1.1 Immediate method . 4

1.1.1 The case of partial functions . 7
1.1.2 Functions that are not structurally recursive 10

1.2 The use of dependent types . 13
1.2.1 The subtype type sig . 13
1.2.2 Variants of sig . 14
1.2.3 Specification of a boolean function: sumbool 14

1.3 Modules and functors . 17

2 Verification of imperative programs: the Why tool 19
2.1 Underlying theory . 19

2.1.1 Syntax . 20
2.1.2 Typing . 22
2.1.3 Semantics . 23
2.1.4 Weakest preconditions . 25
2.1.5 Interpretation in Type Theory . 27

2.2 The WHY tool in practice . 28
2.2.1 A trivial example . 28
2.2.2 A less trivial example: Dijkstra’s Dutch flag 29
2.2.3 Application to the verification of C and Java programs 33

2

Introduction

These lecture notes present some techniques to verify programs correctness using the Coq
proof assistant.

In Chapter 1, we show how to use Coq directly to verify purely functional programs,
using the Coq extraction mechanism which produces correct ML programs out of con-
structive proofs. This chapter describes techniques to define and prove correct functions
in Coq, focusing on issues such as partial functions, non-structurally recursive functions,
or the use of dependent types to specify functions. The interested reader will find much
more material related to this subject in Y. Bertot and P. Castéran’s book dedicated to
Coq [3].

In Chapter 2, we introduce the Why tool for the verification of imperative programs.
The Why tool is actually not specifically related to Coq, since it offers a wide range of
other back-end provers (PVS, Isabelle/HOL, Simplify, etc.). But Coq plays a particu-
lar role since Why can interpret imperative programs as purely functional programs in
Coq, providing increased trust in the verification process and making a clear connection
between the two chapters of these notes. The interested reader will find more material
related to Why on its web site http://why.lri.fr/, including a reference manual, many
examples and links to related tools for the verification of C and Java programs.

3

Chapter 1

Verification of purely functional
programs

In this chapter, we focus on the specification and verification of purely functional pro-
grams. We show how the Coq proof assistant can be used to produce correct ML code.
This chapter is illustrated using the case study of balanced binary search trees, which
constitutes an example of purely functional program simultaneously useful and complex.

In the following, we call informative what lies in the sort Set and logic what lies in
the sort Prop. This sort distinction is exploited by the Coq extraction mechanism [19,
20, 17, 18]. This tool extracts the informative contents of a Coq term as an ML program.
The logical parts disappear (or subsist as a degenerated value with no associated compu-
tation). The theoretical foundations of program extraction can be found in the references
above.

1.1 Immediate method

The most immediate way to verify a purely functional program consists in defining it as
a Coq function and then to prove some properties of this function. Indeed, most (purely
functional) ML programs can be written in the Calculus of Inductive Constructions.

Generally speaking, we first define in Coq a “pure” function, that is with a purely
informative type a la ML (a type from system F). Let us assume here a function we only
one argument:

f : τ1 → τ2

We show that this function realizes a given specification S : τ1 → τ2 → Prop with a
theorem of the shape

∀x. (S x (f x))

The proof is conducted following the definition of f .

Example. We use a finite sets library based on balanced binary trees as a running
example. We first introduce a datatype of binary trees containing integers

Inductive tree : Set :=

| Empty

| Node : tree -> Z -> tree -> tree.

4

and a membership relation In stating that an element occurs in a tree (independently of
any insertion choice):

Inductive In (x:Z) : tree -> Prop :=

| In_left : forall l r y, (In x l) -> (In x (Node l y r))

| In_right : forall l r y, (In x r) -> (In x (Node l y r))

| Is_root : forall l r, (In x (Node l x r)).

A function testing for the empty set can be defined as

Definition is_empty (s:tree) : bool := match s with

| Empty => true

| _ => false end.

and its correctness proof is stated as

Theorem is_empty_correct :

forall s, (is_empty s)=true <-> (forall x, ~(In x s)).

The proof follows the definition of is empty and is only three lines long:

Proof.

destruct s; simpl; intuition.

inversion_clear H0.

elim H with z; auto.

Qed.

Let us consider now the membership test within a binary search tree. We first assume
an ordering relation over integers:

Inductive order : Set := Lt | Eq | Gt.

Hypothesis compare : Z -> Z -> order.

Then we define a function mem looking for an element in a tree which is assumed to be a
binary search tree:

Fixpoint mem (x:Z) (s:tree) {struct s} : bool := match s with

| Empty =>

false

| Node l y r => match compare x y with

| Lt => mem x l

| Eq => true

| Gt => mem x r

end

end.

The correctness proof of this function requires the definition of a binary search tree, as
the following bst predicate:

5

Inductive bst : tree -> Prop :=

| bst_empty :

(bst Empty)

| bst_node :

forall x (l r : tree),

bst l -> bst r ->

(forall y, In y l -> y < x) ->

(forall y, In y r -> x < y) -> bst (Node l x r).

Now the correctness of the mem function can be stated:

Theorem mem_correct :

forall x s, (bst s) -> (mem x s=true <-> In x s).

We see on this example that the specification S has the particular shape P x→ Q x (f x).
P is called a precondition and Q a postcondition.

Modularity. When trying to prove mem correct we start with induction s; simpl

to follow mem’s definition. The first case (Empty) is trivial. On the second one (Node s1

z s2) we bump into the term match compare x z with ... and it is not possible to
go further. Indeed, we know nothing about the compare function used in mem. We have
to specify it first, using for instance the axiom

Hypothesis compare_spec :

forall x y, match compare x y with

| Lt => x<y

| Eq => x=y

| Gt => x>y

end.

Then we can use this specification in the following way:

generalize (compare_spec x z); destruct (compare x z).

The proof is completed without difficulty.

Note. For purely informative functions such as is empty or mem, the extracted program
is identical to the Coq term. As an example, the command Extraction mem gives the
following ocaml code:

let rec mem x = function

| Empty -> false

| Node (l, y, r) ->

(match compare x y with

| Lt -> mem x l

| Eq -> true

| Gt -> mem x r)

6

1.1.1 The case of partial functions

A first difficulty occurs when the function is partial, i.e. has a Coq type of the shape

f : ∀x : τ1. (P x)→ τ2

The typical case is a division function expecting a non-zero divisor.
In our running example, we may want to define a function min elt returning the

smallest element of a set which is assumed to be non-empty (that is the leftmost element
in the binary search tree). We can give this function the following type:

min elt : ∀s : tree. ¬s = Empty→ Z (1.1)

where the precondition is ¬s = Empty. The specification of min elt can be stated as

∀s. ∀h : ¬s = Empty. bst s→ In (min elt s h) s ∧ ∀x. In x s→ min elt s h ≤ x

with the same precondition as the function itself (hypothesis h) together with the other
precondition bst s. The hypothesis h is mandatory to be able to apply min elt. We see
that using a partial function in Coq is not easy: one has to pass proofs as arguments, and
proof terms may be difficult to build.

Even the definition of a partial function may be difficult. Let us write a function
min elt with type (1.1). The ML code we have in mind is:

let rec min_elt = function

| Empty -> assert false

| Node (Empty, x, _) -> x

| Node (l, _, _) -> min_elt l

Unfortunately, the Coq definition is more difficult. First, the assert false in the first
case of the pattern matching corresponds to an absurd case (we assumed a non-empty
tree). The Coq definition expresses this absurdity using the False rec elimination applied
to a proof of False. So one has to build such a proof from the precondition. Similarly,
the third case of the pattern matching makes a recursive call to min elt and thus we have
to build a proof that l is non-empty. Here it is a consequence of the pattern matching
which has already eliminated the case where l is Empty. In both cases, the necessity to
build these proof terms complicates the pattern matching, which must be dependent. We
get the following definition:

Fixpoint min_elt (s:tree) (h:~s=Empty) { struct s } : Z :=

match s return ~s=Empty -> Z with

| Empty =>

(fun h => False_rec _ (h (refl_equal Empty)))

| Node l x _ =>

(fun h => match l as a return a=l -> Z with

| Empty => (fun _ => x)

| _ => (fun h => min_elt l

(Node_not_empty _ _ _ _ h))

end (refl_equal l))

end h.

7

The first proof (argument of False rec) is built directly. The second one uses the
following lemma:

Lemma Node_not_empty : forall l x r s, Node l x r=s -> ~s=Empty.

We can now prove the correctness of min elt:

Theorem min_elt_correct :

forall s (h:~s=Empty), bst s ->

In (min_elt s h) s /\

forall x, In x s -> min_elt s h <= x.

Once again, the proof is conducted following the definition of the function and does not
contain any difficulty.

One can check that the extracted code is indeed the one we had in mind. Extraction
min elt outputs:

let rec min_elt = function

| Empty -> assert false (* absurd case *)

| Node (l, x, t) ->

(match l with

| Empty -> x

| Node (t0, z0, t1) -> min_elt l)

There are several points of interest here. First, the use of False rec is extracted to
assert false, which is precisely the expected behavior (we proved that this program
point was not reachable, so it is legitimate to say that reaching it is absurd i.e. a “proof”
of false). Second, we see that the logical arguments that were complicating the definition
have disappeared in the extracted code (since they were in sort Prop).

Another solution is to define the min elt function using a proof rather than a defini-
tion. It is then easier to build the proof terms (using the interactive proof editor). Here
the definition-proof is rather simple:

Definition min_elt : forall s, ~s=Empty -> Z.

Proof.

induction s; intro h.

elim h; auto.

destruct s1.

exact z.

apply IHs1; discriminate.

Defined.

But it is more difficult to be convinced that we are building the right function (as long
as we haven’t proved its correctness). In particular, one has to use the automatic tactics
such as auto with great care, since it could build a function different from the one we
have in mind. One the example above, auto is only used on a logical goal (Empty=Empty).

One way to get convinced that the underlying code is the right one is to have a look
at the extracted code. Here we get exactly the same as before.

8

The refine tactic helps in defining partial functions (but not only). It allows the
user to give an incomplete proof term, some parts being omitted (when denoted by)
and turned into subgoals. We can redefine the min elt function using the refine tactic
as follows:

Definition min_elt : forall s, ~s=Empty -> Z.

refine

(fix min (s:tree) (h:~s=Empty) { struct s } : Z :=

match s return ~s=Empty -> Z with

| Empty =>

(fun h => _)

| Node l x _ =>

(fun h => match l as a return a=l -> Z with

| Empty => (fun _ => x)

| _ => (fun h => min_elt l _)

end _)

end h).

We get two subgoals that are easy to discharge. However, we notice that a dependent
matching is still required.

A last solution consists in making the function total, by completing it in an arbitrary
way out of its definition domain. Here we may choose to return the value 0 when the
set is empty. This way we avoid the logical argument ¬s = Empty and all its nasty
consequences. The type of min elt is back to tree→ Z and its definition quite simple:

Fixpoint min_elt (s:tree) : Z := match s with

| Empty => 0

| Node Empty z _ => z

| Node l _ _ => min_elt l

end.

The correctness theorem is still the same, however:

Theorem min_elt_correct :

forall s, ~s=Empty -> bst s ->

In (min_elt s) s /\

forall x, In x s -> min_elt s <= x.

The correctness statement still has the precondition ¬s = Empty, otherwise it would not
be possible to ensure In (min elt s) s.

Note. The division function Zdiv over integers is defined this way as a total function
but its properties are only provided under the assumption that the divisor is non-zero.

Note. Another way to make the function min elt total would be to make it return
a value of type option Z, that is None when the set is empty and Some m when a
smallest element m exists. But then the underlying code is slightly different (and so is
the correctness statement).

9

1.1.2 Functions that are not structurally recursive

Issues related to the definition and the use of a partial function are similar to the ones en-
countered when defining and proving correct a recursive function which is not structurally
recursive.

Indeed, one way to define such a function is to use a principle of well-founded induc-
tion, such as

well_founded_induction

: forall (A : Set) (R : A -> A -> Prop),

well_founded R ->

forall P : A -> Set,

(forall x : A, (forall y : A, R y x -> P y) -> P x) ->

forall a : A, P a

But then the definition requires to build proofs of R y x for each recursive call on y; we
are faced to the same problems, but also to the same solutions, mentioned in the section
above.

Let us assume we want to define a function subset checking for set inclusion on our
binary search trees. A possible ML code is the following:

let rec subset s1 s2 = match (s1, s2) with

| Empty, _ ->

true

| _, Empty ->

false

| Node (l1, v1, r1), (Node (l2, v2, r2) as t2) ->

let c = compare v1 v2 in

if c = 0 then

subset l1 l2 && subset r1 r2

else if c < 0 then

subset (Node (l1, v1, Empty)) l2 && subset r1 t2

else

subset (Node (Empty, v1, r1)) r2 && subset l1 t2

We see that recursive calls are performed on trees that are not always strict sub-terms of
the initial arguments (not mentioning the additional difficulty of a simultaneous recursion
on two arguments). Though there exists a simple termination criterion, that is the total
number of elements in the two trees.

Thus we first establish a well-founded induction principle over two trees based on the
sum of their cardinalities:

Fixpoint cardinal_tree (s:tree) : nat := match s with

| Empty => O

| Node l _ r => (S (plus (cardinal_tree l) (cardinal_tree r)))

end.

Lemma cardinal_rec2 :

10

forall (P:tree->tree->Set),

(forall (x x’:tree),

(forall (y y’:tree),

(lt (plus (cardinal_tree y) (cardinal_tree y’))

(plus (cardinal_tree x) (cardinal_tree x’))) -> (P y y’))

-> (P x x’)) ->

forall (x x’:tree), (P x x’).

The proof is simple: we first manage to reuse a well-founded induction principle over type
nat provided in the Coq library, namely well founded induction type 2, and then we
prove that the relation is well-founded since it is of the shape lt (f y y′) (f x x′) and
because lt itself is a well-founded relation over nat (another result from the Coq library):

Proof.

intros P H x x’.

apply well_founded_induction_type_2 with

(R:=fun (yy’ xx’:tree*tree) =>

(lt (plus (cardinal_tree (fst yy’)) (cardinal_tree (snd yy’)))

(plus (cardinal_tree (fst xx’)) (cardinal_tree (snd xx’)))));

auto.

apply (Wf_nat.well_founded_ltof _

(fun (xx’:tree*tree) =>

(plus (cardinal_tree (fst xx’)) (cardinal_tree (snd xx’))))).

Save.

We are now in position to define the subset function with a definition-proof using the
refine tactic:

Definition subset : tree -> tree -> bool.

Proof.

First we apply the induction principle cardinal rec2:

intros s1 s2; pattern s1, s2; apply cardinal_rec2.

Then we match on x and x’, both Empty cases being trivial:

destruct x.

(* x=Empty *)

intros; exact true.

(* x = Node x1 z x2 *)

destruct x’.

(* x’=Empty *)

intros; exact false.

Next we proceed by case on the result of compare z z0:

(* x’ = Node x’1 z0 x’2 *)

intros; case (compare z z0).

11

In each of the three cases, the recursive calls (hypothesis H) are handled using the refine
tactic. We get a proof obligation expressing the decreasing of the total number of ele-
ments, which is automatically discharged by simpl; omega (simpl is required to unfold
the definition of cardinal tree):

(* z < z0 *)

refine (andb (H (Node x1 z Empty) x’2 _)

(H x2 (Node x’1 z0 x’2) _)); simpl; omega.

(* z = z0 *)

refine (andb (H x1 x’1 _) (H x2 x’2 _)); simpl ; omega.

(* z > z0 *)

refine (andb (H (Node Empty z x2) x’2 _)

(H x1 (Node x’1 z0 x’2) _)); simpl ; omega.

Defined.

Note. We could have used a single refine for the whole definition.

Note. It is interesting to have a look at the extracted code for a function defined using
a principle such as well founded induction. We can first have a look at the extracted
code for well founded induction and we recognize a fixed point operator:

let rec well_founded_induction x a =

x a (fun y _ -> well_founded_induction x y)

When unfolding this operator and two other constants

Extraction NoInline andb.

Extraction Inline cardinal_rec2 Acc_iter_2 well_founded_induction_type_2.

Extraction subset.

we get exactly the expected ML code:

let rec subset x x’ =

match x with

| Empty -> True

| Node (x1, z0, x2) ->

(match x’ with

| Empty -> False

| Node (x’1, z1, x’2) ->

(match compare z0 z1 with

| Lt ->

andb (subset (Node (x1, z0, Empty)) x’2)

(subset x2 (Node (x’1, z1, x’2)))

| Eq -> andb (subset x1 x’1) (subset x2 x’2)

| Gt ->

andb (subset (Node (Empty, z0, x2)) x’2)

(subset x1 (Node (x’1, z1, x’2)))))

Many other techniques to define functions that are not structurally recursive are
described in the chapter 15 of Interactive Theorem Proving and Program Development [3].

12

1.2 The use of dependent types

Another approach to program verification in Coq consists in using the richness of the
type system to express the specification of the function within its type. Actually, a type
is a specification. In the case of ML, it is only a very poor specification (e.g. a function
expects an integer and returns an integer) but in Coq one can express that a function is
expecting a non-negative integer and returning a prime integer:

f : {n : Z | n ≥ 0} → {p : Z | prime p}

We are going to show how to do this in this section.

1.2.1 The subtype type sig

The Coq notation {x : A | P} denotes the “subtype of A of values satisfying the property
P” or, in a set-theoretical setting, the “subset of A of elements satisfying P”. The
notation {x : A | P} actually stands for the application sig A (fun x ⇒ P) where sig

is the following inductive type:

Inductive sig (A : Set) (P : A -> Prop) : Set :=

exist : forall x:A, P x -> sig P

This inductive type is similar to the existential ex, apart from its sort which is Set

instead of Prop (we aim at defining a function and thus its arguments and result must
be informative).

In practice, we need to relate the argument and the result within a postcondition Q
and thus we prefer the more general specification:

f : ∀ (x : τ1), P x→ {y : τ2 | Q x y}

If we come back to the min elt function, its specification can be the following:

Definition min_elt :

forall s, ~s=Empty -> bst s ->

{ m:Z | In m s /\ forall x, In x s -> m <= x }.

We still have the definition issues mentioned in the previous section and thus we usually
adopt a definition by proof (still with the same caution w.r.t. automatic tactics).

Note. The move of the property bst s from the postcondition to the precondition is
not mandatory; it is only more natural.

Note. The extraction of sig A Q forgets the logical annotation Q and thus reduces to
the extraction of type A. Said otherwise, the sig type can disappear at extraction time.
And indeed we have

Coq < Extraction sig.

type ’a sig = ’a

(* singleton inductive, whose constructor was exist *)

13

1.2.2 Variants of sig

We can introduce other types similar to sig. For instance, if we want to define a function
returning two integers, such as an Euclidean division function, it seems natural to combine
two instances of sig as we would do with two existentials ex:

div : ∀a b, b > 0→ {q | {r | a = bq + r ∧ 0 ≤ r < b}}

But the second instance of sig has sort Set and not Prop, which makes this statement
ill-typed. Coq introduces for this purpose a variant of sig, sigS :

Inductive sigS (A : Set) (P : A -> Set) : Set :=

existS : forall x:A, P x -> sig P

where the sole difference is the sort of P (Set instead of Prop). sigS A (fun x ⇒ P) is
written {x : A & P}, which allows to write

div : ∀a b, b > 0→ {q & {r | a = bq + r ∧ 0 ≤ r < b}}

The extraction of sigS is naturally a pair:

Coq < Extraction sigS.

type (’a, ’p) sigS =

| ExistS of ’a * ’p

Similarly, if we want a specification looking like

{x : A | P x ∧Q x}

there exists and inductive “made on purpose”, sig2, defined as

Inductive sig2 (A : Set) (P : A -> Prop) (Q : A -> Prop) : Set :=

exist2 : forall x : A, P x -> Q x -> sig2 P Q

Its extraction is identical to the one of sig.

1.2.3 Specification of a boolean function: sumbool

A very common kind of specification is the one of a boolean function. In this case, we want
to specify what are the two properties holding when the function is returning false and
true respectively. Coq introduces an inductive type for this purpose, sumbool, defined
as

Inductive sumbool (A : Prop) (B : Prop) : Set :=

| left : A -> sumbool A B

| right : B -> sumbool A B

14

It is a type similar to bool but each constructor contains a proof, of A and B respectively.
sumbool A B is written {A}+{B}. A function checking for the empty set can be specified
as follows:

is empty : ∀s, {s = Empty}+ {¬s = Empty}

A more general case, very common in practice, is the one of a decidable equality. Indeed,
if a type A is equipped with an equality eq : A → A → Prop, we can specify a function
deciding this equality as

A eq dec : ∀x y, {eq x y}+ {¬(eq x y)}

It is exactly as stating
∀x y, (eq x y) ∨ ¬(eq x y)

apart from the sort which is different. In the latter case, we have a disjunction in sort
Prop (an excluded-middle instance for the predicate eq) whereas in the former case we
have a “disjunction” in sort Set, that is a program deciding the equality.

The extraction of sumbool is a type isomorphic to bool:

Coq < Extraction sumbool.

type sumbool =

| Left

| Right

In practice, one can tell the Coq extraction to use ML booleans directly instead of Left
and Right (which allows the ML if-then-else to be used in the extracted code).

Variant sumor

There exists a variant of sumbool where the sorts are not the same on both sides:

Inductive sumor (A : Set) (B : Prop) : Set :=

| inleft : A -> A + {B}

| inright : B -> A + {B}

This inductive type can be used to specify an ML function returning a value of type
α option: the constructor inright stands for the case None and adds a proof of property
B, and the constructor inleft stands for the case Some and adds a proof of property A.
The extraction of type sumor is isomorphic to the ML type option:

Coq < Extraction sumor.

type ’a sumor =

| Inleft of ’a

| Inright

We can combine sumor and sig to specify the min elt in the following way:

Definition min_elt :

forall s, bst s ->

{ m:Z | In m s /\ forall x, In x s -> m <= x } + { s=Empty }.

15

It corresponds to the ML function turned total using an option type.
We can even combine sumor and sumbool to specify our ternary compare function:

Hypothesis compare : forall x y, {x<y} + {x=y} + {x>y}.

Note that now this single hypothesis replaces the inductive order and the two hypotheses
compare and compare spec.

Let us go back to the membership function on binary search trees, mem. We can now
specify it using a dependent type:

Definition mem :

forall x s, bst s -> { In x s }+{ ~(In x s) }.

The definition-proof starts with an induction over s.

Proof.

induction s; intros.

(* s = Empty *)

right; intro h; inversion_clear h.

The case s=Empty is trivial. In the case s=Node s1 z s2, we need to proceed by case on
the result of compare x z. It is now simpler than with the previous method: no more
need to call for the compare spec lemma, since compare x z contains its specification in
its type.

(* s = Node s1 z s2 *)

case (compare x z); intro.

Similarly, each induction hypothesis (over s1 and s2) is a function containing its specifi-
cation in its type. We use it, when needed, by applying the case tactic. The remaining
of the proof is easy.

Note. It is still possible to obtain the pure function as a projection of the function
specified using a dependent type:

Definition mem_bool x s (h:bst s) := match mem x s h with

| left _ => true

| right _ => false

end.

Then it is easy to show the correctness of this pure function (since the proof is “contained”
in the type of the initial function):

Theorem mem_bool_correct :

forall x s, forall (h:bst s),

(mem_bool x s h)=true <-> In x s.

Proof.

intros.

unfold mem_bool; simpl; case (mem x s h); intuition.

discriminate H.

Qed.

But this projection has few interests in practice.

16

Note. It is important to notice that each function is now given its specification when
it is defined: it is no more possible to establish several properties of a same function as
it was with a pure function.

1.3 Modules and functors

The adequacy of Coq as formalism to specify and prove correct purely functional ML
programs extends to the module system. Indeed, Coq is equipped with a module system
inspired by the module system of Objective Caml [16, 6, 7] since version 8. As Coq function
types can enrich ML types with logical annotations, Coq modules can enrich ML ones.

For instance, if we want to write our finite sets library as a functor taking an arbitrary
type as argument (and no more Z only as it was the case up to now) equipped with a
total order, we start by defining a signature for this functor argument. It packs together
a type t, an equality eq and an order relation lt over this type:

Module Type OrderedType.

Parameter t : Set.

Parameter eq : t -> t -> Prop.

Parameter lt : t -> t -> Prop.

together as a decidability result for lt and eq:

Parameter compare : forall x y, {lt x y}+{eq x y}+{lt y x}.

We also have to include some properties of eq (equivalence relation) and lt (order relation
not compatible with eq) without which the functions over binary search trees would not
be correct:

Axiom eq_refl : forall x, (eq x x).

Axiom eq_sym : forall x y, (eq x y) -> (eq y x).

Axiom eq_trans : forall x y z, (eq x y) -> (eq y z) -> (eq x z).

Axiom lt_trans : forall x y z, (lt x y) -> (lt y z) -> (lt x z).

Axiom lt_not_eq : forall x y, (lt x y) -> ~(eq x y).

Last, we can add some Hint commands for the auto tactic to this signature, so that they
will be automatically available within the functor body:

Hint Immediate eq_sym.

Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.

End OrderedType.

Then we can write our finite sets library as a functor taking an argument X of type
OrderedType as argument:

Module ABR (X: OrderedType).

Inductive tree : Set :=

| Empty

17

| Node : tree -> X.t -> tree -> tree.

Fixpoint mem (x:X.t) (s:tree) {struct s} : bool := ...

Inductive In (x:X.t) : tree -> Prop := ...

Hint Constructors In.

Inductive bst : tree -> Prop :=

| bst_empty : (bst Empty)

| bst_node :

forall x (l r : tree),

bst l -> bst r ->

(forall y, In y l -> X.lt y x) ->

(forall y, In y r -> X.lt x y) -> bst (Node l x r).

(* etc. *)

Note. The Objective Caml language provides a finite sets library based on balanced
binary search trees (AVLs [2]), as a functor taking an ordered type as argument. This
library implements all usual operations over sets (union, intersection, difference, cardinal,
smallest element, etc.), iterators (map, fold, iter) and even a total order over sets
allowing the construction of sets of sets by a second application of the same functor (and
so on). This library has been verified using Coq by Pierre Letouzey and Jean-Christophe
Filliâtre [11]. This proof exhibited a balancing bug in some functions; the code was fixed
in ocaml 3.07 (and the fix verified with Coq).

18

Chapter 2

Verification of imperative programs:
the Why tool

This chapter is an introduction to the Why tool. This tool implements a programming
language designed for the verification of sequential programs. This is an intermediate
language to which existing programming languages can be compiled and from which
verification conditions can be computed.

Section 2.1 introduces the theory behind the Why tool (syntax, typing, semantics and
weakest preconditions for its language). Then Section 2.2 illustrates the practical use of
the tool on several examples and quickly describes the application of the Why tool to the
verification of C and Java programs.

2.1 Underlying theory

Implementing a verification condition generator (VCG) for a realistic programming lan-
guage such as C is a lot of work. Each construct requires a specific treatment and there
are many of them. Though, almost all rules will end up to be instances of the five his-
torical Hoare Logic rules [12]. Reducing the VCG to a core language thus seems a good
approach. Similarly, if one has written a VCG for C and has to write another one for
Java, there are clearly enough similarities to hope for this core language to be reused.
Last, if one has to experiment with several logics, models and/or proof tools, this core
language should ideally remain the same.

The Why tool implements such an intermediate language for VCGs, that we call HL in
the following (for Hoare Language). Syntax, typing, semantics and weakest preconditions
calculus are given below, but we first start with a tour of HL features.

Genericity. HL annotations are written in a first-order predicate syntax but are not
interpreted at all. This means that HL is independent of the underlying logic in
which the annotations are interpreted. The WP calculus only requires the logic to
be minimal i.e. to include universal quantification, conjunction and implication.

ML syntax. HL has an ML-like syntax where there is no distinction between expressions
and statements. This greatly simplifies the language—not only the syntax but also
the typing and semantics. However HL has few in common with the ML family

19

languages (functions are not first-class values, there is no polymorphism, no type
inference, etc.)

Aliases. HL is an alias-free language. This is ensured by the type checking rules. Being
alias free is crucial for reasoning about programs, since the rule for assignment

{P [x← E]}x := E {P}

implicitly assumes that any variable other than x is left unmodified. Note however
that the absence of alias in HL does not prevent the interpretation of programs with
possible aliases: such programs can be interpreted using a more or less complex
memory model made of several unaliased variables (see Section 2.2.3).

Exceptions. Beside conditional and loop, HL only has a third kind of control statement,
namely exceptions. Exceptions can be thrown from any program point and caught
anywhere upper in the control-flow. Arbitrary many exceptions can be declared and
they may carry values. Exceptions can be used to model exceptions from the source
language (e.g. Java’s exceptions) but also to model all kinds of abrupt statements
(e.g. C and Java’s return, break or continue).

Typing with effects. HL has a typing with effects: each expression is given a type
together with the sets of possibly accessed and possibly modified variables and the
set of possibly raised exceptions. Beside its use for the alias check, this is the key
to modularity: one can declare and use a function without implementing it, since
its type mentions its side-effects. In particular, the WP rule for function call is
absolutely trivial.

Auxiliary variables. The usual way to relate the values of variables at several pro-
gram points is to used the so-called auxiliary variables. These are variables only
appearing in annotations and implicitly universally quantified over the whole Hoare
triple. Though auxiliary variables can be given a formal meaning [21] their use is
cumbersome in practice: they pollute the annotations and introduce unnecessary
equality reasoning on the prover side. Instead we propose the use of program la-
bels—similar to those used for gotos—to refer to the values of variables at specific
program points. This appears to be a great improvement over auxiliary variables,
without loss of expressivity.

2.1.1 Syntax

Types and specifications

Program annotations are written using the following minimal first-order logic:

t ::= c | x | !x | φ(t, . . . , t) | old(t) | at(t, L)
p ::= P (t, . . . , t) | ∀x : β.p | p⇒ p | p ∧ p | . . .

A term t can be a constant c, a variable x, the contents of a reference x (written !x) or the
application of a function symbol φ. It is important to notice that φ is a function symbol
belonging to the logic: it is not defined in the program. The construct old(t) denotes

20

the value of term t in the precondition state (only meaningful within the corresponding
postcondition) and the construct at(t, L) denotes the value of the term t at the program
point L (only meaningful within the scope of a label L).

We assume the existence of a set of pure types (β) in the logical world, containing at
least a type unit with a single value void and a type bool for booleans with two values
true and false.

Predicates necessarily include conjunction, implication and universal quantification
as they are involved in the weakest precondition calculus. In practice, one is likely to
add at least disjunction, existential quantification, negation and true and false predicates.
An atomic predicate is the application of a predicate symbol P and is not interpreted.
For the forthcoming WP calculus, it is also convenient to introduce an if-then-else

predicate:
if t then p1 else p2 ≡

(t = true⇒ p1) ∧ (t = false⇒ p2)

Program types and specifications are classified as follows:

τ ::= β | β ref | (x : τ)→ κ
κ ::= {p} τ ε {q}
q ::= p; E ⇒ p; . . . ; E ⇒ p
ε ::= reads x, . . . , x writes x, . . . , x raises E, . . . , E

A value of type τ is either an immutable variable of a pure type (β), a reference containing
a value of a pure type (β ref) or a function of type (x : τ) → {p} β ε {q} mapping the
formal parameter x to the specification of its body, that is a precondition p, the type τ
for the returned value, an effect ε and a postcondition q. An effect is made of tree lists
of variables: the references possibly accessed (reads), the references possibly modified
(writes) and the exceptions possibly raised (raises). A postcondition q is made of
several parts: one for the normal termination and one for each possibly raised exception
(E stands for an exception name).

When a function specification {p} β ε {q} has no precondition and no postcondition
(both being true) and no effect (ε is made of three empty lists) it can be shortened to
τ . In particular, (x1 : τ1) → · · · → (xn : τn) → κ denotes the type of a function with n
arguments that has no effect as long as it not applied to n arguments. Note that functions
can be partially applied.

Expressions

The syntax for program expressions is given in Figure 2.1. In particular, programs contain
pure terms (t) made of constants, variables, dereferences (written !x) and application of
function symbols from the logic to pure terms. The syntax mostly follows ML’s one.
ref e introduces a new reference initialized with e. loop e {invariant p variant t} is
an infinite loop of body e, invariant p and which termination is ensured by the variant
t. The raise construct is annotated with a type τ since there is no polymorphism in
HL. There are two ways to insert proof obligations in programs: assert {p}; e places an
assertion p to be checked right before e and e {q} places a postcondition q to be checked
right after e.

21

t ::= c | x | !x | φ(t, . . . , t)
e ::= t

| x := e
| let x = e in e
| let x = ref e in e
| if e then e else e
| loop e {invariant p variant t}
| L:e
| raise (E e) : τ
| try e with E x→ e end

| assert {p}; e
| e {q}
| fun (x : τ)→ {p} e
| rec x (x : τ) . . . (x : τ) : β {variant t} = {p} e
| e e

Figure 2.1: Syntax

The traditional sequence construct is only syntactic sugar for a let-in binder where
the variable does not occur in e2:

e1; e2 ≡ let = e1 in e2

We also simplify the raise construct whenever both the exception contents and the whole
raise expression have type unit:

raise E ≡ raise (E void) : unit

The traditional while loop is also syntactic sugar for a combination of an infinite loop
and the use of an exception Exit to exit the loop:

while e1 do e2 {invariant p variant t} ≡
try

loop if e1 then e2 else raise Exit
{invariant p variant t}

with Exit -> void end

Functions and programs

A program (p) is a list of declarations. A declaration (d) is either a definition introduced
with let or a declaration introduced with val, or an exception declaration.

2.1.2 Typing

This section introduces typing and semantics for HL.

22

p ::= ∅ | d p
d ::= let x = e

| val x : τ
| exception E of β

Typing environments contain bindings from variables to types of values, exceptions
declarations and labels:

Γ ::= ∅ | x : τ, Γ | exception E of β, Γ | label L, Γ

The type of a constant or a function symbol is given by the operator Typeof . A type τ
is said to be pure, and we write τ pure, if it is not a reference type. We write x ∈ τ
whenever the reference x appears in type τ i.e. in any annotation or effect within τ .

An effect is composed of three sets of identifiers. When there is no ambiguity we
write (r, w, e) for the effect reads r writes w raises e. Effects compose a natural
semi-lattice of bottom element ⊥ = (∅, ∅, ∅) and supremum (r1, w1, e1) t (r2, w2, e2) =
(r1∪r2, w1∪w2, e1∪e2). We also define the erasing of the identifier x in effect ε = (r, w, e)
as ε\x = (r\{x}, w\{x}, e\{x}).

We introduce the typing judgment Γ ` e : (τ, ε) with the following meaning: in envi-
ronment Γ the expression e has type τ and effect ε. Typing rules are given in Figure 2.2.
They assume the definitions of the following extra judgments:

• Γ ` κ wf : the specification κ is well formed in environment Γ,

• Γ ` p wf : the precondition p is well formed in environment Γ,

• Γ ` q wf : the postcondition q is well formed in environment Γ,

• Γ ` t : β : the logical term t has type β in environment Γ.

The purpose of this typing with effects is two-fold. First, it rejects aliases: it is
not possible to bind one reference variable to another reference, neither using a let in

construct, nor a function application. Second, it will be used when interpreting programs
in Type Theory (in Section 2.1.5 below).

2.1.3 Semantics

We give a big-step operational semantics to HL. The notions of values and states are the
following:

v ::= c | E c | rec f x = e
s ::= {(x, c), . . . , (x, c)}

A value v is either a constant value (integer, boolean, etc.), an exception E carrying a
value c or a closure rec f x = e representing a possibly recursive function f binding x
to e. For the purpose of the semantic rules, it is convenient to add the notion of closure
to the set of expressions:

e ::= . . . | rec f x = e

23

Typeof (c) = β

Γ ` c : (β,⊥)

x : τ ∈ Γ τ pure

Γ ` x : (τ,⊥)

x : β ref ∈ Γ

Γ ` !x : (β, reads x)

Γ ` ti : (βi, εi) Typeof (φ) = β1, . . . , βn → β

Γ ` φ(t1, . . . , tn) : (β,
⊔
i

εi)

x : β ref ∈ Γ Γ ` e : (β, ε)

Γ ` x := e : (unit, (writes x) t ε)

Γ ` e1 : (τ1, ε1) τ1 pure Γ, x : τ1 ` e2 : (τ2, ε2)

Γ ` let x = e1 in e2 : (τ2, ε1 t ε2)

Γ ` e1 : (β1, ε1) Γ, x : β1 ref ` e2 : (τ2, ε2) x 6∈ τ2

Γ ` let x = ref e1 in e2 : (τ2, ε1 t ε2\x)

Γ ` e1 : (bool, ε1) Γ ` e2 : (τ, ε2) Γ ` e3 : (τ, ε3)

Γ ` if e1 then e2 else e3 : (τ, ε1 t ε2 t ε3)

Γ ` e : (unit, ε) Γ ` p wf Γ ` t : int

Γ ` loop e {invariant p variant t} : (unit, ε)

Γ, label L ` e : (τ, ε)

Γ ` L:e : (τ, ε)

exception E of β ∈ Γ Γ ` e : (β, ε)

Γ ` raise (E e) : τ : (τ, (raises E) t ε))

exception E of β ∈ Γ Γ ` e1 : (τ, ε1) Γ, x : β ` e2 : (τ, ε2)

Γ ` try e1 with E x→ e2 end : (τ, ε1\{raises E} t ε2)

Γ ` p wf Γ ` e : (τ, ε)

Γ ` assert {p}; e : (τ, ε)

Γ ` e : (τ, ε) Γ, result : τ ` q wf

Γ ` e {q} : (τ, ε)

Γ, x : τ ` p wf Γ, x : τ ` e {q} : (τ ′, ε)

Γ ` fun (x : τ)→ {p} e {q} : ((x : τ)→ {p} τ ′ ε {q},⊥)

Γ′ ≡ Γ, x1 : τ1, . . . , xn : τn Γ′ ` p wf Γ′ ` t : int
Γ′, f : (x1 : τ1)→ · · · (xn : τn)→ {p} τ ε {q} ` e {q} : (τ, ε)

Γ ` rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e {q}
: ((x1 : τ1)→ · · · (xn : τn)→ {p} τ ε {q},⊥)

Γ ` e1 : ((x : τ2)→ {p} τ2 ε {q}, ε1) Γ ` e2 : (τ2, ε2)) τ2 pure

Γ ` e1 e2 : (τ, ε1 t ε2 t ε)

Γ ` e1 : ((x : β ref)→ {p} τ2 ε {q}, ε1) x2 : β ref ∈ Γ x2 6∈ τ2

Γ ` e1 x2 : (τ [x← x2], ε1 t ε[x← x2])

Figure 2.2: Typing

24

In order to factor out all semantic rules dealing with uncaught exceptions, we introduce
the following set of contexts R:

R ::= [] | x := R | let x = R in e | let x = ref R in e
| if R then e else e | loop R {invariant p variant t}
| raise (E R) : τ | R e

The semantics rules are given Figure 2.3.

2.1.4 Weakest preconditions

Programs correctness is defined using a calculus of weakest preconditions. We note
wp(e, q; r) the weakest precondition for a program expression e and a postcondition q; r
where q is the property to hold when terminating normally and r = E1 ⇒ q1; . . . ; En ⇒ qn

is the set of properties to hold for each possibly uncaught exception. Expressing the cor-
rectness of a program e is simply a matter of computing wp(e, True).

The rules for the basic constructs are the following:

wp(t, q; r) = q[result ← t]
wp(x := e, q; r) = wp(e, q[result ← void; x← result]; r)

wp(let x = e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x← result]; r)
wp(let x = ref e1 in e2, q; r) = wp(e1,wp(e2, q)r[x← result]; r)

wp(if e1 then e2 else e3, q; r) = wp(e1, if result then wp(e2, q; r) else wp(e3, q; r); r)
wp(L:e, q; r) = wp(e, q; r)[at(x, L)← x]

On the traditional constructs of Hoare logic, these rules simplify to the well known iden-
tities. For instance, the case of the assignment of a side-effect free expression gives

wp(x := t, q) = q[x← t]

and the case of a (exception free) sequence gives

wp(e1; e2, q) = wp(e1,wp(e2, q))

The cases of exceptions and annotations are also straightforward:

wp(raise (E e) : τ, q; r) = wp(e, r(E); r)
wp(try e1 with E v → e2 end, q; r) = wp(e1, q;wp(e2, q; r)[v ← result])

wp(assert {p}; e, q; r) = p ∧ wp(e, q; r)
wp(e {q′, r′}, q; r) = wp(e, q′ ∧ q; r′ ∧ r)

The case of an infinite loop is more subtle:

wp(loop e {invariant p variant t}, q; r) = p ∧ ∀ω. p⇒ wp(L:e, p ∧ t < at(t, L); r)

where ω stands for the set of references possibly modified by the loop body (the writes

part of e’s effect). Here the weakest precondition expresses that the invariant must hold
initially and that for each turn in the loop (represented by ω), either p is preserved by e
and e decreases the value of t (to ensure termination), or e raises an exception and thus
must establish r directly.

25

s, c −→ s, c s, !x −→ s, s(x)

s, ti −→ s, ci

s, φ(t1, . . . , tn) −→ s, φ(c1, . . . , cn)

s, e −→ s′, E c

s, R[e] −→ s′, E c

s, e −→ s′, c

s, x := e −→ s′ ⊕ {x 7→ c}, void

s, e1 −→ s1, v1 v1 not exc. s1, e2[x← v1] −→ s2, v2

s, let x = e1 in e2 −→ s2, v2

s, e1 −→ s1, c1 s1 ⊕ {x 7→ c1}, e2 −→ s2, v2

s, let x = ref e1 in e2 −→ s2, v2

s, e1 −→ s1, true s1, e2 −→ s2, v2

s, if e1 then e2 else e3 −→ s2, v2

s, e1 −→ s1, false s1, e3 −→ s3, v3

s, if e1 then e2 else e3 −→ s3, v3

s, e −→ s′, void s′, loop e {invariant p variant t} −→ s′′, v

s, loop e {invariant p variant t} −→ s′′, v

s, e −→ s′, v

s, L:e −→ s′, v

s, e −→ s′, c

s, raise (E e) : τ −→ s′, E c

s, e1 −→ s1, E
′ c E ′ 6= E

s, try e1 with E x→ e2 end −→ s1, E
′ c

s, e1 −→ s1, E c s1, e2[x← c] −→ s2, v2

s, try e1 with E x→ e2 end −→ s2, v2

s, e1 −→ s1, v1 v1 not exc.

s, try e1 with E x→ e2 end −→ s1, v1

s, e −→ s′, v

s, {p} e −→ s′, v

s, e −→ s′, v

s, e {q} −→ s′, v

s, fun (x : τ)→ {p} e −→ s, rec x = e

s, rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e −→
s, rec f x1 = rec x2 = . . . rec xn = e

s, e1 −→ s1, rec f x = e s1, e2 −→ s2, v2 s2, e[f ← rec f x = e, x← v2] −→ s3, v

e1 e2 −→ s3, v

Figure 2.3: Semantics

26

By combining this rule and the rule for the conditional, we can retrieve the rule for
the usual while loop:

wp(while e1 do e2 {invariant p variant t}, q; r)
= p ∧ ∀ω. p⇒

wp(L:if e1 then e2 else raise E, p ∧ t < at(t, L), E ⇒ q; r)
= p ∧ ∀ω. p⇒

wp(e1, if result then wp(e2, p ∧ t < at(t, L)) else q, r)[at(x, L)← x]

Finally, we give the rules for functions and function calls. Since a function cannot be
mentioned within the postcondition, the weakest preconditions for function constructs
fun and rec are only expressing the correctness of the function body:

wp(fun (x : τ)→ {p} e, q; r) = q ∧ ∀x.∀ρ.p⇒ wp(e, True)

wp(rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e, q; r)
= q ∧ ∀x1. . . .∀xn.∀ρ.p⇒ wp(L:e, True)

where ρ stands for the set of references possibly accessed by the loop body (the reads

part of e’s effect). In the case of a recursive function, wp(L:e, True) must be computed
within an environment where f is assumed to have type (x1 : τ1) → · · · → (xn : τn) →
{p∧ t < at(t, L)} τ ε {q} i.e. where the decreasing of the variant t has been added to the
precondition of f .

The case of a function call e1 e2 can be simplified to the case of an application x1 x2

of one variable to another, using the following transformation if needed:

e1 e2 ≡ let x1 = e1 in let x2 = e2 in x1 x2

Then assuming that x1 has type (x : τ)→ {p′} τ ′ ε {q′}, we define

wp(x1 x2, q) = p′[x← x2] ∧ ∀ω.∀result .(q′[x← x2]⇒ q)[old(t)← t]

that is (1) the precondition of the function must hold and (2) its postcondition must
imply the expected property q whatever the values of the modified references and of the
result are. Note that q and q′ may contain exceptional parts and thus the implication is
an abuse for the conjunction of all implications for each postcondition part.

2.1.5 Interpretation in Type Theory

Expressing program correctness using weakest preconditions is error-prone. Another ap-
proach consists in interpreting programs in Type Theory [9, 10] in such a way that if
the interpretation can be typed then the initial imperative program is correct. It can be
shown that the resulting set of proof obligations is equivalent to the weakest precondition.

The purpose of these notes is not to detail this methodology, only to introduce the
language implemented in the Why tool.

27

2.2 The WHY tool in practice

The Why tool implements the programming language presented in the previous section. It
takes annotated programs as input and generates proof obligations for a wide set of proof
assistants (Coq, PVS, Isabelle/HOL, HOL 4, HOL Light, Mizar) and decision procedures
(Simplify, haRVey, CVC Lite). The Why can be seen from two angles:

1. as a tool to verify algorithms rather than programs, since it implements a rather
abstract and idealistic programming language. Several non-trivial algorithms have
already been verified using the Why tool, such as the Knuth-Morris-Pratt string
searching algorithm for instance.

2. as a tool to compute weakest preconditions, to be used as an intermediate step in
the verification of existing programming languages. It has already been successfully
applied to the verification of C and Java programs (as briefly sketched in the next
section 2.2.3).

To remain independent of the back-end prover that will be used (it may even be
several of them), the Why tool makes no assumption regarding the logic used. It uses a
syntax of first-order predicates for annotations with no particular interpretation (apart
from the usual connectives). Function symbols and predicates can be declared in order
to be used in annotations, but they will be given meaning on the prover side.

2.2.1 A trivial example

Here is a small example of Why input code:

logic min: int, int -> int

parameter r: int ref

let f (n:int) = {} r := min !r n { r <= r@ }

This code declares a function symbol min and gives its arity. Whatever the status of this
function is on the prover side (primitive, user-defined, axiomatized, etc.), it simply needs
to be declared in order to be used in the following of the code. The next line declares a
parameter, that is a value that is not defined but simply assumed to exist i.e. to belong
to the environment. Here the parameter has name r and is an integer reference (Why’s
concrete syntax is very close to Ocaml’s syntax). The third line defines a function f

taking a integer n as argument (the type has to be given since there is no type inference
in Why) and assigning to r the value of min !r n. The function f has no precondition
and a postcondition expressing that the final value of r is smaller than its initial value.
The current value of a reference x is directly denoted by x within annotations (not !x)
and within postconditions x@ is the notation for old(x).

Let us assume the three lines code above to be in file test.why. Then we can pro-
duce the proof obligations for this program, to be verified with Coq, using the following
command line:

why --coq test.why

A Coq file test why.v is produced which contains the statement of a single proof obli-
gation, which looks like

28

Lemma f_po_1 :

forall (n: Z),

forall (r: Z),

forall (result: Z),

forall (Post2: result = (min r n)),

result <= r.

Proof.

(* FILL PROOF HERE *)

Save.

The proof itself has to be filled in by the user. If the Why input code is modified and Why
run again, only the statement of the proof obligation will be updated and the remaining
of the file (including the proof) will be left unmodified. Assuming that min is adequately
defined in Coq, the proof above is trivial.

Trying an automatic decision procedure instead of Coq is as easy as running Why
with a different command line option. For instance, to use Simplify [1], we type in

why --simplify test.why

A Simplify input file test why.sx is produced. But Simplify is not able to discharge the
proof obligation, since the meaning of min is unknown for Simplify:

Simplify test_why.sx

...

1: Invalid

The user can edit the header of test why.sx to insert an axiom for min. Alternatively,
this axiom can be inserted directly in the Why input code:

logic min: int, int -> int

axiom min_ax: forall x,y:int. min(x,y) <= x

parameter r: int ref

let f (n:int) = {} r := min !r n { r <= r@ }

This way this axiom will be replicated in any prover selected by the user. When using
Coq, it is even possible to prove this axiom, though it is not mandatory. With the addition
of this axiom, Simplify is now able to discharge the proof obligation:

why --simplify test.why

Simplify test_why.sx

1: Valid.

2.2.2 A less trivial example: Dijkstra’s Dutch flag

Dijkstra’s Dutch flag is a classical algorithm which sorts an array where elements can
have only three different values. Assuming that these values are the three colors blue,
white and red, the algorithm restores the Dutch (or French :-) national flag within the
array.

This algorithm can be coded with a few lines of C, as follows:

29

typedef enum { BLUE, WHITE, RED } color;

void swap(int t[], int i, int j) { color c = t[i]; t[i] = t[j]; t[j] = c;}

void flag(int t[], int n) {

int b = 0, i = 0, r = n;

while (i < r) {

switch (t[i]) {

case BLUE: swap(t, b++, i++); break;

case WHITE: i++; break;

case RED: swap(t, --r, i); break;

}

}

}

We are going to show how to verify this algorithm—the algorithm, not the C code—
using Why. First we introduce an abstract type color for the colors together with three
values blue, white and red:

type color

logic blue : color

logic white : color

logic red : color

Such a new type is necessarily an immutable datatype. The only mutable values in Why
are references (and they only contain immutable values).

Then we introduce another type color array for arrays:

type color_array

logic acc : color_array, int -> color

logic upd : color_array, int, color -> color_array

Again, this is an immutable type, so it comes with a purely applicative signature (upd
is returning a new array). To get the usual theory of applicative arrays, we can add the
necessary axioms:

axiom acc_upd_eq :

forall t:color_array. forall i:int. forall c:color.

acc(upd(t,i,c),i) = c

axiom acc_upd_neq :

forall t:color_array. forall i:int. forall j:int. forall c:color.

j<>i -> acc(upd(t,i,c),j) = acc(t,j)

The program arrays will be references containing values of type color array. In
order to constraint accesses and updates to be performed within arrays bounds, we add
a notion of array length and two “programs” get and set with adequate preconditions:

30

logic length : color_array -> int

axiom length_upd : forall t:color_array. forall i:int. forall c:color.

length(upd(t,i,v)) = length(t)

parameter get :

t:color_array ref -> i:int ->

{ 0<=i<length(t) } color reads t { result=acc(t,i) }

parameter set :

t:color_array ref -> i:int -> c:color ->

{ 0<=i<length(t) } unit writes t { t=upd(t@,i,c) }

These two programs need not being defined (they are only here to insert assertions au-
tomatically), so we declare them as parameters1.

We are now in position to define the swap function:

let swap (t:color_array ref) (i:int) (j:int) =

{ 0 <= i < length(t) and 0 <= j < length(t) }

let c = get t i in

set t i (get t j);

set t j c

{ t = upd(upd(t@,i,acc(t@,j)), j, acc(t@,i)) }

The precondition for swap states that the two indices i and j must point within the
array t and the postcondition is simply a rephrasing of the code on the model level i.e.
on purely applicative arrays. Verifying the swap function is immediate.

Next we need to give the main function a specification. First, we need to express
that the array only contains one of the three values blue, white and red. Indeed,
nothing prevents the type color to be inhabitated with other values (there is no notion
of inductive type in Why logic, since it is intended to be a common fragment of many
tools, including many with no primitive notion of inductive types). So we define the
following predicate is color:

predicate is_color(c:color) = c=blue or c=white or c=red

Note that this predicate is given a definition in Why.
Second, we need to express the main function postcondition that is, for the final

contents of the array, the property of being “sorted” but also the property of being a
permutation of the initial contents of the array (a property usually neglected but clearly
as important as the former). For this purpose, we introduce a predicate monochrome

expressing that a set of successive elements is monochrome:

predicate monochrome(t:color_array, i:int, j:int, c:color) =

forall k:int. i<=k<j -> acc(t,k)=c

1The Why tool actually provides a datatype of arrays, exactly in the way we are doing it here, and
even a nice syntax for array operations.

31

For the permutation property, we only declare a predicate that will be defined on the
prover side, whatever the prover is:

logic permutation : color_array, color_array, int, int -> prop

To be able to write down the code, we still need to translate the switch statement
into successive tests, and for this purpose we need to be able to decide equality of the
type color. We can declare this ability with the following parameter:

parameter eq_color :

c1:color -> c2:color -> {} bool { if result then c1=c2 else c1<>c2 }

Note that the meaning of = within annotations has nothing to do with a boolean function
deciding equality that we could use in our programs.

We can now write the Why code for the main function:

let dutch_flag (t:color_array ref) (n:int) =

{ length(t) = n and forall k:int. 0 <= k < n -> is_color(acc(t,k)) }

let b = ref 0 in

let i = ref 0 in

let r = ref n in

while !i < !r do

if (eq_color (get t !i) blue) then begin

swap t !b !i;

b := !b + 1;

i := !i + 1

end else if (eq_color (get t !i) white) then

i := !i + 1

else begin

r := !r - 1;

swap t !r !i

end

done

{ (exists b:int. exists r:int.

monochrome(t,0,b,blue) and

monochrome(t,b,r,white) and

monochrome(t,r,n,red))

and permutation(t,t@,0,n-1) }

As given above, the code cannot be proved correct, since a loop invariant is missing, and
so is a termination argument. The loop invariant must maintain the current situation,
which can be depicted as

0 b i r n

BLUE WHITE . . . to do. . . RED

But the loop invariant must also maintain less obvious properties such as the invariance of
the array length (which is obvious since we only performs upd operations over the array,
but we need not to loose this property) and the permutation w.r.t. the initial array. The
termination is trivially ensured since r-i decreases at each loop step and is bound by 0.
Finally, the loop is annotated as follows:

32

JML-annotated Java

model Why code

Proof obligations

prover

Assisted/Automatic proof

Krakatoa

Why

Figure 2.4: Verifying Java programs using Krakatoa and Why

...

while !i < !r do

{ invariant 0 <= b <= i and i <= r <= n and

monochrome(t,0,b,blue) and

monochrome(t,b,i,white) and

monochrome(t,r,n,red) and

length(t) = n and

permutation(t,t@init,0,n-1)

variant r - i }

...

We can now proceed to the verification of the program, which causes no difficulty (most
proof obligations are even discharged automatically by Simplify).

2.2.3 Application to the verification of C and Java programs

The Why tool is applied to the verification of C and Java programs, as the back-end of
two open-source tools Caduceus [14] and Krakatoa [8] respectively. Both tools are
based on the same kind of model, following Bornat [4], and handle almost all ANSI C
and all sequential Java respectively. As far as Krakatoa is concerned, Java programs
are annotated using the Java Modeling Language (JML) [15] and thus Krakatoa is
very similar to tools like Loop [22] or Jack [5]. An overview of the Krakatoa-Why
combination is given Figure 2.4. The combination with Caduceus is very similar.

33

Bibliography

[1] The Simplify decision procedure (part of ESC/Java). http://research.compaq.

com/SRC/esc/simplify/.

[2] G. M. Adel’son-Vel’skĭı and E. M. Landis. An algorithm for the organization of
information. Soviet Mathematics–Doklady, 3(5):1259–1263, September 1962.

[3] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment. Texts in Theoretical Computer Science. An EATCS Series. Springer Verlag,
2004. http://www.labri.fr/Perso/~casteran/CoqArt/index.html.

[4] Richard Bornat. Proving pointer programs in Hoare logic. In Mathematics of Pro-
gram Construction, pages 102–126, 2000.

[5] Lilian Burdy and Antoine Requet. Jack: Java Applet Correctness Kit. In Gemplus
Developers Conference GDC’2002, 2002. See also http://www.gemplus.com/smart/
r_d/trends/jack.html.

[6] Jacek Chrzaszcz. Implementing modules in the system Coq. In 16th International
Conference on Theorem Proving in Higher Order Logics, University of Rome III,
September 2003.

[7] Jacek Chrzaszcz. Modules in Type Theory with generative definitions. PhD thesis,
Warsaw University and Université Paris-Sud, 2003. To be defended.

[8] Claude Marché, Christine Paulin and Xavier Urbain. The Krakatoa Tool for
JML/Java Program Certification. Submitted to JLAP. http://www.lri.fr/

~marche/krakatoa/.

[9] J.-C. Filliâtre. Preuve de programmes impératifs en théorie des types. Thèse de
doctorat, Université Paris-Sud, July 1999.

[10] J.-C. Filliâtre. Verification of Non-Functional Programs using Interpretations in
Type Theory. Journal of Functional Programming, 13(4):709–745, July 2003. English
translation of [9].

[11] Jean-Christophe Filliâtre and Pierre Letouzey. Functors for Proofs and Programs. In
Proceedings of The European Symposium on Programming, Barcelona, Spain, March
29-April 2 2004. Voir aussi http://www.lri.fr/~filliatr/fsets/.

[12] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580,583, 1969. Also in [13] pages 45–58.

34

[13] C. A. R. Hoare and C. B. Jones. Essays in Computing Science. Prentice Hall, 1989.

[14] Jean-Christophe Filliâtre and Claude Marché. The Caduceus tool for the verification
of C programs. http://why.lri.fr/caduceus/.

[15] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Technical Report 98-06i, Iowa
State University, 2000.

[16] Xavier Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

[17] Pierre Letouzey. A New Extraction for Coq. In Herman Geuvers and Freek Wiedijk,
editors, Types for Proofs and Programs, Second International Workshop, TYPES
2002, Berg en Dal, The Netherlands, April 24-28, 2002, volume 2646 of Lecture
Notes in Computer Science. Springer-Verlag, 2003.

[18] Pierre Letouzey. Programmation fonctionnelle certifiée en Coq. PhD thesis, Univer-
sité Paris Sud, 2003. To be defended.

[19] C. Paulin-Mohring. Extracting Fω’s programs from proofs in the Calculus of Con-
structions. In Association for Computing Machinery, editor, Sixteenth Annual ACM
Symposium on Principles of Programming Languages, Austin, January 1989.

[20] C. Paulin-Mohring. Extraction de programmes dans le Calcul des Constructions.
PhD thesis, Université Paris 7, January 1989.

[21] T. Schreiber. Auxiliary Variables and Recursive Procedures. In TAPSOFT’97:
Theory and Practice of Software Development, volume 1214 of Lecture Notes in
Computer Science, pages 697–711. Springer-Verlag, April 1997.

[22] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In T. Mar-
garia and W. Yi (eds.), editors, Tools and Algorithms for the Construction and Anal-
ysis of Software (TACAS, volume 2031 of LNCS, pages 299–312. Springer-Verlag,
2001.

35

PART V:

Dependently Typed Programming

PART VI:

Formalisation of Mathematics

Herman Geuvers:

Fundamental theory of algebra in
Coq

Types Summer School
Gothenburg Sweden August 2005

Lecture 5: FTA, the Fundamental Theorem of ALgebra
C-CoRN, The Constructive Coq Repository @ Nijmegen

Herman Geuvers, Luis Cruz-Filipe, Freek Wiedijk, Milad Niqui,
Jan Zwanenburg,

Randy Pollack, Iris Loeb, Bas Spitters, Sebastien Hinderer,
Henk Barendregt, Dan Synek

Radboud University Nijmegen, NL

1

What, Where, Why

• What: A coherent library of formalized mathematics

• Where: @ Nijmegen (NL), but possibly users and contributors
from all over the world.

• Why: formalize mathematics in a uniform way.

2

What? Content

• Algebraic Hierarchy: monoids, rings, (ordered) fields, . . .

• Tactics, esp. for equational reasoning

• Real number structures: axiomatically as complete Archimedean
ordered fields.

• Model of R + proof that two real number structures are iso-
morphic + alternative axioms

• Generic results about R and R-valued functions

• (Original) FTA-library: definition of C and proof of FTA

• Real analysis following Bishop: Continuity, differentiability
and integrability, Rolle’s Theorem, Taylor’s Theorem, FTC.
The exponential and trigonometric functions, logarithms and
inverse trigonometric functions.

3

The sizes of the C-CoRN library:

Description Size (Kb) % of total
Algebraic Hierarchy (incl. tactics) 533 26.4
Real Numbers (incl. Models) 470 23.3
FTA (incl. Complex Numbers) 175 8.7
Real Analysis (incl. Transc. Fns.) 842 41.6
Total 2020 100

4

Why? Aims

• Not one (isolated) big fancy theorem, but create a library:
“Mexican hat”
Sets and Basics 41 kb
Algebra (upto Ordered Fields) 165 kb
Reals 52 kb
Polynomials 113 kb
Real-valued functions / Basic Analysis 30 kb
Complex numbers 98 kb
FTA proof 70 kb
Construction of R (Niqui) 309 kb
Rational Tactic 49 kb

5

Aims ctd.

• Make interaction between different fields of mathematics pos-
sible.

• Reusable by others: take care of documentation, presentation,
notation, searching

• Constructive(?)
Finer analysis of mathematics, esp. analysis: reals are (poten-
tially) infinite objects; computational content.

• Formalizing math. on a computer is fun, but also has benefits:

– Correctness guaranteed.

– Exchange of ‘meaningful’ mathematics.

– Finding mathematical results.

6

Aims ctd.

• Investigate the current limitations.

• Try to manage this project. Three sequential/parallel phases:

Mathematical proof LATEX document (lots of details)

Theory development Coq file (just defs and statements of lemmas)

Proof development Coq file (proofs filled in)

Try to keep these phases consistent!

7

Problems ?

• Idiosyncrasies of ‘the’ Proof Assistant.

• Verbosity of formalized mathematics.

• Access to the formalized mathematics.

8

Methodology
Work in a systematic way (CVS):

• Documentation: what has been formalized; notations; defini-
tions; tactics.

• Structuring: Group Lemmas and Def’s according to mathe-
matical content; Name Lemmas and Def’s consistently.

• Axiomatic Approach: C-CoRN aims at generality.

• Automation: Develop tactics for specific fields of mathemat-
ics

9

A brief look into C-CoRN

• (Constructive) Setoids

• Algebraic Hierarchy

• Partial Functions

• R

• FTA proof

• Automation via Reflection

10

Setoids
How to represent the notion of set?
Note: A set is not just a type, because
M : A is decidable whereas t ∈ X is undecidable
A setoid is a pair [A, =] with

• A : Set,

• = : A→(A→Prop) an equivalence relation over A

A setoid function is an f :A→B such that

∀x, y:A.(x =A y)→(f x) =B (g y).

11

Here: Constructive Setoids
Apartness # as basic:

x = y ↔ ¬(x # y)

x # y → (x # z) ∨ (y # z)

¬(x # x)

x # y → y # x

A constructive setoid function is an f :A→B such that

∀x, y:A.(f x) #B (g y)→(x #A y).

Strong extensionality

12

The algebraic hierarchy

• We deal with real numbers, complex numbers, polynomials,
. . .

• Many of the properties we use are generic and algebraic.

• To be able to reuse results and notation we have defined a
hierarchy of algebraic structures.

• Basic level: constructive setoids.

• Next level: semi-groups, 〈S, +〉, with S a setoid and + an
associative binary operation on S.

13

Structures and Coercions

Record CMonoid : Type :=

{ m_crr :> CSemi_grp;

m_proof : (Commutative m_crr (sg_op m_crr))

/\ (IsUnit m_crr (sg_unit m_crr) (sg_op m_crr))

}.

• A monoid is now a tuple 〈〈〈S, =S, r〉, a, f, p〉, q〉

If M : Monoid, the carrier of M is (crr(sg crr(m crr M)))

Nasty !!
⇒ We want to use the structure M as synonym for the carrier
set (crr(sg_crr(m_crr M))).
⇒ The maps crr, sg_crr, m_crr should be left implicit.

• The notation m_crr :> Semi_grp declares the coercion
m crr : Monoid >-> Semi grp.

14

Inheritance via Coercions
We have the following coercions.

OrdField >-> Field >-> Ring >-> Group

Group >-> Monoid >-> Semi_grp >-> Setoid

• All properties of groups are inherited by rings, fields, etc.

• Also notation is inherited:

x[+]y

denotes the addition of x and y for x,y:G from any semi-
group (or monoid, group, ring,...) G.

• The coercions must form a tree, so there is no real multiple
inheritance:
E.g. it is not possible to define rings in such a way that it
inherits both from its additive group and its multiplicative
monoid.

15

Partiality: Proof terms inside objects

• The ‘subtype’ {t : A | (P t)} is defined as the type of pairs
〈t, p〉 where t : A and p : (P t).
Notation: Σx:A.P x

• A partial function is a function on a subtype
E.g. (−)−1 : Σx:R.x 6= 0 → R.
If x : R and p : x 6= 0, then 1

〈x,p〉
: R.

• A partialfunction must be proof-irrelevant, i.e.
if p : t 6= 0 and q : t 6= 0, then 1

〈t,p〉
= 1

〈t,q〉
.

• For practical (Coq) purposes we “Curry” partial functions and
take
(−)−1 : Πx:R.(x 6= 0) → R.

16

The Real Numbers in Coq:

• Axiomatic: a ‘Real Number Structure’ is a
Cauchy-complete Archimedean ordered field.

• Prove FTA ‘for all real numbers structures’.

• Construct a model to show that real number structures exist.
(Cauchy sequences over an Arch. ordered field, say Q)

• Prove that any two real number structures are isomorphic.

17

Axioms for Real Numbers:

• Cauchy sequences over Field F :
g : nat → F is Cauchy if

∀ε:F>0.∃N :N.∀m ≥ N (|gm − gN | < ε)

• All Cauchy sequences have a limit:

SeqLim : (Σg:nat→F.Cauchy g) → F

CauchyProp : ∀g:nat→F.(Cauchy g) →

∀ε:F>0.∃N :N.∀m ≥ N.(|gm − (SeqLim g)| < ε)

• Axiom of Archimedes: (there are no non-standard elements)

∀x:F.∃n:N(n > x)

NB: The axiom of Archimedes proves that ‘ε-Cauchy sequences’
and ‘1

k
-Cauchy sequences’ coincide (similar for limits)

18

Consequences of the Axiomatic approach:

• We don’t construct R out of Q, so we don’t have Q ⊂ R on
with = decidable on Q.

• We did not want to ‘define’ Q ⊂ R.

• Instead: modify the proof by introducing fuzziness:
Instead of having to decide

x < y ∨ x = y ∨ x > y,

all we need to establish is whether (for given ε > 0)

x < y + ε ∨ x > y − ε

which we may write as

x ≤ε y ∨ x ≥ε y

This is decidable, due to the cotransitivity of the order rela-
tion:

x < y ⇒ x < z ∨ z < y

19

Intermezzo Program Extraction
The logic of Coq (and most type theories) is constructive. This
implies that

if ` ∀x:A∃y:B.R x y, then there is a term f such that
` ∀x:A.R x (f x).

Application: From a proof term of ∀x ∈ nat.∃y ∈ nat.x+x ≤ y

one can extract

• a term (Coq-program) f : nat→nat,

• a proof of ∀x:nat.x + x ≤ f x (correctness of f)

Strengthening

if ` ∀x:A.P x ∨ ¬P x and ` ∀x:A.P x → ∃y:B.R x y,
then there is a term f such that ` ∀x:A.P x → R x (f x).

Example

∀l:list.l 6= nil→∃n:nat.n ≤ l ∧ n ∈ l

20

Pros/Cons of the Axiomatic approach:
Pros:

• “Plug-in” arbitrary (your own pet) model to extract algo-
rithm.

• Work abstractly: reuse

Cons (?):

• Choice of axioms? Don’t try to be minimal! E.g.maximum
function should be added.

• Can we get “good” algorithms when we work abstractly?

21

FTA: The classical FTA proof
Suppose |f (z)| is minimal with |f (z)| 6= 0.
We construct a z0 with |f (z0)| < |f (z)|.
We may assume that the minimum is reached for z = 0.

f (x) = a0 + akx
k + O(xk+1)

with ak the first coefficient that’s not 0.
Now take

z0 := ε k

√

−
a0

ak

with ε ∈ R>0.

If ε is small enough, the part O
(

zk+1
0

)

will be negligible and

we get a z0 6= 0 for which

|f (z0)| = a0 + ak

(

ε k

√

−
a0

ak

)k

= a0(1 − εk) < |f (0)|

22

The constructive FTA proof
Define an algorithm
Given z ∈ C, construct a sequence z, z0, z1, . . . going to the
root.
Problem: in the definition

z0 := ε k

√

−
a0

ak

• ε must be small enough to neglect O
(

zk+1
0

)

• ε must be large enough to reach the root.

Solution (Kneser): write

f (x) = a0 + akx
k + other terms

and find k and z0 such that |ak||z0|
k is big enough w.r.t. the

other terms and small enough compared to |a0|.

23

Automation via Computation
Poincaré Principle (Barendregt)

“An equality involving a computation does not require a
proof”

In type theory: if t = q by evaluation (computing an algorithm),
then this is a trivial equality, proved by reflexivity.
This is made precise by the conversion rule:

Γ ` M : A

Γ ` M : B
A =βιδ B

Can one actually use the programming power of Type Theory
when formalizing mathematics?

Yes. For automation: replacing a proof obligation by a compu-
tation

24

Reflection Suppose

• We have a class of problems with a syntactic encoding as a
data type, say via the type Problem.
Example: equalities between expressions over a group
Then the syntactic encoding is

Inductive E : Set :=

evar : nat -> E

| eone : E

| eop : E -> E -> E

| einv : E -> E

• We have a decoding function [[−]] : Problem → Prop

• We have a decision function Dec : Problem → {0, 1}

• We can prove Ok : ∀p:Problem((Dec(p) = 1) → [[p]])

25

To verify P (from the class of problems):

• Find a p : Problem such that [[p]] = P .

• Then Dec(p) yields either 1 or 0

• If Dec(p) = 1, then we have a proof of P (using Ok)

• If Dec(p) = 0, we obtain no information about P (it ‘fails’)

Note: if Dec is complete:

∀p:Problem((Dec(p) = 1) ↔ [[p]])

then Dec(p) = 0 yields a proof of ¬P .
This can be made into a tactic, e.g. Rational, that proves
equalities between rational expressions.

26

Related Work:

• Mizar largest library of formalized math., MML (Trybulec)

• HOL-light (Harrisson)

• Isabelle (Fleuriot, non-standard reals)

• Nuprl (Howe, constructive á la Bishop)

• Classical Reals in Coq (Mayero)

• Minlog (Schwichtenberg)

• FOC (Hardin, Rioboo)

27

Some Conclusions:

• Real mathematics, involving algebra and analysis can be for-
malised completely within a theorem prover (Coq).

• Setting up a basic library and some good proof automation
procedures is a large part of the work.

• Library can be reused: Luis Cruz-Filipe proved FTC (and
more).

• Extracting algorithms (e.g. for FTA) requires a further anal-
ysis of the proof (Luis Cruz-Filipe, Bas Spitters).

• In the end, the computational behaviour of algorithms should
depend mainly on the representation of the reals.

28

Freek Wiedijk:

Formalisation of mathematics

Chapter 1

Writing a Mizar article in

nine easy steps

After reading this chapter and doing the exercises, you will be able to write a
basic Mizar article all by yourself.

The chapter presents an explanation of the nine steps needed to finish a
Mizar article. For each step it also shows how this turns out for a specific
example. There are exercises too, so you can test your understanding.

To be able to read this chapter you should know some basic mathematics
but not much. You should know a little bit about:

• first order predicate logic

• some basic set theory

Mizar is based on set theory on top of predicate logic, that’s why.
The most difficult part of writing Mizar is finding what you need in the

MML which is the name of the Mizar Mathematical Library. Unfortunately
that problem has no easy solution. You will discover that apart from that,
writing a Mizar article is straight-forward.

1.1 Step 1: the mathematics

Before you start writing a Mizar article you need to decide what it should be
about. It’s very important not to start writing the article too soon! A proof
that takes five minutes to explain – after which people look into the air and
then mumble: ‘hm, yes, I see’ – takes about a week to formalize. So every
improvement to the mathematics that you can make before you start formalizing
will pay off very much.

The example As a running example in this chapter we write a small Mizar
article called my_mizar.miz. It is about Pythagorean triples. Those are triples

1

2 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

of natural numbers {a, b, c} for which holds that:

a2 + b2 = c2

The Pythagorean theorem tells us that these triples correspond to square angled
triangles that have sides of integer length. The best known of these triples are
{3, 4, 5} and {5, 12, 13} but there are an infinite number of them.

The theorem that we will formalize says that all Pythagorean triples are
given by the formula:

a = n2 −m2 b = 2mn c = n2 +m2

or are multiples of such a triple. For instance the triple {3, 4, 5} is given by
n = 2, m = 1, and the triple {5, 12, 13} is given by n = 3, m = 2.

The proof of the theorem is straight-forward. You only needs to consider the
case where a and b are relative prime. Some thought about parity gives that
one of the a and b has to be even, and that the other and c is odd. Then if b is
the even number of the two we get that:

(b

2

)2

=
c2 − a2

4
=
(c− a

2

)(c+ a

2

)

But if the product of two relative prime numbers is a square, then both of those
numbers are squares. So you get:

c− a

2
= m2 c+ a

2
= n2

which leads to the required formula.

Exercise 1.1.1 Study the Mizar Mathematical Library and try to decide
whether Mizar is equally suited to all fields of mathematics and computer sci-
ence, or that Mizar is best suited to certain subjects. In the latter case, what
is most easily formalized in Mizar? And what least?

Exercise 1.1.2 We mentioned the Pythagorean theorem which says that the
sides a, b and c of a square angled triangle satisfy a2 + b2 = c2. Try to find
this theorem in the MML. If it’s there, in what article does it occur and what
is the theorem’s reference? If not, or if you don’t like the version that you find
(exercise for when you finished this chapter): write an article that proves it.

1.2 Step 2: the empty Mizar article

In order to write a Mizar article you need a working Mizar system and a file to
put the Mizar article in. In fact, as you will find out, you will need two files: a
.miz file for your article and a .voc file for its vocabulary.

In this tutorial we follow the Windows conventions of naming files. For
Mizar under Unix the backslashes should go the other way. So what is called
text\my_mizar.miz here, under Unix should be text/my_mizar.miz.

1.2. STEP 2: THE EMPTY MIZAR ARTICLE 3

We will assume that you already have a properly installed Mizar system.
For a description of how to install Mizar see the readme.txt file that is in the
Mizar distribution (under Unix it is called README).

To write your article, you need to be in a directory that has two subdirecto-
ries called text and dict. If those directories don’t exist yet, make them. Put
in the text directory an empty file called my_mizar.miz and put in the dict

directory an empty file called my_mizar.voc. (Replace the my_mizar with a
more appropriate name if you are writing an article of your own.)

The smallest legal .voc file is empty but the smallest legal .miz file looks
like this:

environ

begin

Use your favorite text editor to put those two lines in the my_mizar.miz file.
Then check it using the command:

mizf text\my_mizar.miz

It will both check syntax and mathematics of your article. If everything is well
this command prints something like:

Make Environment, Mizar Ver. 7.0.01 (Win32/FPC)

Copyright (c) 1990,2004 Association of Mizar Users

-Vocabularies-Constructors-Clusters-Notation

Verifier, Mizar Ver. 7.0.01 (Win32/FPC)

Copyright (c) 1990,2004 Association of Mizar Users

Processing: text\my_mizar.miz

Parser [2] 0:00

Analyzer 0:00

Checker [1] 0:00

Time of mizaring: 0:00

meaning that this ‘article’ contains no errors. (If you use the emacs editor with
its Mizar mode you don’t need to type the mizf command. In that case all you
need to do to check the file is hit C-c RET.)

Apart from the my_mizar.miz file, the text directory now contains 25 other
files. You never need to look inside them. They are only used internally by the
Mizar system.

The next step is to connect the .miz file to the .voc vocabulary. Add a
vocabularies directive to your article:

environ

vocabularies MY_MIZAR;

begin

4 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

(Important: the name of the vocabulary has to be written in capitals! This is a
remnant of Mizar’s DOS origins.)

Now the article is ready to be written. For the moment add some line of
text at the end of the file just to find out what happens if the article contains
errors:

environ

vocabularies MY_MIZAR;

begin

hello Mizar!

After you run the mizf text\my_mizar.miz command again, Mizar will insert
the error messages inside your file. It will put a * with a number below any
error. Also there will be an explanation of those error numbers at the end of
the file. So after running the mizf command again your file looks like:

environ

vocabularies MY_MIZAR;

begin

hello Mizar!

::> *143,321

::> 143: No implicit qualification

::> 321: Predicate symbol or "is" expected

There is no need to try to understand those two error messages, because of
course hello Mizar! is not legal Mizar. So remove this line, now that you have
seen what Mizar thinks of it. You don’t need to remove the error message lines.
They vanish the next time you run mizf.

The lines containing error messages can be recognized because they start
with ::>. Mizar only gives you error numbers. It never prints anything about
why it thinks it is wrong. Sometimes this lack of explanation is frustrating but
generally Mizar errors are quite obvious.

Exercise 1.2.1 The minimal Mizar article that we showed is 2 lines long.
What is the shortest article in the MML? What is the longest? What is the
average number of lines in the articles in the MML?

As a rule of thumb an article less than a 1000 lines is considered too short to
be submitted to the MML. However several articles in the MML are less than
a 1000 lines long since articles are shortened during revision of the MML. How
many of the articles in the MML are currently shorter than a 1000 lines?

Exercise 1.2.2 Copy an article from the MML to your private text direc-
tory. Check that the Mizar checker mizf processes it without error messages.
Experiment with making small modifications to it and see whether Mizar can
detect where you tampered with it.

Put one screen-full of non-Mizar text – for instance from a Pascal or C
program – somewhere in the middle of the article. How many error messages

1.3. STEP 3: THE STATEMENT 5

will you get? Can Mizar sufficiently recover from those errors to check the
second half of the file reasonably well?

1.3 Step 3: the statement

To start translating your mathematics to Mizar you need to write the theorem
that you want to prove in Mizar syntax.

There are two things about Mizar syntax that are important for you to note:

• There are no spelling variants in Mizar. Although Mizar resembles natural
language a lot, it is a formal language and there are no possibilities to
choose between phrasings. For example:

and means something different from &

not means something different from non

such that means something different from st

assume means something different from suppose

NAT means something different from Nat means something different
from natural

So you should really pay attention to the exact keywords in the Mizar
syntax. It’s not enough if it resembles it.

The only exception to this rule is that be and being are alternative
spellings. So although it’s more natural to write let X be set and for

X being set holds . . . you are also allowed to write let X being set

and for X be set holds . . .

• There is no distinction in Mizar between ‘function notation’ and ‘operator
notation’. In most programming languages something like f(x,y) and
x+y are syntactically different things. In Mizar this distinction doesn’t
exist. In Mizar everything is an operator. If you write f(x,y) in Mizar
then it really is a ‘operator symbol’ f with zero left arguments and two
right arguments.

Similarly predicate names and type names can be any string of characters
that you might wish. You can mix letters, digits and any other character
you might like in them. So for instance if you want to call a predicate
\/-distributive you can do so in Mizar. And it will be one ‘symbol’.

If you are not sure what characters go together as a symbol in a Mizar
formula, you can go to the web pages of the MML abstracts. In those
pages the symbols are hyperlinks that point to definitions. So just click
on them to find out what symbol they are.

To write Mizar you need to know how to write terms and how to write formulas.
We tackle this in top-down fashion. First we describe how to translate

formulas from predicate logic into Mizar. Then we describe how the syntax of
Mizar terms works.

6 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

1.3.1 Formulas

Here is a table that shows all you want to know about how to write predicate
logic in Mizar:

⊥ contradiction

¬φ not φ
φ ∧ ψ φ & ψ
φ ∨ ψ φ or ψ
φ⇒ ψ φ implies ψ
φ⇔ ψ φ iff ψ
∃x. ψ ex x st ψ
∀x. ψ for x holds ψ

∀x. (φ⇒ ψ) for x st φ holds ψ

There is no special way to write > in Mizar. One usually writes not contradic-
tion for this. Note that with the quantifiers it should be st and not such that.
Also note that for x st φ holds ψ is just ‘syntactic sugar’ for for x holds (φ
implies ψ). After the parser processed it, the rest of the system will not see
any difference between those two formulas.

Using this table you now can write logical formulas in Mizar.
There is one more thing that you need to know to write Mizar formulas in

practice. Mizar is a typed language. We will discuss Mizar types in detail in
Section 1.3.4 below, but the types turn up in the predicate logic formulas too.
All variables that you use in formulas need to have a type. There are two ways
to give a variable a type:

• Put the type in the formula using a being type attribution. For instance
you can write an existential formula about natural numbers m and n as:

ex m,n being Nat st . . .

• Give the type for the variable with a reserve statement. This doesn’t
introduce a variable, it just introduces a notation convention. If you use
a reserve statement you can leave out the type in the formula:

reserve m,n for Nat;

ex m,n st . . .

This way of typing variables in formulas is much more convenient than
explicitely typing the variables and so it is the method that is generally
used.

Exercise 1.3.1 Translate the following Mizar formulas into predicate logic
notation:

φ iff not not φ

not (φ & ψ) implies not φ or not ψ

1.3. STEP 3: THE STATEMENT 7

ex x st φ implies ψ

for x st for y st φ holds ψ holds χ

To do this exercise you need to know the priorities of the logical operators in
Mizar. They are the usual ones in predicate logic:

ex/for < implies/iff < or < & < not

This means that you should read not φ implies ψ as (not φ) implies ψ
(because the not binds stronger), but that ex x st φ implies ψ means ex x st

(φ implies ψ).

Exercise 1.3.2 Translate the following predicate logic formulas into Mizar
syntax:

¬φ⇔ ¬¬¬φ

¬(φ ∨ ψ) ⇒ (¬φ ∧ ¬ψ)

∃x. (φ ∧ ψ)

∃x.
((

∃ y. (φ⇒ ψ)
)

⇒ χ
)

1.3.2 Relations

You still need to know how to write atomic formulas. In Mizar there are two
ways to write those:

• If R is a predicate symbol, write:

x1,x2, . . .,xm R xm+1, . . .,xm+n

Both m or n might be 0, in which case this becomes prefix or postfix
notation. Note that postfix notation can have more than one argument,
as for instance in x,y are_relative_prime. Please note that brackets
around the arguments of the predicate are not allowed.

• If T is a type, or the adjectives part of a type, write:

x is T

For instance you can write x is prime. We will discuss types in Section
1.3.4 below.

To find out what relations are available to you, you will need to browse the
MML. Here is a short list of some of the most frequent used relations to get you
started.

8 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

= =

6= <>

< <

≤ <=

∈ in

⊆ c=

The first character in the Mizar representation of ⊆ is the letter c.

1.3.3 Terms

There are three ways to write Mizar terms:

• If f is an operator symbol, which Mizar calls a functor , write:

(x1,x2, . . .,xm) f (xm+1, . . .,xm+n)

Again, m or n might be 0, in which case this becomes prefix or postfix
notation. As an example of a postfix operator there is ^2 for square. The
brackets around either list of arguments can be omitted if there is just one
argument.

• If L and R are bracket symbols, write:

L x1,x2, . . .,xn R

In this case brackets (and) around the arguments are not necessary,
since the symbols themselves are already brackets. An example of this
kind of term is the ordered pair [x,y]. In that case n = 2, L is [and R
is].

• Any natural number is a Mizar term. If you write natural numbers, you
should add to your environ the line:

requirements SUBSET, NUMERALS, ARITHM;

because else they won’t behave like natural numbers.

The word functor for function symbol or operator symbol is Mizar terminology.
It has nothing to do with the notion of functor in category theory. It is used
to distinguish a function symbol in the logic from a function object in the set
theory (which is a set of pairs).

Again to find out what operators are available to you, you will need to browse
the MML. Here is a short list of some of the most frequent used operators to
get you started.

1.3. STEP 3: THE STATEMENT 9

∅ {}

{x} {x }
{x, y} {x,y }
X ∪ Y X \/ Y
X ∩ Y X /\ Y

N NAT

Z INT

R REAL

x+ y x + y
x− y x - y
−x -x
xy x * y
x/y x / y
x2 x^2
xy x to_power y√
x sqrt x

P(X) bool X
(x, y) [x,y]
X × Y [:X,Y :]
Y X Funcs(X,Y)
f(x) f.x
〈〉 <*>D
〈x〉 <*x *>
〈x, y〉 <*x,y *>
p · q p^q

The digit 2 is part of the symbol for the square operator. The last four operators
are used to build finite sequences over the set D.

The . operation is function application inside the set theory. If f is a symbol
in the language representing a functor with zero left arguments and one right
argument then you write:

f x

or (you can always put a term in brackets):

f(x)

If f is a function in the set theory – a set of pairs – then

f.x

is the image of x under f, in other words it is the y such that [x,y] in f.

Exercise 1.3.3 Translate the following Mizar formulas into mathematical
notation:

NAT c= REAL

1/0 = 0

10 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

sqrt -1 in REAL

sqrt(x^2) <> x

{x} /\ {-x} = {x} /\ {0}

[x,y] = {{x,y},{x}}

p = <*p.1,p.2*>

Exercise 1.3.4 Translate the following mathematical formulas into Mizar
syntax:

√
xy ≤ x+y

2

(−1,
√

2) ∈ Z × R

X ∩ Y ⊆ X ∪ Y

Y X ∈ P(P(X × Y))

〈x, y〉 = 〈x〉 · 〈y〉

p · 〈〉 = p

f(g(x)) 6= g(f(x))

1.3.4 Types: modes and attributes

The one thing left for you to understand to write Mizar formulas is Mizar’s
types. Although Mizar is based on ZF-style set theory – so the objects of Mizar
are untyped – the terms of Mizar are typed.

An example of a Mizar type is:

non empty finite Subset of NAT

This type should be parsed as:

non empty finite Subset of NAT

A Mizar type consists of an instance of a mode with in front a cluster of adjec-

tives. The type without the adjectives is called the radix type. In this case the
mode is Subset and its argument is NAT, the radix type is Subset of NAT, and
the two adjectives are non empty and finite.

To put this abstractly, a Mizar type is written:

α1 α2 . . . αm M of x1,x2, . . .,xn

1.3. STEP 3: THE STATEMENT 11

where α1, . . . αm are adjectives, M is a mode symbol and x1, x2, . . . , xn are
terms. The keyword of binds the arguments of the mode to the mode. It’s like
the brackets in a term.

The number of arguments n is part of the definition of the mode. For instance
for set it is zero. You can’t write set of . . . , because there does not exist a
set mode that takes arguments.

Modes are dependent types. To find out what modes are available to you,
you will need to browse the MML. Here is a short list of some of the most
frequent used modes to get you started.

set

number

Element of X
Subset of X

Nat

Integer

Real

Ordinal

Relation

Relation of X,Y
Function

Function of X,Y
FinSequence of X

Note that there both are modes Relation and Function with no arguments, and
more specific modes Relation of X,Y and Function of X,Y with two arguments.
They share the mode symbol but they are different.

Also note that the modes depend on terms. So there are no types represent-
ing the functions from a type to a type. The Function mode represents the func-
tions from a set to a set. As an example the function space (X → Y)×X → Y
corresponds to the Mizar type Function of [:Funcs(X,Y),X:],Y

Adjectives restrict a radix type to a subtype. They either are an attribute,
or the negation of an attribute using the keyword non. Again, to find out what
attributes are available to you, you will need to browse the MML. Here is a list
of a few attributes.

empty

even

odd

prime

natural

integer

real

finite

infinite

countable

12 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

Maybe you now wonder about how types are used in Mizar. To clarify this take
a look at three Mizar notions – NAT, Nat and natural – that all mean the same
thing: the set of natural numbers. Here is a table that compares their uses:

meaning declaration formula

n ∈ N n in NAT

n : N n be Nat n is Nat

n : N n be natural number n is natural

NAT is a term, Nat is a type and natural is an adjective. be/being are a typing
in a declaration and go between a variable and a type. in is the ∈ relation of
the set theory and goes between two terms. is goes between a term and a type
or between a term and an adjective. Note that in Mizar you can have a ‘type
judgement’ as a formula in the logic.

The example We now give the statement of the theorem for the example.
The statement that we will prove in this chapter is:

reserve a,b,c,m,n for Nat;

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd implies

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2;

So put this after the begin line of your my_mizar.miz file.
We also could have made the quantification of the a, b and c explicit:

for a,b,c st

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd holds

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2;

but it is not necessary. Mizar automatically quantifies over free variables.
We now analyze this statement in some detail. The formula has the struc-

ture:

φ1 & φ2 & φ3 implies ex m,n st φ4 & φ5 & φ6 & φ7;

The predicate logic formula that corresponds to this is:

(φ1 ∧ φ2 ∧ φ3) ⇒ ∃m,n. (φ4 ∧ φ5 ∧ φ6 ∧ φ7)

The first three atomic formulas in this are:

φ1 ≡ a^2 + b^2 = c^2

φ2 ≡ a,b are_relative_prime

φ3 ≡ a is odd

They have the structure:

φ1 ≡ t1 = t2

φ2 ≡ t3, t4 are relative prime

φ3 ≡ t5 is T

1.3. STEP 3: THE STATEMENT 13

In this = and are_relative_prime are predicate symbols. T is the adjective
odd. So we here see both kinds of atomic formula: twice a relation between
terms and once a typing.

The first term t1 in φ1 is:

t1 ≡ a^2 + b^2

It has the structure:

t1 ≡ u1 + u2

u1 ≡ v1 ^2

u2 ≡ v2 ^2

v1 ≡ a

v2 ≡ b

In this + and ^2 are functor symbols.

Exercise 1.3.5 Find Mizar types for the following concepts:

odd number that is not a prime number

empty finite sequence of natural numbers

uncountable set of reals

element of the empty set

non-empty subset of the empty set

What is the problem with the last two concepts? Do you think they should be
allowed in Mizar? Study this manual to find out whether they are.

Exercise 1.3.6 Write the following statements as Mizar formulas:

The only even prime number is 2.

If a prime number divides a product it divides one of the factors.

There is no biggest prime number.

There are infinitely many prime twins.

Every even number ≥ 4 is the sum of two primes.

Write these statements first using reserve statements. Then write them again
but this time with the types in the formulas.

14 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

1.4 Step 4: getting the environment right

Add the statement that you wrote to your article. Then check it. You will get
error messages:

environ

vocabularies MY_MIZAR;

begin

reserve a,b,c,m,n for Nat;

::> *151

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd implies

::>,203

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2;

::> 151: Unknown mode format

::> 203: Unknown token

That’s because you didn’t import what you used from the MML. There’s nothing
wrong with the statement, there’s something wrong with the environment (it’s
empty). To correct this, you need to add directives to the environ part of the
article to import what you need.

It is hard to get the environment of a Mizar article correct. In practice
people often just copy the environment of an old article. However that doesn’t
help much when it doesn’t work, and occasionally it doesn’t work. So you still
will have to understand how the environment works, to get it right when you
get environment related errors.

Exercise 1.4.1 Try to use an environment of an existing article from the
MML. Do the errors go away? If so, you might consider the rest of Step 4 for
now, and just use this environment.

1.4.1 Vocabulary, notations, constructors

The rule is quite simple. For everything you use – predicate, functor, mode or
attribute – you have to add a relevant reference to three directives:

• vocabularies

• notations

• constructors

The list of references for notations and constructors is generally almost iden-
tical. In fact, if you follow the algorithm from this section to get them right
they will be identical. These directives are about:

• Lexical analysis. The tokens in a Mizar article come from lists called vo-

cabularies. Mizar variables are identifiers with a fixed syntax, but the

1.4. STEP 4: GETTING THE ENVIRONMENT RIGHT 15

predicates, functors, types and attributes all are symbols which can con-
tain any character. You need to indicate from what vocabularies you use
symbols.

• Parsing of expressions. To have an expression you need to list the ar-
ticles that you use predicates, functors, types and attributes from. The
notations directive is for the syntax of expressions. The constructors

directive is for its meaning.

Here is a list of what was use in the statement, what kind of thing it is, and
what vocabularies and articles you need for it:

symbol kind vocabulary article

= pred HIDDEN

<= pred HIDDEN XREAL_0

+ func HIDDEN XCMPLX_0

* func HIDDEN XCMPLX_0

- func ARYTM_1 XCMPLX_0

Nat mode HIDDEN NAT_1

are_relative_prime pred ARYTM_3 INT_2

^2 func SQUARE_1 SQUARE_1

odd attr MATRIX_2 ABIAN

You don’t need to refer to the HIDDEN vocabulary or the HIDDEN article but
you need to list the others. The vocabularies should go in the vocabularies

directive and the articles should go both in the notations and constructors

directives. So your environment needs to be:

environ

vocabularies MY_MIZAR, ARYTM_1, ARYTM_3, SQUARE_1, MATRIX_2;

notations XREAL_0, XCMPLX_0, NAT_1, INT_2, SQUARE_1, ABIAN;

constructors XREAL_0, XCMPLX_0, NAT_1, INT_2, SQUARE_1, ABIAN;

Here is the way to find out what the vocabulary and article a given symbol are:

• To find the vocabulary use the command:

findvoc -w ’symbol’

For instance the command:

findvoc -w ’-’

gives:

FindVoc, Mizar Ver. 7.0.01 (Win32/FPC)

Copyright (c) 1990,2003 Association of Mizar Users

vocabulary: ARYTM_1

O- 32

16 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

The O means that this is a functor symbol, and 32 is the priority.

• To find the article, the easiest way is to go to the web pages of the abstracts
of the MML on the Mizar web site, find a use of the symbol somewhere,
and click on it to go to the definition.

Exercise 1.4.2 Find out what is in the HIDDEN vocabulary by typing:

listvoc HIDDEN

For each of the 25 symbols in this vocabulary, find an article that introduces a
notation that uses it.

1.4.2 Redefinitions and clusters

But now things get tough. It turns out that your environment still does not
work! The problem is that the types are wrong. If you check the article with
the new environment you get:

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd implies

::> *103

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2;

::> *102 *103 *103 *103

::> 102: Unknown predicate

::> 103: Unknown functor

To get rid of this kind of typing problems is the most difficult part of writing
a Mizar article. (In practice this kind of error often is caused because a cluster

is missing. So if you are completely mystified by a Mizar typing error, start
thinking ‘cluster!’)

The errors that you see here are indeed almost all caused by the fact that
some clusters are not imported in the environment. This causes the expressions
not to have the right types. For instance the first error is caused by the fact
that a^2 and b^2 have type Element of REAL, while the + wants its arguments
to have type complex number. We will show in detail why this is the case, and
how to fix this by importing the right clusters.

A Mizar expression doesn’t have just one type, it has a whole set of types.
For instance, with the right environment the number 2 has the following types:

1.4. STEP 4: GETTING THE ENVIRONMENT RIGHT 17

Nat

natural number

prime Nat

Integer

integer number

even Integer

Real

real number

Complex

complex number

Ordinal

ordinal number

set

finite set

non empty set

. . .

There are two ways to influence the types of an expression.

• To give a specific expression a more precise radix type, you use redefini-

tions. A functor can have many redefinitions that cause it to get different
types depending on the types of its arguments.

Here is an example of a redefinition taken from PEPIN:

definition let n be Nat;

redefine func n^2 -> Nat;

end;

What this does is change the type of some of the terms that use the ^2

operator.

The original definition (of which this is a redefinition) is in SQUARE_1:

definition let x be complex number;

func x^2 -> set equals x * x;

end;

In SQUARE_1 there already are two other redefinitions of ^2:

definition let x be Element of COMPLEX;

redefine func x^2 -> Element of COMPLEX;

end;

definition let x be Element of REAL;

redefine func x^2 -> Element of REAL;

end;

Now suppose that in your environment you have the directive:

18 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

notations . . . , SQUARE_1, PEPIN, . . . ;

Then if you write an expression t^2, the type of this expression will depend
on the type of t. All definitions and redefinitions of ^2 will be considered
in the order that they are imported through the notations directive. So
in this case the definition for complex number is first, then there is the
redefinition for Element of COMPLEX, then the redefinition for Element

of REAL, and finally (go to the next article, which is PEPIN) there is the
redefinition for Nat.

Now the rule is that the last redefinition that fits the type of all arguments
applies.

So if t has type Nat then t^2 has type Nat too, while if t does not have
any of the types Element of COMPLEX or Element of REAL or Nat, then it
will have type set.

Note that since the the order of the articles in the notations directive is
important for this!

• To generate more adjectives for an expression, Mizar has something called
clusters. The process of adding adjectives according to these clusters is
called the rounding up of clusters.

Here are three examples of clusters, taken from FINSET_1.

registration

cluster empty -> finite set;

end;

This means that every set that has adjective empty also will get adjective
finite.

registration let B be finite set;

cluster -> finite Subset of B;

end;

This means that every expression that has type Subset of B where B has
type finite set also will get adjective finite.

registration let X,Y be finite set;

cluster X \/ Y -> finite;

end;

This means that every expression of the shape X \/ Y where X and Y have
type finite set also will get adjective finite.

These examples show both kinds of cluster that add adjectives to the set
of types of an expression. The first two do this based on the type of
the expression (this is called ‘rounding up’ a type), and the third add
adjectives based on the shape of the expression.

1.4. STEP 4: GETTING THE ENVIRONMENT RIGHT 19

To summarize: redefinitions are for narrowing the radix type and clusters are for
extending the set of adjectives. (There are also redefinitions that have nothing
to do with typing – because they redefine something different from the type –
and a third kind of cluster that has nothing to do with adding adjectives. You
should not be confused by this.)

You can always test whether some type T is in the set of types of an expres-
sion t by changing it to (t qua T). You get an error if t didn’t have T in its
set of types. In that case you might start looking for a redefinition or cluster
that changes this situation.

The example The first error in the example:

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd implies

::> *103

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2;

::> *102 *103 *103 *103

::> 102: Unknown predicate

::> 103: Unknown functor

is that the + in a^2 + b^2 is not well-typed. (The * of the error message *103

indicates the position of the error. In this case it is below the + symbol.) The
definition of ^2 that is in effect here is from SQUARE_1:

definition let x be Element of REAL;

redefine func x^2 -> Element of REAL;

end;

and the definition of + is from XCMPLX_0:

definition let x,y be complex number;

func x+y means . . .
. . .

end;

So this shows that you would like a^2 and b^2 which have type Element of REAL
to also get type complex number. This means that you want these expressions
to get an extra adjective – the adjective complex – and so you need a cluster.
(Once again: for more adjectives you need clusters, while for a more precise
radix type you need a redefinition.)

It turns out that an appropriate cluster is in XCMPLX_0:

registration

cluster -> complex Element of REAL;

end;

After you add

registrations XCMPLX_0;

20 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

to the environment the first error indeed is gone and you only have two errors
left:

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd implies

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2;

::> *102 *103

::> 102: Unknown predicate

::> 103: Unknown functor

The next error (the *102 below the <=) is similar to the previous one. The <=

predicate expects arguments of type real number, but m and n have type Nat. If
you study the MML for some time you will find that Nat is the same as Element
of omega (the definition of Nat in NAT_1 and the synonym in NUMBERS.)

Therefore the following two clusters give you what you need. From ARYTM_3:

registration

. . .
cluster -> natural Element of omega;

end;

and from XREAL_0:

registration

cluster natural -> real number;

. . .
end;

The cluster directive now has become:

registrations XCMPLX_0, ARYTM_3, XREAL_0;

With this directive in the environment the only error left is:

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd implies

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2;

::> *103

::> 103: Unknown functor

This error is caused by the fact that Mizar does not consider 2 to be a Nat. You
will see below, after the discussion of the requirement directive, how to get rid
of this final error.

1.4.3 The other directives

Here is a list of the eight kinds of directives in the environ and the kind of
reference they take:

1.4. STEP 4: GETTING THE ENVIRONMENT RIGHT 21

vocabularies vocabulary

notations article

constructors article

registrations article

definitions article

theorems article

schemes article

requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL

Here is when you need the last four kinds of directive:

• The definitions directive is not about being able to use the theorems
that are part of the definitions (that’s part of the theorems directive.)
It’s about automatically unfolding predicates in the thesis that you are
proving.

This directive is useful but not important. You can ignore it until you get
up to speed with Mizar.

• The theorems and schemes directives list the articles you use theorems
and schemes from. So whenever you refer to a theorem in a proof, you
should check whether the article is in the list of this directive.

These are easy directives to get right.

• The requirements directive makes Mizar know appropriate things auto-
matically.

For instance to give numerals type Nat you need

requirements SUBSET, NUMERALS;

This is the solution to the last typing error left in your article.

With ARITHM Mizar also knows some basic equations about numbers au-
tomatically. For instance with it, Mizar accepts 1+1 = 2 without proof.

This is an easy directive to get right. Just put in all requirements and be
done with it.

So now that you got the environment right, the article checks like this:

environ

vocabularies MY_MIZAR, ARYTM_1, ARYTM_3, SQUARE_1, MATRIX_2;

notations XREAL_0, XCMPLX_0, NAT_1, INT_2, SQUARE_1, ABIAN;

constructors XREAL_0, XCMPLX_0, NAT_1, INT_2, SQUARE_1, ABIAN;

registrations XCMPLX_0, ARYTM_3, XREAL_0;

requirements SUBSET, NUMERALS;

begin

reserve a,b,c,m,n for Nat;

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd implies

22 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2;

::> *4

::> 4: This inference is not accepted

The only error left is *4. It means that Mizar is not able to prove the statement
on its own.

This is an important milestone. Articles with only *4 errors are ‘almost
finished’. They just need a bit of proof.

Exercise 1.4.3 For each of the following statements find an environment that
makes all errors different from error *4 go away:

for X,Y being non empty set,

f being Function of X,Y, g being Function of Y,X st

f is one-to-one & g is one-to-one holds

ex h being Function of X,Y st h is bijective

for p being FinSequence, D being set st

for i being Nat st i in dom p holds p.i in D holds

p is FinSequence of D;

for G being Group, H being Subgroup of G st

G is finite holds ord G = ord H * index H;

for GX being TopSpace, A,C being Subset of GX st

C is connected & C meets A & C \ A <> {}GX holds

C meets Fr A;

Exercise 1.4.4 Consider the nine types:

Element of NAT

Element of INT

Element of REAL

Element of COMPLEX

Nat

Integer

Real

Complex

natural number

integer number

real number

complex number

There are 81 pairs of different types T1 and T2 from this list for which the
formula:

for x being T1 holds (x qua T2) = x;

1.5. STEP 5, MAYBE: DEFINITIONS AND LEMMAS 23

should be allowed (however not all of them are provable in the MML). What is an
environment that gives the minimum number of error messages *116 (meaning
Invalid "qua")? What is used from the articles in this environment?

Exercise 1.4.5 Apart from the kinds of cluster that we showed in Section 1.4.2
(the ones that generate extra adjectives for terms), Mizar has something called
existential clusters. These are the clusters without ->. They don’t generate
extra adjectives for a term. Instead they are needed to be allowed to add
adjectives to a type.

The reason for this is that Mizar types always have to be non-empty. So to
be allowed to use a type something has to be proved. That is what an existential
cluster does.

For example to be allowed to use the type:

non empty finite Subset of NAT

you needs an existential cluster from GROUP_2:

registration let X be non empty set;

cluster finite non empty Subset of X;

end;

If you don’t have the right existential clusters in your article you will get error
*136 which means non registered cluster.

Which types in the following list have an existential cluster in the MML?
For the ones that have one, where did you find them? For the ones that don’t
have one, what would be an appropriate existential cluster?

empty set

odd prime Nat

infinite Subset of REAL

non empty Relation of NAT,NAT

1.5 Step 5, maybe: definitions and lemmas

Step 5 you can skip. Then you just start working on the proof of the theorem
immediately.

However if you did step 1 right, you probably have some lemmas that you
know you will need. Or maybe you need to define some notions before being
able to state your theorem at all.

So do so in this step. Add relevant definitions and lemmas to your article
now. Just like the statement in step 3. Without proof. Yet.

24 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

1.5.1 Functors, predicates

There are two ways to define a functor in Mizar:

• As an abbreviation:

definition let x be complex number;

func x^2 -> complex number equals x * x;

coherence;

end;

The coherence correctness condition is that the expression x * x really
has type complex number like it was claimed. If Mizar can’t figure this
out by itself you will have to prove it.

• By a characterization of the result:

definition let a be real number;

assume 0 <= a;

func sqrt a -> real number means

0 <= it & it^2 = a;

existence;

uniqueness;

end;

In the characterizing statement the variable it is the result of the functor.

The existence and uniqueness are again correctness conditions. They
state that there always exists a value that satisfies the defining property,
and that this value is unique. (In the proof of them you are allowed to
use that the assumption from the definition is satisfied.)

In this case existence is the statement:

ex x being real number st 0 <= x & x^2 = a

and uniqueness is the statement:

for x,x’ being real number st

0 <= x & x^2 = a & 0 <= x’ & x’^2 = a holds x = x’

And here is an example of the way to define a predicate:

• definition let m,n be Nat;

pred m,n are_relative_prime means

m hcf n = 1;

end;

The definition of a predicate doesn’t have a correctness condition. (In this
example hcf is the greatest common divisor.)

1.5. STEP 5, MAYBE: DEFINITIONS AND LEMMAS 25

1.5.2 Modes and attributes

There are two ways to define a mode in Mizar:

• As an abbreviation:

definition let X,Y be set;

mode Function of X,Y is

quasi_total Function-like Relation of X,Y;

end;

In this definition quasi_total and Function-like are attributes.

• By a characterization of its elements.

definition let X,Y be set;

mode Relation of X,Y means

it c= [:X,Y:];

existence;

end;

The existence correctness condition states that the mode is inhabited.
This has to be the case because Mizar’s logic wants all Mizar types to be
non-empty.

In this case existence is the statement:

ex R st R c= [:X,Y:]

And here is an example of the way to define an attribute:

• definition let i be number;

attr i is even means

ex j being Integer st i = 2*j;

end;

The example The essential lemma for the example is that if two numbers are
relative prime and their product is a square, then they are squares themselves.
In Mizar syntax this is the statement:

m*n is square & m,n are_relative_prime implies

m is square & n is square

Now the attribute square is already present in the MML, but it is in the ar-
ticle PYTHTRIP, and that is the article that you are currently writing! So let’s
prentend it is not there and add it to the article, to practice writing definitions.

The way to define the attribute square (this will enable you to have a type
square number) is:

26 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

definition let n be number;

attr n is square means

ex m being Nat st n = m^2;

end;

(Note that we do not only define the attribute square for expressions of type
Nat, but for all Mizar terms. Else statements like not -1 is square would not
be well typed.)

Part of most definitions is the introduction of a new symbol. In this case
it is the attribute symbol square. Again, it is already in the MML, in vocab-
ulary PYTHTRIP. But again, we do not want to use that, so let’s add it to the
vocabulary of the MY_MIZAR that you are writing.

So add the line:

Vsquare

to the my_mizar.voc file.
The V in front means that this is an attribute symbol. Vocabularies have an

O in front for functors, R in front for predicates, M in front for modes and V in
front for attributes.

The statements in a Mizar article can be local to the article or be visible to
the outside of the article. In the latter case they have to be preceded by the
keyword theorem. So add theorem in front of the statements, like this:

theorem Th1:

m*n is square & m,n are_relative_prime implies

m is square & n is square;

::> *4,4

theorem Th2:

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd implies

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2;

::> *4

::> 4: This inference is not accepted

(Note that there are two *4 errors below theorem Th1. The reason for this is
that the Mizar checker considers the two conclusions m is square and n is

square to be two different proof obligations.)

Exercise 1.5.1 Show that in Mizar definition by abbreviation is secondary
to definition by characterization:

How can you simulate the equals variant of a func definition with the means
variant of a func definition? Similarly: how can you simulate the is variant of
a mode definition with the means variant of a mode definition?

Exercise 1.5.2 We claimed that Mizar’s types are always non-empty. How-
ever you can write the type:

Element of {}

Explain why this is not a problem.

1.6. STEP 6: PROOF SKELETON 27

1.6 Step 6: proof skeleton

Mizar is a block structured language like the Pascal programming language.
Instead of begin/end blocks it has proof/end blocks. And instead of procedures
it has theorems. Apart from that it is a rather similar language.

We will now write the proof of the theorem. For the moment we just write
the steps and not link them together. Linking the steps in the proof will be step
7 of the nine easy steps.

A Mizar proof begins with the keyword proof and ends with the keyword
end.

Important! If you have a proof after a statement there should not be a
semicolon after the statement. So:

statement ;

proof

proof steps

end;

is wrong! It should be:

statement

proof

proof steps

end;

This is easy to do wrong. Then you will get a *4 error at the semicolon that
shouldn’t be there.

In this section we will discuss the following kinds of proof step. There are
some more but these are the frequently used ones:

step section

compact 1.6.2
assume 1.6.1
thus 1.6.1
let 1.6.1
take 1.6.1

consider 1.6.2
per cases/suppose 1.6.2

set 1.6.3
reconsider 1.6.3

iterative equality 1.6.4

1.6.1 Skeleton steps

During the steps of the proof the statement that needs to be proved is kept track
of. This is the ‘goal’ of the proof. It is called the thesis and can be referred to
with the keyword thesis.

28 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

A Mizar proof consists of steps. Steps contain statements that you know to
be true in the given context. Some of the steps reduce the thesis. At the end

of the proof the thesis should be reduced to > or else you will get error *70

meaning Something remains to be proved. Steps that change the thesis are
called skeleton steps.

The four basic skeleton steps are assume, thus, let and take. They corre-
spond to the shape of the thesis in the following way:

thesis to be proved, before the step thesis to be proved, after

φ implies ψ assume φ ψ
φ & ψ thus φ ψ
for x being T holds ψ let x be T ψ
ex x being T st ψ take t ψ[x := t]

Just like with for the typing can be left out of the let if the variable is in a
reserve statement.

Here is an example of how these skeleton steps work in a very simple proof:

for x,y st x = y holds y = x

proof

let x,y;

assume x = y;

thus y = x;

end;

At the start of the proof the thesis is for x,y st x = y holds y = x. After
the let step it is reduced to x = y implies y = x. After the assume step it
is reduced to y = x. After the thus step it is reduced to > and the proof is
complete.

The skeleton steps of the proof of the example will be:

theorem Th2:

a^2 + b^2 = c^2 & a,b are_relative_prime & a is odd implies

ex m,n st m <= n & a = n^2 - m^2 & b = 2*m*n & c = n^2 + m^2

proof

assume a^2 + b^2 = c^2;

assume a,b are_relative_prime;

assume a is odd;

take m,n;
thus m <= n;
thus a = n^2 - m^2;

thus b = 2*m*n;
thus c = n^2 + m^2;

end;

At this point we don’t have anything to put in the place of the m and n. We
need another kind of step for that.

1.6. STEP 6: PROOF SKELETON 29

Exercise 1.6.1 Explain why you can always end a proof with a thus thesis

step. This is the Mizar version of quod erat demonstrandum. Count in the
MML how many times this construction occurs. (Include in your count hence

thesis which is the same thing.) Is there an occurence of thesis in the MML
which is not part of this construction?

Exercise 1.6.2 Write the skeleton steps in the proofs for the following Mizar
statements:

x = 0 & y = 0 implies x + y = 0 & x*y = 0

ex x st x in X implies for y holds y in X

for n st not ex m st n = 2*m holds ex m st n = 2*m + 1

(ex n st n in X) implies

ex n st n in X & for m st m < n holds not m in X

Write a fresh variable in the take steps if there is no good choice for the term.

1.6.2 Compact statements and elimination

The simplest step is a compact step. This is just a statement that is true in the
current context. This is the most common step in a Mizar proof. So a Mizar
proof skeleton for the most part just looks like:

. . .
statement;

statement;

statement;

. . .

where each statement in the list is a consequence of a combination of some of
the preceding statements.

And then there are the consider and per cases/suppose constructions.
They are both related to a statement:

if you can prove this . . . you can have this as a proof step

ex x st φ consider x such that φ;

φ1 or φ2 or . . . or φn per cases;

suppose φ1;

proof for the case φ1

end;

suppose φ2;

proof for the case φ2

end;

. . .
suppose φn;

proof for the case φn

end;

30 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

To use natural deduction terminology, these steps correspond to existential and
disjuction elimination. The consider step introduces a variable that you can
refer to in your proof, just like the let step.

We can now add the following steps to the example proof to give us terms m
and n for the take step:

. . .
((c - a)/2)*((c + a)/2) = (b/2)^2;

((c - a)/2)*((c + a)/2) is square;

(c - a)/2,(c + a)/2 are_relative_prime;

(c - a)/2 is square & (c + a)/2 is square;

consider m such that (c - a)/2 = m^2;

consider n such that (c + a)/2 = n^2;

take m,n;

. . .

The first four steps are compact statements. The two consider steps use the
existential statement that’s part of the definition of square.

1.6.3 Macros and casts

Often in proofs certain expressions occur many times. It is possible to give such
expressions a name using set commands:

set h = b/2;

set m2 = (c - a)/2;

set n2 = (c + a)/2;

A set command is a definition of a constant that is local to the proof. It behaves
very much like a macro.

When writing Mizar articles, often you want to use an expression with a
different type than it’s got. You can change the type of an expression with the
reconsider command. This is like a set, but also gives the type of the new
variable.

In the example we will need the abbreviated variables h, m2 and n2 to have
type Nat. This can be accomplished by changing the set lines in the previous
paragraph to:

reconsider h = b/2 as Nat;

reconsider m2 = (c - a)/2 as Nat;

reconsider n2 = (c + a)/2 as Nat;

Again the new variables behave like macros, but now with a different type. So
reconsider is a way to cast the type of a term.

1.6.4 Iterative equalities

In mathematical calculations one often has a chain of equalities. Mizar has this
feature too.

1.7. STEP 7: COMPLETING THE PROOF 31

You can write a calculation:

(c− a

2

)(c+ a

2

)

=
(c− a)(c+ a)

4
=
c2 − a2

4
=
b2

4
=
(b

2

)2

in Mizar as:

((c - a)/2)*((c + a)/2) = (c - a)*(c + a)/4

.= (c^2 - a^2)/4

.= b^2/4

.= (b/2)^2;

Such a chain of .= equalities is called an iterative equality. Note that the first
equality in the chain is written with the = symbol instead of with the .= symbol.

Exercise 1.6.3 Collect the steps for the proof of Th2 that were given in this
section. Put them in the proper order in your my_mizar.miz file. Use the
reconsider lines (not the set lines) and replace the abbreviated expressions
everywhere by their abbreviation. Put in the iterated equality as well.

Add two compact statements before the reconsider lines stating that b is
even and that c is odd. They will be needed to justify the reconsider lines.
Add two compact statements relating m2 and n2 to a and c after the reconsider
lines.

Now check your file with mizf. Update the environment if necessary until
you have only *4 errors left. How many *4 errors do you get?

1.7 Step 7: completing the proof

In this section you will add justifications to the steps of your proof. That will
finish your article.

1.7.1 Getting rid of the *4 errors

There are three ways to justify a step in Mizar:

• By putting a semicolon ; after it:

statement ;

This is the empty justification. It tells Mizar: figure this out by yourself.

• By putting by after it with a list of labels of previous statements:

statement by reference , . . . , reference ;

In fact the previous way to justify a step is the special case of this in which
the list of references is empty.

32 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

• By putting a subproof after it:

statement proof steps in the subproof end;

The subproofs are what gives Mizar proofs the block structured look.

If you don’t use thesis in a subproof, the statement can be reconstructed
from the skeleton steps in that subproof. Therefore you might want to
omit the statement. You can do this by using now:

now steps in the subproof end;

This is exactly the same as the statement with the subproof, but you don’t
need to write the statement.

Here is a small example that shows how by is used:

(x in X implies x in Y) & x in X implies x in Y

proof

assume

A1: x in X implies x in Y;

assume

A2: x in X;

thus x in Y by A1,A2;

end;

Of course this one is so easy that Mizar can do it on its own:

(x in X implies x in Y) & x in X implies x in Y ;

Often in the list of references after a by justification, there is a reference to the
previous statement. This can also be written by putting the keyword ‘then’ in
front of the step. Using then you can often avoid having to label statements.
So you can replace:

A1: statement;

A2: statement;

statement by A1,A2:

by

A1: statement;

statement;

then statement by A1;

Some people like writing the then on the previous line, after the statement that
it refers to:

A1: statement;

statement; then

statement by A1;

1.7. STEP 7: COMPLETING THE PROOF 33

This is a matter of taste. Other people choose the position of the then depending
on whether the statement after the then has a label or not.

When you want to use then to justify a thus step you are not allowed to write
then thus. You have to write hence. In Mizar when in certain combinations
of two keyword get together you have to replace the combination by something
else. Here are the two relevant equations:

then + thus = hence

thus + now = hereby

So the hence keyword means two things:

1. This follows from the previous step.

2. This is part of what was to be proved.

A common Mizar idiom is hence thesis. You see that many times in any Mizar
article.

1.7.2 Properties and requirements

So now you need to hunt the MML for relevant theorems. This is made difficult
by three reasons:

• The MML is big.

• The MML is not ordered systematically but chronologically. It is like a
mediaeval library in which the books are put on the shelf in the order that
they have been acquired.

• Mizar is smart. The theorem you can use might not look very much like
the theorem you are looking for.

As an example of the fact that theorems can be in unexpected places, the basic
theorem that relates the two kinds of dividability that are in the Mizar libary:

m divides n iff m divides (n qua Integer);

is in an article called SCPINVAR which is about loop invariants of a certain small
computer program (SCP stands for SCMPDS program and SCMPDS stands for
small computer model with push-down stack).

The best way to find theorems in the MML is by using the grep command to
search all the .abs abstract files. Although the MML is huge it’s small enough
for this to be practical. For instance this is an appropriate command to search
for the theorem in the SCPINVAR article:

% grep ’divides .* qua’ $MIZFILES/abstr/*.abs

/usr/local/lib/mizar/abstr/scpinvar.abs: m divides n iff m divides (n qua Integer);

%

34 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

Another problem when looking for theorems is that Mizar is too smart.
If you look at the definitions of +, * and <= you will find that they con-

tain the keywords commutativity, reflexivity, connectedness, synonym and
antonym:

definition let x,y be complex number;

func x + y means

:: XCMPLX_0:def 4

. . .
commutativity;

func x * y means

:: XCMPLX_0:def 5

. . .
commutativity;

end;

definition let x,y be real number;

pred x <= y means

:: XREAL_0:def 2

. . .
reflexivity;

connectedness;

end;

notation let x,y be real number;

synonym y >= x for x <= y;

antonym y < x for x <= y;

antonym x > y for x <= y;

end;

These keywords mean two things:

• If you use a synonym or antonym then Mizar will internally use the real
name. So if you write:

a < b

then internally Mizar will consider this to be an abbreviation of:

not b <= a

and if you write:

a >= b

then internally Mizar will consider this to mean:

b <= a

1.7. STEP 7: COMPLETING THE PROOF 35

• Mizar will always ‘know’ when justifying a step, about the properties
commutativity, reflexivity and connectedness. So if you have a state-
ment:

. . . x*y . . .

then Mizar behaves as if this statement is exactly the same as:

. . . y*x . . .

Also Mizar will use all implication of the shape:

x = y ⇒ x ≤ y

and:
x ≤ y ∨ y ≤ x

when trying to do a justification. These properties mean for the < relation
that:

¬(x < x)

and:
x < y ⇒ x ≤ y

For instance if you have proved:

a < b

then you can refer to this when you only need:

a <> b

This is all very nice but let’s look at three examples of the subtlety it leads to:

• Suppose you want to justify the following step:

a >= 0;

then c - a <= c by . . . ;

It turns out that the theorem that you need is:

theorem :: REAL_2:173

(a<0 implies a+b<b & b-a>b) & (a+b<b or b-a>b implies a<0);

It will give you:

c - a > c implies a < 0

but because of the antonym definition of < and > this really means:

36 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

not c - a <= c implies not 0 <= a

which is equivalent to:

0 <= a implies c - a <= c

Which is what you need.

• Suppose you need to prove the equation:

(c + a + c - a)/2 = (c + c + a - a)/2

The + and - operators have the same priority and are left associative, so
this has to be read as:

(((c + a) + c) - a)/2 = (((c + c) + a) - a)/2

Because of commutativity of + this really is the same as:

((c + (c + a)) - a)/2 = (((c + c) + a) - a)/2

So you need to show that: c + (c + a) = (c + c) + a which is asso-
ciativity of +, a theorem from the XCMPLX_1 article:

theorem :: XCMPLX_1:1

a + (b + c) = (a + b) + c;

Note that the original equation doesn’t look very much like an instance of
associativity!

• Consider the transitive law for <=:

theorem :: AXIOMS:22

x <= y & y <= z implies x <= z;

It’s good to have this, but where is the analogous law for <:

x < y & y < z implies x < z;

It turns out that this also is AXIOMS:22! To see why this is the case, note
that it is a consequence of the stronger theorem:

x <= y & y < z implies x < z;

and becase of the antonym definition of < this is the same as:

x <= y & not z <= y implies not z <= x;

1.7. STEP 7: COMPLETING THE PROOF 37

which is equivalent to:

z <= x & x <= y implies z <= y;

which is indeed AXIOMS:22.

(The ‘arithmetical lemmas’ for the arithmetical operations that we have used
as examples here all are in the articles AXIOMS, REAL_1, REAL_2 and XCMPLX_1.
The rule is that if the lemma that your are looking for is valid in the complex
numbers (which generally means that it just involves equality and not <= or <)
then it is in XCMPLX_1. Unfortunately if it does talk about inequalities, then
you will have to look in all the other three articles. In that case there is not an
easy rule that will tell you where it has to be.)

Sometimes you should not go look for a theorem. If you have requirements
ARITHM then Mizar knows many facts about the natural numbers without help.
Sometimes those facts even don’t have a theorem in the library anymore, so you
search for a long time if you don’t realize that you should use requirements.
For instance if you use requirements ARITHM:

x + 0 = x;

and:

0*x = 0;

and:

1*x = x;

and:

0 < 1;

and:

0 <> 1;

all don’t need any justification.
Suppose you want to justify:

a >= 1;

then a > 0 by . . . ;

If you had 0 < 1 then this would just be an instance of AXIOMS:22 (as we just
saw). But requirements ARITHM gives that to you for free! So you can just
justify this step with AXIOMS:22.

Exercise 1.7.1 We claim that the MML is big. Count how many source
lines there are in the .miz articles in the MML. Try to guess how many lines of
Mizar a competent Mizar author writes per day and then estimate the number
of man-years that are in the MML.

38 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

1.7.3 Automation in Mizar

In Mizar it’s not possible to write tactics to automate part of your proof effort
like you can do in other proof checkers. All Mizar’s automation is built into the
Mizar system by its developers.

Mizar has four kinds of automation:

Semantic correlates Internally Mizar stores its formulas in some kind of
conjunctive normal form that only uses ∧, ¬ and ∀.

This means that it automatically identifies some equivalent formulas. These
equivalence classes of formulas are called semantic correlates. Because of se-
mantic correlates, the skeleton steps of a formula are more powerful than you
might expect. For instance you can prove:

φ
proof

assume not φ;
. . .
thus contradiction;

end;

and also you can prove:

φ or ψ
proof

assume not φ;
. . .
thus ψ;
end;

(Mizar does not identify φ & ψ with ψ & φ. You have to put the thus steps in
a proof in the same order as the conjuncts appear in the thesis.)

Properties and requirements Properties and requirements were discussed
in the previous section.

Clusters Clusters automatically generate adjectives for expressions. Often
theorems can be rephrased as clusters, after which they will become automatic.

Consider for instance the theorem:

m is odd square & n is odd square implies m + n is non square;

which says that a square can never be the sum of two odd squares. (The reason
for this is that odd squares are always 1 modulo 4, so the sum would be 2
modulo 4, but an even square is always 0 modulo 4.)

This theorem can be rephrased as a cluster:

1.7. STEP 7: COMPLETING THE PROOF 39

definition let m,n be odd square Nat;

cluster m + n -> non square;

end;

Once you have proved this cluster Mizar will apply the theorem automatically
when appropriate and you don’t have to give a reference to it in your proofs.

Justification using by The by justifier is a weak first order prover. It tries
to deduce the statement in front of the by from the statements that are referred
to after the by.

A by justification pretty much feels like a ‘natural reasoning step’. When
one studies the proofs that humans write, it turns out that they tend to choose
slightly smaller steps than by can do.

The way by works is:

• It puts the implication that it has to prove in conjunctive normal form.
Then it tries to do each conjunct separately.

That’s why you often get more than one *4 error for a failed justification.
Mizar puts in an error for every conjunct that has not been justified.

• It then tries to prove the inference. In only one of the antecedents can a
universal quantifier be instantiated. Therefore:

A1: for x holds x in X;

A2: for x holds not x in X;

contradiction by A1,A2;

won’t work because it both has to instantiate the for in A1 and A2. You
will need to split this into:

A1: for x holds x in X;

A2: for x holds not x in X;

a in X by A1;

then contradiction by A2;

• The by prover will do congruence closure of all the equalities that it knows.
It also will combine the typing information of equal terms.

• A conclusion that has an existential quantifier is equivalent to an an-
tecedent that has a universal quantifier. Therefore by is able to derive
existential statements from instantiations of it.

1.7.4 Unfolding of definitions

Here is a table that shows when Mizar will unfold definitions:

40 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

func/equals −
func/means −
pred/means ¦
mode/is +
mode/means ¦
attr/means ¦
set +

The items in this table that have a + behave like macros. For instance the
definition of Nat is:

definition

mode Nat is Element of NAT;

end;

If you write Nat it’s exactly like writing Element of NAT. So theorems about
the Element mode will automatically apply to Nat.

The items in the table that have a − will never be expanded. All you get is
a definitional theorem about the notion. You will need to refer to this theorem
if you want to use the definition.

The items in the table that have a ¦ will be expanded if you use the
definitions directive. Expansion only happens in the thesis. It takes place if
a skeleton step is attempted that disagrees with the shape of the thesis.

For instance the definition of c= is:

definition let X,Y;

pred X c= Y means

:: TARSKI:def 3

x in X implies x in Y;

reflexivity;

end;

If you have TARSKI in your definitions you can prove set inclusion as follows:

X c= Y

proof

let x be set;

assume x in X;

. . .
thus x in Y;

end;

Similarly consider the definition of equality in XBOOLE_0:

definition let X,Y;

redefine pred X = Y means

:: X_BOOLE_0:def 10

X c= Y & Y c= X;

end;

1.7. STEP 7: COMPLETING THE PROOF 41

If you add XBOOLE_0 to your definitions it will allow you to prove:

X = Y

proof

. . .
thus X c= Y;

. . .
thus Y c= X;

end;

or even:

X = Y

proof

hereby

let x be set;

assume x in X;

. . .
thus x in Y;

end;

let x be set;

assume x in Y;

. . .
thus x in X;

end;

Exercise 1.7.2 Write Mizar proofs of the following three statements:

reserve X,Y,Z,x for set;

for X holds X c= X;

for X,Y st X c= Y & Y c= X holds X = Y;

for X,Y,Z st X c= Y & Y c= Z holds X c= Z;

that only make use of the following two theorems from the MML:

theorem :: TARSKI:2

for X,Y holds

X = Y iff for x holds x in X iff x in Y;

theorem :: TARSKI:def 3

for X,Y holds

X c= Y iff for x st x in X implies x in Y;

(If you look in the MML, it will turn out that in the TARSKI article this is not
exactly what’s there. We present it like this for didactic purposes.)

The approach you should follow in your proof, is that in order to prove a
statement like X c= Z you should first prove that:

42 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

. . .
A1: for x holds x in X implies x in Z;

proof

. . .
end;

. . .

and then justify the X c= Z by referring to this for statement, together with
TARSKI:def 3:

. . .
X c= Z by A1,TARSKI def:3;

. . .

Try to make proofs in which the argumentation is as clear as possible, but also
make a second set of proofs that are as small as possible.

Exercise 1.7.3 Take the following skeleton proof of the the drinker’s principle.
It is called the drinker’s principle because if X is the set of people in a room
that are drinking, then it says that in each room there is a person such that if

that person is drinking, then everyone in that room is drinking. This sounds
paradoxical (why should one person have the power to make all other people in
the room drink?) but when you really understand what it says, it is not.

reserve X,x,y for set;

ex x st x in X implies for y holds y in X

proof

per cases;

suppose ex x st not x in X;

consider x such that not x in X;

take x;

assume x in X;

contradiction;

let y;

thus y in X;

end;

suppose not ex x st not x in X;

for x holds x in X;

assume x in X;

thus thesis;

end;

end;

Add labels to the statements and put in justifications for all the steps.
Experiment with other proofs of the same statement. If you know con-

structive logic: write a Mizar proof of this statement that shows where the
non-constructive steps in the proof are.

1.8. STEP 8: CLEANING THE PROOF 43

Exercise 1.7.4 Write a proof of the following statement:

reserve X,Y,x,y for set;

for X,Y,y holds

((ex x st x in X implies y in Y) &

(ex x st y in Y implies x in X))

iff (ex x st x in X iff y in Y);

Can you think of a proof that doesn’t need per cases?

Exercise 1.7.5 Finish the proof of Th2. Add as many clusters and lemmas as
you need. For instance you might use:

Lm1: m is odd square & n is odd square implies

m + n is non square;

Lm2: n is even iff n/2 is Nat;

Lm3: m,n are_relative_prime iff

for p being prime Nat holds not (p divides m & p divides n);

Lm4: m^2 = n^2 iff m = n;

but if you choose to use different lemmas that’s fine too. Just put them before
the theorem (you can prove them later if you like). If you don’t think a lemma
will be useful to others you don’t have to put theorem in front of it.

Now add compact statements and justifications to the proof of Th2 until all
the *4 errors are gone.

1.8 Step 8: cleaning the proof

Now that you finished your article the fun starts! Mizar has several utilities to
help you improve your article. These utilities will point out to you what is in
your article that is not necessary.

Those utilities don’t put their error messages inside your file on their own.
You need to put the name of the program as an argument to the program revf

to accomplish that.

relprem This program points out references in a by justifications – as well
occurrences of then – that are not necessary. These references can be safely
removed from your article.

This program also points out the real errors in the article. Some people
prefer to always use relprem instead of mizf.

relinfer This program points out steps in the proof that are not necessary.
It will indicate references to statements that can be short-circuited. You can
omit such a reference and replace it with the references from the step that it
referred to.

As an example of relinfer consider the following part of a proof:

44 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

A1: m2*n2 = h^2 by . . . ;
A2: m2*n2 is square by A1;

A3: m2,n2 are_relative_prime by . . . ;
A4: m2 is square & n2 is square by A2,A3,Th1;

consider m such that m2 = m^2 by A4;

. . .

If you run:

revf relinfer my_mizar

then you will get *604 meaning Irrelevant inference:

A1: m2*n2 = h^2 by . . . ;
A2: m2*n2 is square by A1;

A3: m2,n2 are_relative_prime by . . . ;
A4: m2 is square & n2 is square by A2,A3,Th1;

::> *604

consider m such that m2 = m^2 by A4;

. . .

It means that you can replace the reference to A2 in step A4 with the references
in the justification of A2 itself. In this case that’s A1. So the proof can be
shortened to:

A1: m2*n2 = h^2 by . . . ;
A3: m2,n2 are_relative_prime by . . . ;
A4: m2 is square & n2 is square by A1,A3,Th1;

consider m such that m2 = m^2 by A4;

. . .

Please take note that the relinfer program is dangerous! Not because your
proofs will break but because they might become ugly. relinfer encourages
you to cut steps that a human might want to see.

reliters (pronounced rel-iters, not re-liters) This program points out steps
in an interative equality that can be skipped. If you omit such a step you have
to add its references to the references of the next one.

As an example of reliters consider the following iterative equality:

m2*n2 = (c - a)*(c + a)/(2*2) by XCMPLX_1:77

.= (c - a)*(c + a)/4

.= (c^2 - a^2)/4 by SQUARE_1:67

.= b^2/4 by A1,XCMPLX_1:26

.= b^2/(2*2)

.= b^2/2^2 by SQUARE_1:def 3

.= h^2 by SQUARE_1:69;

If you run:

1.8. STEP 8: CLEANING THE PROOF 45

revf reliters my_mizar

then you will get *746 meaning References can be moved to the next step

of this iterative equality:

m2*n2 = (c - a)*(c + a)/(2*2) by XCMPLX_1:77

.= (c - a)*(c + a)/4

::> *746

.= (c^2 - a^2)/4 by SQUARE_1:67

.= b^2/4 by A1,XCMPLX_1:26

::> *746

.= b^2/(2*2)

.= b^2/2^2 by SQUARE_1:def 3

.= h^2 by SQUARE_1:69;

So you can remove the terms with the *746 from the iterative equality. You
then have to move the references in the justification to that of the next term in
the sequence. So the iterative equality can be shortened to:

m2*n2 = (c - a)*(c + a)/(2*2) by XCMPLX_1:77

.= (c^2 - a^2)/4 by SQUARE_1:67

.= b^2/(2*2) by A1,XCMPLX_1:26

.= b^2/2^2 by SQUARE_1:def 3

.= h^2 by SQUARE_1:69;

trivdemo This program points out subproofs that are so simple that you can
replace them with a single by justification. It’s surprising how often this turns
out to be the case!

chklab This program points out all labels that are not referred to. They can
be safely removed from your article.

inacc This program points out the parts of the proofs that are not referred
to. They can be safely removed from your article.

irrvoc This program points out all vocabularies that are not used. They can
be safely removed from your article.

irrths This program points out the articles in the theorem directive that are
not used for references in the proofs. They can be safely removed from your
article.

Cleaning your article is fun! It really feels like polishing something after it is
finished and making it beautiful.

Remember to check your article once more with mizf after you have finished
optimizing it, to make sure that you haven’t accidentally introduced any new
errors.

46 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

Exercise 1.8.1 Take the proof that you made in exercise 1.7.3 and run the
programs that are discussed in this section on it. Which of the programs advise
you to change your proof?

Exercise 1.8.2 Consider the statements in a Mizar proof to be points in a
graph and references to the statements to be the edges. What are the relprem

and relinfer optimizations when you consider them as transformations of these
graphs? Draw a picture!

1.9 Step 9: submitting to the library

So now your article is finished and clean. You should consider submitting it to
the MML.

There are two rules that articles for the MML have to satisfy:

• It is mathematics that’s not yet in the MML.

There should not be alternate formalizations of the same concepts in the
MML. There’s too much double work in the MML already.

• It is significant.

As a rule of thumb the article should be at least a 1000 lines long. If it’s
too short consider extending your article until it’s long enough.

There are many reasons to submit your article to the MML:

• People will be able to use your work and build on it.

• Your definitions will be the standard for your subject in later Mizar arti-
cles.

• When the Mizar system changes your article will be kept compatible by
the people of the Mizar group.

• An automatically generated TEX version of your article will be published
in a journal called Formalized Mathematics.

To find the details of how to submit an article to the MML go to the web page
of the Mizar project and click on the appropriate link. Be aware that to submit
your article to the MML you need to sign a form that gives the Mizar people
the right to change it as they see fit.

If your article is not suitable for submission to the MML but you still want
to use it to write further articles, you can put it in a local library of your own.
Currently this kind of local library will only support a few articles before it
becomes rather inefficient. The MML has been optimized such that library
files don’t grow too much. You can’t do this optimization for your local library
yourself, because the tool for it is not distributed. So it’s really better to submit
your work to the MML if possible.

1.9. STEP 9: SUBMITTING TO THE LIBRARY 47

If you want a local library of your own there need to be a third directory
called prel next to the already existing dict directory. To put the files for your
article in this directory you need to run the command:

miz2prel text\my_mizar

outside your text and prel directories (it will put some files in your prel

directory.) After you have run miz2prel you can then use your article in further
articles.

Exercise 1.9.1 How many Mizar authors are there in the MML? Shouldn’t
you be one?

48 CHAPTER 1. WRITING A MIZAR ARTICLE IN NINE EASY STEPS

Chapter 2

Some advanced features

Now that you know how to write a Mizar article, let’s take a look at some more
advanced features of Mizar that you haven’t seen yet.

To show these features we use a small proof by Grzegorz Bancerek from
the article quantal1.miz. This article is about the mathematical notion of
quantales. It is not important that you know what quantales are. We just use
this proof to show some of Mizar’s features.

reserve

Q for left-distributive right-distributive complete Lattice-like

(non empty QuantaleStr),

a, b, c, d for Element of Q;

theorem Th5:

for Q for X,Y being set holds "\/"(X,Q) [*] "\/"(Y,Q) = "\/"({a[*]

b: a in X & b in Y}, Q)

proof let Q; let X,Y be set;

deffunc F(Element of Q) = $1[*]"\/"(Y,Q);

deffunc G(Element of Q) = "\/"({$1[*]b: b in Y}, Q);

defpred P[set] means $1 in X;

deffunc H(Element of Q,Element of Q) = $1[*]$2;

A1: for a holds F(a) = G(a) by Def5;

{F(c): P[c]} = {G(a): P[a]} from FRAENKEL:sch 5(A1);

hence

"\/"(X,Q) [*] "\/"(Y,Q) =

"\/"({"\/"({H(a,b) where b is Element of Q: b in Y}, Q)

where a is Element of Q: a in X}, Q) by Def6 .=

"\/"({H(c,d) where c is Element of Q,

d is Element of Q: c in X & d in Y}, Q)

from LUBFraenkelDistr;

end;

This proof is about a more abstract kind of mathematics than the example

49

50 CHAPTER 2. SOME ADVANCED FEATURES

from the previous chapter. Mizar is especially good at formalizing abstract
mathematics.

2.1 Set comprehension: the Fränkel operator

The proof of theorem Th5 from quantal1.miz contains expressions like:

{ H(a,b) where b is Element of Q: b in Y }

This corresponds to:
{H(a, b) | b ∈ Y }

where a is a fixed parameter and b is allowed to range over the elements of Q
that satisfy b ∈ Y .

In Mizar this style of set comprehension is called the Fränkel operator. It
corresponds to the axiom of replacement in set theory, which was first proposed
by Adolf Fränkel, the F in ZF.

The general form of the Fränkel operator is:

{ term where declaration of the variables: formula }

As you can see in some of the other Fränkel operator terms in the proof, if all
variables in the term occur in a reserve statement their declarations can be
left implicit.

To be allowed to write a Fränkel operator, the types of the variables involved
need to widen to a Mizar type that has the form Element of A. Only then can
Mizar know that the defined set is really a set. Because else you could write
proper classes like:

{ X where X is set: not X in X }

But in Mizar this expression is illegal because set doesn’t widen to a type of
the form Element of.

Exercise 2.1.1 Write in Mizar syntax the statement that the set of prime
numbers is infinite. Prove it.

2.2 Beyond first order: schemes

The proof of theorem Th5 from quantal1.miz uses the from justification.
Mizar is based on first order predicate logic. However first order logic is

slightly too weak to do ZF-style set theory. With first order logic ZF-style set
theory needs infinitely many axioms. That’s because ZF set theory contains an
axiom scheme, the axiom of replacement.

Here is a table that shows how scheme and from is similar to theorem and
by:

2.2. BEYOND FIRST ORDER: SCHEMES 51

order item used

first order theorem by

higher order scheme from

Schemes are higher order but only in a very weak sense. It has been said that
Mizar schemes are not second order but 1.001th order.

Let’s study the first from that occurs in the proof. It justifies an equality:

{F(c): P[c]} = {G(a): P[a]} from FRAENKEL:sch 5(A1);

The justification refers to the statement:

A1: for a holds F(a) = G(a);

The scheme that is used here is:

scheme :: FRAENKEL:sch 5

FraenkelF’ { B() -> non empty set,

F(set) -> set, G(set) -> set, P[set] } :

{ F(v1) where v1 is Element of B() : P[v1] }

= { G(v2) where v2 is Element of B() : P[v2] }

provided

for v being Element of B() holds F(v) = G(v);

The statement that this scheme proves has been underlined. It clearly is the
same statement as the one that is being justified in the example. The general
structure of a scheme definition is:

scheme label { parameters } :

statement

provided

statements

proof

. . .
end;

In the case of the FRAENKEL:sch 5 scheme, the parameters are B, F, G and P.
The first three are functions (those are written with round brackets), and the
last is a predicate (written with square brackets).

To use a scheme you have to define macros with deffunc and defpred, that
match the parameters of the scheme. In macro definitions the arguments to the
macro are written as $1, $2, . . . In this specific case the macros that are defined
are:

deffunc F(Element of Q) = $1[*]"\/"(Y,Q);

deffunc G(Element of Q) = "\/"({$1[*]b: b in Y}, Q);

defpred P[set] means $1 in X;

52 CHAPTER 2. SOME ADVANCED FEATURES

(Apparently B() there doesn’t need to be a macro. So Mizar can figure out by
itself that in this specific example B() has to be instantiated with carrier of

Q.)
For another example of a scheme let’s look at the most commonly used

scheme, which is NAT_1:sch 1. It allows one to do induction over the natural
numbers. This scheme is:

scheme :: NAT_1:sch 1

Ind { P[Nat] } :

for k being Nat holds P[k]

provided

P[0]

and

for k being Nat st P[k] holds P[k + 1];

So let’s show how to use this scheme to prove some statement about the natural
nummbers. For example consider the non-negativity of the natural numbers:

for n being Nat holds n >= 0;

Clearly to prove this using the induction scheme, we need to define the following
macro:

defpred P[Nat] means $1 >= 0;

And then, the structure of the proof will be:

defpred P[Nat] means $1 >= 0;

A1: P[0] by . . . ;
A2: for k being Nat st P[k] holds P[k + 1]

proof

let k be Nat;

assume k >= 0;

. . .
thus k + 1 >= 0 by . . . ;
end;

for n being Nat holds P[n] from NAT_1:sch 1(A1,A2);

In the statement that is justified and the arguments to the scheme, the macros
really have to be present (else Mizar won’t know how to match things to the
statements in the scheme), so you cannot write 0 >= 0 after A1, but every-
where else it doesn’t matter whether you write P[k] or k >= 0, because almost
immediately the macro P[k] will be expanded to its definition.

Exercise 2.2.1 Write the natural deduction rules as Mizar schemes and prove
them. For instance the rule of implication elimination (‘modus ponens’) be-
comes:

2.3. STRUCTURES 53

scheme implication_elimination { P[], Q[] } : Q[]

provided

A1: P[] implies Q[] and

A2: P[]

by A1,A2;

Exercise 2.2.2 The axioms of the Mizar set theory are in the article called
TARSKI. It’s called that way because it contains the axioms of a theory called
Tarski-Grothendieck set theory, which is ZF set theory with an axiom about the
existence of big cardinal numbers. The TARSKI article contains one scheme:

scheme :: TARSKI:sch 1

Fraenkel { A()-> set, P[set, set] }:

ex X st for x holds x in X iff ex y st y in A() & P[y,x]

provided

for x,y,z st P[x,y] & P[x,z] holds y = z;

Is it possible to prove this scheme using the Fränkel operator from the previous
section (and without using other schemes from the MML)?

Conversely, is it possible to eliminate the use of the Fränkel operator from
Mizar proofs by using the TARSKI:sch 1 scheme?

2.3 Structures

The proof of theorem Th5 from quantal1.miz uses the exciting type:

left-distributive right-distributive complete Lattice-like

(non empty QuantaleStr)

In this type left-distributive, right-distributive, complete, Lattice-
like and empty are just attributes like before, but the mode QuantaleStr is
something new.

The mode QuantaleStr is a structure. Structures are the records of Mizar.
They contain fields that you can select using the construction:

the field of structure

An example is the expression:

the carrier of Q

In this the structure is Q and the field name is carrier. Many Mizar structures
have the carrier field.

The definition of the QuantaleStr structure is:

struct (LattStr, HGrStr) QuantaleStr

(# carrier -> set,

L_join, L_meet, mult -> BinOp of the carrier #);

54 CHAPTER 2. SOME ADVANCED FEATURES

Apparently it has four fields: carrier, L_join, L_meet and mult.
The modes LattStr and HGrStr are called the ancestors of the structure.

They are structures that have a subset of the fields of the structure that is
defined. Any term that has type QuantaleStr will automatically also get the
types LattStr and HGrStr.

The definitions of the ancestors of QuantaleStr are:

struct(/\-SemiLattStr,\/-SemiLattStr) LattStr

(# carrier -> set, L_join, L_meet -> BinOp of the carrier #);

and:

struct(1-sorted) HGrStr (# carrier -> set,

mult -> BinOp of the carrier #);

Structures are a powerful concept. They give the MML its abstract flavor.

Exercise 2.3.1 Find the definition of the mode Field in VECTSP_1. What is
the structure it is based on? Recursively trace all ancestors of that structure.
Draw a graph of the widening relation between those ancestors.

Exercise 2.3.2 The most basic structure in the MML is from STRUCT_0:

definition

struct 1-sorted (# carrier -> set #);

end;

Is an object of type 1-sorted uniquely determined by its carrier? Why or
why not?

Exercise 2.3.3 You can construct an object of type 1-sorted as:

1-sorted (# A #)

Use this notation to define functors in and out that map objects of type set

to their natural counterparts in 1-sorted and back. Prove in Mizar that out is
a left inverse to in.

Exercise 2.3.4 Are structures ZF sets or not? More specifically: if Q is a
structure, can there be an x with x in Q?

If not, why not?
If so, can you prove the following?

ex Q being 1-sorted, x being set st x in Q

If a structure has elements: is it uniquely determined by its elements?

Exercise 2.3.5 Because of Gödel’s theorems we know that Mizar’s set theory
is incomplete. That is, there has to be a Mizar formula φ without free variables,
for which no Mizar proof exists of φ, and also no Mizar proof exists of not φ.

Can you think of a non-Gödelian φ that is provable nor disprovable in Mizar?

The QED Manifesto∗

May 15, 1994

The development of mathematics to-
ward greater precision has led, as is
well known, to the formalization of
large tracts of it, so that one can
prove any theorem using nothing but
a few mechanical rules.

– K. Gödel

If civilization continues to advance,
in the next two thousand years
the overwhelming novelty in human
thought will be the dominance of
mathematical understanding.

– A. N. Whitehead

1 What Is the QED

Project and Why Is It

Important?

QED is the very tentative title of a project to
build a computer system that effectively rep-
resents all important mathematical knowledge
and techniques. The QED system will con-
form to the highest standards of mathematical
rigor, including the use of strict formality in
the internal representation of knowledge and
the use of mechanical methods to check proofs
of the correctness of all entries in the system.

The QED project will be a major scientific
undertaking requiring the cooperation and ef-
fort of hundreds of deep mathematical minds,
considerable ingenuity by many computer sci-
entists, and broad support and leadership from
research agencies. In the interest of enlisting
a wide community of collaborators and sup-
porters, we now offer reasons that the QED
project should be undertaken.

First, the increase of mathematical knowl-
edge during the last two hundred years has
made the knowledge, let alone understanding,

∗A version of this appeared as ‘The QEDManifesto’

in Automated Deduction – CADE 12, Springer-Verlag,

Lecture Notes in Artificial Intelligence, Vol. 814,

pp. 238–251, 1994.

Authorship and copyright information for this doc-

ument may be found at the end.

of all, or even of the most important, mathe-
matical results something beyond the capacity
of any human. For example, few mathemati-
cians, if any, will ever understand the entirety
of the recently settled structure of simple finite
groups or the proof of the four color theorem.
Remarkably, however, the creation of mathe-
matical logic and the advance of computing
technology have also provided the means for
building a computing system that represents
all important mathematical knowledge in an
entirely rigorous and mechanically usable fash-
ion. The QED system we imagine will pro-
vide a means by which mathematicians and
scientists can scan the entirety of mathemat-
ical knowledge for relevant results and, using
tools of the QED system, build upon such re-
sults with reliability and confidence but with-
out the need for minute comprehension of the
details or even the ultimate foundations of the
parts of the system upon which they build.
Note that the approach will almost surely be
an incremental one: the most important and
applicable results will likely become available
before the more obscure and purely theoreti-
cal ones are tackled, thus leading to a useful
system in the relatively near term.

Second, the development of high technology
is an endeavor of fabulously increasing mathe-
matical complexity. The internal documenta-
tion of the next generation of microprocessor
chips may run, we have heard, to thousands of
pages. The specification of a major new indus-
trial system, such as a fly-by-wire airliner or
an autonomous undersea mining operation, is
likely to be even an order of magnitude greater
in complexity, not the least reason being that
such a system would perhaps include dozens
of microprocessors. We believe that an indus-
trial designer will be able to take parts of the
QED system and use them to build reliable
formal mathematical models of not only a new
industrial system but even the interaction of
that system with a formalization of the exter-
nal world. We believe that such large mathe-
matical models will provide a key principle for
the construction of systems substantially more

1

complex than those of today, with no loss but
rather an increase in reliability. As such mod-
els become increasingly complex, it will be a
major benefit to have them available in stable,
rigorous, public form for use by many. The
QED system will be a key component of sys-
tems for verifying and even synthesizing com-
puting systems, both hardware and software.

The third motivation for the QED project
is education. Nothing is more important
than mathematics education to the creation of
infrastructure for technology-based economic
growth. The development of mathematical
ability is notoriously dependent upon ‘doing’
rather than upon ‘being told’ or ‘remember-
ing’. The QED system will provide, via such
techniques as interactive proof checking algo-
rithms and an endless variety of mathemat-
ical results at all levels, an opportunity for
the one-on-one presenting, checking, and de-
bugging of mathematical technique, which it
is so expensive to provide by the method of
one trained mathematician in dialogue with
one student. QED can provide an engaging
and non-threatening framework for the car-
rying out of proofs by students, in the same
spirit as a long-standing program of Suppes at
Stanford for example. Students will be able
to get a deeper understanding of mathematics
by seeing better the role that lemmas play in
proofs and by seeing which kinds of manipu-
lations are valid in which kinds of structures.
Today few students get a grasp of mathemat-
ics at a detailed level, but via experimentation
with a computerized laboratory, that number
will increase. In fact, students can be used
(eagerly, we think) to contribute to the devel-
opment of the body of definitions and proved
theorems in QED. Let also us make the ob-
servation that the relationship of QED to ed-
ucation may be seen in the following broad
context: with increasing technology available,
governments will look not only to cut costs of
education but will increasingly turn to make
education and its delivery more cost-effective
and beneficial for the state and the individual.

Fourth, although it is not a practical mo-
tivation, nevertheless perhaps the foremost
motivation for the QED project is cultural.
Mathematics is arguably the foremost creation
of the human mind. The QED system will
be an object of significant cultural character,
demonstrably and physically expressing the
staggering depth and power of mathematics.
Like the great pyramids, the effort required
(especially early on) may be great; but the re-
wards can be even more staggering than this
effort. Mathematics is one of the most basic

things that unites all people, and helps illu-
minate some of the most fundamental truths
of nature, even of being itself. In the last one
hundred years, many traditional cultural val-
ues of our civilization have taken a severe beat-
ing, and the advance of science has received no
small blame for this beating. The QED system
will provide a beautiful and compelling mon-
ument to the fundamental reality of truth. It
will thus provide some antidote to the degener-
ative effects of cultural relativism and nihilism.
In providing motivations for things, one runs
the danger of an infinite regression. In the end,
we take some things as inherently valuable in
themselves. We believe that the construction,
use, and even contemplation of the QED sys-
tem will be one of these, over and above the
practical values of such a system. In support
of this line of thought, let us cite Aristotle, the
Philosopher, the Father of Logic, ‘That which
is proper to each thing is by nature best and
most pleasant for each thing; for man, there-
fore, the life according to reason is best and
pleasantest, since reason more than anything
else is man.’ We speculate that this cultural
motivation may be the foremost motivation for
the QED project. Sheer aesthetic beauty is a
major, perhaps the major, force in the motiva-
tion of mathematicians, so it may be that such
a cultural, aesthetic motivation will be the key
motivation inciting mathematicians to partic-
ipate.

Fifth, the QED system may help preserve
mathematics from corruption. We must re-
member that mathematics essentially disap-
peared from Western civilization once, dur-
ing the dark ages. Could it happen again?
We must also remember how unprecedented
in the history of mathematics is the clarity,
even perfection, that developed in this cen-
tury in regard to the idea of formal proof,
and the foundation of essentially the entirety
of known mathematics upon set theory. One
can easily imagine corrupting forces that could
undermine these achievements. For exam-
ple, one might suspect that there is already
a trend towards believing some recent ‘theo-
rems’ in physics because they offer some pre-
dictive power rather than that they have any
meaning, much less rigorous proof, with a pos-
sible erosion in established standards of rigor.
The QED system could offer an antidote to
any such tendency. The standard, impartial
answer to the question ‘Has it been proved?’
could become ‘Has it been checked by the QED
system?’ Such a mechanical proof checker
could provide answers immune to pressures of
emotion, fashion, and politics.

2

Sixth, the ‘noise level’ of published math-
ematics is too high. It has been estimated
that something between 50 and 100 thousand
mathematical papers are published per year.
Nobody knows for sure how many contain er-
rors or how many are repetitions, but some
pessimists claim the number of both is high.
QED can help to reduce the level of noise, both
by helping to find errors and by helping to sup-
port computer searches for duplication.

Seventh, QED can help to make mathemat-
ics more coherent. There are similar tech-
niques used in various fields of mathematics,
a fact that category theory has exploited very
well. It is quite natural for formalizers to gen-
eralize definitions and propositions because it
can make their work much easier.

Eighth, by its insistence upon formaliza-
tion, the QED project will add to the body
of explicitly formulated mathematics. There is
mathematical knowledge that is neither taught
in classes nor published in monographs. It
is below what mathematicians call ‘folklore,’
which is explicitly formulated. Let us call this
lower level of unformulated knowledge ‘math-
lore’. In formalization efforts, we must for-
malize everything, and that includes mathlore
lemmas.

Ninth, the QED project will help improve
the low level of self-consciousness in math-
ematics. Good mathematicians understand
trends and connections in their field. The
QED project will enable mathematicians to
analyze, perhaps statistically, the whole struc-
ture of the mathematics, to discover new
trends, to forecast developments and so on.

2 Some Objections to the

Idea of the QED

Project and Some

Responses

The peculiarity of the evidence of
mathematical truths is that all the ar-
gument is on one side. There are no
objections, and no answer to objec-
tions.

– J. S. Mill

Objection 1: Paradoxes, Incompatible Log-
ics, etc. Anyone familiar with the variety
of mathematical paradoxes, controversies, and
incompatible logics of the last hundred years
will realize that it is a myth that there is cer-
tainty in mathematics. There is no funda-
mentally justifiable view of mathematics which

has wide support, and no widely agreeable logic
upon which such an edifice as QED could be
founded.

First Reply to Objection 1: Although
there are a variety of logics, there is little
doubt that one can describe all important log-
ics within an elementary logic, such as primi-
tive recursive arithmetic, about which there is
no doubt, and within which one can reliably
check proofs presented in the more controver-
sial logics. We plan to build the QED system
upon such a ‘root logic’, as we discuss below
extensively. But the QED system is to be fun-
damentally unbiased as to the logics used in
proofs. Or if there is to be a bias, it is to be
a bias towards universal agreement. Proofs in
all varieties of classical, constructive, and intu-
itionist logic will be found rigorously presented
in the QED system – with sharing of proofs be-
tween logics where justified by metatheorems.
For example, Goedel showed how to map the-
orems in classical number theory into intu-
itionist number theory, and E. Bishop showed
how to develop much of modern mathematics
in a way that is simultaneously constructive
and classical. A mathematical logic may be
regarded as being very much like a model of
the world – one can often profit from using a
model even if one ultimately chooses an alter-
native model because it is more suited to one’s
purposes. Furthermore, merely because some
logic is so overly strong as to be ultimately
found inconsistent or so weak as to ultimately
fail to be able to express all that one hopes,
one can nevertheless often transfer almost all
of the technique developed in one logic to a
subsequent, better logic.

Second Reply to Objection 1. These are
controversies in the Philosophy of Mathemat-
ics. Who cares? The overwhelming majority
of contemporary mathematicians believe that
there are no doubts about what it means for a
proof to be correct, and they agree on a vast
common mathematical basis, much stronger
than ZFC. If we do not get the mathemati-
cians involved, the QED project will fail as
well. But to get mathematicians involved, we
have to find out how to talk to them.

Objection 2. Intellectual property problems.
Such an enterprise as QED is doomed because
as soon as it is even slightly successful, it will
be so swamped by lawyers with issues of owner-
ship, copyright, trade secrecy, and patent law
that the necessary wide cooperation of hun-
dreds of mathematicians, computer scientists,
research agencies, and institutions will become
impossible.

3

Reply to Objection 2. In full cognizance of
the dangers of this objection, we put forward
as a fundamental and initial principle that the
entirety of the QED system is to be in the
international public domain, so that all can
freely benefit from it, and thus be inspired to
contribute to its further development.

Objection 3. Too much mathematics. Math-
ematics is now so large that the hope of in-
corporating all of mathematics into a system
is utterly humanly impossible, especially since
new mathematics is generated faster than it
can be entered into any system.

Reply to Objection 3. While it is certainly
the case that we imagine anyone being free to
add, in a mechanically checked, rigorous fash-
ion, any sort of new mathematics to the QED
system, it seems that as a first good objec-
tive, we should pursue checking ‘named’ the-
orems and algorithms, the sort of things that
are commonly taught in universities, or cited
as important in current mathematics and ap-
plications of mathematics.

Objection 4. Mechanically checked formal-
ity is impossible. There is no evidence that
extremely hard proofs can be put into for-
mal form in less than some utterly ridiculous
amount of work.

Reply to Objection 4. Based upon dis-
cussions with numerous workers in automated
reasoning, it is our view that using current
proof-checking technology, we can, using a va-
riety of systems and expert users of those sys-
tems, check mathematics at within a factor of
ten, often much better, of the time it takes a
skilled mathematician to write down a proof at
the level of an advanced undergraduate text-
book. QED will support proof checking at
the speeds and efficiencies of contemporary
proof-checking systems. In fact, we see one
of the benefits of the QED project as being a
demonstration of the viability of mechanically-
assisted (-enforced) proof-checking.

Objection 5. If QED were feasible, it would
have already been underway several decades
ago.

Reply to Objection 5. Many of the most
well-known projects related to QED were com-
menced in an era in which computing was ex-
orbitantly expensive and computer communi-
cation between geographically remote groups
was not possible. Now most secretaries have
more computing power than was available to
most entire QED-related projects at their in-
ception, and rapid communication between

most mathematics and computer science de-
partments through email, telnet, and ftp has
become almost universal. It also now seems
unlikely that any one small research group can,
alone, make a major dent in the goal of in-
corporating all of mathematics into a single
system, but at the same time technology has
made widespread collaboration entirely feasi-
ble, and the time seems ripe for a larger scale,
collaborative effort. It is also worth adding
that research agencies may now be in a better
position to recognize the Babel of incompati-
ble reasoning systems and symbolic computa-
tion systems that have evolved from a plethora
of small projects without much attention to
collaboration. Then perhaps they can work
towards encouraging collaboration, to mini-
mize the lack of interoperability due to di-
versity of theorem-statement languages, proof
languages, programming languages, comput-
ing platforms, quality, and so on.

Objection 6. QED is too expensive.

Reply to Objection 6. While this ob-
jection requires careful study at some point,
we note that simply concentrating the efforts
of some currently-funded projects could go a
long way towards getting QED off the ground.
Moreover, as noted above, students could con-
tribute to the project as an integrated part
of their studies once the framework is estab-
lished, presumably at little or no cost. We can
imagine a number of professionals contribut-
ing as well. In particular, there is currently
a large body of tenured or retired mathemati-
cians who have little inclination for advanced
research, and we believe that some of these
could be inspired to contribute to this project.
It may be a good idea to have a QED govern-
ing board to recognize contributions.

Objection 7. Good mathematicians will
never agree to work with formal systems be-
cause they are syntactically so constricting as
to be inconsistent with creativity.

Reply to Objection 7. The written body of
formal logic rightly repulses most mathemati-
cal readers. Whitehead and Russell’s Principia
Mathematica did not establish mathematics in
a notation that others happily adopted. The
traditional definition of formal logics is in a
form that no one can stand to use in prac-
tice, e.g., with function symbols named f1,
f2, f3, . . . The absence of definitional prin-
ciples for almost all formal logics is an indi-
cation that from the beginning, formal logics
became something to be studied (for proper-
ties such as completeness) rather than to be

4

used by humans, the practical visions of Leib-
niz and Frege notwithstanding. The devel-
opers of proof checking and theorem-proving
systems have done little towards making their
syntax tolerable to mathematicians. Yet, on
this matter of syntax, there is room for the
greatest hope. Although the subject of me-
chanical theorem-proving in general is beset
with intractable or unsolvable problems, a
vastly improved computer-human interface for
mathematics is something easily within the
grasp of current computer theory and tech-
nology. The work of Knuth on TEX and the
widespread adoption of TEX by mathemati-
cians and mathematics journals demonstrates
that it is no problem for computers to deal
with any known mathematical notation. Cer-
tainly, there is hard work to be done on this
problem, but it is also certainly within the ca-
pacity of computer science to arrange for any
rigorously definable syntax to be something
that can be conveniently entered into comput-
ers, translated automatically into a suitable in-
ternal notation for formal purposes, and later
reproduced in a form pleasant to humans. It
is certainly feasible to arrange for the users of
the QED system to be able to shift their syn-
tax as often as they please to any new syntax,
provided only that it is clear and unambigu-
ous. Perhaps the major obstacle here is sim-
ply the current scientific reward system: pre-
cisely because new syntaxes, new parsers, and
new formatters are so easy to design, little or
no credit (research, academic, or financial) is
currently available for working on this topic.
Let us add that we need take no position on
the question whether mathematicians can or
should profit from the use of formal notations
in the discovery of serious, deep mathemat-
ics. The QED system will be mainly useful
in the final stages of proof reporting, similar
to writing proofs up in journals, and perhaps
possibly never in the discovery of new insights
associated with deep results.

Objection 8. The QED system will be so
large that it is inevitable that there will be mis-
takes in its structure, and the QED system
will, therefore, be unreliable.

Reply to Objection 8. There is no doubt
considerable room for error in the construction
of the QED system, as in any human enter-
prise. A key motivation in Babbage’s develop-
ment of the computer was his objective of pro-
ducing mathematical tables that had fewer er-
rors than those produced by hand methods, an
objective that has certainly been achieved. It
is our experience that even with the primitive

proof checking systems of today, errors made
by humans are frequently found by the use of
such tools, errors that would perhaps not oth-
erwise be caught. The standard of success or
failure of the QED project will not be whether
it helps us to reach the kingdom of perfection,
an unobtainable goal, but whether it permits
us to construct proofs substantially more ac-
curately than we can with current hand meth-
ods. In defense of the QED vision, let us as-
sert that we believe that room for error can
be radically reduced by (a) expressing the full
foundation of the QED system in a few pages
of mathematics and (b) supporting the devel-
opment of essentially independent implemen-
tations for the basic checker. It goes without
saying that in the development of any particu-
lar subfield of mathematics, errors in the state-
ments of definitions and other axioms are pos-
sible. Agreement by experts in each mathe-
matical subfield that the definitions are ‘right’
will be a necessary part of establishing confi-
dence that mechanically checked theorems es-
tablish what is intended. There is no mechani-
cal method for guaranteeing that a logical for-
mula says what a user intuitively means.

Objection 9. The cooperation of mathemati-
cians is essential to building the QED edifice of
proofs. However, because it is likely to remain
very tedious to prove theorems formally with
mechanical proof checkers for the foreeable fu-
ture, mathematicians will have no incentive to
help.

Reply to Objection 9. To be developed,
QED does not need to attract the support of
all or most mathematicians. If only a tenth
of one percent of mathematicians could be at-
tracted, that will probably be sufficient. And
in compensation for the extra work currently
associated with entering formal mathematics
in proof checking systems, we can point out
that some mathematicians may find the fol-
lowing benefit sufficiently compensatory: in
formally expressing mathematics, one’s own
thoughts are often sharply clarified. One of-
ten achieves an appreciation for subtle points
in proofs that one might otherwise skim over
or skip. And the sheer joy of getting all the
details of a hard theorem ‘exactly right’, be-
cause formalized and machine checked, is great
for many individuals. So we conjecture that
enough mathematicians will be attracted to
the endeavor provided it can be sufficiently or-
ganized to have a real chance of success.

Objection 10. The QED project represents
an unreasonable diversion of resources to the

5

pursuit of the checking of ordinary mathemat-
ics when there is so much profitably to be done
in support of the verification of hardware and
software.

Reply to Objection 10. Current efforts
in formal, mechanical hardware and software
verification are exceptionally introspective, fo-
cusing upon internal matters such as com-
pilers, operating systems, networks, multipli-
ers, and busses. From a mathematical point
of view, essentially all these verifications fall
into a tiny, minor corner of elementary num-
ber theory. But eventually, verification must
reach out to consider the intended effect of
computing systems upon the external, contin-
uous world with which they interact. If one
attempts to try to verify the use of a DSP
chip for such potentially safety critical appli-
cations as telecommunications, robot vision,
speech synthesis, or cat scanning, one imme-
diately sees the need for such basic engineering
mathematics as Fourier transforms, not some-
thing at which existing verification systems are
yet much good. By including the rigorous de-
velopment of the mathematics used in engi-
neering, the QED project will make a crucial
contribution to the advance of the verification
of computing systems.

Objection 11. The notion that interesting
mathematics can ever, in practice, be formally
checked is a fantasy. Whitehead and Rus-
sell spent hundreds of pages to prove some-
thing as trivial as that 0 is not 1. The no-
tion that computing systems can be verified is
another fantasy, based upon the misconception
that mathematical proof can guarantee proper-
ties of physical devices.

Reply to Objection 11. That many inter-
esting, well-known results in mathematics can
be checked by machine is manifest to those
who take the trouble to read the literature.
One can mention merely as examples of math-
ematics mechanically checked from first prin-
ciples: Landau’s book on the foundations of
analysis, Girard’s paradox, Rolle’s theorem,
both Banach’s and Knaster’s fixed point the-
orems, the mean value theorem for derivatives
and integrals over Banach-space valued func-
tions, the fundamental counting theorem for
groups, the Schroeder-Bernstein theorem, the
Picard-Lindelof theorem for the existence of
ODEs, Wilson’s theorem, Fermat’s little the-
orem, the law of quadratic reciprocity, Ram-
sey’s theorem, Goedel’s incompleteness theo-
rem, and the Church-Rosser theorem. That
it is possible to verify mechanically a simple,

general purpose microprocessor from the level
of gates and registers up through an applica-
tion, via a verified compiler, has been demon-
strated. So there is no argument against proof-
checking or mechanical verification in prin-
ciple, only an ongoing and important engi-
neering debate about cost-effectiveness. The
noisy verification debate is largely a comedy
of misunderstanding. In reaction to a per-
ceived sanctimony of some verification enthu-
siasts, some opponents impute to all enthusi-
asts grandiose claims that complete satisfac-
tion with a computing product can be estab-
lished by mathematical means. But any ver-
ification enthusiast ought to admit that, at
best, verification establishes a consistency be-
tween one mathematical theory and another,
e.g., between a formal specification of intended
behavior of a system and a formal represen-
tation of an implementation, say in terms of
gates and memory. Mathematical proof can
establish neither that a specification is what
any user ‘really wants’ nor that a description
of gates and memory corresponds to physical
reality. So whether the results of a computa-
tion will be pleasing to or good for humans
is something that cannot be formally stated,
much less proved.

Objection 12. The QED Manifesto is too
long. Its length will interfere with the estab-
lishment of the project by driving away poten-
tial supporters and contributors.

Reply to objection 12. Objection 12 is
largely correct. For an initial reading, it is sug-
gested that sections 4 and 5 below be skipped.
On the other hand, we believe that there is
real value in recording the many views on this
subject, even views that are clearly refutable.

3 Some Background,

Being a Critique of

Current Related Efforts

Although the root of logic is the same
for all, the ‘hoi polloi’ live as though
they have a private understanding.

– Heraclitus

In some sense project QED is already under-
way, via a very diverse collection of projects.
Unfortunately, progress seems greatly slowed
by duplication of effort and by incompatibil-
ities. If the many people already involved in
work related to QED had begun cooperation
twenty-five years ago in pursuing the construc-

6

tion of a single system (or federation of subsys-
tems) incorporating the work of hundreds of
scientists, a substantial part of the system, in-
cluding at least all of undergraduate and much
of first year graduate mathematics and com-
puter science, could already have been incor-
porated into the QED system by now. We of-
fer as evidence the nontrivial fragments of that
body of theorems that has been successfully
completed by existing proof-checking systems.

The idea of QED is perhaps 300 years old,
but one can imagine tracing it back even 2500
years. We can agree that many groups and
individuals have made substantial progress on
parts of this project, yet we can ask the ques-
tion, is there today any project underway
which can be reasonably expected to serve as
the basis for QED? We believe not, we are
afraid not, though we would be delighted to
join any such project already underway. One
of the reasons that we do not believe there is
any such project underway is that we think
that there exist a few basic, unsolved tech-
nical problems, which we discuss below. A
second reason is that few researchers are in-
terested in doing the hard work of checking
proofs – probably due to an absence of be-
lief that much of the entire QED edifice will
ever be constructed. Another reason is that
we are familiar with many automated reason-
ing projects but see very serious problems in
many of them. Here are some of these prob-
lems.

1. Too much code to be trusted. There have
been a number of automated reasoning
systems that have checked many theo-
rems of interest, but the amount of code
in some of these impressive systems that
must be correct if we are to have confi-
dence in the proofs produced by these sys-
tems is vastly greater than the few pages
of text that we wish to have as the foun-
dation of QED.

2. Too strong a logic. There have been many
good automated reasoning systems that
‘wired in’ such powerful rules of inference
or such powerful axioms that their work
is suspect to many of those who might be
tempted to contribute to QED – those of
an intuitionistic or constructivist bent.

3. Too limited a logic. Some projects have
been developed upon intuitionistic or con-
structive lines, but seem unlikely, so far
anyway, to support also the effective
checking of theorems in classical mathe-
matics. We regard this ‘boot-strapping

problem’ – how to get, rigorously, from
checking theorems in a weak logic to the-
orems in a powerful classical logic, in an
effective way – to be a key unsolved tech-
nical obstacle to QED. We discuss it fur-
ther below.

4. Too unintelligible a logic. Some people
have attempted to start projects on a
basis that is extremely obscure, at least
when observed by most of the commu-
nity. We believe that if the initial, base,
root logic is not widely known, under-
stood, and accepted, there will never be
much enthusiasm for QED, and hence it
will never get off the ground. It will take
the cooperation of many, many people to
build the QED system.

5. Too unnatural a syntax. Just as QED
must support a variety of logics, so too
must it support a variety of syntaxes,
enough to make most groups of math-
ematicians happy when they read theo-
rems they are looking for. It is unreason-
able to expect mathematicians to have to
use some computer oriented or otherwise
extremely simplified syntax when concen-
trating on deep mathematical thoughts.
Of course, a rigorous development of the
syntaxes will be essential, and it will be a
burden on human readers using the QED
proof tree to ‘know’ not only the logical
theory in which any theorem or procedure
they are reading is written but also to
know the syntax being used.

6. Parochialism. There are many projects
that have started over from scratch rather
than building upon the work of others, for
reasons of remoteness, ignorance of previ-
ous work, personalities, unavailability of
code due to intellectual property prob-
lems, and issues of grants and publica-
tions. We are extremely sensitive to the
fact that the issue of credit for scientific
work in a large scale project such as this
can be a main reason for the failure of the
QED project. But we can be hopeful that
if a sufficient number of scientists unite in
supporting the QED project, then partial
contributions to QED’s advancement will
be seen in a very positive light in com-
parison to efforts to start all over from
scratch.

7. Too little extensibility. In 20 years there
have been perhaps a dozen major proof-
checking projects, each representing an

7

enormous amount of activity, but which
have ‘plateaued out’ or even evaporated.
It seems that when the original authors
of these systems cease actively working
on their systems, the systems tend to die.
Perhaps this problem stems from the fact
that insufficient analysis was given to the
basic problems of the root logic. With-
out a sufficient amount of extensibility,
everyone so far seems to have reached
a point in which checking new proofs is
too much work to do by machine, even
though one knows that it is relatively
easy for mathematicians to keep making
progress by hand. The reason, we sus-
pect, is that mathematicians are using
some reflection principles or layers of log-
ics in ways not yet fully understood, or at
least not implemented. Mathematicians
great contribution has been the contin-
ual re-evaluating, re-conceptualizing, con-
necting, extending and, in cases, discard-
ing of theorems and areas. So each gen-
eration stands on the shoulders of the gi-
ants before, as if they had always been
there. We are far from being able to
represent mechanically such evolutionary
mathematical processes. Existing mathe-
matical logics are typically as ‘static’ as
possible, often not even permitting the
addition of new definitions! Important
work in logic needs to be done to design
logics more adaptable to extension and
evolution.

8. Too little heuristic search support. While
it is in principle possible to generate en-
tries in the QED system entirely by hand,
it seems extremely likely that some sort of
automated tools will be necessary, includ-
ing tools that do lots of search and use
lots of heuristics or strategies to control
search. Some systems which have com-
pletely eschewed such search and heuris-
tic techniques might have gotten much
further in checking interesting theorems
through such techniques.

9. Too little care for rigor. It is notori-
ously easy to find ‘bugs’ in algorithms for
symbolic computation. To make matters
worse, these errors are often regarded as
of no significance by their authors, who
plead that the result returned is true ‘ex-
cept on a set of measure zero’, without
explicitly naming the set involved. The
careful determination, nay, even proof, of
precisely which conditions under which a
result is true is essential for building the

structure of mathematics so that one can
depend on it. The QED system will sup-
port the development of symbolic algebra
programs in which formal proofs of cor-
rectness of derivations are provided, along
with the precise statement of conditions
under which the results are true.

10. Complete absence of inter-operability.
One safe generalization about current au-
tomated reasoning or symbolic computa-
tion systems is that it is always some-
where between impossible and extremely
difficult to use any two of them together
reliably and mechanically. It seems al-
most essential to the inception of any ma-
jor project in this area to choose a logic
and a syntax that is original, i.e., in-
compatible with other tools. One ma-
jor exception to this generalization is the
base syntax and logic for resolution sys-
tems. Here, standard problem sets have
been circulated for years. But even for
such resolution systems there is no stan-
dard syntax for entering problems in-
volving such fundamental mathematical
constructs as induction schemas or set-
builder notation.

11. Too little attention paid to ease of use.
The ease of use of automated reasoning
systems is perhaps lower than for any
other type of computing system available!
In general, while anyone can use a word
processor, almost no one but an expert
can use a proof checker to check a difficult
theorem. Perhaps this can be explained
by the fact that the designers of such sys-
tems have had to put so much of their en-
ergies and attention into rigor, that they
simply did not have enough energy left for
good interface design.

4 The Relationship of

QED to Artificial

Intelligence (AI) and to

Automated Reasoning

(AR)

Project QED is largely independent of the
question of the possibility or utility of artificial
intelligence or automated reasoning. To the
extent that mechanical aids of any kind can
be used to help construct (or shorten) entries
in the QED system, we can be appreciative
of such aids, even if the aids use techniques

8

that are from the realms of artificial intelli-
gence, assuming of course that what the aids
suggest doing is verifiably correct. A key fact
is that it will not matter, from the viewpoint
of soundness, whether proofs were added to
the QED system by humans, dumb programs,
smart programs or some combination thereof.
All of the QED system will be checkable by
a simple program, from first principles. The
QED system will focus on what is known in
mathematics, both theorems and techniques,
rather than upon the problems of discovering
new mathematics.

It is the view of some of us that many people
who could have easily contributed to project
QED have been distracted away by the entic-
ing lure of AI or AR. It can be agreed that the
grand visions of AI or AR are much more in-
teresting than a completed QED system while
still believing that there is great aesthetic,
philosophical, scientific, educational, and tech-
nological value in the construction of the QED
system, regardless of whether its construction
is or is not largely done ‘by hand’ or largely
automatically.

5 The Root Logic – Some

Technical Details

Method consists entirely in the order
and disposition of the objects towards
which our mental vision must be di-
rected if we would find out any truth.
We shall comply with it exactly if we
reduce involved and obscure proposi-
tions step by step to those that are
simpler, and then starting with the
intuitive apprehension of all those
that are absolutely simple, attempt to
ascend to the knowledge of all others
by precisely similar steps.

– R. Descartes

An important early technical step will be to
‘get off the ground’, logically speaking, which
we will do by rooting the QED system in a
‘root logic’, whose description requires only a
few pages of typical logico-mathematical text.
As a model for brevity and clarity, we can refer
the reader to Goedel’s presentation, in about
two pages, of high-order logic with number
theory and set theory, at the beginning of his
famous paper on undecidable questions.

The reason that we emphasize succinctness
in the description of the logic is that we hope
that there will be many separate implementa-
tions of a proof checker for this ‘root logic’ and

that each of these implementations can check
the correctness of the entire QED system. In
the end, it will be the ‘social process’ of mathe-
matical agreement that will lead to confidence
in the implementations of these proof-checkers
for the root logic of the QED system, and mul-
tiple implementations of a succinct logic will
greatly increase the chance this social process
will occur.

It is crucial that a ‘root logic’ be a logic
that is agreeable to all practicing mathemati-
cians. The logic will, by necessity, be suffi-
ciently strong to check any explicit computa-
tion, but the logic surely must not prejudge
any historically debated questions such as the
law of the excluded middle or the existence of
uncountable sets.

As just one hint of a logic that might be used
as the basis of QED, we mention Primitive Re-
cursive Arithmetic (PRA) which is the logic
Skolem invented for the foundations of arith-
metic, which was later adopted by Hilbert-
Bernays as the right vehicle for proof theory.
It has also been further developed by Good-
stein. In PRA one finds (a) an absence of
explicit quantification, (b) an ability to de-
fine primitive recursive functions, (c) a few
rules for handling equality, e.g., substitution
of equals for equals, (d) a rule of instantiation,
and (e) a simple induction principle. One rea-
son for taking such a logic as the root logic
is that it is doubtful that Metamathematics
can be developed in a weaker logic. In any
root logic one needs to be able to define, in-
ductively, an infinite collection of terms and,
inductively, an infinite collection of theorems,
using in the definition of ‘theorem’ such prim-
itive recursive concepts as substitution. Thus
PRA has the bare minimum power we would
need to ‘get off the ground’. Yet we think it
suffices even for checking theorems in classical
set theory, in a sense we describe below. The
logic FS0, conservative over PRA, but with
sets and quantifiers, has been proposed by Fe-
ferman as a vehicle more congenial than PRA
for studying logics.

It is probably the case that the syntax of
resolution theorem-proving is the most widely
used and most easily understood logic in
the history of work on mechanical theorem-
proving and proof checking, and thus perhaps
a resolution-like logic could serve as a natural
choice for a root logic. Some may object on
the grounds that resolution, being based upon
classical first order logic, ‘wires in’ the law of
the excluded middle, and therefore is objec-
tionable to constructivists. In response to this
objection, let us note that constructivists do

9

not object to the law of the excluded middle
in a free variable setting if all of the predicates
and function symbols ‘in sight’ are recursively
defined; for example, it is a constructive the-
orem that for all positive integers x and y, x

divides y or x does not divide y. Thus we
might imagine taking as a root logic resolu-
tion restricted to axioms describing recursive
functions and hereditarily finite objects, such
as the integers.

The lambda-calculus-based ‘logical frame-
works’ work in Europe, in the de Bruijn tra-
dition, is perhaps the most well developed
potential root logic, with several substantial
computer implementations which have already
checked significant parts of mathematics. And
already, many different logics have been repre-
sented in these logical frameworks. As a cau-
tion, we note that some may worry there is
dangerously too much logical power in some
of these versions of the typed lambda calcu-
lus. But such logical frameworks give rise to
the hope that the root logic might be such that
classical logic could simply be viewed as the
extension of the root logic by a few higher-
order axioms such as ∀P (P ∨ ¬P).

One possible argument in favor of adopting
a root logic of power PRA is that its induc-
tive power permits the proof of metatheorems,
which will enable the QED system to check
and then effectively use decision procedures.
For example, the deduction theorem for first
order logic is a theorem of FS0, something not
provable in some logical framework systems,
for want of induction.

Regardless of the strength or weakness of
the root logic chosen, we believe that we can
rigorously incorporate into the QED system
any part of mathematics, including extremely
non-constructive set theoretic arguments, be-
cause we can represent these arguments ‘one
level removed’ as ‘theorems’ that a certain fi-
nite object is indeed a proof in a certain the-
ory. For example, if we have in mind some high
powered theorem, say, the independence of the
continuum hypothesis, we can immediately
think of a corresponding theorem of primi-
tive recursive arithmetic that says, roughly,
that some sequence of formulas is a proof in
some suitable set theory, S1, of another the-
orem about some other set theory, where a,
say, primitive recursive proof checker for S1
has been written in the root logic of QED. In
practice, it will be highly advantageous if we
make it appear that one isn’t really proving
a theorem of proof theory but rather is prov-
ing a theorem of group theory or topology or
whatever.

Although many groups have built remark-
able theorem-proving and proof checking sys-
tems, we believe that there is a need for some
further scientific or computational advances to
overcome some ‘resource’ problems in building
a system that can hold all important mathe-
matics. Simply stated, it appears that com-
plete proofs of certain theorems that involve a
lot of computation will require more disk space
for their storage than could reasonably be ex-
pected to be available for the project. The
most attractive solution to such a problem is
the development of ‘reflection’ techniques that
will permit one to use algorithms that have
been rigorously incorporated within QED as
part of the QED proof system.

Although we have spoken of a single root
logic, we need to make clear that we do not
want to fall into the trap of searching for a
single, ideal logic. We can easily imagine that
it will be possible to develop several different
root logics each of which can be fully regarded
to be ‘a’ foundation of QED, each of which is
capable as acting as a basis for the other, and
each of which has very short implementations
which have been checked by the ‘social pro-
cess’. And each of which can be used to check
the correctness of the entire QED system.

In any case, it is a highly desireable goal that
a checker for the root logic can be easily writ-
ten in common programming languages. The
specification should be so unambiguous that
many can easily implement it from its specifi-
cation in a few pages of code, with total com-
prehension by a single person.

It has been argued that the idea of having
multiple logics in addition to the root logic is a
mistake that will result in too much complex-
ity, and that it would be far more sensible to
have a single logic in which proofs were clearly
flagged with an indication of the assumptions
used, so that a single logic could be enjoyed
by people of both classical and constructive
persuasions. Certainly such a single logic is
desireable, but whether such a single logic can
be developed is a serious question given that
some famous constructive theorems (such as
the continuity of all functions on the reals) are
classical falsehoods.

It has been argued that the idea of search-
ing for a single logic or a single computer sys-
tem is inferior to the idea of developing trans-
lation mechanisms that would permit proof
checking systems to exchange proofs with one
another. If this were feasible, it would cer-
tainly permit an alternative, distributed ap-
proach to achieving the major QED objectives.
However, the history of radical incompatibility

10

of many proof checking systems does suggest
that such translation mechanisms may be dif-
ficult to produce.

In seeking a root logic, it is clear that there
will be many controversies that will be impos-
sible to resolve to everyone’s satisfaction. For
example, there seems no hope of satisfying in
a single logic those who insist upon a typed
syntax and those who loathe typed syntax,
preferring to do typing internally, e.g., with
sets. There are also simple questions not yet
resolved after centuries of thought, such as the
semantics of a function applied outside its do-
main, e.g., division by zero.

6 What Is To Be Done?

The idea is to make a language such
that everything we write in it is
interpretable as correct mathemat-
ics . . . This may include the writ-
ing of a vast mathematical encyclo-
pedia, to which everybody (either a
human or a machine) may contribute
what he likes. The idea of a kind of
formalized encyclopedia was already
conceived and partly carried out by
Peano around 1900, but that was still
far from what we might call automat-
ically readable.

– N. G. de Bruijn

Leadership. It seems certain that inviting de-
liberation by many interested parties at the
planning stage is important not only to get
the QED project off on a correct footing but
also to encourage many to participate in the
project. Until we can establish general agree-
ment within a large, critical mass of scien-
tists (including many distinguished mathe-
maticians) that the QED project is proba-
bly worth doing, and until a basic ‘manifesto’
agreeable to them can be drafted, possibly us-
ing parts of this document as a starting point,
it is not clear whether there will be any further
progress on this project. Given the extraordi-
nary scope of this project, it is also essential
that research agency leadership be obtained.
It is perhaps unlikely that any one agency
would be willing to undertake the funding of
the entirety of such a large project. So an
agreement by many agencies to cooperate will
probably be essential. The requirements for
leadership, both by scientists and by research
agencies, are so major that it is perhaps pre-
mature to speculate about what other things
should be done, in what order. Nevertheless,
we will speculate about a few issues.

What planning steps should be taken to
start the QED project? An obvious first con-
cern is to enumerate and describe in some de-
tail the kinds of things that would be found in
the QED system, including

• logics
• axioms
• definitions
• theorems (including an analysis of the

major parts of mathematics)
• proofs
• proof-checkers
• decision procedures
• theorem-proving programs
• symbolic computation procedures
• modeling software
• simulation software
• tools for experimentation
• numerical analysis software
• graphical tools for viewing mathematics
• interface tools for using the QED system

Crucial to this initial high level organiza-
tion effort is deciding what parts of mathe-
matics will be represented, how that mathe-
matics will be organized, and how it will be
presented. It is conceivable that years of con-
sideration of these points should precede im-
plementation efforts. One can imagine that a
re-organization of mathematics on the order of
the scope of the Bourbaki project is necessary.
One can imagine major projects in the devel-
opment of formal ‘higher-level’ languages in
which mathematics can be formally discussed
and major projects devoted simply to writing
the most important theorems, definitions, and
proof sketches in such languages. Because dif-
ferent proofs of the same theorem can differ
substantially in complexity, and because enter-
ing formal proofs into a proof checking system
is very expensive, it is highly cost effective to
consider many proofs of a theorem before set-
ting out to verify one of them. It has been
suggested by several people that a useful and
relatively easy early step would be to assem-
ble, in ftp-able form, a comprehensive survey
of the parts of mathematics have been checked
by various automated reasoning systems.

A second planning step would be to estab-
lish some ‘milestones’ or some priority list of
objectives. For example, one could attempt to
outline which parts of mathematics should be
added to the system in what order. Simultane-
ously, an analysis of what sorts of cooperation
and resources would be necessary to achieve
the earlier goals should be performed.

A third planning step would be to accumu-
late the basic mathematical texts that are to

11

be formalized. It is entirely possible that the
QED project will greatly overlap with an effort
to build an electronic library of mathematical
information. It is not part of the idea of a
library that the documents should be in any
particular language or subjected to any sort
of rigor check. But it would of great inherent
value, and great value to the QED project,
to have the important works of mathematics
available in machine readable form and orga-
nized for ease of access.

A fourth planning step would be to attempt
to achieve consensus about the statement of
the most important definitions and theorems
in mathematics. Until there is agreement on
the formalization of the basic concepts and
theorems of the important parts of mathemat-
ics, it will be hardly appropriate to begin the
difficult task of building formal proofs of the-
orems. The formalization of statements is an
extremely difficult and error-prone activity.

Although the scientific obstacles to building
QED are formidable, the social, psychological,
political, and economic obstacles seem much
greater. In principle, we can imagine a vast
collection of people successfully collaborating
on such an effort. But the problems of actu-
ally getting such a collaboration to occur are
possibly insurmountable. ‘Why,’ an individ-
ual researcher could well ask, ‘should I risk
my future by working on what will be but a
small part of a vast undertaking? What sort
of recognition will I receive for contributing to
yet one more computing system?’ These are
good questions, and it is not clear what the
answer is. To a major extent, status in math-
ematics and computing is a function of publi-
cations in major journals – status for research
funding, status for tenure decisions, status for
promotion. It is far from clear how contribut-
ing pieces to the QED system could provide
a substitute for such signs of status. Perhaps
here research agencies or even university facul-
ties and administrators could be of assistance
in establishing a new societal framework in
which such cooperation was encouraged.

Even given the cooperation of all the neces-
sary people and assuming good luck in over-
coming scientific hurdles, there are many is-
sues of a very difficult but somewhat mundane
character involving: version control, distribu-
tion, and support. A system with hundreds of
contributors will create management difficul-
ties perhaps not even imaginable to the small
groups of researchers who have worked in the
past on parts of the QED idea.

It has been suggested about the low-level
QED data files that they should be humanly

readable and permit comments, and that the
character set should be email-able.

It has been suggested that the QED sys-
tem should include historical information. Al-
though such information would obviously not
be something that would be mechanically
checkable, it could provide extremely valuable
contextual information to those trying to learn
mathematics from the system, just as the com-
mentaries on Euclid make his Elements intel-
ligible to the modern reader. Strenuous dis-
putes over priority in all forms of discovery, in-
cluding mathematics, are common, and there-
fore care must be taken that the QED system
permit the presentation of all sides of such dis-
putes.

It has been suggested that it would be best
if QED focused initially on one part of math-
ematics, namely ring theory.

Non-Copyright: This document is in the pub-
lic domain and so unlimited alteration, repro-
duction, and distribution by anyone are per-
mitted.
Authorship: This preliminary discussion of

project QED (very tentative name) is an amal-
gam of many ideas that many people have had
and for which perhaps no one alive today de-
serves much credit. We are deliberately avoid-
ing any authorship or institutional affiliation
at this early stage in the project (and may de-
cide to do so forever) in the hope that many
will want to join in the project as principals,
even as originators (to the extent that anyone
alive today could be thought to be an origina-
tor of this project). Some of those involved in
the project would much rather that QED be
completed than that they, as individuals, be
lucky enough to partake significantly in the
project, much less get any public credit for its
completion. It may seem paranoid to avoid
personalities, but we are inspired by the ex-
traordinary cooperation achieved in the Bour-
baki series in an atmosphere of anonymity.

To join an Internet electronic discussion
group devoted to the QED project, send a
message with the single line

subscribe qed

to majordomo@mcs.anl.gov. The line above
should be the content of the message, not the
subject line. The subject line is ignored. An
archive of this discussion group is in the direc-
tory /pub/qed/archive/ available by anony-
mous ftp from info.mcs.anl.gov.

12

