
� � ��� � � �	�
 � � � �
 �� � ��
 �
 � � � � ��� � �

� � � � � � � � � � ��
 ��� �
 � �
� �

��� ��� � � !" ��

#$�% &(' � �) *� +(, -) +% ./10 2) +0 &%

* 3 �4 5)6 ' ' � �)7 $ 0 0 &

8/10 �� !0 � 2

9 6 26) � :; ; <

=

� � �
� �
 � � �� � �

�$�% � -)% , - , � 6 7 � -�� � � � � , - � -0 , 0 �%)� � 	 �$�% � -)% � � 7 6 �) -�� � � � � , - � -0 ,

0 �% �6 , 7 � -0 , 	 # &%)) - 7% & & � 	 #0 ,) �� 6 7 � -�� � & � 	

�$�% �% � � �$ � � -
�� � , 7 �)% , �) -' - &% � - � - �) �� � � � 7 6 �) -�� � �% �% �� � �) - ,

�6 , 7 � -0 ,% & &% , 26% 2�) 	

�$�% � -) �$ � � 0 & � 0 � - , � 6 7 � -�� � � � � , - � -0 ,) - , �$ � �0 6 , �% � -0 ,) 0 � 7 0 ,) �� 6 7 � -�� �

' % �$ � ' % � - 7) 	 �$% � -) % � � - ,�� �/10 � �� � � �$ � 0 � � 	 �$�% � -) �$ � � 0 & � 0 � - , � 6 7 � -�� �

� � � , - � -0 ,) - , % � � - ,�� �/10 � �� � � �$ � 0 � � 	 �$�% � 0 �$ �� �0 6 , �% � -0 ,% &)�) �� ')

�0 � 7 0 ,) �� 6 7 � -�� � ' % �$ � ' % � - 7)% � � �$ � � � 	 �$�% � -) �$ � � 0 & � 0 � - , � 6 7 � -�� �

� � � , - � -0 ,) �0 � �$ � ' 	

�$�% � -) �$ � ,% �6 � � 0 � % � � - ,�� �/10 ��) ' �% , - , 2 �� � &% ,% � -0 ,) 	 �$�% � -) �$ �

)� , �% 7 � - 7 0 �)� ' % , � - 7% &% � �� 0 % 7 $ �0 7 0 ,) �� 6 7 � -�� � �0 6 , �% � -0 ,) 	

�

� �
� �
 � � �� � �

�$�% � - , � 6 7 � -�� � � � � , - � -0 ,)% � � 7 0 ,) �� 6 7 � -�� � & � % 7 7 � � �% ! & � 	 *$ � � ��)% � - & - ��

0 � �$ � 7 0 ,) �� 6 7 � - � � , 0 � -0 , 0 �% , - , � 6 7 � -�� � � � � , - � -0 ,�� �$�% �% � � - , � 6 7 � -�� �

�% ' - & - �) � - , � �� � � - , � 6 7 � -�� � � � � , - � -0 ,) � 	 �$�% �% � � 2� , �� % & -�� � � - , � 6 7 � -�� �

� � � , - � -0 ,) 	 �$% �% � � - , � 6 7 � - � �� � � 7 6 �) -�� � � � � , - � -0 ,) 	

�$�% �� � 7 6 �) -�� � � � � , - � -0 ,)% � � 7 0 ,) �� 6 7 � -�� � & � % 7 7 � � �% ! & � 	 �$�% �% � � �$ �

� -
�� � , 7 �)% , �) -' - &% � - � - �) �� �� � 7 6 �) - � � �6 , 7 � -0 , � � � , - � -0 ,) - , �6 , 7 � -0 ,% &

&% , 26% 2�) 	 �$% � -) �$ � � 0 & � 0 � �% � ��� , ' % �7 $ - , 2 	 �$�% � -) �$ � � 0 & � 0 �

�� & &� �0 6 , � � � � � 7 6 �) -0 , �)) �� 6 7 �6 � % & � � 7 6 �) -0 , 	 �$�% � -) �$ � � � &% � -0 ,)$ - �

! � � �� � , % � � - ,�� �/10 � �� � � �$ � 0 � � % , � 9 2 �% 	 .�0 � �0 � 0 6 �� 0 2� % ' � - �$

- , � 6 7 � - � � � � � , - � -0 ,) 	

.�0 � 7% , � 0 6 % � -0 ' % � - � � % 2� , � � % & �$ � 0 � � 0 � - , � 6 7 � - � � % , � � � 7 6 �) -�� �

� � � , - � -0 ,) - , % � � - ,� �/10 � �� � � �$ � 0 � � � - �$ % ' - , -' 6 ' 0 � 7 0 � - , 2 	

�

�� � �

�
�

% � � - ,�� �/10 � �� � � �$ � 0 � � � - �$ 0 , � 6 , -�� ��)� � �� � ��� �
�

� 6 & �) �0 � ,% � 6 � % &

, 6 ' ! � �)�

�% � 2� � & -' - ,% � -0 ,��

:
�

�$�% � -)% , - , � 6 7 � - � � � � � , - � -0 , 	

�% � 4 � % ' � & �)

� ! � # &%)) - 7% & � � � , - � -0 ,�� � 6 & �)� �)�

 0 , 0 �0 , � 0 � �� % �0 �)�

	
�

�$�% � -) �$ � &% , 26% 2� 0 � 7 0 ,) �� 6 7 � -�� � ' % �$ � ' % � - 7) 	 �$�% � -) �$ � �% �% 	

�$�% � -) �$ � � 0 & � 0 � - , � 6 7 � -�� � � � � , - � -0 ,) 	

�
�

�� � - ,% � � - , � 6 7 � -�� � � � � , - � -0 ,)�

�% �� , � 6 7 � -�� �)� �)�

� -) �)�� ! - ,% � � �� � �)�� �� 0 �0) - � -0 ,% & �0 � ' 6 &%)�

8 � , � � % &

)7 $ � ' % �

� ! �� , � 6 7 � -�� � �% ' - & - �)�

�% ' - & � 0 � �$ � 0 � � ')�

8 � , � � % &) 7 $ � ' % �

<
�

8 � , �� % & -�� � � - , � 6 7 � -�� � � � � , - � -0 ,)�

�% � �� 0 6 �� � 0 � � - ,% &)�

� ! � �� & &� 0 � � �� - , 2)�

. � � � � - �% � - & � � , - ��)� �)�

9 7 � � & �) �% , � #� �
�

� 7 � �� & &� �0 6 , � � � �% � � 0 �% � � &% � -0 ,� *�� ' - ,% � -0 , 0 � �� 0 2� % ')�

	
�

� , � 6 7 � -0 ,�� � � 7 6 �) -0 ,�� 0 � � % !0 6 � ' �% , - , 2 �� � &% ,% � -0 ,)�

�

� � - , - �� % � -0 ' % � -��% � -0 , 0 � - , � 6 7 � -�� � % , � - , � 6 7 � -�� �� � � 7 6 �) - � � � � � , - � -0 ,)�� - �

� -' � � � � ' - �) �

�

�
 � � � � � � � �

��� �� � � � � � �
	�� ��� � � � � ��� �� 	 � ��� � �� � �� � � � ��� � � � � �
	�� ��� � � � � � �

�� � �)0 � � 7% �� 20 � � + - , �

)� � �� � � �� �)� � �� � �

�� �� ,) -0 ,% &)� �)� �)� �)� �0 - �
�

4 �)� �

�6 , 7 � -0 , 0 � �� % � -0 , 0 � �� % � -0 , �6 , 7 � -0 ,

�� �� ,) -0 ,% & �6 , 7 � -0 , �6 , 7 � -0 , �6 , 7 � -0 ,)� �0 - � ' % � �

�� $ � � � �0 & &0 � &% �� � % � � - ,� �/10 �
�

*$ � � & � 7 � 6 � � , 0 ��) � % !0 � � � � ��� �0

� *� � �� �$ � 0 � � � - 7 �0 6 , �% � -0 ,) 0 � #0 ,) �� 6 7 � -�� � % �$ � ' % � - 7) � !� #0 � 6% , �
�� � !" �� �

�% & ' 2� � , � % , � 5 � �� �� �

�

� � � � � �� � � � � ��� � �� � � � �
 � �
� � � � � � � �
 � � ��
 �

� �	 	
 �

� 5 � � �0 � ' ��) �0 � �� � � - 7% �� &0 2 - 7 ��� � � � � � � � � � � �
�

� �% �6 � % & , 6 ' ! ��) �
�

� � , -�� ��)� 0 �)' % & &)� �) �
�

9 & & �$ �)� ��� � - , �� 0 � 6 7 � � - , % � � - ,�� �/10 � ��
 :
�

�

� �
 �
 � �� �
 �

�� � � , � - �� � � % � � - ,�� �/10 � ��
 	 �� % , - , � 6 7 � -�� � �% ' - & � � �� � � - 7% ��

� �� & &� 0 � � � � - , 2) � � % � � - ,�� �/10 � ��
� �� % 2� , � � % & - � � � - , � 6 7 � -�� � � � � , - � -0 ,

� . - � � % � 7 $ � 0 � 6 , -�� ��)�) ��� � ��� � ��� �� � � �

� � , -�� ��)� �% &% *% �) + - � % � � - ,� �/10 � � �	 � � ��
 � % , - , � 6 7 � -�� �� � � 7 6 �) -�� �

� � � , - � -0 ,

�

�� �
 � �� � � �� �� �� � �
 �

�0 � ' % � -0 , � 6 & �

� � ��� �

� , �� 0 � 6 7 � -0 , � 6 & �)

� � �

��� 	 	 � � � �

�� � � � � � � �� � � � �
� � �� � � � � �
 � �� � � �� �� �� � �
 �

4 & -' - ,% � -0 , � 6 & �

� � �� � � � ��� � � � � � � � ��� � � � � � � � � � ��� 	 	 � � � �

��� � � � � � �

� � � � , � � , � � & -' - ,% � -0 , � 6 & � � � 6 & � �0 � ! 6 - & � - , 2 �� 0 0 �) !� ' % �$ � ' % � - 7% &

- , � 6 7 � -0 , �� 6 & � �0 � �� � - , 2 �6 , 7 � -0 ,) �� 0 ' ,% �6 � % & , 6 ' ! ��) �$ �� � �$ � �% � 2� �

-)% � � � � , � � , � �� � ��

4 � 6% & - �� � 6 & �)
� � 	�
 � � 	 � � �

� � 	
 � ��� 	 	 � � �
 � � � � 	
 � � � � � ��� 	 	 � �

=

� � � � � ��

 �� � ��
 � � �
 � �

� � � � � � ��� � � 	 � � ��
 � ��� � � � � � � � � � ��� 	 	 � �
� % , �

� � � 	

� � ��� 	 	 � � �
 � � � � �

�$ � , �� 7% , � � � , �

� � � � 	
 � ��� � � � � � �

= =

� �
 � � �
� �
 � �
 �� �
 �� � � � ��� � � � � �	 	

�
� % � � - � -0 , �)6 ! �� % 7 � -0 , � % , � ' 6 & � - � & - 7% � -0 , 0 � ,% �6 � % & , 6 ' ! ��)

:
�

�$ � ��� � � �6 , 7 � -0 ,

��� � � � � �

��� � � � ��� 	 	 � � � �

��� � � � ��� 	 	 � ��� 	 	 � � � � ��� 	 	 � ��� � � � �

	
�

� - � -) -0 , 0 � ,% � 6 � % & , 6 ' ! � �)

= �

�� � �� � � � � � � � �� �� �� � �
 �

� � � , �

� ��� � � � � � ��� � �

!� �% � �� � , ' % �7 $ - , 2 0 , 7 0 ,) �� 6 7 �0 �)
� ��� � � �
�� � �

� �� � � ��� 	 	 � � � �� �	� �

� �� � ��� 	 	
 � � � �� �	� �

� �� � ��� 	 	
 � � ��� 	 	 � � � � ���
 �

= �

� �
 � � �
� �
 � �

� � �� � � � � � � � �� �� �� � �
 � � � �	 	

. - , �
�

�)� �$ � � & -' - ,% � -0 , � 6 & � �0 � �% , � � � � , � - � !� �� -' - � -�� � � � 7 6 �) -0 ,

0 � $ - 2$ � � �� � � � �� -' - � -�� � � � 7 6 �) -�� � �6 , 7 � -0 ,% & �%) �0 & &0 �)�

� � � , �

� � �
 � � � ��� � �

!� - , � 6 7 � -0 , 0 ,
 � �
�

*$ � !%)� 7%)� -) � �0 ! � � � 6% & �0 � �� 0 �% , � �$ �) �� �

7%)� -) �0 � � � , � � �0 ! � � � 6% & �0
 � � � - , �� � ') 0 � � �0 ! � � � 6% & �0
 �
�

��0 �� �$�% � - , �� � � � �� � � � , � ��� � � � � � �
�

=

�
 �� � ��
 �� � � � ��� � �
 � � � � �� � � � � � � � �

*$ � 9 & � � 9 2 �% �$ - &0)0 �$ � �� �0 , 0 � & -' - � 0 6 �)� & � �) �0 �$ � �� -' - � -�� �

� � 7 6 �) - � �)7 $ � ' % �0 � ' % & - � � � !� �� � & -' - ,% � -0 , � ! 6 � % & &0 � ' 0 � � 2� , � � % &

� � 7 6 �) -0 , �% � ��� ,)�

*$ �� � -)% ��� ' - ,% � -0 , 7 $ � 7 +�� �$ - 7 $ 7 $ � 7 +) �$% � �$ �

� � 7 6 �) - � � 7% & &)� � ��� �0 �) �� 6 7 �6 � % & & �)' % & & �� �% � 26 ' � , �)�

�0 � �� % ' � & � � �$ � % !0 � � � � � , - � -0 , 0 � � � 6% & - �� -)% 7 7 � � �� ��%)% 20 0 �

� � � , - � -0 , �)� , �% � ' % � 6)� 7%)� % ,% & �) -) �) - , 7 � - � �%))�) �$ � �� � ' - ,% � -0 ,

7 $ � 7 +�� � *$ �� � -) 0 , 20 - , 2� �)�% � 7 $ 0 , �� �� , � - , 2 �$ � �� � ' - ,% � -0 , 7 $ � 7 +� � �
= �

�
 �� � �	�
 �
 � � � � �� � � � � �
 � �

� � � , �

�� 	 � � ��� � � � � ��� �

% ! !� � � -% �� � �� � �� 	 � � �

�� � �

� ��� � � � � � � ��

*$ -) � � � , - � -0 , -) � -� � 7 � & � % 7 7 � � �� � !� 9 2 �% � 6) - , 2 7%)� �
�

#% , �� � � � , � - �

- , �� � � � 	 � 0 �� �$�% � �� 7% , , 0 � 6)� � � -� � 7 � & �� �$ � 	

= �

� � �

� � � � � � � �� �

� � �� ' 0 � - �� �
�)0 �$�% � �$ � � �)6 & � �� � � -) ��� � - ,) ��% � 0 ��� �� � � � � �$ � ,

�� 2� �% �� �� � � & -' - ,% � -0 , � 6 & �

� �
	 � � � � � � � � � � ��� � � ��� � � � � � ��� �

��0 � �� 7% , � � � , �
�� � � �
	 � � � �� � � �� � � � � �

= �

� �
 � � ��
 �
 � � � � �� � �
 � �

�% � 2� � & -' - ,% � -0 , � 6 & �)% � � , 0 � �% � � 0 � �� � � � � � ,) ��% � ��)$ 0 � $ 0 �

�0 6)� �$ � 6 , -�� ��)� � �0 % � �� 0 � -' % �� �$ � �
� 7 � 0 � &% � 2� � & -' - ,% � -0 ,�� ��

$ �� � 7 $ 0 0)� �$ � �0 � ' 6 &% � -0 , �% &% *% �) + - � 9 7 � � & ��
 �
�

% � � - ,� �/10 � �� 	 � �
�

�$ � � � �� $% � � %)� � � 0 � 7 0 � �) �0 �)' % & &)� �)�� % , �% � � 7 0 � - , 2 �6 , 7 � -0 ,

� � ��� �

 � � � ��� �

��� ' % � + �% � & - � � � ��) -0 ,) 0 � % � � - ,�� �/10 � �� � � �$ � 0 � � 6)� � 6 , -�� ��)�) �% &%

� 6))� & &
� �$ �� � � � � � � - �

� � �
�

= �

� � ��� � � ��
�
 �� � ��
 �
 � � � � ��� � � � � �
 � � �	�
 �
 � � � � � � � � �

�� $�% � � 0 , � - , �� 0 � 6 7 � -0 , � 6 & � �0 � �% , � 0 , � � � 6% & - �� � 6 & � �0 �
 �0 � �% 7 $

)' % & &)� � �0 � ' � �

� � � �
 � � � �

� � � �
 � � � �

� � � �
 � � � �

� � � � � � � � � �
 �
�

� � � � �

� �
 �

� � � � � � � � � �
 �
�

� � � � �

� �
 �

� � � �
� � � � � �

� � � � � �
 � � �
�

� � � � �

�

� �� � �
 � �� � �

��� ���

��0 �� �$�% � � -) , 0 �%)' % & &)� �
�

=

� �
 � � ��
 �
 � � �� �

��0 � �� 7% , � � � , �
�� �
 � � �� � � � � � � � � � � �� � � � � � � �

�0 � � � �
�

� ��0 �� �$�% � �� 0 , & � � � � , � �� �0 �)' % & & �� �

4 � � � 7 -)� � � � , � % �% ' - & �

� � � � � � ��� �

)0 �$�% � � � � � -)%)� � � - �$ � � & � ' � , �)�

�

� �

� � �� � � � � � � � � � � ��� �

�� �0 6 & � & - +� �0 $% � �
� �� � � � � � ��� �

)0 �$�% � � ��
 � -) - , $�% ! - �� � -
 � ��
 � �
�� � ��

.�0 � -) �$ -) � � � , � � - ,

�� � �� 	� , 9 2 �% �� 7% , � � � , � � -� � 7 � & � � 6) - , 2 7%)� �

� ��� � � � �

� � � � ��� 	 	
 � � � �

� ��� � � ��� 	 	 � � � �

� ��� � ��� 	 	
 � � ��� 	 	 � � � � ���
 �

� =

� �
 � � �
� �� �
 � �
 � � � �

� � � � � � � ��� � �� � � � � � �� �
 �

� � � , � �$ � �0 & &0 � - , 2 �6 , 7 � -0 ,) - , �� � ���

�
�

�$ � �0 & &0 � - , 2 �6 , 7 � -0 , �$ - 7 $ 7 0 , � � � �)% �� 6 �$ �% & 6 � �0 % �� 0 �0) - � -0 ,

�� � � � � ��� � � � ��� �

�� � � �
�� � � � �

�� � � � �� � � � � �

:
�

� ��� � � � � � ��� �
�

� �

� � � � � � � � � � �
 � � ��� � � �	�
 �
 � � � � �� � �

� -) � -) , 0 �% �� -' - � - � �)� � �0 � ' �� - , �� � � � � #% , �� � , 7 0 � � - � 	

% � � - ,�� �/10 � � �	 � � �� 7% , �0 & &0 � �$ �)% ' � �% � �� � , 6)� � �0 � � � , �

,% � 6 � % & , 6 ' ! ��) �0 - , �� 0 � 6 7 � 0 �$ �� - , � 6 7 � -�� � & � � � � , � �)� �)�

��)� � $ �� �

�$ � �� % ' � & � 0 � & -) �) �
�

4 � �� 7 -)� �� - �� �0 �, �$ � � 6 & �) �0 � & -) � � �0 � ' % � -0 , �- , �� 0 � 6 7 � -0 , � � & -' - ,% � -0 , � % , � � � 6% & - �� � 6 & �) ��

% � � - ,�� �/10 � ��
 : � *$ � �� � � � -) " 6) � �$ � �� -' � �� % ' � & � 0 �% �� � �

- , �� 0 � 6 7 � � !� % , � � �� �� �� � � ��� � � � �� �� 	 � � � � � ��

.�0 �� � � � �
- �)� � ') �� � �� � % ! & �

�0 �� �% � �$ -)) � � 7 -% & 7%)� � % �$ �� �$�% , �0 2 -�� � % , � 7 �))% � - & � ' 6 7 $ ' 0 � �

7 0 ' � & - 7% �� � 2� , � � % & �0 � ' 6 &% � -0 , �$ - 7 $ �0 6 & � - , 7 & 6 � � � �
 � � � ��� �
�

� � �
��

� % , � �%)) � � 7 -% & 7%)�)�

5 � � % � � - ,�� �/10 � ��
 � �0 � % 2� , � � % & �0 � ' 6 &% � -0 , 0 �

- , � 6 7 � - � � � � � , - � -0 ,) - , �$ � &% , 26% 2� 0 � 0 � � - ,% � � ��) � 0 � � �� �� � � - 7% �� &0 2 - 7� �
� �

� � � � � � ��
 �
 � � � � �� � � �
 � � � ��
 �

� �$ � � 6 & �) �0 � 2� , �� % � - , 2 ,% �6 � % & , 6 ' ! ��) !� � �� 0 % , �)6 7 7 �))0 �

� �$ � � 6 & �) �0 � 2� , �� % � - , 2 �� & &� �0 � ' � � �0 � ' 6 &%) 0 �% &0 2 - 7

� �$ � % � -0 ')% , � - , ��� � , 7 � � 6 & �) 2� , �� % � - , 2 �$ � 0 � � ') 0 � �$ � &0 2 - 7

� �$ � �� 0 � 6 7 � -0 ,) 0 �% 7 0 , ��� �� �� � � 2� % ' ' % �

� �$ � 7 0 ' � 6 �% � -0 , � 6 & �) �0 � % �� 0 2� % ' ' - , 2 &% , 26% 2�

� �$ � � � � �� - � �� �� % ,) - � -�� � 7 &0)6 � � 0 �% � � &% � -0 ,

�

� � ��� � � �	�
 �
 � � � � �� � � � � �
 �� � ��
 � � � � � � �
 �

� & -) �) 2� , �� % �� � !� � �� % , � ��� � �

� ! - ,% � � �� � �) 2� , �� % �� � !� �
	 � �� �
� � �% , � �� �
� � �

�% & 2� !� % - 7 �� � �) - , 2� , �� % & �% � % ' � ��� -�� � �
� ' % , �)0 � �� � ��� ' % & 2� !� %)

� - , � , - �� & � !� % , 7 $ - , 2 �� � �)� �� 0 6 ��� 0 � � - ,% &)� � � 7�

� - , � 6 7 � -�� � � � � � , � � , � �� � �) �� � 7 �0 �) 0 �% 7 �� �% - , & � , 2 �$ � �� � �) 0 �% 7 �� �% - ,

$ � - 2$ �� !% &% , 7 � � �� � �)�� � �7 �

� - , � 6 7 � -�� �� � � 7 6 �) -�� � � � � , - � -0 ,) �)0 � �� � & -) �) � �� �)$ & -) �) � � �7 �

� �

�
 �
 � ��
 � � � �
 � �
 � � � � � � � �
 �

��0 �� �$�% � � � 7 6 �) -�� � �% �% �� � �) - , �6 , 7 � -0 ,% & &% , 26% 2�) � � 2 .%) +� & & �

- , 7 & 6 � � � � � �� -�� � �% �% �� � �)

��� � � � � 	 � ��� � � �� � � � 	 � ��� � � � 	 � ��� 	
 � � 	 � ��� �

% , � , �) �� � �% �% �� � �)

��� � � � � � � � � � �� � ��� � � � � � � � � � � � �
� �

��� � � �� � � � � � �� � ��� � � � � �� � � � �� � � � � �

� � - �$ � � -)% 7 7 � � �� � � �� !% � -' %)% , - , � 6 7 � -�� � � � � , - � -0 , - , % � � - ,�� �/10 � �� � �

�$ � 0 � ��

� �

� � � � � � � � � ��� � � ��
 �
 � � � � ��� � � � �
 �
 ���
�

�� � � � � � �� � � �

* �0 � � 6 -��% & � , � , 0 � -0 ,) 0 � - , � 6 7 � -�� � � � � , - � -0 , 0 � � � � �� � 0 �%)� � � � -%

� � 6 & �)� �) 0 , �

� ' 0 , 0 �0 , � 0 � � � % �0 �) 0 ,)6 !)� �) 0 � �

5 � � 9 7 � � & � �

 � 9 , � , �� 0 � 6 7 � -0 , �0 � , � 6 7 � -�� � � � � , - � -0 ,) � - , .% , � !0 0 + 0 �

% �$ � ' % � - 7% & �0 2 - 7�

� �

�
 � � � � ��� � � �	�
� � �
 �
 � �
 � � � � �
 �
 � �

9 �� �� 0 , % !%)�)� � � - , 9 7 � � & �))� ,)� -)% �% -� � �� � � �% &)0 �� - � �� , �
�

�
�

)6 7 $ �$�% � � � �% , � �
 �
�

� � � � ! � %)� � 0 �� 6 & �) 0 , �
�

9)� � � -) ��� � � � �� � - � �0 � % & & �
�
 �

� � � � �
 �

*$ �)� � � � ��� � � � �� � � � � � � �� �� � !� � -) � � � , � � �0 ! � �$ � & �%) � �� 7 &0)� �)� �

� � � � � 	 � � �
 � ��� ���� � � � �

*$ � - , � 6 7 � -0 , �� - , 7 - � & � �0 � � � � � -) � - � � -) �� 7 &0)� �
� �$ � , � � � � � � �
�*$ � - , �� 0 � 6 7 � -0 , � 6 & �)% � � � � � � � -) �� 7 &0)� �

� �$�% � -)�� - � � � � � � � �$ � ,

�
 � � � � �
�

� �

� � � � �� � � � � � � � ��� �� � � �� � � � �� � 	�
 �� � �
 � � � �� � � �
�

� 6 �� � ��� � ��� ��� � � � � ��� � � � � � ��� � �� � � � � � � � � � � � � �

� �� �

� �� � � ��

� � �

� � �

� � � �

� � � � � � �� �� � � � ��� � !� � � � � " # �$ � % � � � � � � �

	
&

�� � � �
 �
 � � ' 	
	 ��� � � � � � �� � �

�� � �

 � � ��
 � � ' 	
&

��� � � �

 �� � � �
 � �

(

� � � �� � �� �� � � � �� 	 � �� � � � �
 � � �� � � � � �
� � 	

� � � � ���

� � �� � � � � � 	� � � �
 � 	� � �
 � � �

� ! � � � � �� � � � � � �� � � � � � ��� ���� � � � ! � � � " "� � � � � � � %

	
	� � ��� � �

�

� � � � ��� � � ' 	

&

� � � � �

� � � � ��� � � '

	

&

	� � � �
 � 	� � �
 � � �

� � ��� � ���� � � '

��

� � � � � � � �� �� � � �

� ! ��� �� � � � 	 ��� �
 �� �� 	 �� �� �

 ! �� � ! �� �� � �
� �� � � � � �

	 �� �� �
� � � ��� � ��� � � � � � � �

 ! � � � �� � � ! � � 	 �� �� � � ��� � � ! � � �� � � ��� � "�� � � � � � � ���
� =

� � ��� � �
� 	 � � �

�� � � � ! � � � � � ��� � � � � � � � � � �� �� �

 � �

�� � � � � � �

��� ��� �� � �
 !�� � � � � � � � �� �� �� �! � "�# $ %�& ' ($) & * �� � + � �� � � ,� � � �.- � /

� 0
 �21 � �43 �

�� � � 	 3
 3 � � �

5 - � - �- � � - � �6 � �- 6 7 � 8 	 �
 � 8 	 �
 � 9 � + 9 � �� �6 � �� �� � �� 6 � �� � : �6 �;

7 	<
 � �
 �21 � �� � � 	 3
 3 � < �= � >? <

�@

� � ��� � � ��� � � � � � � �� � �� � �

� � �� � � �� � 	� � � � � � � �� �� � � � � �� �

�� � 7 � 8 	 �
 � 8 	 �
 � : - � - �- � �	� � 9�� � � �� �
 < � � � �� � 9 ��

7 	<
 � 7 	 �
 � �� � 9 �� 7 9�� � � ��� � � � �6 � ,� � � - �� �

� 	 7
 � �< � � 7 	 <
 � < �

� 9 � �� � + � � - � �6 �� + � � ��� � � � �
 7 	 <
 � < � 9 �� � 	 7
 � < � � � 9 � �� �6 - � + � �.- �

6 � ��� � � � 7 	 � 	 7

 � � 	 7
 � �

� � 6 + � �� � � 9 - � � 9�� � �� � + � �� � � �� �6 � � �.- � �! 6 � ��� �� � � � � : - � - �- � �

- � �6 � �- 6 � � 6 � � � � �� � � �� ��

� �

� � ��� � � ��� �� � � � � � � � �

� �� � � � +� � � !� �� � + � �� � � ,� � � �.- � � � 6 � � � �6 � �- - � � ��� � � � , � � - �� � � -

: - � - �- � � - � �6 � �- 6 � �- 6 � � � � � �� � � + � - �� � � � 6 � �� � -
6 � ��� � / �

�� � +� � � � �� �� �6 - � + � �.- � �- �� � + � �� � � ,� � � �.- � ��

� � � �- - � -
 5 � � 9�� �

: � � � +� � �- � � +� �� 	
� � � 	 	� � � 	 �� � / ;

�� � � ��6 � � � �� � � � �6 - � + 9 � � �- �� �� �� � + � �.- � � � � �6 � : � � �� � � - � �.- � �� - �� � � �� � � � � � , +� � �.- � �� ��6 : � -
 - � 9 �6 : � � 9 - �� � � � � � �- � � �

�� ��6 � � � �� � �-
- 6 : � ��� �� � +- 9 �6 �� � +- � +� � �� � �
6 � : � �- 6 � � 9�� � : � �

�� � + � �.- � � 9 � �6 �� + � � � �� - � �.- � �

� - � � �� � 6 �� � �6 �� + � � ��� �
� : � ! � � +- � � 6 � � � � �6 - � � �6 �� � + � �� � � �� �6 � � �.- �

�6 �� + � � ��� ��

��

� � ��� � � ��� �� �

� � � � � � � ��� � � � � �� � � � ��� �� �

5 � 6 � �� � ��-
 �! � � � 9 � - 6 ! � � �� + 9 � +- 9 �6 �� � +- � +� � �� � �
6 � : � �- 6 ��

� � � / � �� � � � � � ,� � �! �6 � � +6 � �� � 9 - � � +� � - � � +� � � ��� : �� � -

� � �
- 6 : � � � �� � � � � 9 - � � �- � � � � � +� � - � � +� � � ��� : �� � � -
 � � 6 �

- 6 : � � �
�� 6 5 � 6 � �� � ��-
 � � � �� �� �� � � �.- � � � � � + �! � � � 9�� - 6 !� � � � �.- � - � � � �� �	 /

� 9 � � � � � 9 � �� : � � � �� ! �� � � 9� � � �� � � � � ,� � �! � � � �� �6 - � + � �.- � 6 � ��� �� �

�	� � 9 � 6 � ��� �
- 6 �� � + � �� � � ! � �� �6 � � �� � � � � : � : �6 ��

�

� �� � � � � � � � �� � �� � � �� � � � � � � � � � � � � � � � ��� � � � � � �

�- � � �6 � + � �� � � : ;

� �� � + � �.- � � � 6 � +- : � � �� ���

� �6 - -
 � -
 � : � � � +� � �.- � � � 6 � +- : � � �� ���
� � + � �.- � � � � : � � 9 - � � /

� � �6 - -
 -
 � � � � � + � �.- � � � � � � 9�� 6 � �6 - -
 -
 ���
 � - 6 -
6 �� 9 � � � � � + �

� � �6 - -
 -
 � � � ��� +� � �� � � � � � �� � � �

� �� +�	� � - � � + � � � : � ��� � � - � - � ��� � � � � � �.- � �

��

� � � � � � ��� � � � � �

� � ��� �� � � � � � 6 � �� �6 � +� 6 � �� �
� � + � �.- � �; � � �� 6 � �� � : � 6 �

� �� 6 �� � : � + 9 �� � �; � �6 �� � � -
 + 9�� 6 � + �� 6 �

� �� : � +� � + � � � � � � � �! � � / ; �� : � � �6 � � � �.- � � � : � �6 - � 6 � : � � � �� /

�- � � � �� 6 � �� � : � 6 � � � � �6 �� � � -
 + 9�� 6 � + ��6 � - 6 � � �� : �� � �6 � � � �.- � ��

�- �
� � + � � - � �� � � �6 �� � � + � �� � �� 6 � � � � : �6 � �� �- � � +- �� � / � �� ��

+- �� � �6 - -
 � � �� � �� 6 � �� � : �6 � � � ��� �� � 6 � � � � � � � � � �! / �

��

�� � � � � � � � � �

� � �� 6 � �� � : �6 � �

� �� 9�� 6 - 6 �6
� � + � � - � � � � � � +
 � �- � � � � � /

�6 - � - � � � �.- � �� � 9 � 6 + 9 �! � � � 9 � - 6 ! � �
 �! � � � -
 � : � � � �! � � ��

5 - 6 � �! � � � � �
 � � � � - � : �� � -
 �6 - � 6 � : : �� � �� � � � � � � ��

�� � - � � +� � � 6 6 ! � � - �� 6 ;
 � > � �? � � ��� � � ���� 	 � �
�� 	 ��

� 9 � � ! �.� � � 5 � 6 � �� � ��-
 �! � � � 9 � - 6 ! �� 	 �� � �
 � � �- � +- � � �� 	� ; �- � � �6 � +�

� �� � � � � � � �! � + 9 � + �� � � � � � �- � �6 � �.- � -
 �� �! � � � / �

�

� � � � � ��� � � � � �� � � � ��� �� � � � � � � ��� � � ��� � � � � � � � � � � �

� �� � � + �� �
- 6 : �6 �;
� � � ? � �� � � �
� � � � �
�

� � �� � � � � �� �
- 6 : � 6 � � � � 9 � 9�� �6 6 � ��� � � 9 �� � 9 � 6 � � � � � � �
- 6 � 9 � : ;

� � � � ��

 �� � 6 ! �6 � � �� � 9 � �� � � �
- � � � � � 6 � -
 � 6 � ��� � �.- � � � � � �

� � � + � � ! � 9�� � � � � � - - �� � + � �� � � ,� � � �.- � � � + 9 � : � ��
- 6 �� � + � �� �

 � ,� � � �.- � �� �� � � �� � + � �� � � ,� � � �.- � �� �� � + � �� � �6 � +� 6 � �� � � ,� � � �.- � �

� � �� �6 � +
- 6 : � �� � � - � ; � � �� �6 �� �
- 6 �� � + � �� � � ,� � � � - � �� �� � � �� � + � �� �

 � ,� � � �.- � �� �� � + � �� � �6 � + � 6 � �� � � ,� � � �.- � �

��

� �� �� � �� �� � �

�� - � 9 �6 � � : � ��� -
 � � - 6 �� � 6 ! �� � + � �� � � ,� � � �.- � � + +� � �� � � � � �

�6 � : � � �� � � - � �.- � �� 5 � 6 � �� � ��-
 �! � � � 9 � - 6 ! ;

���� � � �� �

� � � � � � � ���� �

� � ���� � � ��� � � ���� �

�� � � � � � ,� � �� �� � ��� �

� �

� � ��� � � � �� �� � � � � � � � � ��� � � � � � � � � � � � � � � � � � �� � �

��� %� $ & � � � � - � � - �� �- � ($ (� & *��� (% �� � + � �� � � ,� � � �.- � �

	 ()
 � � - � �- �� � �- "& ' � *� (
 -
 �� � ��

� +� � �� �6 - � � +� � � � � �� � � � � 9 ,� � �� � ! : � � ! +- � � �6 � + �- 6 �� � 9 �6 �

� � + 9 +- � � �6 � + �- 6 9�� � ,� � �� � ! : � � ! � 6 � � : �� � �� � 9 � �! �� � -
 � 9 � + 9 � 6 � � � � 9 �6

 � � �� �
 �� � � $ % # �) ��� (� 6 � � : �� � � �6 � : � �� / - 6 � �� � � ��
 � % (�� $ %�) � � $ � $ � $��

� $ % # �) � � (�6 � : � �� / � � 9 � �� � � : � ! � � ��� � - � �6 � � �.- � � � � � � � +- � � � � �.- � �� � � �

: � ! � � �- : � �� � �� -
 �6 � � � - � � � ! � � ,� � � +- � � �� � � �� � � : � ! � - � +- � �� �� �

� 9 � +- � + � � � �.- � 9�� � �! �� �

� =

� � � � �� �� � ��� � � �� � � � � � � � � � � � � ��� � � � � � � � � � � � � � �� � �

� � � ,� � � �.- � +� � : - 6 � - � � 6 � � ��� � - � � & � & ' () (�
 � 9 � + 9 +� � 9� � � � 6 � �6 � 6 !

�! �� � � �� + � � � �� � � 9 � �! �� -
 �� � � / � � 9 � � � � � � 9 �6 � � �� � -
 � 6 � � : �� � �- �

+- � � �6 � + �- 6 � � 9 � �� 6 � : � ��6 � � � �� ! � +- : � �
- 6 � � 9 � � � � � � +- � � � � � - � � � � �

� 9 � �� � � + � �� � � 6 � � : �� � �� � �� � � + � �� � � 6 � � : �� � � � � � � � � � � +- � � � � � - � � +� � �

: � � � � /
� � � �� 6 � : � ��6 � � � �� � 6 � � � 9 � �� � � �� � � 6 � � : �� � � ��
- 6 : � � �.- � � �� �6 - � � + � �.- � �� � � � � � : �� � � �.- � 6 � ��� �
- 6 �

�� : � 6 �; : - 6 � � �� �6 � � � + 9 � : � �� � � � �
- 6 � $ % # �) ��� ("& ' � *� (
� � ($ (� & *��� (%

� $ % # �) � � $� � � � � $ % # �) � � $ � � (� # �
 � � $�

� @

� � � � � � � � � � � � � � �� � � � � � � � �� �� � � � � � �� � � � � � �

� � ��� � � � � � � � � � � � � � � � � � �� �

� � : � ��� � � � � � � � 6 � � �� �� �! � �� 6 � : � �� 6 � � � � - 6 � �� � 6 ! �� � � + � �� � � � ,� � � �.- �

-
 � �� �� � 9 � +- � � �6 � + �- 6
��� � � � � � � �� � � � � � � � 	 � � � 	

9�� � � 96 � � � 6 � � : �� � �; � � �� � � � � �� 6 � : � �� 6 �
 � � � � � � � � � � +- � � � � �.- � �

� � � � 	 � � � � �� � � + � �� � � 6 � � : �� ��

� � 6 + � �� ; �� � � ! �� � 9 � +- � � �6 � + �- 6 � -
� � �� 6 � �� � : �6 ��

 �� � 6 ! �6 � � � � � � 9

��
- 6 : � � �.- � �� � 9 � ��� � � � �� � 9 � �� � �� � -

- 6 : � ��� � -
 : �� � : � � � - � � + � �- � � �

�� � � ! �� � � �- � � � � � �
 9�� � � - � � � � � �
 �

� �

� ��� � � ��� � � � � � � � � � � � � � � ��� �� � � �

� � � � �� � � �� �

� � �
 � � � �� � � � � � � �
 � � �
 �

 � �
 � �� � � �� � � � � � � � �
 � � � � � � �
 � � � �
 � � �

��� � �
 � � � �� � � � � � � �
 � � � � � � �
 � � � � �

� � 6 + � �� � � ! � � 6 6 ! � � - �� 6 �
� � � � 6 � �6 � ��� � � � � �� � � + � �� � � ! � � ,� � �

�� (%� � &) (� 	� ,� � � 9 � �6 � � � +� �� � � � �� � � � �� � � �- � - � � +� � � � � �� � ���� +� �
� �

� � � � � � � � � � � � � �� � �� � � �

��� �	� � �
 � �
 � �� � � � � � �
 � �� � � �

� �
�� � � �� � � �
 �
 � � �
 � � �
 � � � �

� �
�� �� � � �� � � �
 � �
 � � � � � � �
 � � � �
 � � � �
 � � � � �

� �
�� � � �� � � � �� � � � � �
 � � � � � ��� � � � �
 � �

 �
 � � � �

 � �
 � � ��
 � � � � �

�
 � �� � � � � � � � �
 � �

�

� � � � � � � � � � �� � � � � � � � � � � �

� � 6 + � �� ; � �� � 9 � � � � : �� � � �.- � 6 � ��� �
- 6 �� � � � � � � � �- �6 � �� � 9 �

- � � �- �� � � �-
� � + � � - � �;

� � � � � � � � � � � � � � �� � � � � � �

�� � � � � ��� � � � � � � � � � �
 � �� � � � � � �
 � �� � � � �
 �� � � 	
� � � �

� � � � � � � �� � � + �� � � � +� � �� : � � � � + � �� �- - � �- � � + 9
- 6 : � �� �

�� � � � � � � �6 - -
 � 9�� � � � � � 9 � - 6 � : � � 6 � � � � � � � �� � �- �6 � � � � � � 6 � 9 � �

�� : � � � � + � ;

� �

��� � � � � ��� � � ��� � � �� � � �

�� �	�
 � � � �
 � � �
 � � �
 � � � �
 �

��� �	�
 � � � � �
 � � � � � � �
 � � � �
 � � �
 � � � � �
 � �

��� �	�
 � � � � � ��
 � � � � �
 � � ��� �	�
 � � � �
 � � � � � ��� �	�
 � � �
 � �

� �

� � ��� � � � �� �� � � � � � � � � ��� � � ��� � � � ��� ��� � �� � � � ��� � � � �
	 � � �

�	 � �

� � ��
- 6
 ()
� � +� � � � 9�� � �� 9�� �� �� � � +� � +
 5 � 6 � �� � ��-
 � � 	 � / ;

�� +� � �� �6 - � � +� � � � �
� : � � ! -
 �� � � �� � � �� � � � � 9 ,� � �� � ! : � � !

+- � � �6 � + �- 6 �� � 9�� 6 � � � + 9 +- � � �6 � + �- 6 9�� � ,� � �� � ! : � � ! � 6 � � : �� � �� � 9 � �! �� �

-
 � 9 � + 9 � 6 � � � � 9 �6 � � �� � � + � � �� � 6 � � : �� � � �6 � : � �� / - 6 � �� � � �

� � � � +- � � � � �.- � �� - � � �� � � + � � �� �6 � : � �� /�
�

� 9 � �� � � � � � � � � 9�� �� � � : � !

� � ��� � - � �6 � � � - � � � � � � � +- � � � � � - � �� � � � : � ! � � �- : � �� � �� -
 �6 � � � - � � � !

� � ,� � � +- � � �� � � �� � : � � �� - � +- � �� �� �
/

� 9 � +- � + � � � �.- � 9�� � � 9�� �! �� � � � 9 �6 � � � � �� � � � : � ! � � ��� �

- � �6 � � �.- � � � � � � � +- � � � � �.- � �� � � � : � ! � � �- : � �� � �� -
 �6 � � �.- � � � ! � � ,� � �

+- � � �� � � ��

�

� � ��� �� � � 	 ��� � � � �	 � �� �� � �

��� � +� � � � � 	
 � � � � ��� � �
��� � � � � � � � � � � � � �
� � � � ��

�
 � � � � � � � � � � � � � � � � � � � � ��� � � � � � � �� � � � � ��� � � �� � � � � � �

� � � � � � �
 � � � � ��� � � �

� �

� � 	 � 	 � � � ��� 	 � �� ��� �� ��� 	 � 	 � � �� ��� � 	 �
 	 � �� � �	 � � � � �� � �

� � ��� �

��� � �

��� � �� � � � �

��� � � � �� � � � � �

� � � � � � � � � � � ��� � � � � � � � � � � � � �� � � � ��� � � � � � � � � � � � ��� � ��� � � �� � � �� � � �

� � � �� � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � ��
� � � � � � � �

� � � � �� � �� �� �! � "$# % &� � � �(') " # � � � � � � � � � �� � � � � ��

* +

� �� 	 �� 	 �	 � �� � � �� � �	 � � � � �� � �

� � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �

� �� �� � � � � � � � � � ��� � � � � � � � � � � � � ���

�
�

�
� � �

�
	 �

��� � � �	 �
 	 � � � � �

�� �
� � � � � �

��� � �� �

 � � � � � �

* =

� � � �� � � � � � �� 	

�� ��� � � � �� � � � ��� � � �

� ��� �

� ��� � � � � � � � � � ��� � �� � � � �

� � �� � � � � � � ��� � � � � � � � � � � � � � ��� �� � � � �

��	 � � � �

� 	

�� �� � � � � �� � � � � �� � � � � � � � ��� � � � � ��

* �

� � � 	 � �� � �	 � � � � �� � �

� � ��� �� �� � � ��� � � � � �

��� � � � � �

�� � � � ��

� � � � ��� � � � � � ��� � �� � ��� � � �

� � � �

� � � ��� �� �� � �
	 �� � �
� � � ��
�� �
��� � �� � ��

� �� � � ���

� � � � � � � �� � �� � � � � �� � � � �
� � �
� ��� �

� � �� � � � � � � � � � � �
* �

� �� � � � � � ��� � �

�
	 �� 	 ��� � � � � � � ��� � � � ��� �

��� �	 �� 	 ��� � � �

�� 	 � � ��� � � �

��	 � � �

�� � � � � � �

� � �

�� �� � � � � �� � � � � �� � � � � � � � � � � � � � � � � � � ��� � � � � ��

*�

� �
 � � � �� � � �� � � � � � � � � � ��� � � �� � � � � � � � � � � �

��� ��� � � �� 	
� � � � 	� �� � � � � � � �� � � � �� � �
 � 	� 	�
 � �� 	 � � ��� � � �� 	 � 	 �� � � �

� �
 � 	 � �
 � �
 � 	 � � � 	 �
� � �	 � � � � � � � � � � �

� � 	� 	 � � 	 � � � �
 � � 	
� � � � �
� � � �
 � � 	 � 	� � � � �� 	� � � �
� � � � 	� �� �

	 � ��
�

� � �
 � � � � � � � � � 	 � � 	� � � � 	
 � � � 	 � � � �� 	� � �
 � 	� 	�
 � � 	 � � ��� � � �� 	

� 	 ��� � � � � � 	� � � � � � � � � � 	� � 	� � � �
 � 	 �
 � ��� �

� 	� � � 	 � � � � �
� � � � � � �
 � � � � 	� � � � 	 � �
�

� � �
� � 	 � � � �

���� � � 	 �� � � � 	� �� � �
 � � �
� � 	 	 �
� � ���� �� � �� �� � �

* *

�
 � � � � � � � � � � � �� ��� � � �
 � � � � � � � �

� 	�
 � � 	 �� 	 	
 	 � 	 	� � ��� � 	 	 �� ���
 � �
 ��� 	 � 	 	 � � � 	

 � � � 	 �
 � �� � 	 	

� �
� �
 ��� � 	� � 	 	 �� � �� �� ��
 	 �� � �� 	
 	 � � � 	 � �

����� � � � ����

* �

� � � � � � � � � � �� � � � � � � � � � � � ��� � � � � �

�
 	 	 � 	� 	� 	� � � ��� �
 � � 	 � � 	 � 	� 	 	
 	
 	 � 	 � � 	
 � � � ��� � 	 	 � 	 	��� � 	� �� � 	 	

� 	 	�
 � �� � �
� � 	 	 � 	� 	� 	 �
 � 	
 � ��
 	 � 	 � � 	
 � � � ��� � 	 	 � 	 	 � �

�� � 	� 	 �� �
 	�

� � � �
 � ��� 	 ��
 	 � 	 � � 	
 � � � ��� � 	 	 � 	 	� �� � 	 �
 � � 	 � � � � 	 �
 � � � 	 � 	 	 � 	 �� � � �

	 � 	� 	� 	� �� � � 	 �
 	 	 	 � � � 	 � 	 ��� 	 	� 	 	� � �� �
 � 	 �
 � � 	
 � � � � �� � �
 � � 	 �

� � � � � �
	� � ��� � � � � ��	 �� � � �
� � 	 �� � �

�
� � �
	� � � � ��

�� 	 ���� �
�

� �	 ���� � �
� � �	 � � � �

� �� 	 	 � � 	

 � 	� � � 	 	 	 � 	
 	 	 �� �
 �
� 	 	 	 �
 �� � � 	� 	 � � � ��� ��
�

� 	 	� � �� �
 � � 	� � 	 � �
 � � � � � 	 �� 	 � �

 � 	� � ��� � � � � � �	 �� � � � �	 � � � �

*�

��� � � � � ��� � � � � � � � � � � � � � � �� � � � � � � � � �

� 	 �� � � 	 � � 	 ��� 	 	
 	 	� � 	
 	 � 	 � � 	
 � � �� ��� � 	 	 � 	 	� � 	 �� 	 � � �� �
� �

�� 	 	 � � 	� 	 �� � �
� � �� � 	 � � 	 	 � �

 	 � 	 � � 	
 � � � �� � 	 	 � 	 	 � � 	 ��� 	 	
 	 �� � 	 	

� � � ��
 � � �

* �

��� � � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � � �

��� � � � � � � 	
 �� �
 	 � 	 � � 	
 � � � ��� � 	 	 � 	 	 �
 	 ��� 	 � 	 	 � �
���
 � �� � �
 � �
 � 	

�
 � � 	 ��� 	 �� � 	 �� � � 	 	 �� � � 	 	 �
 	 ��� 	 � 	 	� �

� � �� 	

�
 	 � �
 � �
 ��� �
 � � � � � 	 �� � 	� 	 � �
 �
 � � � 	 �
 � � �� � � � � � �� ��� � 	 	 � � �
 � �

� 	 	 	 �

�
 	 � 	 ��� � 	 �� � � � � 	� 	 	� � �� �
 � 	 �
 � � 	
 � � 	� 	 	� � �� �
 � � 	� � 	 � �
 � �

 � 	
 �
 �� � � � � 	� 	
� � 	 �� � ��� �

�� � 	 �� ��� 	 �
 � �� � � �� �
 � � � � 	 � � � 	 ��� 	 � 	 � � �� �
� � � � � � � 	 	 	
 	� � �

�
 	 � 	 	
 	
 � �� � �
� � � �� � � � � 	
 	� 	 	� � �� �
 � 	 �
 � � 	
 � � 	� 	 	� � �� �
 �

� 	� � 	 � �
 � � �

* �

��� � � � � � �� � � � � � � � � � �� � � ��� �

 	� � 	

 	 	
 	 � � � � 	 	 � 	 �
 	 �� � � 	
 	� � 	 �
 	 �� � � � � � � �� �
� � �� 	 	 � � 	� 	 �� � �

 � � 	
 	 �� � 	 	� � � ��
 � �
 � 	 � 	 �� 	 � �� 	
 	 �
� 	 �

 � �� ����� �

� � � 	 � � � 	 	
 	 � � � 	 �� �� � 	 	� � � ��
 � �	 � �

�

 	

 � � 	� � � � � 	 	 � 	� � 	 ��� 	 	
 	 �� � 	 � � 	 	� �
 �
 � � � 	 �
 � 	 � 	� 	� 	

�� � �

� +

� � � � � � � � � � � � �� � � � � � ��� � �

� � 	 � ��
 	 � � 	� � � � 	 � � � 	 � � 	 � � 	 	� � �

��� � � � � �	
 ���

�
 � 	 ���� � �� � 	 � 	 	
 	� �

�� � �� � �� � �� � � � � � � � � � �� �
�

�� � 	 �� � � � � 	 � � � 	 � 	
 	� � � � � � � � ��
 	� � �

� �� � ��
 � 	
 	� � � �� � � � 	 � � � 	 �� � � 	 	� �
�

�

� � 	 �� 	� � 	 �� � � � 	 �� � � 	 � ��
 	 	 �� � ��

� � �� �� � 	 ��� 	 � � 	 � ��
 	 	 � � � �� �
 �� � � �
� � �
 	� � � 	 � � �� � � �

 � � 	 � 	 � �
 � � �

	� � � �� � 	 �
 	
 	�
 	 �� � �

� � � � � �	
 ���

�� � 	 �� �
� � � 	 � � � 	 ��� 	 � �� � � 	
 � �� � � �� � �

� � � �� 	
 � � � �	
 ���

�� 	 � � �� �� �
 �� � � 	� � � � � 	 � ��
 	 ��� 	 	� �� � �
 � �� � � � � 	
 	

�
 	 	� � � � � 	 	� � ! � �� �
 � 	 ���� ��� 	 � 	 	
 	� �

�"

� � � � � � � � �� � � � � � � � � � � � � � � � � � �� �

� ��� 	�
 � 	 	 �
� !
 � ��
 � � 	 �
 	 �� � ��� � � � �
 � 	 � 	� 	� 	 � � � �� 	
 	

� 	 � �� � � � ! 	 ! �
 � 	� � � � � 	
 	 � 	 � � � � �� �� � 	 	 ! 	 �� 	� ! ��� �

 �� � � � � �

� � � � � � �
��
 � 	 	 � �
 	 ��� 	 ! 	 ��� � 	 �� � � � �
� 	� 	 �
 � �� 	 ! �� !�� � 	 ��� 	 ! 	 ��� � 	 �� � � � � � ��

	
 	 � 	 � �� � � � ! 	 ! �
 � 	� ��� � � �� � � ! 	 !
 � � 	 � 	� 	� 	� � �
 ��

 � 	 � � �
 � � 	 � �

��� � � �
 � 	 �� 	
 	 � 	 � �� � � � ! 	 ! �
 � 	� � � �
 � 	 �� � �
 � 	
�
 � � �
 � � 	 � 	 � 	 � 	� 	� 	

� � �� 	
 	 � 	 � �� � � � ! 	 ! �
 � 	�

� � � 	 � 	
�� �

� �	 ���	 � � 	 � � � 	 � � 	 ��� � � � 	 � � � � � 	 � � � �

� �

� � � � � � � �� � � � � � �� � � � �� � � � � � � � �� � � � � �� � � � � � � �� � � � �

� � � ��� �� � � � � � � � � �

� �� � 	 	

 	 	
 	 �� !�� � 	 � � 	 ! 	 ��� � 	 �� � �� � � � 	 � 	
 	 � � � �� �� � 	 	 ! 	 �� 	� ! ���

�

 �� ! 	 ��� � 	 �� � �� �
 � 	 ��� ��� 	 � 	 	
 	� � �

� � �� � 	
 	 � � 	� �� � � �
� 	 �
 � ! 	 �� 	 ! � �
 ���) � � 	 	 �
 � !
 ���) �

� 	 �
 	 �� � ��� �
�

� 	 � � � 	 	 	
 	 ! 	 �� � 	� � �� 	

 	 �
 � ! ��� � � 	� � � 	 �
 �
� 	 	 	 � � �
� �

� � ��� � � � � � � � ��� �� � � � � � � � � � �� �� � � � � � �� � � � � � �� � � � ��� �

� � � � � � ��� � �

� � � ! 	� 	� 	 �
 � � 	� � � � ��� 	 � � � 	 �� �

� � � � � �

�

� 	 ���	 � � 	 � � � � � � �
� � 	 �

�
 	 � 	 ��� �
� � � 	
 	 � 	� � � � ��� 	�
 � � � 	 �
 	 �� �	 � � � � �
 	� 	� 	 � 	
 	� � � �� 	
 	 �� �

� � � � � � �� 	� 	 �
 	 	
�
 � � � �
�

��

�� � � � � � � � � � � � �� �

�� � 	�
� � � 	� 	
 	 �
 � 	 �
 � � 	� � � � ��� 	 ! � � � � �� � � � � 	 �� �

� ��� � � � � � � � � � 	
 �� � � � �� � � � ��� � � � � � 	 	

 � 	
 	 � 	� � � � � � 	�
 � � � 	 �
 	 �� � ��� � ��� �
�� �
 	 � 	

� � � ��� � � � � � � � � �

�

 	 � � � ��� � � � ��� �
� � �

 	

 � � 	� � � � � � � �

��

� � � � � � ��� �� � �� � � � ��� � � � � � � � ��� � �

� 	�
 � � 	
 	 �� !�� � 	 ��� 	� � 	� � � � � � 	 ! 	 �� � 	 �� � � 	
 	 � � ��� 	 � � 	 �
 �
 �
 � � � �
�

� 	

� � � ! � � � �
 � � 	� � � � 	 � � � 	� � 	� �
� � 	
 	 �� !�� � 	 ��� 	� � 	� � � � ��� 	 �
 	� � 	� 	
 	

! 	 ��� � 	 �� � 	

� 	
�� �

	 	 � 	
�� �

��� 	 ��	 � � 	 � 	 	 � � 	 �

	 � ��� � � � � �	 	 �
	 � � � �

�
 � � � � �

 � 	 �
�� 	 ! 	 �� � 	 �� � � � � � 	 � � � 	 ��� 	 �� �
 � � ! � � � 	 �
 � 	 ���� ��� � 	 � 	

� 	
� ��� 	� � �
 �
 	 �� � � �

� �

� � � � � � ��� �� � �� � � � ��� � � � � � � � ��� � � � � � � � � � � � � � � �

� � �� ��� � 	
�� �

�� 	 � 	 �	�
� ��� � 	 �� � �

�� � 	 �	�
� �� �

�� � � 	 ���	 � � 	 � � � �	 ��
� �� � � 	 	 � �� � � � � � 	 ��
� �� �

� � � �� � � 	� � �

�� � � �� � �
 � � �� � � � �

��

� � �� � � �� ��� � � � � � � � � � � � � � �

�� � 	 � 	 	

� � � �� � �� 	 � � � � � ��
 ��� � �� � � �

� ��� ��� � � �� ���� �
 � � � �

� � � � �� ��
 � 	 �� 	 � � �

��� � �� ��� �	 � ��� � � �� � ��� � � � 	! 	
 �� � � 	 �� � �� �" 	 �� � 	� 	
 � �" !�# � 	 ��� � � �� # � � ��� �

! � �" � 	 �� " � �� � 	 � ! � � � 	� $ � 	
 	
 � �� $ � � �� # " ! # " � 	 �� " �

� �

� � � � � � � � � �� � ��

� ��
�

�� � � �� �" �" 	 �� !�# � 	 �� " 	� �" !�# � 	 � � � ! � �" � 	 �� " � � �
 � � 	 � �

� � �" 	
 �

� � " ! �� � �� � � 	
 �� � 	 �� � � 	� � �� �
� � 	
 �� � ���" ! �� � � �

� " !�# � 	 � � � � " ! �" !�# � 	 ��� � � �� # � � � � � ! � �" � 	 �� " � �" � � � 	 �" 	�� 	 � � 	
 �� � 	

�

�� � � ��� � � � � � � � ��� � �� �� � � � �� � �
 � � � �� � � � �� � � � ��� �
 � � � � �
 � �

� � � �� � �� # �# � � �" !# � ��� �� �" � ! # � � �" �	

�

�� � � �� " � � � � � � � "# � � " � � � " � � � � � $ � �
 � �
% �

System F

Alexandre Miquel � PPS & U. Paris 7

Alexandre.Miquel@pps.jussieu.fr

Types Summer School 2005

August 15�26 � Göteborg

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)

Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Introduction

System F : independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic λ-calculus (1974)

Quite di�erent motivations. . .

Girard: Interpretation of second-order logic
Reynolds: Functional programming

. . . connected by the Curry-Howard isomorphism

Signi�cant in�uence on the development of Type Theory

� Interpretation of higher-order logic [Girard, Martin-Löf]
� Type:Type [Martin-Löf 1971]
� Martin-Löf Type Theory [1972, 1984, 1990, ...]
� The Calculus of Constructions [Coquand 1984]

Part I

System F: Church-style presentation

System F syntax

De�nition

Types

Terms

A,B ::= α | A→ B | ∀α B

t, u ::= x
| λx :A . t | tu (term abstr./app.)
| Λα . t | tA (type abstr./app.)

Notations
Set of free (term) variables: FV (t)
Set of free type variables: TV (t), TV (A)

Term substitution: u{x := t}
Type substitution: u{α := A}, B{α := A}

Perform α-conversion to prevent captures of free (term/type) variables!

System F syntax

De�nition

Types

Terms

A,B ::= α | A→ B | ∀α B

t, u ::= x
| λx :A . t | tu (term abstr./app.)
| Λα . t | tA (type abstr./app.)

Notations
Set of free (term) variables: FV (t)
Set of free type variables: TV (t), TV (A)

Term substitution: u{x := t}
Type substitution: u{α := A}, B{α := A}

Perform α-conversion to prevent captures of free (term/type) variables!

System F typing rules

Contexts

Typing judgments

Γ ::= x1 : A1, . . . , xn : An

Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Declaration of type variables is implicit (for each α ∈ TV (Γ))
Type variables could be declared explicitly: α : ∗ (cf PTS)
One rule for each syntactic construct ⇒ System is syntax-directed

System F typing rules

Contexts

Typing judgments

Γ ::= x1 : A1, . . . , xn : An

Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Declaration of type variables is implicit (for each α ∈ TV (Γ))
Type variables could be declared explicitly: α : ∗ (cf PTS)
One rule for each syntactic construct ⇒ System is syntax-directed

System F typing rules

Contexts

Typing judgments

Γ ::= x1 : A1, . . . , xn : An

Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Declaration of type variables is implicit (for each α ∈ TV (Γ))
Type variables could be declared explicitly: α : ∗ (cf PTS)
One rule for each syntactic construct ⇒ System is syntax-directed

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Example: the polymorphic identity

Set: id ≡ Λα . λx :α . x

One has:

id : ∀α (α → α)

idB : B → B for any type B

idB u : B for any term u : B

In particular, if we take B ≡ ∀α (α → α) and u ≡ id

id
(
∀α (α → α)

)
: ∀α (α → α) → ∀α (α → α)

id
(
∀α (α → α)

)
id : ∀α (α → α)

⇒ Type system is impredicative (or cyclic)

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}

Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Properties

Substitutivity (for types/terms):

Γ ` u : B ⇒ Γ{α := A} ` u{α := A} : B{α := A}
Γ, x : A ` u : B, Γ ` t : A ⇒ Γ ` u{x := t} : B

Uniqueness of type

Γ ` t : A, Γ ` t : A′ ⇒ A = A′ (α-conv.)

Decidability of type checking / type inference

1 Given Γ, t and A, decide whether Γ ` t : A is derivable

2 Given Γ and t, compute a type A such that Γ ` t : A
if such a type exists, or fail otherwise.

Both problems are decidable

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Reduction rules

Two kinds of redexes:

(λx :A . t)u � t{x := u} 1st kind redex

(Λα . t)A � t{α := A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

De�nitions

One step β-reduction t � t ′ ≡
contextual closure of both rules above

β-reduction t �∗ t ′ ≡
re�exive-transitive closure of �

β-convertibility t ' t ′ ≡
re�exive-symmetric-transitive closure of �

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u

� (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u

� u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´

�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }
4 294 967 296 times

x) · · ·)

Examples

The polymorphic identity, again

id B u ≡ (Λα . λx : α . x) B u � (λx :B . x) u � u

id (∀α (α→α)) id (∀α (α→α)) · · · id (∀α (α→α)) idB u �∗ u

A little bit more complex example. . .

`
Λα . λx : α . λf : α→α .

32 timesz }| {
f (· · · (f x) · · ·)

´`
∀α (α→(α→α)→α)

´ `
Λα . λx : α . λf : α→α . f x

´`
λn :∀α (α→(α→α)→α) . Λα . λx : α . λf : α→α . nα (nα x f) f

´
�∗ Λα . λx : α . λf : α→α . (f · · · (f| {z }

4 294 967 296 times
x) · · ·)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A

Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable

Proof. Girard and Tait's method of reducibility candidates (postponed)

Properties

Con�uence

t �∗ t1 ∧ t �∗ t2 ⇒ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)
Proof. Roughly the same as for the untyped λ-calculus (adaptation is easy)

Church-Rosser

t1 ' t2 ⇔ ∃t ′ (t1 �∗ t ′ ∧ t2 �∗ t ′)

Subject-reduction

If Γ ` t : A and t �∗ t ′ then Γ ` t : A
Proof. By induction on the derivation of Γ ` t : A, with t � t′ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable
Proof. Girard and Tait's method of reducibility candidates (postponed)

Part II

Encoding data types

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool

false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1

ifA false then t1 else t2 �∗ t2

Booleans (1/3)

Encoding of booleans

Bool ≡ ∀γ (γ → γ → γ)

true ≡ Λγ . λx , y : γ . x : Bool
false ≡ Λγ . λx , y : γ . y : Bool

ifA u then t1 else t2 ≡ u A t1 t2

Correctness w.r.t. typing

Γ ` u : Bool Γ ` t1 : A Γ ` t2 : A
Γ ` ifA u then t1 else t2 : A

Correctness w.r.t. reduction

ifA true then t1 else t2 �∗ t1
ifA false then t1 else t2 �∗ t2

Booleans (2/3)

Objection:

We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (2/3)

Objection: We can do the same in the untyped λ-calculus!

true ≡ λx , y . x
false ≡ λx , y . y

if u then t1 else t2 ≡ u t1 t2

 Same reduction
rules as before

But nothing prevents the following computation:

if λx . x| {z }
bad bool

then t1 else t2 ≡ (λx . x) t1 t2 � t1t2|{z}
meaningless result

Question: Does the type discipline of system F avoid this?

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Booleans (3/3)

Principle (that should be satis�ed by any functional programming language)

When a program P of type A evaluates to a value v , then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F : Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it su�ces to check that in system F:

Lemma (Canonical forms of type bool)

The terms true ≡ Λγ . λx , y : γ . x and false ≡ Λγ . λx , y : γ . y
are the only closed normal terms of type Bool ≡ ∀γ (γ→γ→γ)

Proof. Case analysis on the derivation.

Cartesian product

Encoding of the cartesian product A× B

A× B ≡ ∀γ ((A→B→γ) → γ)

〈t1, t2〉 ≡ Λγ . λf :A→ B → γ . f t1 t2

fst ≡ λp :A× B . p A (λx :A . λy :B . x) : A× B → A
snd ≡ λp :A× B . p B (λx :A . λy :B . y) : A× B → B

Correctness w.r.t. typing and reduction

Γ ` t1 : A Γ ` t2 : B
Γ ` 〈t1, t2〉 : A× B

fst 〈t1, t2〉 �∗ t1
snd 〈t1, t2〉 �∗ t2

Lemma (Canonical forms of type A× B)

The closed normal terms of type A×B are of the form 〈t1, t2〉, where t1 and t2
are closed normal terms of type A and B, respectively.

Cartesian product

Encoding of the cartesian product A× B

A× B ≡ ∀γ ((A→B→γ) → γ)

〈t1, t2〉 ≡ Λγ . λf :A→ B → γ . f t1 t2

fst ≡ λp :A× B . p A (λx :A . λy :B . x) : A× B → A
snd ≡ λp :A× B . p B (λx :A . λy :B . y) : A× B → B

Correctness w.r.t. typing and reduction

Γ ` t1 : A Γ ` t2 : B
Γ ` 〈t1, t2〉 : A× B

fst 〈t1, t2〉 �∗ t1
snd 〈t1, t2〉 �∗ t2

Lemma (Canonical forms of type A× B)

The closed normal terms of type A×B are of the form 〈t1, t2〉, where t1 and t2
are closed normal terms of type A and B, respectively.

Cartesian product

Encoding of the cartesian product A× B

A× B ≡ ∀γ ((A→B→γ) → γ)

〈t1, t2〉 ≡ Λγ . λf :A→ B → γ . f t1 t2

fst ≡ λp :A× B . p A (λx :A . λy :B . x) : A× B → A
snd ≡ λp :A× B . p B (λx :A . λy :B . y) : A× B → B

Correctness w.r.t. typing and reduction

Γ ` t1 : A Γ ` t2 : B
Γ ` 〈t1, t2〉 : A× B

fst 〈t1, t2〉 �∗ t1
snd 〈t1, t2〉 �∗ t2

Lemma (Canonical forms of type A× B)

The closed normal terms of type A×B are of the form 〈t1, t2〉, where t1 and t2
are closed normal terms of type A and B, respectively.

Cartesian product

Encoding of the cartesian product A× B

A× B ≡ ∀γ ((A→B→γ) → γ)

〈t1, t2〉 ≡ Λγ . λf :A→ B → γ . f t1 t2

fst ≡ λp :A× B . p A (λx :A . λy :B . x) : A× B → A
snd ≡ λp :A× B . p B (λx :A . λy :B . y) : A× B → B

Correctness w.r.t. typing and reduction

Γ ` t1 : A Γ ` t2 : B
Γ ` 〈t1, t2〉 : A× B

fst 〈t1, t2〉 �∗ t1
snd 〈t1, t2〉 �∗ t2

Lemma (Canonical forms of type A× B)

The closed normal terms of type A×B are of the form 〈t1, t2〉, where t1 and t2
are closed normal terms of type A and B, respectively.

Disjoint union

Encoding of the disjoint union A + B

A + B ≡ ∀γ ((A→γ) → (B→γ) → γ)

inl(v) ≡ Λγ . λf :A→ γ . λg :B → γ . f v : A + B (with v : A)
inr(v) ≡ Λγ . λf :A→ γ . λg :B → γ . g v : A + B (with v : B)

caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 ≡ u C (λx :A . t1) (λy :B . t2)

Correctness w.r.t. typing and reduction

Γ ` u : A + B Γ, x : A ` t1 : C Γ, y : B ` t2 : C
Γ ` caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 : C

caseC inl(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t1{x := v}
caseC inr(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t2{y := v}

+ Canonical forms of type A + B (works as expected)

Disjoint union

Encoding of the disjoint union A + B

A + B ≡ ∀γ ((A→γ) → (B→γ) → γ)

inl(v) ≡ Λγ . λf :A→ γ . λg :B → γ . f v : A + B (with v : A)
inr(v) ≡ Λγ . λf :A→ γ . λg :B → γ . g v : A + B (with v : B)

caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 ≡ u C (λx :A . t1) (λy :B . t2)

Correctness w.r.t. typing and reduction

Γ ` u : A + B Γ, x : A ` t1 : C Γ, y : B ` t2 : C
Γ ` caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 : C

caseC inl(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t1{x := v}
caseC inr(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t2{y := v}

+ Canonical forms of type A + B (works as expected)

Disjoint union

Encoding of the disjoint union A + B

A + B ≡ ∀γ ((A→γ) → (B→γ) → γ)

inl(v) ≡ Λγ . λf :A→ γ . λg :B → γ . f v : A + B (with v : A)
inr(v) ≡ Λγ . λf :A→ γ . λg :B → γ . g v : A + B (with v : B)

caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 ≡ u C (λx :A . t1) (λy :B . t2)

Correctness w.r.t. typing and reduction

Γ ` u : A + B Γ, x : A ` t1 : C Γ, y : B ` t2 : C
Γ ` caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 : C

caseC inl(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t1{x := v}
caseC inr(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t2{y := v}

+ Canonical forms of type A + B (works as expected)

Disjoint union

Encoding of the disjoint union A + B

A + B ≡ ∀γ ((A→γ) → (B→γ) → γ)

inl(v) ≡ Λγ . λf :A→ γ . λg :B → γ . f v : A + B (with v : A)
inr(v) ≡ Λγ . λf :A→ γ . λg :B → γ . g v : A + B (with v : B)

caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 ≡ u C (λx :A . t1) (λy :B . t2)

Correctness w.r.t. typing and reduction

Γ ` u : A + B Γ, x : A ` t1 : C Γ, y : B ` t2 : C
Γ ` caseC u of inl(x) 7→ t1 | inr(y) 7→ t2 : C

caseC inl(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t1{x := v}
caseC inr(v) of inl(x) 7→ t1 | inr(y) 7→ t2 �∗ t2{y := v}

+ Canonical forms of type A + B (works as expected)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Finite types

Encoding of Finn (n ≥ 0)

Finn ≡ ∀γ (γ → · · · → γ︸ ︷︷ ︸
n times

→ γ)

ei ≡ Λγ . λx1 : γ . . . λxn : γ . xi : Finn (1 ≤ i ≤ n)

Again, e1, . . . , en are the only closed normal terms of type Finn.

In particular:

Fin2 ≡ ∀γ (γ → γ → γ) ≡ Bool (type of booleans)

Fin1 ≡ ∀γ (γ → γ) ≡ Unit (unit data-type)

Fin0 ≡ ∀γ γ ≡ ⊥ (empty data-type)

(Notice that there is no closed normal term of type ⊥.)

Natural numbers

Encoding of the type of Church numerals

Nat ≡ ∀γ (γ → (γ → γ) → γ)

0 ≡ Λγ . λx : γ . λf : γ→γ . x
1 ≡ Λγ . λx : γ . λf : γ→γ . f x
2 ≡ Λγ . λx : γ . λf : γ→γ . f (f x)

...
n ≡ Λγ . λx : γ . λf : γ→γ . f (· · · (f︸ ︷︷ ︸

n times

x) · · ·) : Nat
...

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, . . . are the only closed normal terms of type Nat.

Natural numbers

Encoding of the type of Church numerals

Nat ≡ ∀γ (γ → (γ → γ) → γ)

0 ≡ Λγ . λx : γ . λf : γ→γ . x
1 ≡ Λγ . λx : γ . λf : γ→γ . f x
2 ≡ Λγ . λx : γ . λf : γ→γ . f (f x)

...
n ≡ Λγ . λx : γ . λf : γ→γ . f (· · · (f︸ ︷︷ ︸

n times

x) · · ·) : Nat
...

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, . . . are the only closed normal terms of type Nat.

Natural numbers

Encoding of the type of Church numerals

Nat ≡ ∀γ (γ → (γ → γ) → γ)

0 ≡ Λγ . λx : γ . λf : γ→γ . x
1 ≡ Λγ . λx : γ . λf : γ→γ . f x
2 ≡ Λγ . λx : γ . λf : γ→γ . f (f x)

...
n ≡ Λγ . λx : γ . λf : γ→γ . f (· · · (f︸ ︷︷ ︸

n times

x) · · ·) : Nat
...

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, . . . are the only closed normal terms of type Nat.

Natural numbers

Encoding of the type of Church numerals

Nat ≡ ∀γ (γ → (γ → γ) → γ)

0 ≡ Λγ . λx : γ . λf : γ→γ . x
1 ≡ Λγ . λx : γ . λf : γ→γ . f x
2 ≡ Λγ . λx : γ . λf : γ→γ . f (f x)

...
n ≡ Λγ . λx : γ . λf : γ→γ . f (· · · (f︸ ︷︷ ︸

n times

x) · · ·) : Nat
...

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, . . . are the only closed normal terms of type Nat.

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f

plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)

mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (1/2)

Intuition: Church numeral n acts as an iterator:

n A f x �∗ f (· · · (f︸ ︷︷ ︸
n

x) · · ·) (f : A→ A, x : A)

Successor

succ ≡ λn :Nat . Λγ . λx : γ . λf : γ→γ . f (n γ x f)

Addition

plus ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ .m γ (n γ x f) f
plus′ ≡ λn,m :Nat .m Nat n succ

Multiplication

mult ≡ λn,m :Nat . Λγ . λx : γ . λf : γ→γ . n γ x (λy : γ .m γ y f)
mult′ ≡ λn,m :Nat . n Nat 0 (plus m)

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´

down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Computing with natural numbers (2/2)

Predecessor function pred : Nat→ Nat

pred 0 ' 0
pred (n + 1) ' n

fst ≡ λp :Nat×Nat . p Nat (λx, y :Nat . x) : Nat×Nat→ Nat
snd ≡ λp :Nat×Nat . p Nat (λx, y :Nat . y) : Nat×Nat→ Nat
step ≡ λp :Nat×Nat . 〈snd p, succ (snd p)〉 : Nat×Nat→ Nat×Nat
pred ≡ λn :Nat . fst (n (Nat×Nat) 〈0, 0〉 step) : Nat→ Nat

Ackerman function ack : Nat→ Nat→ Nat

ack 0 m ' m + 1
ack (n + 1) 0 ' ack n 1
ack (n + 1) (m + 1) ' ack n

`
ack (n + 1) m

´
down ≡ λf : (Nat→Nat) . λp :Nat . p Nat (f 1) f : (Nat→Nat)→ (Nat→Nat)
ack ≡ λn,m :Nat . n (Nat→Nat) succ down m : Nat→ Nat→ Nat

. SN theorem guarantees that all well-typed computations terminate

Part III

System F: Curry-style presentation

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}

⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

System F polymorphism

ML/Haskell polymorphism

Types
Schemes

A,B ::= α | A→ B | · · · (user datatypes)
S ::= ∀~α B

The type scheme ∀α B is de�ned after its particular instances B{α:= A}
⇒ Type system is predicative

System F polymorphism

Types A,B ::= α | A→ B | ∀α B

The type ∀α B and its instances B{α:=A} are de�ned simultaneously

∀α (α → α) and ∀α (α → α) → ∀α (α → α)

⇒ Type system is impredicative, or cyclic

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extracting pure λ-terms

In Church-style system F , polymorphism is explicit:

id ≡ Λα . λx :α . x and id Nat 2

Two kind of redexes (λx :A . t)u and (Λα . t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t 7→ |t|

|x | = x
|λx :A . t| = λx . |t| |Λα . t| = |t|

|tu| = |t||u| |tA| = |t|

Target language is pure λ-calculus

Second kind redexes are erased, �rst kind redexes are preserved

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:

The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax

The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements

The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules

The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Extending the erasing function

Erased terms have a nice computational behaviour. . .
Only one kind of redex, easy to execute (Krivine's machine)
Irrelevant part of computation has been removed
The essence of computation has been preserved (to be justi�ed later)

. . . but what is their status w.r.t. typing?

The erasing function, de�ned on terms, can be extended to:
The whole syntax
The judgements
The typing rules
The derivations

⇒ Induces a new formalism: Curry-style system F

Church-style system F

Church-style system FCurry-style system F [Leivant 83]

Types

Terms

Judgments

Reduction

A,B ::= α | A→ B | ∀α B

t, u ::=

x | λx . t | tu

x | λx :A . t | tu | Λα . t | tA

x | λx :A . t | tu | Λα . t | tA

Γ ::= [] | Γ, x :A

(λx . t)u � t{x := u}

(λx :A . t)u � t{x := u}

(λx :A . t)u � t{x := u}

(Λα . t)A � t{α := A}

(Λα . t)A � t{α := A}

Remarks:

Types (and contexts) are unchanged

Terms are now pure λ-terms

Only one kind of redex

Church-style system F

Church-style system F

Curry-style system F [Leivant 83]

Types

Terms

Judgments

Reduction

A,B ::= α | A→ B | ∀α B

t, u ::=

x | λx . t | tux | λx :A . t | tu | Λα . t | tA

x | λx :A . t | tu | Λα . t | tA

Γ ::= [] | Γ, x :A

(λx . t)u � t{x := u}(λx :A . t)u � t{x := u}

(λx :A . t)u � t{x := u}

(Λα . t)A � t{α := A}

(Λα . t)A � t{α := A}

Remarks:

Types (and contexts) are unchanged

Terms are now pure λ-terms

Only one kind of redex

Church-style system FChurch-style system F

Curry-style system F [Leivant 83]

Types

Terms

Judgments

Reduction

A,B ::= α | A→ B | ∀α B

t, u ::= x | λx . t | tu

x | λx :A . t | tu | Λα . t | tAx | λx :A . t | tu | Λα . t | tA

Γ ::= [] | Γ, x :A

(λx . t)u � t{x := u}

(λx :A . t)u � t{x := u}(λx :A . t)u � t{x := u}
(Λα . t)A � t{α := A}(Λα . t)A � t{α := A}

Remarks:

Types (and contexts) are unchanged

Terms are now pure λ-terms

Only one kind of redex

Church-style system FChurch-style system F

Curry-style system F [Leivant 83]

Types

Terms

Judgments

Reduction

A,B ::= α | A→ B | ∀α B

t, u ::= x | λx . t | tu

x | λx :A . t | tu | Λα . t | tAx | λx :A . t | tu | Λα . t | tA

Γ ::= [] | Γ, x :A

(λx . t)u � t{x := u}

(λx :A . t)u � t{x := u}(λx :A . t)u � t{x := u}
(Λα . t)A � t{α := A}(Λα . t)A � t{α := A}

Remarks:

Types (and contexts) are unchanged

Terms are now pure λ-terms

Only one kind of redex

Church-style system F: typing rules

Curry-style system F: typing rules

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ `

tt

: B
Γ `

tt

: ∀α B
α/∈TV (Γ)

Γ `

tt

: ∀α B
Γ `

tt

: B{α := A}

⇒ Rules are no more syntax directed

Church-style system F: typing rules

Curry-style system F: typing rules

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t

t

: B
Γ ` t

t

: ∀α B
α/∈TV (Γ)

Γ ` t

t

: ∀α B
Γ ` t

t

: B{α := A}

⇒ Rules are no more syntax directed

Church-style system F: typing rules

Curry-style system F: typing rules

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx :A . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ ` t : B
Γ ` Λα . t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` tA : B{α := A}

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ `

t

t : B
Γ `

t

t : ∀α B
α/∈TV (Γ)

Γ `

t

t : ∀α B
Γ `

t

t : B{α := A}

⇒ Rules are no more syntax directed

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change

A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x

: ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)

: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α

: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)

: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool

(`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Curry-style system F: properties

Things that do not change

Substitutivity + β-subject reduction

Strong normalisation (postponed)

Things that change
A term may have several types

∆ ≡ λx . x x : ∀α (α → α) → ∀α (α → α)
: ∀α α → ∀α α
: ∀α α → ∀α (α → α)
: Bool→ Bool→ Bool (`or' function!)

No principal type (cf later)

Type checking/inference becomes undecidable [Wells 94]

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations

1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)

2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)
for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)

2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and typing

Equivalence between Church and Curry's presentations
1 If Γ ` t0 : A (Church), then Γ ` |t0| : A (Curry)
2 If Γ ` t : A (Curry), then Γ ` t0 : A (Church)

for some t0 s.t. |t0| = t

The erasing function maps:

Church's world Curry's world

1. derivations to derivations (isomorphism)
2. valid judgements to valid judgements (surjective only)

� On valid judgements, erasing is not injective:

λf : (∀α (α→α)) . f (∀α (α→α))f : ∀α (α→α) → ∀α (α→α)
λf : (∀α (α→α)) . Λα . f (α→ α)(f α) : ∀α (α→α) → ∀α (α→α)

 λf . � : ∀α (α→α) → ∀α (α→α)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y
↓ Erasing

(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y

↓ Erasing
(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y
↓ Erasing

(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y
↓ Erasing

(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Erasing and reduction

Second-kind redexes are erased, �rst-kind redexes are preserved

(Church) (Λα . λx : α . x)B y � (λx :B . x) y � y
↓ Erasing

(Curry) (λx . x) y ≡ (λx . x) y � y

Fact 1 (Church to Curry):

If t0, t ′0 ∈ Church, then

t �n t ′ ⇒ |t0| �p |t ′0| (with p ≤ n)

Fact 2 (Curry to Church):

If t0 ∈ Church, t ′ ∈ Curry and t0 well-typed, then

|t0| �p t ′ ⇒ ∃t ′0 (|t ′0| = t ′ ∧ t0 �n t ′0) (with n ≥ p)

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):

1 During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase

2 During the contraction of a 2nd-kind redex
the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase

2 During the contraction of a 2nd-kind redex
the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase

the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase

the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Normalisation equivalence

Fact 3 (Combinatorial argument):
1 During the contraction of a 1st-kind redex, the number of

redexes of both kinds may increase
2 During the contraction of a 2nd-kind redex

the number of 1st-kind redexes may increase
the number of 2nd-kind redexes does not increase
the number of type abstractions (Λα . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
1 All typable terms of syst. F -Church are strongly normalisable
2 All typable terms of syst. F -Curry are strongly normalisable

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Subtyping

In Curry-style system F , subtyping is introduced as a macro:

A ≤ B ≡ x : A ` x : B

Admissible rules

(Re�exivity, transitivity) A ≤ A
A ≤ B B ≤ C

A ≤ C

(Polymorphism) ∀α B ≤ B{α := A}
A ≤ B

A ≤ ∀α B
α/∈TV (A)

(Subsumption)
Γ ` t : A A ≤ B

Γ ` t : B

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:

1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction

2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

Problem with η-redexes in Curry-style system F

The (desired) subtyping rule for arrow-types

A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′

is not admissible

In particular, we have: f : Nat→ ∀β β 6` f : ∀α α → Bool

but if we η-expand: f : Nat→ ∀β β ` λx . fx : ∀α α → Bool

This shows that:
1 Curry-style system F does not enjoy η-subject reduction
2 This problem is connected with subtyping in arrow-types

The well-typed term: λx . fx : (∀α α) → Bool (Curry-style)
comes from the term λx : (∀α α) . f (x Nat) Bool| {z }

not an η-redex
(Church-style)

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

System Fη [Mitchell 88]

Extend Curry-style system F with a new rule

Γ ` λx . tx : A
Γ ` t : A

x /∈FV (t)

to enforce η-subject reduction

Properties:

Substitutivity, βη-subject-reduction, strong normalisation

Subtyping rule
A ≤ A′ B ≤ B ′

A′ → B ≤ A→ B ′
is now admissible

Expansion lemma
If Γ ` t : A is derivable in Fη, then Γ ` t′ : A is derivable in system F
for some η-expansion t′ of the term t.

More subtyping

If we set

⊥ := ∀γ γ
A× B := ∀γ ((A→ B → γ) → γ)
A + B := ∀γ ((A→ γ) → (B → γ) → γ)
List(A) := ∀γ (γ → (A→ γ → γ) → γ)

then, in Fη, the following subtyping rules are admissible:

⊥ ≤ A
A ≤ A′

List(A) ≤ List(A′)

A ≤ A′ B ≤ B ′

A× B ≤ A′ × B ′
A ≤ A′ B ≤ B ′

A + B ≤ A′ + B ′

� But most typable terms have no principal type

More subtyping

If we set

⊥ := ∀γ γ
A× B := ∀γ ((A→ B → γ) → γ)
A + B := ∀γ ((A→ γ) → (B → γ) → γ)
List(A) := ∀γ (γ → (A→ γ → γ) → γ)

then, in Fη, the following subtyping rules are admissible:

⊥ ≤ A
A ≤ A′

List(A) ≤ List(A′)

A ≤ A′ B ≤ B ′

A× B ≤ A′ × B ′
A ≤ A′ B ≤ B ′

A + B ≤ A′ + B ′

� But most typable terms have no principal type

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .

. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Adding intersection types

Extend system Fη with binary intersections

Types A,B ::= α | A→ B | ∀α B | A ∩ B

Γ ` t : A Γ ` t : B
Γ ` t : A ∩ B

Γ ` t : A ∩ B
Γ ` t : A

Γ ` t : A ∩ B
Γ ` t : B

βη-subject reduction, strong normalisation, etc.

Subtyping rules

A ∩ B ≤ A A ∩ B ≤ B
C ≤ A C ≤ B

C ≤ A ∩ B

All the strongly normalising terms are typable. . .
. . . but nothing to do with ∀: already true in λ→∩

All typable terms have a principal type
λx : xx . : ∀α ∀β ((α→β) ∩ α → β)

Part IV

The Strong Normalisation Theorem

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (1/2)

Question: What is the meaning of ∀α (α → α) ?

First scenario: an in�nite Cartesian product (à la Martin-Löf)

∀α (α → α) ≈
∏

α type
(α → α)

≈ (⊥ → ⊥)× (Bool→ Bool)× (Nat→ Nat)× · · ·

Since all the types A→ A are inhabited:

1 The cartesian product ∀α (α→α) should be larger than all the
types of the form A→ A

2 In particular, ∀α (α→α) should be larger than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . seems to be very confusing!

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:

1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A

2 In particular, ∀α (α→α) is smaller than its own function
space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

The meaning of second-order quanti�cation (2/2)

Second scenario: In F -Curry, both rules ∀-intro and ∀-elim

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

suggest that ∀ is not a cartesian product, but an intersection

Taking back our example:
1 The intersection ∀α (α→α) is smaller than all A→ A
2 In particular, ∀α (α→α) is smaller than its own function

space ∀α (α→α) → ∀α (α→α) . . .

. . . our intuition feels much better!

⇒ We will prove strong normalisation for Curry-style system F
Remember that SN(F -Church) ⇔ SN(F -Curry) (combinatorial equivalence)

Strong normalisation: the di�culty

Try to prove that
Γ ` t : A ⇒ t is SN

by induction on the derivation of Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ `

tt

: A→ B Γ `

uu

: A
Γ `

ttuu

: B

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

All the cases successfully pass the test except application
Two terms t and u may be SN, whereas tu is not [Take t ≡ u ≡ λx . xx]

⇒ The induction hypothesis �t is SN� is too weak (in general)

Strong normalisation: the di�culty

Try to prove that
Γ ` t : A ⇒ t is SN

by induction on the derivation of Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ ` t

t

: A→ B Γ ` u

u

: A
Γ ` t

t

u

u

: B

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

All the cases successfully pass the test except application
Two terms t and u may be SN, whereas tu is not [Take t ≡ u ≡ λx . xx]

⇒ The induction hypothesis �t is SN� is too weak (in general)

Strong normalisation: the di�culty

Try to prove that
Γ ` t : A ⇒ t is SN

by induction on the derivation of Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ `

t

t : A→ B Γ `

u

u : A
Γ `

t

t

u

u : B

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

All the cases successfully pass the test except application
Two terms t and u may be SN, whereas tu is not [Take t ≡ u ≡ λx . xx]

⇒ The induction hypothesis �t is SN� is too weak (in general)

Strong normalisation: the di�culty

Try to prove that
Γ ` t : A ⇒ t is SN

by induction on the derivation of Γ ` t : A

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A→ B

Γ `

t

t : A→ B Γ `

u

u : A
Γ `

t

t

u

u : B

Γ ` t : B
Γ ` t : ∀α B

α/∈TV (Γ)
Γ ` t : ∀α B

Γ ` t : B{α := A}

All the cases successfully pass the test except application
Two terms t and u may be SN, whereas tu is not [Take t ≡ u ≡ λx . xx]

⇒ The induction hypothesis �t is SN� is too weak (in general)

Reducibility candidates [Girard 1971]

To prove that
Γ ` t : A

A

⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard]

, or

Saturated sets [Tait]

Reducibility candidates [Girard 1971]

To prove that
Γ ` t :

A

A ⇒ t is SN ,

the induction hypothesis �t is SN� is too weak.

⇒ Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that ful�ll this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard], or

Saturated sets [Tait]

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Outline of the proof

1 De�ne a suitable notion of reducibility candidate
= the sets of λ-terms that will interpret/represent types
(Here, we use Tait's saturated sets)

2 Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)
Each candidate should only contain strongly normalisable λ-terms as elements

3 Associate to each type A a reducibility candidate JAK
Type constructors `→' and `∀' have to be re�ected at the level of candidates

4 Check (by induction) that Γ ` t : A implies t ∈ JAK
This is actually a little bit more complex, since we must take care of the typing context

5 Conclude that any well-typed term t is SN by step 2.

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (1/2)

Notations:

Λ ≡ set of all untyped λ-terms (open & closed)
SN ≡ set of all strongly normalisable untyped λ-terms
Var ≡ set of all (term) variables
TVar ≡ set of all type variables

A reduct of a term t is a term t ′ such that t � t ′ (one step)
The number of reducts of a given term is �nite and bounded by the number of redexes

A �nite reduction sequence of a term t is a �nite sequence
(ti)i∈[0..n] such that t = t0 � t1 � · · · � tn−1 � tn
In�nite reduction sequences are de�ned similarly, by replacing [0..n] by N

Finite reduction sequences of a term t form a tree, called the
reduction tree of t

Preliminaries (2/2)

De�nition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are �nite

Proposition

The following assertions are equivalent:
1 t is strongly normalisable
2 All the reducts of t are strongly normalisable
3 The reduction tree of t is �nite

Preliminaries (2/2)

De�nition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are �nite

Proposition

The following assertions are equivalent:
1 t is strongly normalisable
2 All the reducts of t are strongly normalisable
3 The reduction tree of t is �nite

Preliminaries (2/2)

De�nition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are �nite

Proposition

The following assertions are equivalent:
1 t is strongly normalisable
2 All the reducts of t are strongly normalisable
3 The reduction tree of t is �nite

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Saturated sets [Tait]

De�nition (Saturated set)

A set S ⊂ Λ is saturated if:

(SAT1) S ⊂ SN

(SAT2) x ∈ Var, ~v ∈ list(SN) ⇒ x~v ∈ S

(SAT3) t{x := u}~v ∈ S , u ∈ SN ⇒ (λx . t)u~v ∈ S

(SAT1) expresses the property we want to prove

Saturated sets contain all the variables (SAT2)
Extra-arguments ~v ∈ list(SN) are here for technical reasons

Saturated sets are closed under head β-expansion (SAT3)
Notice the condition u ∈ SN to avoid a clash with (SAT1) for K-redexes

The set of all saturated sets is written SAT [⊂ P(SN) ⊂ P(Λ)]

Properties of saturated sets

Proposition (Lattice structure)

1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set

2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Properties of saturated sets

Proposition (Lattice structure)
1 SN is a saturated set
2 SAT is closed under arbitrary non-empty intersections/unions:

I 6= ∅, (Si)i∈I ∈ SATI ⇒
“\
i∈I

Si
”
,
“[
i∈I

Si
”
∈ SAT

(SAT, ⊂) is a complete distributive lattice, with
> = SN and ⊥ = {t ∈ SN | t �∗ xu1 · · · un} (Neutral terms)

Realisability arrow: For all S ,T ⊂ Λ we set

S → T := {t ∈ Λ | ∀u ∈ S tu ∈ T}

Proposition (Closure under realisability arrow)

If S ,T ∈ SAT, then (S → T) ∈ SAT

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

Type arrow A→ B is interpreted by S → T (realisability arrow)

Type quanti�cation ∀α . . is interpreted by the intersection
\

S∈SAT
· · ·

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: ∀α (α → α) should be interpreted by
\

S∈SAT
(S → S)

To interpret type variables, use type valations:

De�nition (Type valuations)

A type valuation is a function ρ : TVar→ SAT
The set of type valuations is written TVal (= TVar → SAT)

Interpreting types (2/2)

By induction on A, we de�ne a function JAK : TVal→ SAT

JA→ BKρ = JAKρ → JBKρ JαKρ = ρ(α)

J∀α BKρ =
⋂

S∈SAT
JBKρ;α←S

Note: (ρ; α← S) is de�ned by
(

(ρ; α←S)(α) = S
(ρ; α←S)(β) = ρ(β) for all β 6= α

Problem: The implication

Γ ` t : A ⇒ t ∈ JAKρ

cannot be proved directly. (One has to take care of the context)

⇒ Strengthen induction hypothesis using substitutions

Interpreting types (2/2)

By induction on A, we de�ne a function JAK : TVal→ SAT

JA→ BKρ = JAKρ → JBKρ JαKρ = ρ(α)

J∀α BKρ =
⋂

S∈SAT
JBKρ;α←S

Note: (ρ; α← S) is de�ned by
(

(ρ; α←S)(α) = S
(ρ; α←S)(β) = ρ(β) for all β 6= α

Problem: The implication

Γ ` t : A ⇒ t ∈ JAKρ

cannot be proved directly. (One has to take care of the context)

⇒ Strengthen induction hypothesis using substitutions

Interpreting types (2/2)

By induction on A, we de�ne a function JAK : TVal→ SAT

JA→ BKρ = JAKρ → JBKρ JαKρ = ρ(α)

J∀α BKρ =
⋂

S∈SAT
JBKρ;α←S

Note: (ρ; α← S) is de�ned by
(

(ρ; α←S)(α) = S
(ρ; α←S)(β) = ρ(β) for all β 6= α

Problem: The implication

Γ ` t : A ⇒ t ∈ JAKρ

cannot be proved directly. (One has to take care of the context)

⇒ Strengthen induction hypothesis using substitutions

Interpreting types (2/2)

By induction on A, we de�ne a function JAK : TVal→ SAT

JA→ BKρ = JAKρ → JBKρ JαKρ = ρ(α)

J∀α BKρ =
⋂

S∈SAT
JBKρ;α←S

Note: (ρ; α← S) is de�ned by
(

(ρ; α←S)(α) = S
(ρ; α←S)(β) = ρ(β) for all β 6= α

Problem: The implication

Γ ` t : A ⇒ t ∈ JAKρ

cannot be proved directly. (One has to take care of the context)

⇒ Strengthen induction hypothesis using substitutions

Substitutions

De�nition (Substitutions)

A substitution is a �nite list σ = [x1 := u1; . . . ; xn := un]
where xi 6= xj (for i 6= j) and ui ∈ Λ

Application of a substitution σ to a term t is written t[σ]
Exercise: De�ne it formally

De�nition (Interpretation of contexts)

For all Γ = x1 : A1; . . . ; xn : An and ρ ∈ TVal set:

JΓKρ =
{
σ = [x1 := u1; . . . ; xn := un]; ui ∈ JAiKρ (i = 1..n)

}
Substitutions σ ∈ JΓKρ are said to be adapted to the context Γ (in the type valuation ρ)

Substitutions

De�nition (Substitutions)

A substitution is a �nite list σ = [x1 := u1; . . . ; xn := un]
where xi 6= xj (for i 6= j) and ui ∈ Λ

Application of a substitution σ to a term t is written t[σ]
Exercise: De�ne it formally

De�nition (Interpretation of contexts)

For all Γ = x1 : A1; . . . ; xn : An and ρ ∈ TVal set:

JΓKρ =
{
σ = [x1 := u1; . . . ; xn := un]; ui ∈ JAiKρ (i = 1..n)

}
Substitutions σ ∈ JΓKρ are said to be adapted to the context Γ (in the type valuation ρ)

Substitutions

De�nition (Substitutions)

A substitution is a �nite list σ = [x1 := u1; . . . ; xn := un]
where xi 6= xj (for i 6= j) and ui ∈ Λ

Application of a substitution σ to a term t is written t[σ]
Exercise: De�ne it formally

De�nition (Interpretation of contexts)

For all Γ = x1 : A1; . . . ; xn : An and ρ ∈ TVal set:

JΓKρ =
{
σ = [x1 := u1; . . . ; xn := un]; ui ∈ JAiKρ (i = 1..n)

}
Substitutions σ ∈ JΓKρ are said to be adapted to the context Γ (in the type valuation ρ)

Substitutions

De�nition (Substitutions)

A substitution is a �nite list σ = [x1 := u1; . . . ; xn := un]
where xi 6= xj (for i 6= j) and ui ∈ Λ

Application of a substitution σ to a term t is written t[σ]
Exercise: De�ne it formally

De�nition (Interpretation of contexts)

For all Γ = x1 : A1; . . . ; xn : An and ρ ∈ TVal set:

JΓKρ =
{
σ = [x1 := u1; . . . ; xn := un]; ui ∈ JAiKρ (i = 1..n)

}
Substitutions σ ∈ JΓKρ are said to be adapted to the context Γ (in the type valuation ρ)

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B

Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2)

, hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If Γ ` t : A in Curry-style system F , then

∀ρ ∈ TVal ∀σ ∈ JΓKρ t[σ] ∈ JAKρ

Proof. By induction on the derivation of Γ ` t : A.
Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F -Curry are strongly normalisable

Proof. Assume x1 : A1; . . . ; xn : An ` t : B
Consider an arbitrary type valuation ρ (for instance: ρ(α) = SN for all α)

We have: x1 ∈ JA1Kρ, x2 ∈ JA2Kρ, . . ., xn ∈ JAnKρ (SAT2), hence:

σ = [x1 := x1; . . . ; xn := xn] ∈ Jx1 : A1; . . . ; xn : AnKρ

From the lemma we get t = t[σ] ∈ JBKρ, hence t ∈ SN (SAT1)

Corollary (Church-style SN)

The typable terms of F -Church are strongly normalisable

A remark on impredicativity

In the SN proof, interpretation of ∀ relies on the property:

If (Si)i∈I (I 6= ∅) is a family of saturated sets,
then

⋂
i∈I Si is a saturated set

in the special case where I = SAT (impredicative intersection)

In `classical' mathematics, this construction is legal

⇒ Standard set theories (Z, ZF, ZFC) are impredicative

In (Bishop, Martin-Löf's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

No convincing `constructive' explanation
Suspicion about (this kind of) cyclicity

A remark on impredicativity

In the SN proof, interpretation of ∀ relies on the property:

If (Si)i∈I (I 6= ∅) is a family of saturated sets,
then

⋂
i∈I Si is a saturated set

in the special case where I = SAT (impredicative intersection)

In `classical' mathematics, this construction is legal

⇒ Standard set theories (Z, ZF, ZFC) are impredicative

In (Bishop, Martin-Löf's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

No convincing `constructive' explanation
Suspicion about (this kind of) cyclicity

A remark on impredicativity

In the SN proof, interpretation of ∀ relies on the property:

If (Si)i∈I (I 6= ∅) is a family of saturated sets,
then

⋂
i∈I Si is a saturated set

in the special case where I = SAT (impredicative intersection)

In `classical' mathematics, this construction is legal

⇒ Standard set theories (Z, ZF, ZFC) are impredicative

In (Bishop, Martin-Löf's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

No convincing `constructive' explanation
Suspicion about (this kind of) cyclicity

A remark on impredicativity

In the SN proof, interpretation of ∀ relies on the property:

If (Si)i∈I (I 6= ∅) is a family of saturated sets,
then

⋂
i∈I Si is a saturated set

in the special case where I = SAT (impredicative intersection)

In `classical' mathematics, this construction is legal

⇒ Standard set theories (Z, ZF, ZFC) are impredicative

In (Bishop, Martin-Löf's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

No convincing `constructive' explanation
Suspicion about (this kind of) cyclicity

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯

2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F

4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S

5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)

6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to de�ne the sub-vector space S ⊂ E generated by S in E ?

Standard `abstract' method:

1 Consider the set: S =
˘
F ; F is a sub-vector space of E and F ⊃ S

¯
2 Fact: S is non empty, since E ∈ S

3 Take: S =
T

F∈S F
4 By de�nition, S is included in all the sub-spaces of E containing S
5 But S is itself a sub-vector space of E containing S (so that S ∈ S)
6 So that S is actually the smallest of all such spaces

This de�nition is impredicative (step 3) (but legal in `classical' mathematics)

The set S is de�ned from S, that already contains S as an element︸ ︷︷ ︸
discovered a fortiori

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Impredicativity: An example (2/2)

But there are other ways of de�ning S ...

Standard `concrete' de�nition, by linear combinations:

Let S be the set of all vectors of the form v = α1 · v1 + · · ·+ αn · vn

where (vi) ranges over all the �nite families of elements of S ,
and (αi) ranges over all the �nite families of scalars

Inductive de�nition:

Let S be the set inductively de�ned by:
1 ~0 ∈ S ,
2 If v ∈ S , then v ∈ S ,
3 If v ∈ S and α is a scalar, then α · v ∈ S

4 If v1 ∈ S and v2 ∈ S , then v1 + v2 ∈ S .

⇒ Both de�nitions are predicative (and give the same object)

Normalisation of Second Order Arithmetic

Alexandre Miquel � PPS & U. Paris 7

Alexandre.Miquel@pps.jussieu.fr

Types Summer School 2005

August 15�26 � Göteborg

Syntax of HA2

Variables x , y , z , . . . of individuals (i.e. natural numbers)
αn, βn, γn, . . . of predicates (for each arity n ≥ 0)

Individuals t, u ::= x | 0 | s(t)

Formulæ A,B ::= αn(t1, . . . , tn) (for all n ≥ 0)
| A⇒ B
| ∀x B (�rst-order)
| ∀αn B (second order, for all n ≥ 0)

Contexts Γ, ∆ ::= A1, . . . ,An (lists of formulæ)

Predicate variables of arity 0 represent propositions

Predicate variables represent sets (of numerals, of pairs, etc.)

Real numbers can be represented as predicate variables
(intuitionistic analysis)

Syntax of HA2

Variables x , y , z , . . . of individuals (i.e. natural numbers)
αn, βn, γn, . . . of predicates (for each arity n ≥ 0)

Individuals t, u ::= x | 0 | s(t)

Formulæ A,B ::= αn(t1, . . . , tn) (for all n ≥ 0)
| A⇒ B
| ∀x B (�rst-order)
| ∀αn B (second order, for all n ≥ 0)

Contexts Γ, ∆ ::= A1, . . . ,An (lists of formulæ)

Predicate variables of arity 0 represent propositions

Predicate variables represent sets (of numerals, of pairs, etc.)

Real numbers can be represented as predicate variables
(intuitionistic analysis)

Syntax of HA2

Variables x , y , z , . . . of individuals (i.e. natural numbers)
αn, βn, γn, . . . of predicates (for each arity n ≥ 0)

Individuals t, u ::= x | 0 | s(t)

Formulæ A,B ::= αn(t1, . . . , tn) (for all n ≥ 0)
| A⇒ B
| ∀x B (�rst-order)
| ∀αn B (second order, for all n ≥ 0)

Contexts Γ, ∆ ::= A1, . . . ,An (lists of formulæ)

Predicate variables of arity 0 represent propositions

Predicate variables represent sets (of numerals, of pairs, etc.)

Real numbers can be represented as predicate variables
(intuitionistic analysis)

Substitution

Term substitution u{x := t} ⇒ de�ned in the usual way

First-order substitution B{x := t} ⇒ de�ned in the usual way

Second-order substitution B{αn := λx1, . . . , xn .A}

In the formula B, replace each atomic subformula of the form

αn(t1, . . . , tn)

by the (substituted) formula

A{x1 := t1; . . . ; xn := tn}

�
The notation `λx1, . . . , xn .A' is not part of the syntax

Substitution

Term substitution u{x := t} ⇒ de�ned in the usual way

First-order substitution B{x := t} ⇒ de�ned in the usual way

Second-order substitution B{αn := λx1, . . . , xn .A}

In the formula B, replace each atomic subformula of the form

αn(t1, . . . , tn)

by the (substituted) formula

A{x1 := t1; . . . ; xn := tn}

�
The notation `λx1, . . . , xn .A' is not part of the syntax

Substitution

Term substitution u{x := t} ⇒ de�ned in the usual way

First-order substitution B{x := t} ⇒ de�ned in the usual way

Second-order substitution B{αn := λx1, . . . , xn .A}

In the formula B, replace each atomic subformula of the form

αn(t1, . . . , tn)

by the (substituted) formula

A{x1 := t1; . . . ; xn := tn}

�
The notation `λx1, . . . , xn .A' is not part of the syntax

Substitution

Term substitution u{x := t} ⇒ de�ned in the usual way

First-order substitution B{x := t} ⇒ de�ned in the usual way

Second-order substitution B{αn := λx1, . . . , xn .A}

In the formula B, replace each atomic subformula of the form

αn(t1, . . . , tn)

by the (substituted) formula

A{x1 := t1; . . . ; xn := tn}

�
The notation `λx1, . . . , xn .A' is not part of the syntax

Substitution

Term substitution u{x := t} ⇒ de�ned in the usual way

First-order substitution B{x := t} ⇒ de�ned in the usual way

Second-order substitution B{αn := λx1, . . . , xn .A}

In the formula B, replace each atomic subformula of the form

αn(t1, . . . , tn)

by the (substituted) formula

A{x1 := t1; . . . ; xn := tn}

�
The notation `λx1, . . . , xn .A' is not part of the syntax

Encoding missing constructions

Other connectives can be encoded:

> ≡ ∀γ0 (γ0 ⇒ γ0)

⊥ ≡ ∀γ0 γ0

A ∧ B ≡ ∀γ0 ((A⇒ B ⇒ γ0) ⇒ γ0)

A ∨ B ≡ ∀γ0 ((A⇒ γ0) ⇒ (B ⇒ γ0) ⇒ γ0)

¬A ≡ A⇒ ⊥

Existential quanti�er (1st + 2nd order)

∃x B[x] ≡ ∀γ0 (∀x (B[x] ⇒ γ0) ⇒ γ0)

∃αn B[αn] ≡ ∀γ0 (∀αn (B[αn] ⇒ γ0) ⇒ γ0)

Leibniz equality:

t = u ≡ ∀γ1 (γ1(t) ⇒ γ1(u))

Encoding missing constructions

Other connectives can be encoded:

> ≡ ∀γ0 (γ0 ⇒ γ0)

⊥ ≡ ∀γ0 γ0

A ∧ B ≡ ∀γ0 ((A⇒ B ⇒ γ0) ⇒ γ0)

A ∨ B ≡ ∀γ0 ((A⇒ γ0) ⇒ (B ⇒ γ0) ⇒ γ0)

¬A ≡ A⇒ ⊥

Existential quanti�er (1st + 2nd order)

∃x B[x] ≡ ∀γ0 (∀x (B[x] ⇒ γ0) ⇒ γ0)

∃αn B[αn] ≡ ∀γ0 (∀αn (B[αn] ⇒ γ0) ⇒ γ0)

Leibniz equality:

t = u ≡ ∀γ1 (γ1(t) ⇒ γ1(u))

Encoding missing constructions

Other connectives can be encoded:

> ≡ ∀γ0 (γ0 ⇒ γ0)

⊥ ≡ ∀γ0 γ0

A ∧ B ≡ ∀γ0 ((A⇒ B ⇒ γ0) ⇒ γ0)

A ∨ B ≡ ∀γ0 ((A⇒ γ0) ⇒ (B ⇒ γ0) ⇒ γ0)

¬A ≡ A⇒ ⊥

Existential quanti�er (1st + 2nd order)

∃x B[x] ≡ ∀γ0 (∀x (B[x] ⇒ γ0) ⇒ γ0)

∃αn B[αn] ≡ ∀γ0 (∀αn (B[αn] ⇒ γ0) ⇒ γ0)

Leibniz equality:

t = u ≡ ∀γ1 (γ1(t) ⇒ γ1(u))

Encoding missing constructions

Other connectives can be encoded:

> ≡ ∀γ0 (γ0 ⇒ γ0)

⊥ ≡ ∀γ0 γ0

A ∧ B ≡ ∀γ0 ((A⇒ B ⇒ γ0) ⇒ γ0)

A ∨ B ≡ ∀γ0 ((A⇒ γ0) ⇒ (B ⇒ γ0) ⇒ γ0)

¬A ≡ A⇒ ⊥

Existential quanti�er (1st + 2nd order)

∃x B[x] ≡ ∀γ0 (∀x (B[x] ⇒ γ0) ⇒ γ0)

∃αn B[αn] ≡ ∀γ0 (∀αn (B[αn] ⇒ γ0) ⇒ γ0)

Leibniz equality:

t = u ≡ ∀γ1 (γ1(t) ⇒ γ1(u))

Deduction rules of HA2

General rules for second-order intuitionistic logic:

Γ ` A
A∈Γ

Γ,A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B

Γ ` B
Γ ` ∀x B

x /∈FV 1(Γ)
Γ ` ∀x B

Γ ` B{x := t}

Γ ` B
Γ ` ∀αn B

αn /∈FV 2(Γ)
Γ ` ∀αn B

Γ ` B{α := λx1, . . . , xn .A}

Speci�c rules (axioms) for arithmetic:

Γ ` ∀x ∀y (s(x) = s(y) ⇒ x = y) Γ ` ∀x ¬ s(x) = 0

�
Remember that constructions `t = u' and `¬A' are not primitive, but encoded!

Deduction rules of HA2

General rules for second-order intuitionistic logic:

Γ ` A
A∈Γ

Γ,A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B

Γ ` B
Γ ` ∀x B

x /∈FV 1(Γ)
Γ ` ∀x B

Γ ` B{x := t}

Γ ` B
Γ ` ∀αn B

αn /∈FV 2(Γ)
Γ ` ∀αn B

Γ ` B{α := λx1, . . . , xn .A}

Speci�c rules (axioms) for arithmetic:

Γ ` ∀x ∀y (s(x) = s(y) ⇒ x = y) Γ ` ∀x ¬ s(x) = 0

�
Remember that constructions `t = u' and `¬A' are not primitive, but encoded!

Derivable rules (1/2)

Logical deduction rules of HA2 only talk about the primitive constructions
`⇒' and `∀' (implication + 1st/2nd-order universal quanti�cation)

But in this framework, the other constructions (>, ⊥, ∧, ∨, ∃ etc.) are
de�nable and their (standard) deduction rules can be derived:

Logical connectives: >, ⊥ and ∧

Γ ` >
Γ ` ⊥
Γ ` C

Γ ` A Γ ` B
Γ ` A ∧ B

Γ ` A ∧ B
Γ ` A

Γ ` A ∧ B
Γ ` B

Derivable rules (1/2)

Logical deduction rules of HA2 only talk about the primitive constructions
`⇒' and `∀' (implication + 1st/2nd-order universal quanti�cation)

But in this framework, the other constructions (>, ⊥, ∧, ∨, ∃ etc.) are
de�nable and their (standard) deduction rules can be derived:

Logical connectives: >, ⊥ and ∧

Γ ` >
Γ ` ⊥
Γ ` C

Γ ` A Γ ` B
Γ ` A ∧ B

Γ ` A ∧ B
Γ ` A

Γ ` A ∧ B
Γ ` B

Derivable rules (1/2)

Logical deduction rules of HA2 only talk about the primitive constructions
`⇒' and `∀' (implication + 1st/2nd-order universal quanti�cation)

But in this framework, the other constructions (>, ⊥, ∧, ∨, ∃ etc.) are
de�nable and their (standard) deduction rules can be derived:

Logical connectives: >, ⊥ and ∧

Γ ` >
Γ ` ⊥
Γ ` C

Γ ` A Γ ` B
Γ ` A ∧ B

Γ ` A ∧ B
Γ ` A

Γ ` A ∧ B
Γ ` B

Derivable rules (2/2)

Logical connectives: ∨

Γ ` A
Γ ` A ∨ B

Γ ` B
Γ ` A ∨ B

Γ,A ` C Γ,B ` C Γ ` A ∨ B

Γ ` C

Existential quanti�er: 1st and 2nd-order

Γ ` B{x := t}
Γ ` ∃x B

Γ,B ` C Γ ` ∃x B

Γ ` C
x /∈FV 1(Γ,C)

Γ ` B{αn := λx1, . . . , xn .A}
Γ ` ∃αn B

Γ,B ` C Γ ` ∃αn B

Γ ` C
αn /∈FV 2(Γ,C)

Derivable rules (2/2)

Logical connectives: ∨

Γ ` A
Γ ` A ∨ B

Γ ` B
Γ ` A ∨ B

Γ,A ` C Γ,B ` C Γ ` A ∨ B

Γ ` C

Existential quanti�er: 1st and 2nd-order

Γ ` B{x := t}
Γ ` ∃x B

Γ,B ` C Γ ` ∃x B

Γ ` C
x /∈FV 1(Γ,C)

Γ ` B{αn := λx1, . . . , xn .A}
Γ ` ∃αn B

Γ,B ` C Γ ` ∃αn B

Γ ` C
αn /∈FV 2(Γ,C)

Equality rules

Leibniz equality is de�ned as: t = u ≡ ∀γ1 (γ1(t) ⇒ γ1(u))

The following formulæ are provable (by purely logical means):

∀x (x = x)

∀x ∀y (x = y ⇒ y = x)

∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)

∀α1 ∀x ∀y (α1(x) ⇒ x = y ⇒ α1(y))

Moreover, HA2 assumes the following two axioms:

(Injectivity)

(Non-surjectivity)

∀x ∀y (s(x) = s(y) ⇒ x = y)

∀x ¬ (s(x) = 0)

Equality rules

Leibniz equality is de�ned as: t = u ≡ ∀γ1 (γ1(t) ⇒ γ1(u))

The following formulæ are provable (by purely logical means):

∀x (x = x)

∀x ∀y (x = y ⇒ y = x)

∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)

∀α1 ∀x ∀y (α1(x) ⇒ x = y ⇒ α1(y))

Moreover, HA2 assumes the following two axioms:

(Injectivity)

(Non-surjectivity)

∀x ∀y (s(x) = s(y) ⇒ x = y)

∀x ¬ (s(x) = 0)

Equality rules

Leibniz equality is de�ned as: t = u ≡ ∀γ1 (γ1(t) ⇒ γ1(u))

The following formulæ are provable (by purely logical means):

∀x (x = x)

∀x ∀y (x = y ⇒ y = x)

∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)

∀α1 ∀x ∀y (α1(x) ⇒ x = y ⇒ α1(y))

Moreover, HA2 assumes the following two axioms:

(Injectivity)

(Non-surjectivity)

∀x ∀y (s(x) = s(y) ⇒ x = y)

∀x ¬ (s(x) = 0)

Induction principle

Induction can be recovered via the predicate:

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
⇒ de�nes the smallest class containing zero and closed under successor

In particular, we have: Nat(0) and ∀x
`
Nat(x) ⇒ Nat(s(x))

´
All the �rst-order quanti�cations should be restricted to this class:

⇒ Systematically use ∀x (Nat(x) ⇒ A) and ∃x (Nat(x)∧A)

Thanks to this trick, induction becomes provable:

∀α1
“
α1(0) ⇒ ∀x

`
Nat(x) ⇒ α1(x) ⇒ α1(s(x))

´
⇒ ∀x (Nat(x) ⇒ α1(x))

”

Induction principle

Induction can be recovered via the predicate:

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”

⇒ de�nes the smallest class containing zero and closed under successor

In particular, we have: Nat(0) and ∀x
`
Nat(x) ⇒ Nat(s(x))

´
All the �rst-order quanti�cations should be restricted to this class:

⇒ Systematically use ∀x (Nat(x) ⇒ A) and ∃x (Nat(x)∧A)

Thanks to this trick, induction becomes provable:

∀α1
“
α1(0) ⇒ ∀x

`
Nat(x) ⇒ α1(x) ⇒ α1(s(x))

´
⇒ ∀x (Nat(x) ⇒ α1(x))

”

Induction principle

Induction can be recovered via the predicate:

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
⇒ de�nes the smallest class containing zero and closed under successor

In particular, we have: Nat(0) and ∀x
`
Nat(x) ⇒ Nat(s(x))

´
All the �rst-order quanti�cations should be restricted to this class:

⇒ Systematically use ∀x (Nat(x) ⇒ A) and ∃x (Nat(x)∧A)

Thanks to this trick, induction becomes provable:

∀α1
“
α1(0) ⇒ ∀x

`
Nat(x) ⇒ α1(x) ⇒ α1(s(x))

´
⇒ ∀x (Nat(x) ⇒ α1(x))

”

Induction principle

Induction can be recovered via the predicate:

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
⇒ de�nes the smallest class containing zero and closed under successor

In particular, we have: Nat(0) and ∀x
`
Nat(x) ⇒ Nat(s(x))

´

All the �rst-order quanti�cations should be restricted to this class:

⇒ Systematically use ∀x (Nat(x) ⇒ A) and ∃x (Nat(x)∧A)

Thanks to this trick, induction becomes provable:

∀α1
“
α1(0) ⇒ ∀x

`
Nat(x) ⇒ α1(x) ⇒ α1(s(x))

´
⇒ ∀x (Nat(x) ⇒ α1(x))

”

Induction principle

Induction can be recovered via the predicate:

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
⇒ de�nes the smallest class containing zero and closed under successor

In particular, we have: Nat(0) and ∀x
`
Nat(x) ⇒ Nat(s(x))

´
All the �rst-order quanti�cations should be restricted to this class:

⇒ Systematically use ∀x (Nat(x) ⇒ A) and ∃x (Nat(x)∧A)

Thanks to this trick, induction becomes provable:

∀α1
“
α1(0) ⇒ ∀x

`
Nat(x) ⇒ α1(x) ⇒ α1(s(x))

´
⇒ ∀x (Nat(x) ⇒ α1(x))

”

Induction principle

Induction can be recovered via the predicate:

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
⇒ de�nes the smallest class containing zero and closed under successor

In particular, we have: Nat(0) and ∀x
`
Nat(x) ⇒ Nat(s(x))

´
All the �rst-order quanti�cations should be restricted to this class:

⇒ Systematically use ∀x (Nat(x) ⇒ A) and ∃x (Nat(x)∧A)

Thanks to this trick, induction becomes provable:

∀α1
“
α1(0) ⇒ ∀x

`
Nat(x) ⇒ α1(x) ⇒ α1(s(x))

´
⇒ ∀x (Nat(x) ⇒ α1(x))

”

The notion of cut (1/2)

A cut is a piece of a proof constituted by an introduction rule immediately
followed by the corresponding elimination rule

Each cut can be contracted in order to make the reasoning more direct. . .
. . . but not necessarily shorter [And actually, usually larger!]

Implication cut:

[Γ,A,Γ′`A].... π1

Γ,A ` B

Γ ` A⇒ B

.... π2

Γ ` A
Γ ` B

.... π2

Γ, Γ′ ` A
.... π1

Γ ` B

Here, [Γ,A, Γ′ ` A] represents all the instances of an axiom with the formula A in the
proof π1. (Such instances may occur in extended contexts of the form Γ,A, Γ′.)
These instances are then used as placeholders that are �lled by the proof π2 during the
contraction of the cut (after some weakenings due to the presence of extra contexts Γ′)

The notion of cut (1/2)

A cut is a piece of a proof constituted by an introduction rule immediately
followed by the corresponding elimination rule

Each cut can be contracted in order to make the reasoning more direct. . .
. . . but not necessarily shorter [And actually, usually larger!]

Implication cut:

[Γ,A,Γ′`A].... π1

Γ,A ` B

Γ ` A⇒ B

.... π2

Γ ` A
Γ ` B

.... π2

Γ, Γ′ ` A
.... π1

Γ ` B

Here, [Γ,A, Γ′ ` A] represents all the instances of an axiom with the formula A in the
proof π1. (Such instances may occur in extended contexts of the form Γ,A, Γ′.)
These instances are then used as placeholders that are �lled by the proof π2 during the
contraction of the cut (after some weakenings due to the presence of extra contexts Γ′)

The notion of cut (1/2)

A cut is a piece of a proof constituted by an introduction rule immediately
followed by the corresponding elimination rule

Each cut can be contracted in order to make the reasoning more direct. . .
. . . but not necessarily shorter [And actually, usually larger!]

Implication cut:

[Γ,A,Γ′`A].... π1

Γ,A ` B

Γ ` A⇒ B

.... π2

Γ ` A
Γ ` B

.... π2

Γ, Γ′ ` A
.... π1

Γ ` B

Here, [Γ,A, Γ′ ` A] represents all the instances of an axiom with the formula A in the
proof π1. (Such instances may occur in extended contexts of the form Γ,A, Γ′.)
These instances are then used as placeholders that are �lled by the proof π2 during the
contraction of the cut (after some weakenings due to the presence of extra contexts Γ′)

The notion of cut (1/2)

A cut is a piece of a proof constituted by an introduction rule immediately
followed by the corresponding elimination rule

Each cut can be contracted in order to make the reasoning more direct. . .
. . . but not necessarily shorter [And actually, usually larger!]

Implication cut:

[Γ,A,Γ′`A].... π1

Γ,A ` B

Γ ` A⇒ B

.... π2

Γ ` A
Γ ` B

.... π2

Γ, Γ′ ` A
.... π1

Γ ` B

Here, [Γ,A, Γ′ ` A] represents all the instances of an axiom with the formula A in the
proof π1. (Such instances may occur in extended contexts of the form Γ,A, Γ′.)
These instances are then used as placeholders that are �lled by the proof π2 during the
contraction of the cut (after some weakenings due to the presence of extra contexts Γ′)

The notion of cut (2/2)

Cut of the 1st-order universal quanti�cation:

.... π

Γ ` B
Γ ` ∀x .B

Γ ` B{x := t}

.... π{x :=t}

Γ ` B{x := t}

The �rst piece of proof is replaced by the proof π in which the 1st-order variable x is
replaced by the term t recursively. Notice that the substitution has no e�ect on Γ, since
x /∈ FV (Γ). (Of course, the substitution has to be performed on each context too.)

Cut of the 2nd-order universal quanti�cation:

.... π

Γ ` B
Γ ` ∀αn .B

Γ ` B{αn := λx1, . . . , xn .A}

.... π{αn :=··· }

Γ ` B{αn := λx1, . . . , xn .A}

Same principle, but with a 2nd-order substitution (ie. with a predicate λx1, . . . , xn .A)

The notion of cut (2/2)

Cut of the 1st-order universal quanti�cation:

.... π

Γ ` B
Γ ` ∀x .B

Γ ` B{x := t}

.... π{x :=t}

Γ ` B{x := t}

The �rst piece of proof is replaced by the proof π in which the 1st-order variable x is
replaced by the term t recursively. Notice that the substitution has no e�ect on Γ, since
x /∈ FV (Γ). (Of course, the substitution has to be performed on each context too.)

Cut of the 2nd-order universal quanti�cation:

.... π

Γ ` B
Γ ` ∀αn .B

Γ ` B{αn := λx1, . . . , xn .A}

.... π{αn :=··· }

Γ ` B{αn := λx1, . . . , xn .A}

Same principle, but with a 2nd-order substitution (ie. with a predicate λx1, . . . , xn .A)

Derived cuts

From the encoding of the connectives ∧ and ∨, one can derive other cuts:

Cuts of the conjunction:

.... π1

Γ ` A

.... π2

Γ ` B
Γ ` A ∧ B

Γ ` A

.... π1

Γ ` A (+ symmetric cut with ∧-elim2)

Cuts of the disjunction:

[Γ,A,Γ′`A].... π1

Γ,A ` C

[Γ,B,Γ′`B].... π2

Γ,B ` C

.... π

Γ ` A
Γ ` A ∨ B

Γ ` C

.... π

Γ, Γ′ ` A
.... π1

Γ ` C

(+ symmetric cut with ∨-intro2)

Filling placeholders in π1 with π is done in the same way as for the cut of implication

Derived cuts

From the encoding of the connectives ∧ and ∨, one can derive other cuts:

Cuts of the conjunction:

.... π1

Γ ` A

.... π2

Γ ` B
Γ ` A ∧ B

Γ ` A

.... π1

Γ ` A (+ symmetric cut with ∧-elim2)

Cuts of the disjunction:

[Γ,A,Γ′`A].... π1

Γ,A ` C

[Γ,B,Γ′`B].... π2

Γ,B ` C

.... π

Γ ` A
Γ ` A ∨ B

Γ ` C

.... π

Γ, Γ′ ` A
.... π1

Γ ` C

(+ symmetric cut with ∨-intro2)

Filling placeholders in π1 with π is done in the same way as for the cut of implication

Derived cuts

From the encoding of the connectives ∧ and ∨, one can derive other cuts:

Cuts of the conjunction:

.... π1

Γ ` A

.... π2

Γ ` B
Γ ` A ∧ B

Γ ` A

.... π1

Γ ` A (+ symmetric cut with ∧-elim2)

Cuts of the disjunction:

[Γ,A,Γ′`A].... π1

Γ,A ` C

[Γ,B,Γ′`B].... π2

Γ,B ` C

.... π

Γ ` A
Γ ` A ∨ B

Γ ` C

.... π

Γ, Γ′ ` A
.... π1

Γ ` C

(+ symmetric cut with ∨-intro2)

Filling placeholders in π1 with π is done in the same way as for the cut of implication

Derived cuts

From the encoding of the connectives ∧ and ∨, one can derive other cuts:

Cuts of the conjunction:

.... π1

Γ ` A

.... π2

Γ ` B
Γ ` A ∧ B

Γ ` A

.... π1

Γ ` A (+ symmetric cut with ∧-elim2)

Cuts of the disjunction:

[Γ,A,Γ′`A].... π1

Γ,A ` C

[Γ,B,Γ′`B].... π2

Γ,B ` C

.... π

Γ ` A
Γ ` A ∨ B

Γ ` C

.... π

Γ, Γ′ ` A
.... π1

Γ ` C

(+ symmetric cut with ∨-intro2)

Filling placeholders in π1 with π is done in the same way as for the cut of implication

Cut-free proofs

A cut-free proof is a proof that contains no cut

⇒ Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

1 If π is a cut-free proof of the formula t = u [≡ ∀α1 (α1(t) ⇒ α1(u))]
in the empty context, then the terms t and u are syntactically identical

2 There is no cut-free proof of ⊥ [≡ ∀α0 α0] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of ` t = t has one of the following two forms:

α1(t) ` α1(t)

` α1(t) ⇒ α1(t)

` ∀α
1 (α1(t) ⇒ α

1(t))| {z }
t=t

` ∀x ∀y (s(x) = s(y) ⇒ x = y)

` ∀y (s(t) = s(y) ⇒ t = y)

` s(t) = s(t) ⇒ t = t

(cut-free)
.
.
.
.

` s(t) = s(t)

` t = t

⇒ Reasoning on cut-free proofs is purely combinatorial

Cut-free proofs

A cut-free proof is a proof that contains no cut

⇒ Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

1 If π is a cut-free proof of the formula t = u [≡ ∀α1 (α1(t) ⇒ α1(u))]
in the empty context, then the terms t and u are syntactically identical

2 There is no cut-free proof of ⊥ [≡ ∀α0 α0] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of ` t = t has one of the following two forms:

α1(t) ` α1(t)

` α1(t) ⇒ α1(t)

` ∀α
1 (α1(t) ⇒ α

1(t))| {z }
t=t

` ∀x ∀y (s(x) = s(y) ⇒ x = y)

` ∀y (s(t) = s(y) ⇒ t = y)

` s(t) = s(t) ⇒ t = t

(cut-free)
.
.
.
.

` s(t) = s(t)

` t = t

⇒ Reasoning on cut-free proofs is purely combinatorial

Cut-free proofs

A cut-free proof is a proof that contains no cut

⇒ Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

1 If π is a cut-free proof of the formula t = u [≡ ∀α1 (α1(t) ⇒ α1(u))]
in the empty context, then the terms t and u are syntactically identical

2 There is no cut-free proof of ⊥ [≡ ∀α0 α0] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of ` t = t has one of the following two forms:

α1(t) ` α1(t)

` α1(t) ⇒ α1(t)

` ∀α
1 (α1(t) ⇒ α

1(t))| {z }
t=t

` ∀x ∀y (s(x) = s(y) ⇒ x = y)

` ∀y (s(t) = s(y) ⇒ t = y)

` s(t) = s(t) ⇒ t = t

(cut-free)
.
.
.
.

` s(t) = s(t)

` t = t

⇒ Reasoning on cut-free proofs is purely combinatorial

Cut-free proofs

A cut-free proof is a proof that contains no cut

⇒ Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

1 If π is a cut-free proof of the formula t = u [≡ ∀α1 (α1(t) ⇒ α1(u))]
in the empty context, then the terms t and u are syntactically identical

2 There is no cut-free proof of ⊥ [≡ ∀α0 α0] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of ` t = t has one of the following two forms:

α1(t) ` α1(t)

` α1(t) ⇒ α1(t)

` ∀α
1 (α1(t) ⇒ α

1(t))| {z }
t=t

` ∀x ∀y (s(x) = s(y) ⇒ x = y)

` ∀y (s(t) = s(y) ⇒ t = y)

` s(t) = s(t) ⇒ t = t

(cut-free)
.
.
.
.

` s(t) = s(t)

` t = t

⇒ Reasoning on cut-free proofs is purely combinatorial

Cut-free proofs

A cut-free proof is a proof that contains no cut

⇒ Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

1 If π is a cut-free proof of the formula t = u [≡ ∀α1 (α1(t) ⇒ α1(u))]
in the empty context, then the terms t and u are syntactically identical

2 There is no cut-free proof of ⊥ [≡ ∀α0 α0] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of ` t = t has one of the following two forms:

α1(t) ` α1(t)

` α1(t) ⇒ α1(t)

` ∀α
1 (α1(t) ⇒ α

1(t))| {z }
t=t

` ∀x ∀y (s(x) = s(y) ⇒ x = y)

` ∀y (s(t) = s(y) ⇒ t = y)

` s(t) = s(t) ⇒ t = t

(cut-free)
.
.
.
.

` s(t) = s(t)

` t = t

⇒ Reasoning on cut-free proofs is purely combinatorial

Cut-free proofs

A cut-free proof is a proof that contains no cut

⇒ Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

1 If π is a cut-free proof of the formula t = u [≡ ∀α1 (α1(t) ⇒ α1(u))]
in the empty context, then the terms t and u are syntactically identical

2 There is no cut-free proof of ⊥ [≡ ∀α0 α0] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of ` t = t has one of the following two forms:

α1(t) ` α1(t)

` α1(t) ⇒ α1(t)

` ∀α
1 (α1(t) ⇒ α

1(t))| {z }
t=t

` ∀x ∀y (s(x) = s(y) ⇒ x = y)

` ∀y (s(t) = s(y) ⇒ t = y)

` s(t) = s(t) ⇒ t = t

(cut-free)
.
.
.
.

` s(t) = s(t)

` t = t

⇒ Reasoning on cut-free proofs is purely combinatorial

Cut-free proofs

A cut-free proof is a proof that contains no cut

⇒ Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

1 If π is a cut-free proof of the formula t = u [≡ ∀α1 (α1(t) ⇒ α1(u))]
in the empty context, then the terms t and u are syntactically identical

2 There is no cut-free proof of ⊥ [≡ ∀α0 α0] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of ` t = t has one of the following two forms:

α1(t) ` α1(t)

` α1(t) ⇒ α1(t)

` ∀α
1 (α1(t) ⇒ α

1(t))| {z }
t=t

` ∀x ∀y (s(x) = s(y) ⇒ x = y)

` ∀y (s(t) = s(y) ⇒ t = y)

` s(t) = s(t) ⇒ t = t

(cut-free)
.
.
.
.

` s(t) = s(t)

` t = t

⇒ Reasoning on cut-free proofs is purely combinatorial

Cut-elimination

⊥ ≡ ∀α0 α0 has no cut-free proof (in the empty context)
⇒ Means that a proof of ⊥ necessarily contains at least one cut

But each cut can be individually contracted
(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof ?

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a �nite number of contraction steps)

Corollary (Cut-free proofs & Consistency)

1 Any proposition that has a proof has also a cut-free proof

2 The proposition ⊥ has no proof in the empty context

Cut-elimination

⊥ ≡ ∀α0 α0 has no cut-free proof (in the empty context)
⇒ Means that a proof of ⊥ necessarily contains at least one cut

But each cut can be individually contracted
(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof ?

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a �nite number of contraction steps)

Corollary (Cut-free proofs & Consistency)

1 Any proposition that has a proof has also a cut-free proof

2 The proposition ⊥ has no proof in the empty context

Cut-elimination

⊥ ≡ ∀α0 α0 has no cut-free proof (in the empty context)
⇒ Means that a proof of ⊥ necessarily contains at least one cut

But each cut can be individually contracted
(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof ?

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a �nite number of contraction steps)

Corollary (Cut-free proofs & Consistency)

1 Any proposition that has a proof has also a cut-free proof

2 The proposition ⊥ has no proof in the empty context

Cut-elimination

⊥ ≡ ∀α0 α0 has no cut-free proof (in the empty context)
⇒ Means that a proof of ⊥ necessarily contains at least one cut

But each cut can be individually contracted
(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof ?

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a �nite number of contraction steps)

Corollary (Cut-free proofs & Consistency)

1 Any proposition that has a proof has also a cut-free proof

2 The proposition ⊥ has no proof in the empty context

Cut-elimination

⊥ ≡ ∀α0 α0 has no cut-free proof (in the empty context)
⇒ Means that a proof of ⊥ necessarily contains at least one cut

But each cut can be individually contracted
(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof ?

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a �nite number of contraction steps)

Corollary (Cut-free proofs & Consistency)

1 Any proposition that has a proof has also a cut-free proof

2 The proposition ⊥ has no proof in the empty context

Cut-elimination

⊥ ≡ ∀α0 α0 has no cut-free proof (in the empty context)
⇒ Means that a proof of ⊥ necessarily contains at least one cut

But each cut can be individually contracted
(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof ?

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a �nite number of contraction steps)

Corollary (Cut-free proofs & Consistency)

1 Any proposition that has a proof has also a cut-free proof

2 The proposition ⊥ has no proof in the empty context

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

1 Map each formula A of HA2 to a type A∗ of system F

2 Map each logical context Γ of HA2 to a typing context Γ∗ of system F

3 Map each proof π of a sequent Γ ` A in HA2 to a term π∗ of system F
such that the judgement Γ∗ ` π∗ : A∗ is derivable

4 Check that each cut of π becomes a redex in π∗

[Note: this works only for ⇒-cuts and 2nd-order ∀-cuts. The case of 1st-order ∀-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F -Curry) entails SN(F -Church)]

5 Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

1 Map each formula A of HA2 to a type A∗ of system F

2 Map each logical context Γ of HA2 to a typing context Γ∗ of system F

3 Map each proof π of a sequent Γ ` A in HA2 to a term π∗ of system F
such that the judgement Γ∗ ` π∗ : A∗ is derivable

4 Check that each cut of π becomes a redex in π∗

[Note: this works only for ⇒-cuts and 2nd-order ∀-cuts. The case of 1st-order ∀-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F -Curry) entails SN(F -Church)]

5 Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

1 Map each formula A of HA2 to a type A∗ of system F

2 Map each logical context Γ of HA2 to a typing context Γ∗ of system F

3 Map each proof π of a sequent Γ ` A in HA2 to a term π∗ of system F
such that the judgement Γ∗ ` π∗ : A∗ is derivable

4 Check that each cut of π becomes a redex in π∗

[Note: this works only for ⇒-cuts and 2nd-order ∀-cuts. The case of 1st-order ∀-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F -Curry) entails SN(F -Church)]

5 Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

1 Map each formula A of HA2 to a type A∗ of system F

2 Map each logical context Γ of HA2 to a typing context Γ∗ of system F

3 Map each proof π of a sequent Γ ` A in HA2 to a term π∗ of system F
such that the judgement Γ∗ ` π∗ : A∗ is derivable

4 Check that each cut of π becomes a redex in π∗

[Note: this works only for ⇒-cuts and 2nd-order ∀-cuts. The case of 1st-order ∀-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F -Curry) entails SN(F -Church)]

5 Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

1 Map each formula A of HA2 to a type A∗ of system F

2 Map each logical context Γ of HA2 to a typing context Γ∗ of system F

3 Map each proof π of a sequent Γ ` A in HA2 to a term π∗ of system F
such that the judgement Γ∗ ` π∗ : A∗ is derivable

4 Check that each cut of π becomes a redex in π∗

[Note: this works only for ⇒-cuts and 2nd-order ∀-cuts. The case of 1st-order ∀-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F -Curry) entails SN(F -Church)]

5 Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

1 Map each formula A of HA2 to a type A∗ of system F

2 Map each logical context Γ of HA2 to a typing context Γ∗ of system F

3 Map each proof π of a sequent Γ ` A in HA2 to a term π∗ of system F
such that the judgement Γ∗ ` π∗ : A∗ is derivable

4 Check that each cut of π becomes a redex in π∗

[Note: this works only for ⇒-cuts and 2nd-order ∀-cuts. The case of 1st-order ∀-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F -Curry) entails SN(F -Church)]

5 Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

1 Map each formula A of HA2 to a type A∗ of system F

2 Map each logical context Γ of HA2 to a typing context Γ∗ of system F

3 Map each proof π of a sequent Γ ` A in HA2 to a term π∗ of system F
such that the judgement Γ∗ ` π∗ : A∗ is derivable

4 Check that each cut of π becomes a redex in π∗

[Note: this works only for ⇒-cuts and 2nd-order ∀-cuts. The case of 1st-order ∀-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F -Curry) entails SN(F -Church)]

5 Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

1 Map each formula A of HA2 to a type A∗ of system F

2 Map each logical context Γ of HA2 to a typing context Γ∗ of system F

3 Map each proof π of a sequent Γ ` A in HA2 to a term π∗ of system F
such that the judgement Γ∗ ` π∗ : A∗ is derivable

4 Check that each cut of π becomes a redex in π∗

[Note: this works only for ⇒-cuts and 2nd-order ∀-cuts. The case of 1st-order ∀-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F -Curry) entails SN(F -Church)]

5 Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Translating HA2 formulæ (1/2)

Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

Formulæ of HA2 are translated into the types of system F :

(αn(t1, . . . , tn))
∗ ≡ α

(A⇒ B)∗ ≡ A∗ → B∗

(∀x .B)∗ ≡ B∗

(∀αn .B)∗ ≡ ∀α B

Remarks: � arity of predicate variables is lost
� all the �rst-order constructions disappear

⇒ The translation only preserves (pure) second-order constructions

Substitutivity: (B{x := t}) ≡ A∗

(B{αn := λx1, . . . , xn .A})∗ ≡ B∗{α := A∗}

Translating HA2 formulæ (1/2)

Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

Formulæ of HA2 are translated into the types of system F :

(αn(t1, . . . , tn))
∗ ≡ α

(A⇒ B)∗ ≡ A∗ → B∗

(∀x .B)∗ ≡ B∗

(∀αn .B)∗ ≡ ∀α B

Remarks: � arity of predicate variables is lost
� all the �rst-order constructions disappear

⇒ The translation only preserves (pure) second-order constructions

Substitutivity: (B{x := t}) ≡ A∗

(B{αn := λx1, . . . , xn .A})∗ ≡ B∗{α := A∗}

Translating HA2 formulæ (1/2)

Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

Formulæ of HA2 are translated into the types of system F :

(αn(t1, . . . , tn))
∗ ≡ α

(A⇒ B)∗ ≡ A∗ → B∗

(∀x .B)∗ ≡ B∗

(∀αn .B)∗ ≡ ∀α B

Remarks: � arity of predicate variables is lost
� all the �rst-order constructions disappear

⇒ The translation only preserves (pure) second-order constructions

Substitutivity: (B{x := t}) ≡ A∗

(B{αn := λx1, . . . , xn .A})∗ ≡ B∗{α := A∗}

Translating HA2 formulæ (1/2)

Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

Formulæ of HA2 are translated into the types of system F :

(αn(t1, . . . , tn))
∗ ≡ α

(A⇒ B)∗ ≡ A∗ → B∗

(∀x .B)∗ ≡ B∗

(∀αn .B)∗ ≡ ∀α B

Remarks: � arity of predicate variables is lost
� all the �rst-order constructions disappear

⇒ The translation only preserves (pure) second-order constructions

Substitutivity: (B{x := t}) ≡ A∗

(B{αn := λx1, . . . , xn .A})∗ ≡ B∗{α := A∗}

Translating HA2 formulæ (1/2)

Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

Formulæ of HA2 are translated into the types of system F :

(αn(t1, . . . , tn))
∗ ≡ α

(A⇒ B)∗ ≡ A∗ → B∗

(∀x .B)∗ ≡ B∗

(∀αn .B)∗ ≡ ∀α B

Remarks: � arity of predicate variables is lost
� all the �rst-order constructions disappear

⇒ The translation only preserves (pure) second-order constructions

Substitutivity: (B{x := t}) ≡ A∗

(B{αn := λx1, . . . , xn .A})∗ ≡ B∗{α := A∗}

Translating HA2 formulæ (1/2)

Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

Formulæ of HA2 are translated into the types of system F :

(αn(t1, . . . , tn))
∗ ≡ α

(A⇒ B)∗ ≡ A∗ → B∗

(∀x .B)∗ ≡ B∗

(∀αn .B)∗ ≡ ∀α B

Remarks: � arity of predicate variables is lost
� all the �rst-order constructions disappear

⇒ The translation only preserves (pure) second-order constructions

Substitutivity: (B{x := t}) ≡ A∗

(B{αn := λx1, . . . , xn .A})∗ ≡ B∗{α := A∗}

Translating HA2 formulæ (2/2)

We can test the translation on derived formulæ:

(A ∧ B)∗ ≡ A∗ × B∗ (cartesian product of system F)

(A ∨ B)∗ ≡ A∗ + B∗ (disjoint union)

(t = u)∗ ≡ (∀α1 α1(t) ⇒ α1(u))∗ ≡ ∀α α → α ≡ Unit

⇒ Equality proofs have no computational contents

Translation of contexts: Each logical context

Γ ≡ A1, . . . , An

is translated into a typing context of system F

Γ∗ ≡ ξ1 : A∗
1 , . . . , ξn : A∗

n

by associating a term variable ξi (a `name') to each hypothesis

Translating HA2 formulæ (2/2)

We can test the translation on derived formulæ:

(A ∧ B)∗ ≡ A∗ × B∗ (cartesian product of system F)

(A ∨ B)∗ ≡ A∗ + B∗ (disjoint union)

(t = u)∗ ≡ (∀α1 α1(t) ⇒ α1(u))∗ ≡ ∀α α → α ≡ Unit

⇒ Equality proofs have no computational contents

Translation of contexts: Each logical context

Γ ≡ A1, . . . , An

is translated into a typing context of system F

Γ∗ ≡ ξ1 : A∗
1 , . . . , ξn : A∗

n

by associating a term variable ξi (a `name') to each hypothesis

Translating HA2 formulæ (2/2)

We can test the translation on derived formulæ:

(A ∧ B)∗ ≡ A∗ × B∗ (cartesian product of system F)

(A ∨ B)∗ ≡ A∗ + B∗ (disjoint union)

(t = u)∗ ≡ (∀α1 α1(t) ⇒ α1(u))∗ ≡ ∀α α → α ≡ Unit

⇒ Equality proofs have no computational contents

Translation of contexts: Each logical context

Γ ≡ A1, . . . , An

is translated into a typing context of system F

Γ∗ ≡ ξ1 : A∗
1 , . . . , ξn : A∗

n

by associating a term variable ξi (a `name') to each hypothesis

Translating HA2 formulæ (2/2)

We can test the translation on derived formulæ:

(A ∧ B)∗ ≡ A∗ × B∗ (cartesian product of system F)

(A ∨ B)∗ ≡ A∗ + B∗ (disjoint union)

(t = u)∗ ≡ (∀α1 α1(t) ⇒ α1(u))∗ ≡ ∀α α → α ≡ Unit

⇒ Equality proofs have no computational contents

Translation of contexts: Each logical context

Γ ≡ A1, . . . , An

is translated into a typing context of system F

Γ∗ ≡ ξ1 : A∗
1 , . . . , ξn : A∗

n

by associating a term variable ξi (a `name') to each hypothesis

Translating proofs (1/4)

Principle: Translate each proof π of a sequent Γ ` A into a term π∗

such that Γ∗ ` π∗ : A∗ is derivable

Axiom: “
Γ,A ` A

”∗
= ξ

where ξ is the variable associated to the formula A in the context Γ,A

Introduction of the implication:0B@
.... π

Γ,A ` B

Γ ` A⇒ B

1CA
∗

= λξ :A∗ . π∗

where ξ is the variable associated to A in the context Γ,A

Translating proofs (1/4)

Principle: Translate each proof π of a sequent Γ ` A into a term π∗

such that Γ∗ ` π∗ : A∗ is derivable

Axiom: “
Γ,A ` A

”∗
= ξ

where ξ is the variable associated to the formula A in the context Γ,A

Introduction of the implication:0B@
.... π

Γ,A ` B

Γ ` A⇒ B

1CA
∗

= λξ :A∗ . π∗

where ξ is the variable associated to A in the context Γ,A

Translating proofs (1/4)

Principle: Translate each proof π of a sequent Γ ` A into a term π∗

such that Γ∗ ` π∗ : A∗ is derivable

Axiom: “
Γ,A ` A

”∗
= ξ

where ξ is the variable associated to the formula A in the context Γ,A

Introduction of the implication:0B@
.... π

Γ,A ` B

Γ ` A⇒ B

1CA
∗

= λξ :A∗ . π∗

where ξ is the variable associated to A in the context Γ,A

Translating proofs (1/4)

Principle: Translate each proof π of a sequent Γ ` A into a term π∗

such that Γ∗ ` π∗ : A∗ is derivable

Axiom: “
Γ,A ` A

”∗
= ξ

where ξ is the variable associated to the formula A in the context Γ,A

Introduction of the implication:0B@
.... π

Γ,A ` B

Γ ` A⇒ B

1CA
∗

= λξ :A∗ . π∗

where ξ is the variable associated to A in the context Γ,A

Translating proofs (2/4)

Elimination of the implication:0B@
.... π1

Γ ` A⇒ B

.... π2

Γ ` A
Γ ` B

1CA
∗

= π∗
1π∗

2

Introduction of the 1st-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀x B

1CA
∗

= π∗

Elimination of the 1st-order universal quanti�cation:0B@
.... π

Γ ` ∀x B
Γ ` B{x := t}

1CA
∗

= π∗

Remark: 1st-order ∀-intro/elim are invisible in the extracted system F term

Translating proofs (2/4)

Elimination of the implication:0B@
.... π1

Γ ` A⇒ B

.... π2

Γ ` A
Γ ` B

1CA
∗

= π∗
1π∗

2

Introduction of the 1st-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀x B

1CA
∗

= π∗

Elimination of the 1st-order universal quanti�cation:0B@
.... π

Γ ` ∀x B
Γ ` B{x := t}

1CA
∗

= π∗

Remark: 1st-order ∀-intro/elim are invisible in the extracted system F term

Translating proofs (2/4)

Elimination of the implication:0B@
.... π1

Γ ` A⇒ B

.... π2

Γ ` A
Γ ` B

1CA
∗

= π∗
1π∗

2

Introduction of the 1st-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀x B

1CA
∗

= π∗

Elimination of the 1st-order universal quanti�cation:0B@
.... π

Γ ` ∀x B
Γ ` B{x := t}

1CA
∗

= π∗

Remark: 1st-order ∀-intro/elim are invisible in the extracted system F term

Translating proofs (3/4)

Introduction of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀αn B

1CA
∗

= Λα . π∗

Elimination of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` ∀αn B
Γ ` B{αn := λx1, . . . , xn .A}

1CA
∗

= π∗A∗

Properties:

Each stage preserves the invariant Γ∗ ` π∗ : A∗

1 Cuts of implication become 1st-kind redexes

2 Cuts of 2nd-order universal quanti�cation become 2nd-kind redexes . . .

3 . . . but cuts of 1st-order universal quanti�cation disappear

Translating proofs (3/4)

Introduction of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀αn B

1CA
∗

= Λα . π∗

Elimination of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` ∀αn B
Γ ` B{αn := λx1, . . . , xn .A}

1CA
∗

= π∗A∗

Properties:

Each stage preserves the invariant Γ∗ ` π∗ : A∗

1 Cuts of implication become 1st-kind redexes

2 Cuts of 2nd-order universal quanti�cation become 2nd-kind redexes . . .

3 . . . but cuts of 1st-order universal quanti�cation disappear

Translating proofs (3/4)

Introduction of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀αn B

1CA
∗

= Λα . π∗

Elimination of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` ∀αn B
Γ ` B{αn := λx1, . . . , xn .A}

1CA
∗

= π∗A∗

Properties:

Each stage preserves the invariant Γ∗ ` π∗ : A∗

1 Cuts of implication become 1st-kind redexes

2 Cuts of 2nd-order universal quanti�cation become 2nd-kind redexes . . .

3 . . . but cuts of 1st-order universal quanti�cation disappear

Translating proofs (3/4)

Introduction of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀αn B

1CA
∗

= Λα . π∗

Elimination of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` ∀αn B
Γ ` B{αn := λx1, . . . , xn .A}

1CA
∗

= π∗A∗

Properties:

Each stage preserves the invariant Γ∗ ` π∗ : A∗

1 Cuts of implication become 1st-kind redexes

2 Cuts of 2nd-order universal quanti�cation become 2nd-kind redexes . . .

3 . . . but cuts of 1st-order universal quanti�cation disappear

Translating proofs (3/4)

Introduction of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀αn B

1CA
∗

= Λα . π∗

Elimination of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` ∀αn B
Γ ` B{αn := λx1, . . . , xn .A}

1CA
∗

= π∗A∗

Properties:

Each stage preserves the invariant Γ∗ ` π∗ : A∗

1 Cuts of implication become 1st-kind redexes

2 Cuts of 2nd-order universal quanti�cation become 2nd-kind redexes . . .

3 . . . but cuts of 1st-order universal quanti�cation disappear

Translating proofs (3/4)

Introduction of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀αn B

1CA
∗

= Λα . π∗

Elimination of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` ∀αn B
Γ ` B{αn := λx1, . . . , xn .A}

1CA
∗

= π∗A∗

Properties:

Each stage preserves the invariant Γ∗ ` π∗ : A∗

1 Cuts of implication become 1st-kind redexes

2 Cuts of 2nd-order universal quanti�cation become 2nd-kind redexes . . .

3 . . . but cuts of 1st-order universal quanti�cation disappear

Translating proofs (4/4)

Injectivity: Since`
∀x ∀y (s(x) = s(y) ⇒ x = y)

´∗ ≡ Unit→ Unit

it is natural to set:“
Γ ` ∀x ∀y (s(x) = s(y) ⇒ x = y)

”∗
≡ λξ :Unit . ξ

Non-surjectivity: Quite problematic, since the type

(∀x ¬ s(x) = 0)∗ ≡ Unit→ ⊥

has no closed inhabitant in system F .

Solution (hack ?): Add a dummy constant Ω : ⊥ in the system and put:“
Γ ` ∀x ¬ s(x) = 0

”∗
≡ λξ :Unit . Ω

Translating proofs (4/4)

Injectivity: Since`
∀x ∀y (s(x) = s(y) ⇒ x = y)

´∗ ≡ Unit→ Unit

it is natural to set:“
Γ ` ∀x ∀y (s(x) = s(y) ⇒ x = y)

”∗
≡ λξ :Unit . ξ

Non-surjectivity: Quite problematic, since the type

(∀x ¬ s(x) = 0)∗ ≡ Unit→ ⊥

has no closed inhabitant in system F .

Solution (hack ?): Add a dummy constant Ω : ⊥ in the system and put:“
Γ ` ∀x ¬ s(x) = 0

”∗
≡ λξ :Unit . Ω

Translating proofs (4/4)

Injectivity: Since`
∀x ∀y (s(x) = s(y) ⇒ x = y)

´∗ ≡ Unit→ Unit

it is natural to set:“
Γ ` ∀x ∀y (s(x) = s(y) ⇒ x = y)

”∗
≡ λξ :Unit . ξ

Non-surjectivity: Quite problematic, since the type

(∀x ¬ s(x) = 0)∗ ≡ Unit→ ⊥

has no closed inhabitant in system F .

Solution (hack ?): Add a dummy constant Ω : ⊥ in the system and put:“
Γ ` ∀x ¬ s(x) = 0

”∗
≡ λξ :Unit . Ω

Translating proofs (4/4)

Injectivity: Since`
∀x ∀y (s(x) = s(y) ⇒ x = y)

´∗ ≡ Unit→ Unit

it is natural to set:“
Γ ` ∀x ∀y (s(x) = s(y) ⇒ x = y)

”∗
≡ λξ :Unit . ξ

Non-surjectivity: Quite problematic, since the type

(∀x ¬ s(x) = 0)∗ ≡ Unit→ ⊥

has no closed inhabitant in system F .

Solution (hack ?): Add a dummy constant Ω : ⊥ in the system and put:“
Γ ` ∀x ¬ s(x) = 0

”∗
≡ λξ :Unit . Ω

Translating proofs (4/4)

Injectivity: Since`
∀x ∀y (s(x) = s(y) ⇒ x = y)

´∗ ≡ Unit→ Unit

it is natural to set:“
Γ ` ∀x ∀y (s(x) = s(y) ⇒ x = y)

”∗
≡ λξ :Unit . ξ

Non-surjectivity: Quite problematic, since the type

(∀x ¬ s(x) = 0)∗ ≡ Unit→ ⊥

has no closed inhabitant in system F .

Solution (hack ?): Add a dummy constant Ω : ⊥ in the system and put:“
Γ ` ∀x ¬ s(x) = 0

”∗
≡ λξ :Unit . Ω

Cut-elimination

1 Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Ω)

Note: From the point of view of normalisation, system F + Ω is the same as system F :
Ω merely acts as a free variable that we have declared in all contexts once and for all

2 Via the translation of proofs:

Cuts of implication become 1st kind redexes
Cuts of 2nd-order quanti�cation become 2nd kind redexes
cuts of 1st-order quanti�cation disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F -Curry) ⇒ SN(F -Church), noticing that

Fact (Contraction of 1st-order ∀ cuts)

Each time we contract a cut of 1st-order quanti�cation, the number of
�rst-order ∀-intro decreases in the proof

3 Then we conclude that HA2 enjoys the property of cut-elimination

Cut-elimination

1 Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Ω)

Note: From the point of view of normalisation, system F + Ω is the same as system F :
Ω merely acts as a free variable that we have declared in all contexts once and for all

2 Via the translation of proofs:

Cuts of implication become 1st kind redexes
Cuts of 2nd-order quanti�cation become 2nd kind redexes
cuts of 1st-order quanti�cation disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F -Curry) ⇒ SN(F -Church), noticing that

Fact (Contraction of 1st-order ∀ cuts)

Each time we contract a cut of 1st-order quanti�cation, the number of
�rst-order ∀-intro decreases in the proof

3 Then we conclude that HA2 enjoys the property of cut-elimination

Cut-elimination

1 Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Ω)

Note: From the point of view of normalisation, system F + Ω is the same as system F :
Ω merely acts as a free variable that we have declared in all contexts once and for all

2 Via the translation of proofs:

Cuts of implication become 1st kind redexes
Cuts of 2nd-order quanti�cation become 2nd kind redexes
cuts of 1st-order quanti�cation disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F -Curry) ⇒ SN(F -Church), noticing that

Fact (Contraction of 1st-order ∀ cuts)

Each time we contract a cut of 1st-order quanti�cation, the number of
�rst-order ∀-intro decreases in the proof

3 Then we conclude that HA2 enjoys the property of cut-elimination

Cut-elimination

1 Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Ω)

Note: From the point of view of normalisation, system F + Ω is the same as system F :
Ω merely acts as a free variable that we have declared in all contexts once and for all

2 Via the translation of proofs:

Cuts of implication become 1st kind redexes
Cuts of 2nd-order quanti�cation become 2nd kind redexes
cuts of 1st-order quanti�cation disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F -Curry) ⇒ SN(F -Church)

, noticing that

Fact (Contraction of 1st-order ∀ cuts)

Each time we contract a cut of 1st-order quanti�cation, the number of
�rst-order ∀-intro decreases in the proof

3 Then we conclude that HA2 enjoys the property of cut-elimination

Cut-elimination

1 Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Ω)

Note: From the point of view of normalisation, system F + Ω is the same as system F :
Ω merely acts as a free variable that we have declared in all contexts once and for all

2 Via the translation of proofs:

Cuts of implication become 1st kind redexes
Cuts of 2nd-order quanti�cation become 2nd kind redexes
cuts of 1st-order quanti�cation disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F -Curry) ⇒ SN(F -Church), noticing that

Fact (Contraction of 1st-order ∀ cuts)

Each time we contract a cut of 1st-order quanti�cation, the number of
�rst-order ∀-intro decreases in the proof

3 Then we conclude that HA2 enjoys the property of cut-elimination

Cut-elimination

1 Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Ω)

Note: From the point of view of normalisation, system F + Ω is the same as system F :
Ω merely acts as a free variable that we have declared in all contexts once and for all

2 Via the translation of proofs:

Cuts of implication become 1st kind redexes
Cuts of 2nd-order quanti�cation become 2nd kind redexes
cuts of 1st-order quanti�cation disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F -Curry) ⇒ SN(F -Church), noticing that

Fact (Contraction of 1st-order ∀ cuts)

Each time we contract a cut of 1st-order quanti�cation, the number of
�rst-order ∀-intro decreases in the proof

3 Then we conclude that HA2 enjoys the property of cut-elimination

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”

whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡

∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´

≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´
By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3), so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations. There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´
By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3), so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations. There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´

By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3), so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations. There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´
By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3)

, so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations. There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´
By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3), so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations. There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´
By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3), so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations.

There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´
By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3), so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations. There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´
By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3), so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations. There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´
By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3), so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations. There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

Inconsistent Type Systems

Alexandre Miquel � PPS & U. Paris 7
Alexandre.Miquel@pps.jussieu.fr

Types Summer School 2005
August 15�26 � Göteborg

Introduction

System F [Girard 1971]

`A theory of types' (Type:Type) [Martin-Löf 1971]

Inconsistency of system U [Girard 1971]
Inconsistency of Type:Types comes as a consequence

Inconsistency of System U− [Coquand 1991]

Simpli�cation of Girard's paradox (system U−) [Hurkens 1995]

Russell's paradox in systems U/U− [Miquel 2000]

System λ∗ (Type:Type) [Martin-Löf 71]

Terms

Contexts

M,N,T ,U ::= x | λx :T .M | MN | Type | Πx :T .U

Γ, ∆ ::= [] | Γ, x : T

` [] ctx
Γ ` T : Type
` Γ, x : T ctx x /∈Dom(Γ)

` Γ ctx
Γ ` x : T (x :T)∈Γ

` Γ ctx
Γ ` Type : Type

Γ, x : T ` U : Type
Γ ` Πx :T .U : Type

Γ, x : T ` M : U
Γ ` λx :T .M : Πx :T .U

Γ ` M : Πx :T .U Γ ` N : T
Γ ` MN : U{x := N}

Γ ` M : T Γ ` T ′ : Type
Γ ` M : T ′ T′≈T

Computationally correct: Church-Rosser, subject reduction
Logically inconsistent: closed term of type ⊥ ≡ ΠX :Type .X
Non (weakly) normalising, since:

Fact: Closed terms of type ⊥ ≡ ΠX :Type .X have no head normal form

System λ∗ (Type:Type) [Martin-Löf 71]

Terms

Contexts

M,N,T ,U ::= x | λx :T .M | MN | Type | Πx :T .U

Γ, ∆ ::= [] | Γ, x : T

` [] ctx
Γ ` T : Type
` Γ, x : T ctx x /∈Dom(Γ)

` Γ ctx
Γ ` x : T (x :T)∈Γ

` Γ ctx
Γ ` Type : Type

Γ, x : T ` U : Type
Γ ` Πx :T .U : Type

Γ, x : T ` M : U
Γ ` λx :T .M : Πx :T .U

Γ ` M : Πx :T .U Γ ` N : T
Γ ` MN : U{x := N}

Γ ` M : T Γ ` T ′ : Type
Γ ` M : T ′ T′≈T

Computationally correct: Church-Rosser, subject reduction
Logically inconsistent: closed term of type ⊥ ≡ ΠX :Type .X
Non (weakly) normalising, since:

Fact: Closed terms of type ⊥ ≡ ΠX :Type .X have no head normal form

System λ∗ (Type:Type) [Martin-Löf 71]

Terms

Contexts

M,N,T ,U ::= x | λx :T .M | MN | Type | Πx :T .U

Γ, ∆ ::= [] | Γ, x : T

` [] ctx
Γ ` T : Type
` Γ, x : T ctx x /∈Dom(Γ)

` Γ ctx
Γ ` x : T (x :T)∈Γ

` Γ ctx
Γ ` Type : Type

Γ, x : T ` U : Type
Γ ` Πx :T .U : Type

Γ, x : T ` M : U
Γ ` λx :T .M : Πx :T .U

Γ ` M : Πx :T .U Γ ` N : T
Γ ` MN : U{x := N}

Γ ` M : T Γ ` T ′ : Type
Γ ` M : T ′ T′≈T

Computationally correct: Church-Rosser, subject reduction
Logically inconsistent: closed term of type ⊥ ≡ ΠX :Type .X
Non (weakly) normalising, since:

Fact: Closed terms of type ⊥ ≡ ΠX :Type .X have no head normal form

System λ∗ (Type:Type) [Martin-Löf 71]

Terms

Contexts

M,N,T ,U ::= x | λx :T .M | MN | Type | Πx :T .U

Γ, ∆ ::= [] | Γ, x : T

` [] ctx
Γ ` T : Type
` Γ, x : T ctx x /∈Dom(Γ)

` Γ ctx
Γ ` x : T (x :T)∈Γ

` Γ ctx
Γ ` Type : Type

Γ, x : T ` U : Type
Γ ` Πx :T .U : Type

Γ, x : T ` M : U
Γ ` λx :T .M : Πx :T .U

Γ ` M : Πx :T .U Γ ` N : T
Γ ` MN : U{x := N}

Γ ` M : T Γ ` T ′ : Type
Γ ` M : T ′ T′≈T

Computationally correct: Church-Rosser, subject reduction

Logically inconsistent: closed term of type ⊥ ≡ ΠX :Type .X
Non (weakly) normalising, since:

Fact: Closed terms of type ⊥ ≡ ΠX :Type .X have no head normal form

System λ∗ (Type:Type) [Martin-Löf 71]

Terms

Contexts

M,N,T ,U ::= x | λx :T .M | MN | Type | Πx :T .U

Γ, ∆ ::= [] | Γ, x : T

` [] ctx
Γ ` T : Type
` Γ, x : T ctx x /∈Dom(Γ)

` Γ ctx
Γ ` x : T (x :T)∈Γ

` Γ ctx
Γ ` Type : Type

Γ, x : T ` U : Type
Γ ` Πx :T .U : Type

Γ, x : T ` M : U
Γ ` λx :T .M : Πx :T .U

Γ ` M : Πx :T .U Γ ` N : T
Γ ` MN : U{x := N}

Γ ` M : T Γ ` T ′ : Type
Γ ` M : T ′ T′≈T

Computationally correct: Church-Rosser, subject reduction
Logically inconsistent: closed term of type ⊥ ≡ ΠX :Type .X

Non (weakly) normalising, since:

Fact: Closed terms of type ⊥ ≡ ΠX :Type .X have no head normal form

System λ∗ (Type:Type) [Martin-Löf 71]

Terms

Contexts

M,N,T ,U ::= x | λx :T .M | MN | Type | Πx :T .U

Γ, ∆ ::= [] | Γ, x : T

` [] ctx
Γ ` T : Type
` Γ, x : T ctx x /∈Dom(Γ)

` Γ ctx
Γ ` x : T (x :T)∈Γ

` Γ ctx
Γ ` Type : Type

Γ, x : T ` U : Type
Γ ` Πx :T .U : Type

Γ, x : T ` M : U
Γ ` λx :T .M : Πx :T .U

Γ ` M : Πx :T .U Γ ` N : T
Γ ` MN : U{x := N}

Γ ` M : T Γ ` T ′ : Type
Γ ` M : T ′ T′≈T

Computationally correct: Church-Rosser, subject reduction
Logically inconsistent: closed term of type ⊥ ≡ ΠX :Type .X
Non (weakly) normalising, since:

Fact: Closed terms of type ⊥ ≡ ΠX :Type .X have no head normal form

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

1 Typing relation and membership relation have not the same status

Typing belongs to the meta-language
⇒ Precondition for an expression to be well-formed
Membership is a relation of the language
⇒ Can be used to form propositions (may be negated)

2 No comprehension scheme in Type:Type
⇒ Cannot form a type of the form {x : T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

1 Typing relation and membership relation have not the same status

Typing belongs to the meta-language
⇒ Precondition for an expression to be well-formed
Membership is a relation of the language
⇒ Can be used to form propositions (may be negated)

2 No comprehension scheme in Type:Type
⇒ Cannot form a type of the form {x : T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

1 Typing relation and membership relation have not the same status

Typing belongs to the meta-language
⇒ Precondition for an expression to be well-formed
Membership is a relation of the language
⇒ Can be used to form propositions (may be negated)

2 No comprehension scheme in Type:Type
⇒ Cannot form a type of the form {x : T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

1 Typing relation and membership relation have not the same status

Typing belongs to the meta-language
⇒ Precondition for an expression to be well-formed
Membership is a relation of the language
⇒ Can be used to form propositions (may be negated)

2 No comprehension scheme in Type:Type
⇒ Cannot form a type of the form {x : T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

1 Typing relation and membership relation have not the same status

Typing belongs to the meta-language
⇒ Precondition for an expression to be well-formed
Membership is a relation of the language
⇒ Can be used to form propositions (may be negated)

2 No comprehension scheme in Type:Type
⇒ Cannot form a type of the form {x : T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

1 Typing relation and membership relation have not the same status

Typing belongs to the meta-language
⇒ Precondition for an expression to be well-formed
Membership is a relation of the language
⇒ Can be used to form propositions (may be negated)

2 No comprehension scheme in Type:Type
⇒ Cannot form a type of the form {x : T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)

Systems U and U−

Kind
Π

??

??
??

??
??

?

∀

Type →

∀
???

??
??

??
??

?

Type

Prop ⇒ Prop

U− = copy of F glued on top of Fω

U = system U− + (Kind,Prop)-quanti�cation

Kind = sort for kinds
Type = sort for constructors
Prop = sort for proof-terms

Both Type and Prop are impredicative

Higher-level is isomorphic to F :
Type inference/checking is decidable

S = {Prop, Type,Kind}
A = {(Prop : Type), (Type : Kind)}
R = {(Prop : Prop), (Type : Prop), (Type,Type), (Kind,Type)| {z }

system U−
, (Kind,Prop)| {z }

U only
}

From system Fω

... to system U−U

S = Prop, Type

, Kind

A = Prop : Type

, Type : Kind

R = (Prop,Prop), (Type,Prop), (Type,Type)

, (Kind,Type), (Kind,Prop)

Kinds τ, σ ::= Prop

| α

| τ → σ (Type, Type)

| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN (Type, Type)

| Λα .M | Mτ (Kind, Type)

| M ⇒ N (Prop, Prop)

| ∀x : τ .M (Type, Prop)

| ∀α :Type .M (Kind, Prop)

Proof-terms t, u ::= ξ
| λξ :M . t | tu (Prop, Prop)

| λx : τ . t | tM (Type, Prop)

| λα :Type . t | tτ (Kind, Prop)

From system Fω...

to system U−U

S = Prop, Type, Kind
A = Prop : Type, Type : Kind
R = (Prop,Prop), (Type,Prop), (Type,Type)

, (Kind,Type), (Kind,Prop)

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)

| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN (Type, Type)

| Λα .M | Mτ (Kind, Type)

| M ⇒ N (Prop, Prop)

| ∀x : τ .M (Type, Prop)

| ∀α :Type .M (Kind, Prop)

Proof-terms t, u ::= ξ
| λξ :M . t | tu (Prop, Prop)

| λx : τ . t | tM (Type, Prop)

| λα :Type . t | tτ (Kind, Prop)

From system Fω... to system U−

U

S = Prop, Type, Kind
A = Prop : Type, Type : Kind
R = (Prop,Prop), (Type,Prop), (Type,Type), (Kind,Type)

, (Kind,Prop)

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN (Type, Type)
| Λα .M | Mτ (Kind, Type)
| M ⇒ N (Prop, Prop)

| ∀x : τ .M (Type, Prop)

| ∀α :Type .M (Kind, Prop)

Proof-terms t, u ::= ξ
| λξ :M . t | tu (Prop, Prop)

| λx : τ . t | tM (Type, Prop)

| λα :Type . t | tτ (Kind, Prop)

From system Fω... to system

U−

U

S = Prop, Type, Kind
A = Prop : Type, Type : Kind
R = (Prop,Prop), (Type,Prop), (Type,Type), (Kind,Type), (Kind,Prop)

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN (Type, Type)
| Λα .M | Mτ (Kind, Type)
| M ⇒ N (Prop, Prop)

| ∀x : τ .M (Type, Prop)

| ∀α :Type .M (Kind, Prop)

Proof-terms t, u ::= ξ
| λξ :M . t | tu (Prop, Prop)

| λx : τ . t | tM (Type, Prop)

| λα :Type . t | tτ (Kind, Prop)

Examples

(Kind,Type) Πα :Type . .. Polymorphism in data types
(Type : Prop) ∀x : τ . .. Quanti�cation over all objects (of a given type)
(Kind,Prop) ∀α :Type . .. Quanti�cation over all types

Nat := Πα :Type . (α→ (α→α)→ α) : Type

id := λα :Type . λx :α . x : Πα :Type . (α→ α)

x =α y := ∀p : (α→Prop) . (p x ⇒ p y) : Prop

∀α :Type . ∀x :α . id α x =α x : Prop

λα :Type . λx :α . λp : (α→Prop) . λξ : p x . ξ : ...

Examples

(Kind,Type) Πα :Type . .. Polymorphism in data types
(Type : Prop) ∀x : τ . .. Quanti�cation over all objects (of a given type)
(Kind,Prop) ∀α :Type . .. Quanti�cation over all types

Nat := Πα :Type . (α→ (α→α)→ α) : Type

id := λα :Type . λx :α . x : Πα :Type . (α→ α)

x =α y := ∀p : (α→Prop) . (p x ⇒ p y) : Prop

∀α :Type . ∀x :α . id α x =α x : Prop

λα :Type . λx :α . λp : (α→Prop) . λξ : p x . ξ : ...

Examples

(Kind,Type) Πα :Type . .. Polymorphism in data types
(Type : Prop) ∀x : τ . .. Quanti�cation over all objects (of a given type)
(Kind,Prop) ∀α :Type . .. Quanti�cation over all types

Nat := Πα :Type . (α→ (α→α)→ α) : Type

id := λα :Type . λx :α . x : Πα :Type . (α→ α)

x =α y := ∀p : (α→Prop) . (p x ⇒ p y) : Prop

∀α :Type . ∀x :α . id α x =α x : Prop

λα :Type . λx :α . λp : (α→Prop) . λξ : p x . ξ : ...

Examples

(Kind,Type) Πα :Type . .. Polymorphism in data types
(Type : Prop) ∀x : τ . .. Quanti�cation over all objects (of a given type)
(Kind,Prop) ∀α :Type . .. Quanti�cation over all types

Nat := Πα :Type . (α→ (α→α)→ α) : Type

id := λα :Type . λx :α . x : Πα :Type . (α→ α)

x =α y := ∀p : (α→Prop) . (p x ⇒ p y) : Prop

∀α :Type . ∀x :α . id α x =α x : Prop

λα :Type . λx :α . λp : (α→Prop) . λξ : p x . ξ : ...

Examples

(Kind,Type) Πα :Type . .. Polymorphism in data types
(Type : Prop) ∀x : τ . .. Quanti�cation over all objects (of a given type)
(Kind,Prop) ∀α :Type . .. Quanti�cation over all types

Nat := Πα :Type . (α→ (α→α)→ α) : Type

id := λα :Type . λx :α . x : Πα :Type . (α→ α)

x =α y := ∀p : (α→Prop) . (p x ⇒ p y) : Prop

∀α :Type . ∀x :α . id α x =α x : Prop

λα :Type . λx :α . λp : (α→Prop) . λξ : p x . ξ : ...

Examples

(Kind,Type) Πα :Type . .. Polymorphism in data types
(Type : Prop) ∀x : τ . .. Quanti�cation over all objects (of a given type)
(Kind,Prop) ∀α :Type . .. Quanti�cation over all types

Nat := Πα :Type . (α→ (α→α)→ α) : Type

id := λα :Type . λx :α . x : Πα :Type . (α→ α)

x =α y := ∀p : (α→Prop) . (p x ⇒ p y) : Prop

∀α :Type . ∀x :α . id α x =α x : Prop

λα :Type . λx :α . λp : (α→Prop) . λξ : p x . ξ : ...

Hurkens' paradox in system U−

For any kind τ : Type write: P(τ) := τ → Prop

⊥ : Prop := ∀a :Prop . a
¬ : Prop→ Prop := λa :Prop . a⇒ ⊥

U : Type := Πα :Type .
“`

P(P(α)) → α
´
→ P(P(α))

”
i : P(P(U)) → U := λq : P(P(U)) . λα :Type . λf :

`
P(P(α)) → α

´
.

λp : P(α) . q (λx : U . p (f (x α f)))
j : U → P(P(U)) := λx : U . x U i
Q : P(P(U)) := λp : P(U) . ∀x : U . (j x p ⇒ p x)
C : P(U) := λy : U . ¬∀p : P(U) .

`
j y p ⇒ p (i (j y))

´
B : U := i Q
lem1 : Q C := λx :U . λξjxC . λζ∀p : P(U) . (jxp⇒p(i(jx))) .

ζ C ξ
`
λp : P(U) . ζ (λy : U . p (i (j y)))

´
A : Prop := ∀p : P(U) . (Q p ⇒ p B)

lem2 : ¬A := λξA . ξ C lem1
`
λp : P(U) . ξ (λy : U . p (i (j y)))

´
lem3 : A := λp : P(U) . λξQp . ξ B (λx : U . ξ (i (j x)))
paradox : ⊥ := lem2 lem3

Hurkens' paradox in system U−

For any kind τ : Type write: P(τ) := τ → Prop

⊥ : Prop := ∀a :Prop . a
¬ : Prop→ Prop := λa :Prop . a⇒ ⊥

U : Type := Πα :Type .
“`

P(P(α)) → α
´
→ P(P(α))

”
i : P(P(U)) → U := λq : P(P(U)) . λα :Type . λf :

`
P(P(α)) → α

´
.

λp : P(α) . q (λx : U . p (f (x α f)))
j : U → P(P(U)) := λx : U . x U i
Q : P(P(U)) := λp : P(U) . ∀x : U . (j x p ⇒ p x)
C : P(U) := λy : U . ¬∀p : P(U) .

`
j y p ⇒ p (i (j y))

´
B : U := i Q
lem1 : Q C := λx :U . λξjxC . λζ∀p : P(U) . (jxp⇒p(i(jx))) .

ζ C ξ
`
λp : P(U) . ζ (λy : U . p (i (j y)))

´
A : Prop := ∀p : P(U) . (Q p ⇒ p B)

lem2 : ¬A := λξA . ξ C lem1
`
λp : P(U) . ξ (λy : U . p (i (j y)))

´
lem3 : A := λp : P(U) . λξQp . ξ B (λx : U . ξ (i (j x)))
paradox : ⊥ := lem2 lem3

Encoding sets as pointed graphs

Pointed graph = triple (X ,A, a) where
X : Type the type of vertices
A : X → X → Prop the (local) membership relation
a : X the root

A(x , y) is represented by •x ← •y , and the root a by •a

0 = ∅ 1 = {0} 2 = {0; 1} 3 = {0; 1; 2} 4 = {0; 1; 2; 3}

Encoding sets as pointed graphs

Pointed graph = triple (X ,A, a) where
X : Type the type of vertices
A : X → X → Prop the (local) membership relation
a : X the root

A(x , y) is represented by •x ← •y , and the root a by •a

0 = ∅ 1 = {0} 2 = {0; 1} 3 = {0; 1; 2} 4 = {0; 1; 2; 3}

Encoding sets as pointed graphs

Pointed graph = triple (X ,A, a) where
X : Type the type of vertices
A : X → X → Prop the (local) membership relation
a : X the root

A(x , y) is represented by •x ← •y , and the root a by •a

0 = ∅ 1 = {0} 2 = {0; 1} 3 = {0; 1; 2} 4 = {0; 1; 2; 3}

Encoding sets as pointed graphs

Pointed graph = triple (X ,A, a) where
X : Type the type of vertices
A : X → X → Prop the (local) membership relation
a : X the root

A(x , y) is represented by •x ← •y , and the root a by •a

0 = ∅ 1 = {0} 2 = {0; 1} 3 = {0; 1; 2} 4 = {0; 1; 2; 3}

Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {∅; {∅}}

no sharing (tree) with sharing duplicate elements unreachable parts

+ Problems related to (possible) non well-foundedness

Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {∅; {∅}}

no sharing (tree) with sharing duplicate elements unreachable parts

+ Problems related to (possible) non well-foundedness

Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {∅; {∅}}

no sharing (tree)

with sharing duplicate elements unreachable parts

+ Problems related to (possible) non well-foundedness

Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {∅; {∅}}

no sharing (tree) with sharing

duplicate elements unreachable parts

+ Problems related to (possible) non well-foundedness

Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {∅; {∅}}

no sharing (tree) with sharing duplicate elements

unreachable parts

+ Problems related to (possible) non well-foundedness

Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {∅; {∅}}

no sharing (tree) with sharing duplicate elements unreachable parts

+ Problems related to (possible) non well-foundedness

Identifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {∅; {∅}}

no sharing (tree) with sharing duplicate elements unreachable parts

+ Problems related to (possible) non well-foundedness

Extensional equality as bisimilarity

R : X→Y→Prop bisimulation between (X ,A, a) and (Y ,B, b) if:

1 ∀x , x ′:X ∀y :Y
“
A(x ′, x) ∧ R(x , y) ⇒ ∃y ′:Y

`
R(x ′, y ′) ∧ B(y ′, y)

´”
2 ∀x :X ∀y , y ′:Y

“
B(y ′, y) ∧ R(x , y) ⇒ ∃x ′:X

`
R(x ′, y ′) ∧ A(x ′, x)

´”
3 R(a, b)

(1)

x

x’

y

y’

(2)

x

x’

y

y’

(X ,A, a) ≈ (Y ,B, b) ≡ ∃R : X→Y→Prop bisimulation

Extensional equality as bisimilarity

R : X→Y→Prop bisimulation between (X ,A, a) and (Y ,B, b) if:

1 ∀x , x ′:X ∀y :Y
“
A(x ′, x) ∧ R(x , y) ⇒ ∃y ′:Y

`
R(x ′, y ′) ∧ B(y ′, y)

´”
2 ∀x :X ∀y , y ′:Y

“
B(y ′, y) ∧ R(x , y) ⇒ ∃x ′:X

`
R(x ′, y ′) ∧ A(x ′, x)

´”
3 R(a, b)

(1)

x

x’

y

y’

(2)

x

x’

y

y’

(X ,A, a) ≈ (Y ,B, b) ≡ ∃R : X→Y→Prop bisimulation

Extensional equality as bisimilarity

R : X→Y→Prop bisimulation between (X ,A, a) and (Y ,B, b) if:

1 ∀x , x ′:X ∀y :Y
“
A(x ′, x) ∧ R(x , y) ⇒ ∃y ′:Y

`
R(x ′, y ′) ∧ B(y ′, y)

´”
2 ∀x :X ∀y , y ′:Y

“
B(y ′, y) ∧ R(x , y) ⇒ ∃x ′:X

`
R(x ′, y ′) ∧ A(x ′, x)

´”
3 R(a, b)

(1)

x

x’

y

y’

(2)

x

x’

y

y’

(X ,A, a) ≈ (Y ,B, b) ≡ ∃R : X→Y→Prop bisimulation

Membership as shifted bisimilarity

(X ,A, a) ∈ (Y ,B, b) ≡ ∃b′ : Y
(
(X ,A, a) ≈ (Y ,B, b′) ∧ B(b′, b)

)

a

b’

b
Compatibility of ∈ w.r.t ≈

G1 ≈ G2 ∧ G2 ∈ G3 ⇒ G1 ∈ G3

G1 ∈ G2 ∧ G2 ≈ G3 ⇒ G1 ∈ G3

Extensionality of ≈ w.r.t. ∈

∀G (G ∈ G1 ⇔ G ∈ G2) ⇒ G1 ≈ G2

Membership as shifted bisimilarity

(X ,A, a) ∈ (Y ,B, b) ≡ ∃b′ : Y
(
(X ,A, a) ≈ (Y ,B, b′) ∧ B(b′, b)

)

a

b’

b

Compatibility of ∈ w.r.t ≈

G1 ≈ G2 ∧ G2 ∈ G3 ⇒ G1 ∈ G3

G1 ∈ G2 ∧ G2 ≈ G3 ⇒ G1 ∈ G3

Extensionality of ≈ w.r.t. ∈

∀G (G ∈ G1 ⇔ G ∈ G2) ⇒ G1 ≈ G2

Membership as shifted bisimilarity

(X ,A, a) ∈ (Y ,B, b) ≡ ∃b′ : Y
(
(X ,A, a) ≈ (Y ,B, b′) ∧ B(b′, b)

)

a

b’

b
Compatibility of ∈ w.r.t ≈

G1 ≈ G2 ∧ G2 ∈ G3 ⇒ G1 ∈ G3

G1 ∈ G2 ∧ G2 ≈ G3 ⇒ G1 ∈ G3

Extensionality of ≈ w.r.t. ∈

∀G (G ∈ G1 ⇔ G ∈ G2) ⇒ G1 ≈ G2

Membership as shifted bisimilarity

(X ,A, a) ∈ (Y ,B, b) ≡ ∃b′ : Y
(
(X ,A, a) ≈ (Y ,B, b′) ∧ B(b′, b)

)

a

b’

b
Compatibility of ∈ w.r.t ≈

G1 ≈ G2 ∧ G2 ∈ G3 ⇒ G1 ∈ G3

G1 ∈ G2 ∧ G2 ≈ G3 ⇒ G1 ∈ G3

Extensionality of ≈ w.r.t. ∈

∀G (G ∈ G1 ⇔ G ∈ G2) ⇒ G1 ≈ G2

Non well-founded sets

represents a set x such that x = {x}

represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have

x = y = z = {x} = {y} = {z}

Sets as pointed graphs + Equality as a bisimulation

⇒ Interprets the Anti-Foundation Axiom (AFA) [P. Aczel]

Non well-founded sets

represents a set x such that x = {x}

represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have

x = y = z = {x} = {y} = {z}

Sets as pointed graphs + Equality as a bisimulation

⇒ Interprets the Anti-Foundation Axiom (AFA) [P. Aczel]

Non well-founded sets

represents a set x such that x = {x}

represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have

x = y = z = {x} = {y} = {z}

Sets as pointed graphs + Equality as a bisimulation

⇒ Interprets the Anti-Foundation Axiom (AFA) [P. Aczel]

Non well-founded sets

represents a set x such that x = {x}

represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have

x = y = z = {x} = {y} = {z}

Sets as pointed graphs + Equality as a bisimulation

⇒ Interprets the Anti-Foundation Axiom (AFA) [P. Aczel]

Non well-founded sets

represents a set x such that x = {x}

represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have

x = y = z = {x} = {y} = {z}

Sets as pointed graphs + Equality as a bisimulation

⇒ Interprets the Anti-Foundation Axiom (AFA) [P. Aczel]

The universal type for representing pointed graphs

Let U :=
(
ΠT : Type . (T→T→Prop)→ T → Prop

)
→ Prop

and i : ΠX :Type . (X→X→Prop)→ X → U
:= λX ,A, a . λf . f X A a

Higher-level impredicativity (Kind,Type) ensures that U : Type

The map i is an embedding of pointed graphs into U

i(X ,A, a) = i(Y ,B, b) ⇒ (X ,A, a) ≈ (Y ,B, b)

The map i is not surjective:

r : U = λf .⊥ is outside the codomain of i

The universal type for representing pointed graphs

Let U :=
(
ΠT : Type . (T→T→Prop)→ T → Prop

)
→ Prop

and i : ΠX :Type . (X→X→Prop)→ X → U
:= λX ,A, a . λf . f X A a

Higher-level impredicativity (Kind,Type) ensures that U : Type

The map i is an embedding of pointed graphs into U

i(X ,A, a) = i(Y ,B, b) ⇒ (X ,A, a) ≈ (Y ,B, b)

The map i is not surjective:

r : U = λf .⊥ is outside the codomain of i

The universal type for representing pointed graphs

Let U :=
(
ΠT : Type . (T→T→Prop)→ T → Prop

)
→ Prop

and i : ΠX :Type . (X→X→Prop)→ X → U
:= λX ,A, a . λf . f X A a

Higher-level impredicativity (Kind,Type) ensures that U : Type

The map i is an embedding of pointed graphs into U

i(X ,A, a) = i(Y ,B, b) ⇒ (X ,A, a) ≈ (Y ,B, b)

The map i is not surjective:

r : U = λf .⊥ is outside the codomain of i

The universal type for representing pointed graphs

Let U :=
(
ΠT : Type . (T→T→Prop)→ T → Prop

)
→ Prop

and i : ΠX :Type . (X→X→Prop)→ X → U
:= λX ,A, a . λf . f X A a

Higher-level impredicativity (Kind,Type) ensures that U : Type

The map i is an embedding of pointed graphs into U

i(X ,A, a) = i(Y ,B, b) ⇒ (X ,A, a) ≈ (Y ,B, b)

The map i is not surjective:

r : U = λf .⊥ is outside the codomain of i

The universal type for representing pointed graphs

Let U :=
(
ΠT : Type . (T→T→Prop)→ T → Prop

)
→ Prop

and i : ΠX :Type . (X→X→Prop)→ X → U
:= λX ,A, a . λf . f X A a

Higher-level impredicativity (Kind,Type) ensures that U : Type

The map i is an embedding of pointed graphs into U

i(X ,A, a) = i(Y ,B, b) ⇒ (X ,A, a) ≈ (Y ,B, b)

The map i is not surjective:

r : U = λf .⊥ is outside the codomain of i

Translating equivalence and membership on U

u ≈ v := ∃X ,A, a ∃Y ,B, b`
u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ≈ (Y ,B, b)

´
u ∈ v := ∃X ,A, a ∃Y ,B, b`

u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ∈ (Y ,B, b)
´

set(u) := ∃X ,A, a u = i(X ,A, a) (≡ codomain of i)

≈ (on U) is now a partial equivalence relation

Relations ≈ and ∈ are de�ned on elements u : U s.t. set(u)

Other properties of ≈ and ∈ are kept (compatibility, extensionality)

Exists some object r : U such that ¬set(r)

Translating equivalence and membership on U

u ≈ v := ∃X ,A, a ∃Y ,B, b`
u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ≈ (Y ,B, b)

´
u ∈ v := ∃X ,A, a ∃Y ,B, b`

u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ∈ (Y ,B, b)
´

set(u) := ∃X ,A, a u = i(X ,A, a) (≡ codomain of i)

≈ (on U) is now a partial equivalence relation

Relations ≈ and ∈ are de�ned on elements u : U s.t. set(u)

Other properties of ≈ and ∈ are kept (compatibility, extensionality)

Exists some object r : U such that ¬set(r)

Translating equivalence and membership on U

u ≈ v := ∃X ,A, a ∃Y ,B, b`
u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ≈ (Y ,B, b)

´
u ∈ v := ∃X ,A, a ∃Y ,B, b`

u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ∈ (Y ,B, b)
´

set(u) := ∃X ,A, a u = i(X ,A, a) (≡ codomain of i)

≈ (on U) is now a partial equivalence relation

Relations ≈ and ∈ are de�ned on elements u : U s.t. set(u)

Other properties of ≈ and ∈ are kept (compatibility, extensionality)

Exists some object r : U such that ¬set(r)

Translating equivalence and membership on U

u ≈ v := ∃X ,A, a ∃Y ,B, b`
u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ≈ (Y ,B, b)

´
u ∈ v := ∃X ,A, a ∃Y ,B, b`

u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ∈ (Y ,B, b)
´

set(u) := ∃X ,A, a u = i(X ,A, a) (≡ codomain of i)

≈ (on U) is now a partial equivalence relation

Relations ≈ and ∈ are de�ned on elements u : U s.t. set(u)

Other properties of ≈ and ∈ are kept (compatibility, extensionality)

Exists some object r : U such that ¬set(r)

Translating equivalence and membership on U

u ≈ v := ∃X ,A, a ∃Y ,B, b`
u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ≈ (Y ,B, b)

´
u ∈ v := ∃X ,A, a ∃Y ,B, b`

u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ∈ (Y ,B, b)
´

set(u) := ∃X ,A, a u = i(X ,A, a) (≡ codomain of i)

≈ (on U) is now a partial equivalence relation

Relations ≈ and ∈ are de�ned on elements u : U s.t. set(u)

Other properties of ≈ and ∈ are kept (compatibility, extensionality)

Exists some object r : U such that ¬set(r)

Translating equivalence and membership on U

u ≈ v := ∃X ,A, a ∃Y ,B, b`
u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ≈ (Y ,B, b)

´
u ∈ v := ∃X ,A, a ∃Y ,B, b`

u = i(X ,A, a) ∧ v = i(Y ,B, b) ∧ (X ,A, a) ∈ (Y ,B, b)
´

set(u) := ∃X ,A, a u = i(X ,A, a) (≡ codomain of i)

≈ (on U) is now a partial equivalence relation

Relations ≈ and ∈ are de�ned on elements u : U s.t. set(u)

Other properties of ≈ and ∈ are kept (compatibility, extensionality)

Exists some object r : U such that ¬set(r)

The unbounded comprehension scheme

Let P : U → Prop be a predicate over objects of type U

We assume P extensional: ∀u, u′ :U . (P(u) ∧ u ≈ u′ ⇒ P(u′))

r

set

U

1 Connect r to all • s.t. P(•)

2 Let RP = {→} ∪ {→}

3 Re�ect (U,RP , r) into U, setting
fold(P) = i(U,RP , r) (≡ •)

⇒ Relies on the embedding property

(X ,A, a) ≈
(
U,∈, i(X ,A, a)

)
Fact (Unbounded comprehension)

∀u :U . (u ∈ i(U,RP , r) ⇔ P(u)) (if P is extensional)

The unbounded comprehension scheme

Let P : U → Prop be a predicate over objects of type U
We assume P extensional: ∀u, u′ :U . (P(u) ∧ u ≈ u′ ⇒ P(u′))

r

set

U

1 Connect r to all • s.t. P(•)

2 Let RP = {→} ∪ {→}

3 Re�ect (U,RP , r) into U, setting
fold(P) = i(U,RP , r) (≡ •)

⇒ Relies on the embedding property

(X ,A, a) ≈
(
U,∈, i(X ,A, a)

)
Fact (Unbounded comprehension)

∀u :U . (u ∈ i(U,RP , r) ⇔ P(u)) (if P is extensional)

The unbounded comprehension scheme

Let P : U → Prop be a predicate over objects of type U
We assume P extensional: ∀u, u′ :U . (P(u) ∧ u ≈ u′ ⇒ P(u′))

r

set

U

1 Connect r to all • s.t. P(•)

2 Let RP = {→} ∪ {→}

3 Re�ect (U,RP , r) into U, setting
fold(P) = i(U,RP , r) (≡ •)

⇒ Relies on the embedding property

(X ,A, a) ≈
(
U,∈, i(X ,A, a)

)
Fact (Unbounded comprehension)

∀u :U . (u ∈ i(U,RP , r) ⇔ P(u)) (if P is extensional)

The unbounded comprehension scheme

Let P : U → Prop be a predicate over objects of type U
We assume P extensional: ∀u, u′ :U . (P(u) ∧ u ≈ u′ ⇒ P(u′))

r

set

U

1 Connect r to all • s.t. P(•)

2 Let RP = {→} ∪ {→}

3 Re�ect (U,RP , r) into U, setting
fold(P) = i(U,RP , r) (≡ •)

⇒ Relies on the embedding property

(X ,A, a) ≈
(
U,∈, i(X ,A, a)

)
Fact (Unbounded comprehension)

∀u :U . (u ∈ i(U,RP , r) ⇔ P(u)) (if P is extensional)

The unbounded comprehension scheme

Let P : U → Prop be a predicate over objects of type U
We assume P extensional: ∀u, u′ :U . (P(u) ∧ u ≈ u′ ⇒ P(u′))

r

set

U

1 Connect r to all • s.t. P(•)

2 Let RP = {→} ∪ {→}

3 Re�ect (U,RP , r) into U, setting
fold(P) = i(U,RP , r) (≡ •)

⇒ Relies on the embedding property

(X ,A, a) ≈
(
U,∈, i(X ,A, a)

)
Fact (Unbounded comprehension)

∀u :U . (u ∈ i(U,RP , r) ⇔ P(u)) (if P is extensional)

The unbounded comprehension scheme

Let P : U → Prop be a predicate over objects of type U
We assume P extensional: ∀u, u′ :U . (P(u) ∧ u ≈ u′ ⇒ P(u′))

r

set

U

1 Connect r to all • s.t. P(•)

2 Let RP = {→} ∪ {→}

3 Re�ect (U,RP , r) into U, setting
fold(P) = i(U,RP , r) (≡ •)

⇒ Relies on the embedding property

(X ,A, a) ≈
(
U,∈, i(X ,A, a)

)
Fact (Unbounded comprehension)

∀u :U . (u ∈ i(U,RP , r) ⇔ P(u)) (if P is extensional)

The unbounded comprehension scheme

Let P : U → Prop be a predicate over objects of type U
We assume P extensional: ∀u, u′ :U . (P(u) ∧ u ≈ u′ ⇒ P(u′))

r

set

U

1 Connect r to all • s.t. P(•)

2 Let RP = {→} ∪ {→}

3 Re�ect (U,RP , r) into U, setting
fold(P) = i(U,RP , r) (≡ •)

⇒ Relies on the embedding property

(X ,A, a) ≈
(
U,∈, i(X ,A, a)

)

Fact (Unbounded comprehension)

∀u :U . (u ∈ i(U,RP , r) ⇔ P(u)) (if P is extensional)

The unbounded comprehension scheme

Let P : U → Prop be a predicate over objects of type U
We assume P extensional: ∀u, u′ :U . (P(u) ∧ u ≈ u′ ⇒ P(u′))

r

set

U

1 Connect r to all • s.t. P(•)

2 Let RP = {→} ∪ {→}

3 Re�ect (U,RP , r) into U, setting
fold(P) = i(U,RP , r) (≡ •)

⇒ Relies on the embedding property

(X ,A, a) ≈
(
U,∈, i(X ,A, a)

)
Fact (Unbounded comprehension)

∀u :U . (u ∈ i(U,RP , r) ⇔ P(u)) (if P is extensional)

Cantor-Frege's set theory in systems U/U−

Type U + two relations ≈ and ∈

∈ is compatible w.r.t. ≈
≈ is extensional w.r.t. ∈
The unbounded comprehension scheme is derivable

⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U−

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(λx . x /∈ x). . .

Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind,Prop)-quanti�cation, thus restricting to system U−

Cantor-Frege's set theory in systems U/U−

Type U + two relations ≈ and ∈
∈ is compatible w.r.t. ≈

≈ is extensional w.r.t. ∈
The unbounded comprehension scheme is derivable

⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U−

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(λx . x /∈ x). . .

Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind,Prop)-quanti�cation, thus restricting to system U−

Cantor-Frege's set theory in systems U/U−

Type U + two relations ≈ and ∈
∈ is compatible w.r.t. ≈
≈ is extensional w.r.t. ∈

The unbounded comprehension scheme is derivable

⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U−

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(λx . x /∈ x). . .

Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind,Prop)-quanti�cation, thus restricting to system U−

Cantor-Frege's set theory in systems U/U−

Type U + two relations ≈ and ∈
∈ is compatible w.r.t. ≈
≈ is extensional w.r.t. ∈
The unbounded comprehension scheme is derivable

⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U−

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(λx . x /∈ x). . .

Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind,Prop)-quanti�cation, thus restricting to system U−

Cantor-Frege's set theory in systems U/U−

Type U + two relations ≈ and ∈
∈ is compatible w.r.t. ≈
≈ is extensional w.r.t. ∈
The unbounded comprehension scheme is derivable

⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U−

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(λx . x /∈ x). . .

Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind,Prop)-quanti�cation, thus restricting to system U−

Cantor-Frege's set theory in systems U/U−

Type U + two relations ≈ and ∈
∈ is compatible w.r.t. ≈
≈ is extensional w.r.t. ∈
The unbounded comprehension scheme is derivable

⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U−

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(λx . x /∈ x). . .

Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind,Prop)-quanti�cation, thus restricting to system U−

Cantor-Frege's set theory in systems U/U−

Type U + two relations ≈ and ∈
∈ is compatible w.r.t. ≈
≈ is extensional w.r.t. ∈
The unbounded comprehension scheme is derivable

⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U−

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(λx . x /∈ x). . .

Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind,Prop)-quanti�cation, thus restricting to system U−

Cantor-Frege's set theory in systems U/U−

Type U + two relations ≈ and ∈
∈ is compatible w.r.t. ≈
≈ is extensional w.r.t. ∈
The unbounded comprehension scheme is derivable

⇒ An embedding of Cantor-Frege's (insonsistent) set theory into U/U−

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(λx . x /∈ x). . .

Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind,Prop)-quanti�cation, thus restricting to system U−

Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN

λx : τ .M | MNλx .M | MN

(Type, Type)
| Λα .M | Mτ

Λα .M | Mτ

(Kind, Type)
| M ⇒ N (Prop, Prop)

| ∀x : τ .M

∀x : τ .M

(Type, Prop)

Proof-terms t, u ::= ξ
| λx :M . t | tu

λx :M . t | tuλx . t | tu

(Prop, Prop)

| λx : τ . t | tM

λx : τ . t | tM

(Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...
... but makes no sense to remove τ in ∀x : τ .M

Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN

λx : τ .M | MNλx .M | MN

(Type, Type)
| Λα .M | Mτ

Λα .M | Mτ

(Kind, Type)
| M ⇒ N (Prop, Prop)

| ∀x : τ .M

∀x : τ .M

(Type, Prop)

Proof-terms t, u ::= ξ
| λx :M . t | tu

λx :M . t | tuλx . t | tu

(Prop, Prop)

| λx : τ . t | tM

λx : τ . t | tM

(Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...
... but makes no sense to remove τ in ∀x : τ .M

Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN

λx : τ .M | MNλx .M | MN

(Type, Type)
| Λα .M | Mτ

Λα .M | Mτ

(Kind, Type)
| M ⇒ N (Prop, Prop)

| ∀x : τ .M

∀x : τ .M

(Type, Prop)

Proof-terms t, u ::= ξ
|

λx :M . t | tu

λx :M . t | tu

λx . t | tu

(Prop, Prop)

|

λx : τ . t | tM

λx : τ . t | tM (Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...
... but makes no sense to remove τ in ∀x : τ .M

Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
| λx : τ .M | MN

λx : τ .M | MNλx .M | MN

(Type, Type)
| Λα .M | Mτ

Λα .M | Mτ

(Kind, Type)
| M ⇒ N (Prop, Prop)

| ∀x : τ .M

∀x : τ .M

(Type, Prop)

Proof-terms t, u ::= ξ
|

λx :M . t | tuλx :M . t | tu

λx . t | tu (Prop, Prop)

| λx : τ . t | tMλx : τ . t | tM (Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...
... but makes no sense to remove τ in ∀x : τ .M

Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
|

λx : τ .M | MN

λx : τ .M | MN

λx .M | MN

(Type, Type)
|

Λα .M | Mτ

Λα .M | Mτ (Kind, Type)
| M ⇒ N (Prop, Prop)

|

∀x : τ .M

∀x : τ .M (Type, Prop)

Proof-terms t, u ::= ξ
|

λx :M . t | tuλx :M . t | tu

λx . t | tu (Prop, Prop)

| λx : τ . t | tMλx : τ . t | tM (Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...
... but makes no sense to remove τ in ∀x : τ .M

Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
|

λx : τ .M | MNλx : τ .M | MN

λx .M | MN (Type, Type)
|

Λα .M | MτΛα .M | Mτ

(Kind, Type)
| M ⇒ N (Prop, Prop)

|

∀x : τ .M

∀x : τ .M (Type, Prop)

Proof-terms t, u ::= ξ
|

λx :M . t | tuλx :M . t | tu

λx . t | tu (Prop, Prop)

| λx : τ . t | tMλx : τ . t | tM (Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...

... but makes no sense to remove τ in ∀x : τ .M
Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
|

λx : τ .M | MNλx : τ .M | MN

λx .M | MN (Type, Type)
|

Λα .M | MτΛα .M | Mτ

(Kind, Type)
| M ⇒ N (Prop, Prop)

|

∀x : τ .M

∀x : τ .M (Type, Prop)

Proof-terms t, u ::= ξ
|

λx :M . t | tuλx :M . t | tu

λx . t | tu (Prop, Prop)

| λx : τ . t | tMλx : τ . t | tM (Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...
... but makes no sense to remove τ in ∀x : τ .M

Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
|

λx : τ .M | MNλx : τ .M | MN

λx .M | MN (Type, Type)
|

Λα .M | MτΛα .M | Mτ

(Kind, Type)
| M ⇒ N (Prop, Prop)

|

∀x : τ .M

∀x : τ .M (Type, Prop)

Proof-terms t, u ::= ξ
|

λx :M . t | tuλx :M . t | tu

λx . t | tu (Prop, Prop)

| λx : τ . t | tMλx : τ . t | tM (Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...
... but makes no sense to remove τ in ∀x : τ .M

Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Why is system U− inconsistent?

Kinds τ, σ ::= Prop | α
| τ → σ (Type, Type)
| Πα :Type . τ (Kind, Type)

Constructors M,N ::= ξ
|

λx : τ .M | MNλx : τ .M | MN

λx .M | MN (Type, Type)
|

Λα .M | MτΛα .M | Mτ

(Kind, Type)
| M ⇒ N (Prop, Prop)

|

∀x : τ .M

∀x : τ .M (Type, Prop)

Proof-terms t, u ::= ξ
|

λx :M . t | tuλx :M . t | tu

λx . t | tu (Prop, Prop)

| λx : τ . t | tMλx : τ . t | tM (Type, Prop)

(Type,Prop)-abstraction/application can be erased

We can erase Λα .M + Mτ + type in λx : τ .M...
... but makes no sense to remove τ in ∀x : τ .M

Would identify propositions ∀x , y :Unit . x = y with ∀x , y :Bool . x = y

⇒ (Kind,Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Types, Propositions and Problems
an introduction to type theoretical ideas

Bengt Nordström

Computing Science, Chalmers and University of Göteborg

Types Summer School, Hisingen, 15 August 2005

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Classical logic, truth tables

Conjunction

A B A& B

T T T
T F F
F T F
F F F

Disjunction

A B A∨B

T T T
T F T
F T T
F F F

Implication

A B A ⊃ B

T T T
T F F
F T T
F F T

This assumes that a proposition is
either true or false!

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Brouwer

Brouwer rejected the idea that the meaning of a
mathematical proposition is its truth value.
Mathematical propositions do not exist
independently of us.
We cannot say that a proposition is true without
having a proof of it.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Heyting

Heyting was a student of Brouwer.
He gave the following explanation of
the logical constants.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Heyting’s explanation of the logical constants (1930)

A proof of: consists of:

A& B a proof of A and a proof of B
A∨B a proof of A or a proof of B
A ⊃ B a method which takes any proof of A to a proof of

B
¬A a method which takes any proof of A to a proof of

absurdity
⊥ has no proof
∃x ∈ A.B an element a in A and a proof of B[x := a]
∀x ∈ A.B a method, which takes any element x in A to a

proof of B[x := a]

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Kolmogorov

Independently of
Heyting, Kolmogorov
interpreted propositions
as problems.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Kolmogorov understood the logical constants as problems
(1932)

The problem: is solved if we can:

A& B solve A and solve B
A∨B solve A or solve B
A ⊃ B reduce the solution of B to the solution of

A
¬A show that there is no solution of A
⊥ has no solution

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Heyting’s and Kolmogorov’s explanation

A proof (solution) of: consists of:

A &B a proof (solution) of A and a proof (solution) of B
A∨B a proof (solution) of A or a proof (solution) of B
A ⊃ B a method which takes any proof (solution) of A to a proof

(solution) of B
¬A a method which takes any proof (solution) of A to a proof

(solution) of absurdity
⊥ has no proof (solution)
∃x ∈ A.B an element a in A and a proof (solution) of B[x := a]
∀x ∈ A.B a method, which takes any element x in A to a proof

(solution) of B[x := a]

Question:

Is this correct? Could not a proof (solution) of A &B be obtained by induction, for
instance?

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Direct and indirect proofs

When we say that we have a proof of a proposition, then we mean
that we have a method which when computed yields a direct proof
of it.
Compare this with mathematics and programming: When we say
that 2 + 4 and fst(< 452,−9 >) are natural numbers, then we
mean that they can be computed to a natural number.

Terminology:

proofs: objects:

direct vs. indirect proof value vs. expression
canonical vs. non-canonical proof canonical vs. non-

canonical element
introduction vs. elimination proof

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Examples of indirect proofs

And-elimination

A& B

A

If we have a proof of A& B, then we can compute it to a direct
proof. This always consists of a proof of A and a proof of B.
Hence we may always obtain a proof of A from a proof of A& B.

Mathematical induction

n ∈ N P(0) (∀n∈N)P(n) ⊃ P(succ(n))

P(i)

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

What is a proposition (problem)?

To summarize Heyting’s and Kolmogorov’s explanations:

What does it mean to understand a proposition?

I understand a proposition when I understand what a direct proof
of it is.

This looks very similar to:

What does it mean to understand a set?

I understand a set when I understand what a canonical element of
it is.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Propositions and sets

A proof (element) of: consists of:

A &B a proof (solution) of A and a proof (solution) of B
A× B an element in A and an element in B
A∨B a proof (solution) of A or a proof (solution) of B
A + B an element in A or an element in B
A ⊃ B a method which takes any proof (solution) of A to a proof

(solution) of B
A → B a method which takes any element in A to an element in

B
⊥ has no proof (solution)
∅ has no elements
∃x ∈ A.B an element a in A and a proof (solution) of B[x := a]
∀x ∈ A.B a method, which takes any element x in A to a proof

(solution) of B[x := a]

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

This similarity leads to the

Curry-Howard isomorphism

A& B = A× B

A∨B = A + B

A ⊃ B = A → B

⊥ = ∅
¬A = A → ∅

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Curry’s contribution

Curry noticed the formal similarity between the axioms of positive
implicational logic:

A ⊃ B ⊃ A
(A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ C

and the type of the basic combinators:

K ∈ A → B → A
S ∈ (A → B → C) → (A → B) → C

and modus ponens corresponds to the typing rule for application:

A ⊃ B A

A

f ∈ A → B a ∈ A

f a ∈ B

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Proofs as Programs in a functional programming
language

A direct consists of: As a type:
proof of:

A∨B a proof of A or data Or A B = Ori1 A | Ori2 B;
a proof of B

A& B a proof of A and data And A B = Andi A B;
a proof of B

A ⊃ B a method taking
a proof of A data Implies A B = Impi A → B;
to a proof of B

Falsity data Falsity = ;

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Constructors are introduction rules

A

A∨B Ori1 ∈ A → A∨B

B

A∨B Ori2 ∈ B → A∨B

A B

A& B Andi ∈ A → B → A& B

[A]
B

A ⊃ B Impli ∈ (A → B) → A ⊃ B

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Elimination rules can be defined

orel ∈ A∨B → (A → C) → (B → C) → C

orel (Ori1 a) f g = f a
A∨B

[A]
C

[B]
C

C
orel

orel (Ori2 b) f g = g b

andel ∈ A& B → (A → B → C) → C
A& B

[A,B]
C

C
andel

andel (Andi a b) f = f a b

implel ∈ A ⊃ B → A → B
A ⊃ B A

B
implel

implel (Impli f) a = f a

implel (Impli f) a = f a
A ⊃ B A

B

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Proof checking = Type checking

In this way we can prove propositional formulas in a typed
functional programming language. The problem of proving for
instance

(A& B) ⊃ (B & A)

is then the problem of finding a program in this type. The type
checker will check if the proof is correct. In this case, we can use
the following program:

Impli (λx .Andi (andel x λy .λz .z)

(andel x λy .λz .y))

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

What about the quantifiers?

Propositions and sets

A proof (element) of: consists of:

∃x ∈A.B an element a in A and a proof (solution)
of B[x := a]

Σx ∈A.B an element a in A and an element in
B[x := a]

∀x ∈A.B a method, which takes any element x in
A to a proof (solution) of B[x := a]

Πx ∈A.B a method, which takes any element x in
A to an element in B[x := a]

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Overview of Martin Löf´s type theory

Type theory is a small typed functional language with one
basic type and two type forming operation.

It is a framework for defining logics.

A new logic is introduced by definitions.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

What types are there?

Set is a type

El(A) is a type, if A ∈ Set.

(x ∈A) → B is a type, if A is a type and B a family of types
for x ∈ A.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

What programs are there?

Programs are formed from variables and constants using
abstraction and application:

Application
c ∈ (x ∈A) → B a ∈ A

c a ∈ B[x := a]

Abstraction
b ∈ B [x ∈ A]

[x]b ∈ (x ∈A) → B

constants are either primitive or defined

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Constants

There are two kinds of constants:

primitive: (not defined) have a type but no definiens (RHS):

identifier ∈ Type

defined: have a type and a definiens:

identifier = expr ∈ Type

There are two kinds of defined constants:

explicitly defined
implicitly defined

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Primitive constants

computes to themselves (i.e. are values).
constructors in functional languages.
introduction rules and formation rules in logic
postulates

Examples:

N ∈ Set

0 ∈ N

s ∈ N → N

& ∈ Set → Set → Set

&I ∈ (A∈Set) → (B∈Set) → A → B → A& B

Π ∈ (A∈Set) → (A → Set) → Set

λ ∈ (A∈Set) → (B ∈ A → Set) → ((x ∈A) → B(x)) →
Π(A,B)

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Explicitly defined constants

have a type and a definiens (RHS).
the definiens is a welltyped expression
abbreviation
derived rule in logic.
names for proofs and theorems in math.

Examples:

2 ∈ N

= succ(succ 0)

∀(A∈Set)(B∈A → Set) ∈ Set

= Π A B

+(x ∈N)(y ∈N) ∈ N

= natrec [x]N x y [u, v](succ v)

⊃ (A∈Set)(B∈Set) ∈ Set

= Π A [x]B Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Implicitly defined constants

The definiens (RHS) may contain pattern matching and may
contain occurrences of the constant itself. The correctness of the
definition must in general be decided outside the system

Recursively defined programs
Elimination rules (the step from the definiendum to the
definiens is the contraction rule).

Examples:

add(x ∈N)(y ∈N) ∈ N

add 0 y = y

add (succ u) y = succ (add u y)

&E(A∈Set)(B∈Set)(C ∈A→ B → Set)

(f ∈(x ∈A)→ (y ∈B)→ C(&I x y))

(z∈A & B)

∈ C(z)

&E A B C f (&I a b) = f a b

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Two approaches to the usage of implicit constants:

The conservative approach: Use them only to define induction
principles for sets (elimination rules). These are functions,
which for an inductively defined set A produces a function in
(x ∈A) → (C z) for a family of sets C ∈ A → Set.

The liberal approach: Use them when they are convenient.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

The editing process

The idea is to build expressions from incomplete expressions with
holes (placeholders). Each editing step replaces a place holder with
another incomplete expression

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Place holders

We use the notation
�1, . . . ,�n

for place holders (holes).
Each place holder has an expected type and a local context
(variables which may be used to fill in the hole).

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

To construct an object

We start to give the name of the object to define, and the
computer responds with

c ∈ �1

c = �2

We must first give the type of c by refining �1.
We can either enter text from the keyboard, or do it stepwise,
replace it by

(x ∈ �3) → �4

Set, or

C �3 . . . �n

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Refinement of an object

When we have constructed the type of the constant c , we can
start to define it:

c ∈ C

c = �0

Here, the expected type of �0 is C .
In general, we are in a situation like

c = . . .�1 . . .�2 . . .

where we know the expected type of the place holders.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Refinement of an object: application

To refine a place holder
�0 ∈ A

with a constant c (or a variable) is to replace it by

c �1 . . . �n ∈ A

where �1 ∈ B1, . . . ,�n ∈ Bn.
The system computes the expected types of the new place holders
and some constraints from the condition that the type of
c �1 . . . �n must be equal to A.

We have reduced the problem A to the subproblems B1, . . .Bn

using the rule c .

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Refinement of an object: abstraction

To refine a place holder
�0 ∈ A

with an abstraction is to replace it by

[x]�1 ∈ A

The system checks that A is a functional type (x ∈B) → C and
the expected type of �1 is C and the local context for it will
contain the assumption x ∈ B.

We have reduced the problem (x ∈B) → C to the problem C by
using the assumption x ∈ B.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Hence: to prove is to build a proof object

To apply a rule c is to construct an application of the
constant c.

To assume A is to construct an abstraction of a variable of
type A.

To refer to an assumption of A is to use a variable of type A.

Types Summer School, Hisingen 2005

Brouwer-Heyting-Kolmogorov Curry-Howard Martin-Löf Proof editing

Summary: Type Theory

Types:
T ::= Set | El(e) | (x ∈T) → T ′

Programs:
e ::= e e ′ | [x]e | x | c

Constants:
Primitive (without a definition):

c ∈ T

Explicitly defined:
c = e ∈ T

Implicitly defined:

c p1 . . . pn = e

...

c p′
1 . . . p′

n = e′

Proof of normalisation using domain theory

Thierry Coquand and Arnaud Spivak

Aug. 24, 2005

Proof of normalisation using domain theory

Goal of the presentation

Show an example where computer science helps in simplifying an argument in
proof theory

How to prove normalisation for some computation rules introduced in proof
theory (variant of bar recursion)

Intuition: if the computation rules make sense, the system should be
normalising

1

Proof of normalisation using domain theory

Goal of the presentation

This presentation aims to present a simplified version of

Ulrich Berger “Continuous Semantics for Strong Normalisation”
LNCS 3526, 23-34, 2005

This work itsef simplifies the argument in

W.W. Tait “Normal form theorem for bar recursive functions of finite type”
Proceedings of the Second Scandinavian Logic Symposium, North-Holland, 1971

2

Proof of normalisation using domain theory

PCF

Introduced by D. Scott in 1969

“A type-theoretical alternative to CUCH, ISWIM and OWHY”

Published in Theoret. Comput. Sci. 121 (1993), no. 1-2, 411–440.

This was the basis of the LCF system

3

Proof of normalisation using domain theory

PCF

G. Plotkin “LCF considered as a programming language”

Theoretical Computer Science, 5:223-255, 1977

Simply typed λ-calculus with with base types o, ι and constants

Basic operations

tt : o, ff : o, kn : ι, (+1) : ι → ι, (−1) : ι → ι, Z : ι → o

⊃ι: o, ι, ι → ι, ⊃o: o, o, o → o

Yσ : (σ → σ) → σ

4

Proof of normalisation using domain theory

Operational semantics

λx.t ⇓ λx.t

t ⇓ λx.t′ t′(x = u) ⇓ v

t u ⇓ v

a ⇓ tt b ⇓ v

⊃ a b c ⇓ v

a ⇓ ff c ⇓ v

⊃ a b c ⇓ v

f (Y f) ⇓ v

Y f ⇓ v

a ⇓ kn

(+1) a ⇓ kn+1

a ⇓ kn+1

(−1) a ⇓ kn

a ⇓ k0

Z a ⇓ tt

a ⇓ kn+1

Z a ⇓ ff

5

Proof of normalisation using domain theory

Denotational semantics

A domain is a complete partial order D, with a least element ⊥ and a top
element >

If D,E are domains, [D → E] is the complete lattice of continuous functions,
i.e. monotone and such that f(∨i∈IXi) = ∨i∈If(Xi) for directed families (Xi)

We have natural choices for Dι and Do

Dσ→τ = [Dσ → Dτ]

We have natural choices for [[c]] ∈ Dσ if c : σ

[[Y]] f =
∨

n∈N fn ⊥ so that [[Y]] ∈ [[Dσ → Dσ] → Dσ]

6

Proof of normalisation using domain theory

Denotational semantics

Given ρ : Vσ → Dσ and t : σ we define [[t]]ρ ∈ Dσ by induction on t

[[x]]ρ = ρ(x)

[[λx.t]]ρ = u 7−→ [[t]](ρ,x=u)

[[t u]]ρ = [[t]]ρ [[u]]ρ

[[c]]ρ = [[c]]

7

Proof of normalisation using domain theory

Adequacy theorem

Theorem: For any closed term t of base type ι and any value kn we have
[[t]] = n iff t ⇓ kn

For instance [[t]] = 0 iff t ⇓ k0

8

Proof of normalisation using domain theory

Application: transformation of programs

Assume we have a program t = C[u] having u as a subprogram

If [[u]] = [[u′]] then [[t]] = [[C[u]]] = [[C[u′]]]

This follows from the compositionality property of the denotational semantics

If t ⇓ k0 then [[t]] = 0 hence [[C[u′]]] = 0

Hence by the adequacy theorem C[u′] ⇓ k0

Elegant way of proving the equivalence of programs (for instance for
justification of compiler optimisations)

Avoids messy syntactical details

9

Proof of normalisation using domain theory

Adequacy theorem

Plotkin’s result is for a simply typed language

Proof by induction on the types, reminiscent of reducibility, by introduction of
a computability predicate

The adequacy result holds for untyped languages!

In some sense, untyped λ-calculus has a type structure

10

Proof of normalisation using domain theory

Finite elements

d ∈ D is finite iff d ≤
∨

i∈I αi implies d ≤
∨

i∈K αi for some finite K ⊆ I

The finite elements represent observable pieces of information about a program

0: the program t reduces to 0

0 → 0: if we apply t to 0 the result t 0 reduces to 0

⊥→ 0: if we apply t to a looping program l the result t l reduces to 0

For the last example this means intuitively that the program t does not even
look at its argument during the computation

11

Proof of normalisation using domain theory

Finite elements

If d1, d2 are finite so is d1 ∨ d2

Algebraic domains: any element is the sup of the set of finite elements below
it

If D,E are algebraic then [D → E] is algebraic: the finite elements are exactly
finite sups of step functions d → e

(d → e) d′ = e if d ≤ d′

(d → e) d′ =⊥ otherwise

12

Proof of normalisation using domain theory

Finite elements

In set theory ι, ι → ι, . . . have greater and greater cardinality

For each type σ the finite elements of Dσ form a countable set

13

Proof of normalisation using domain theory

Adequacy theorems

S. Abramsky “Domain theory in logical form.”
Annals of Pure and Applied Logic, 51:1-77, (199)1.

R. Amadio and P.L. Curien Domains and Lambda-Calculi.
Cambridge tracts in theoretical computer science, 46, (1997).

H. Barendregt, M. Coppo and M. Dezani-Ciancaglini
“A filter lambda model and the completeness of type assignment.”
J. Symbolic Logic 48 (1983), no. 4, 931–940 (1984).

P. Martin-Löf “Lecture note on the domain interpretation of type theory.”
Workshop on Semantics of Programming Languages, Chalmers, (1983).

14

Proof of normalisation using domain theory

An untyped programming language

t ::= n | t t | λx.t n ::= x | c | f

Two kind of constants: defined f, g, . . . and primitive c, c′, . . .

f is defined by equations (computation rules) of the form

f x1 . . . xn (c y1 . . . yk) → u

Each constant has an arity ar(f) = n + 1, ar(c) = k

We write h, h′, . . . for a constant f or c

15

Proof of normalisation using domain theory

Operational semantics

λx.t ⇓ λx.t c ~t ⇓ c ~t

|~t| < ar(h)
h ~t ⇓ h ~t

t ⇓ λx.t′ t′(x = u) ⇓ v

t u ⇓ v

t ⇓ c ~t u(~x = ~u, ~y = ~t) ⇓ v

f ~u t ⇓ v

We suppose f ~x (c ~y) = u

16

Proof of normalisation using domain theory

Finite elements

Given a set of constants c with arity ar(c) ∈ N

U, V ::= ∆ | U → V | U ∩ V | c ~U | ∇

If ~U is a vector U1, . . . , Um we write ~U → U for

U1 → (· · · → (Um → U) . . .)

and c ~U for
c U1 . . . Um

17

Proof of normalisation using domain theory

Finite elements as set of closed programs

Let Λ be the set of all programs

∆ is Λ, ∇ is ∅

c U1 . . . Uk = {t | t ⇓ c u1 . . . uk, ui ∈ Ui}

U → V is the set of programs t such that t computes to λx.t′ or to h ~t,
|~t| < ar(h) and ∀u ∈ U. t u ∈ V

U ∩ V = {t | t ∈ U ∧ t ∈ V }

18

Proof of normalisation using domain theory

Meet-semi lattice

∇ ⊆ U ⊆ ∆

c U1 . . . Uk ∩ c U ′
1 . . . U ′

k = c (U1 ∩ U ′
1) . . . (U1 ∩ U ′

k)

c U1 . . . Uk ∩ (U → V) = ∇ c U1 . . . Uk ∩ c′ U ′
1 . . . U ′

l = ∇

(U → V) ∩ (U → V ′) = U → (V ∩ V ′)

U ′ ⊆ U, V ⊆ V ′ ⇒ (U → V) ⊆ U ′ → V ′

19

Proof of normalisation using domain theory

Key property

Lemma: We have ∩i∈I(Ui → Vi) ⊆ U → V iff (∩i∈LVi) ⊆ V where
L = {i ∈ I | U ⊆ Ui}

This holds only, a priori, for the formal inclusion relation

20

Proof of normalisation using domain theory

Decidability

Given U, V we can decide whether U ⊆ V or not

21

Proof of normalisation using domain theory

Filters

A filter α is a set of types such that

(1) ∆ ∈ α

(2) if U, V ∈ α then U ∩ V ∈ α

(3) if U ∈ α and U ⊆ V then V ∈ α

These elements are ordered by inclusion

↑ (U ∩ V) =↑ U ∨ ↑ V

There is a least element ⊥=↑ ∆ and a top element > =↑ ∇

We identify U and ↑ U

22

Proof of normalisation using domain theory

Filters

The poset of all these filters is a complete lattice D

This poset is algebraic: any element is the directed sup of all finite elements
below it

Notice that the greatest element > is finite!

The finite elements of D are exactly the types

23

Proof of normalisation using domain theory

Filters

This domain D contains 0, s 0, but also s ⊥, s (s ⊥), . . .

We have a continuous function s : D → D

D contains the sup of these elements ω such that ω = s ω

ω = {⊥, s ⊥, s (s ⊥), . . . }

24

Proof of normalisation using domain theory

Filters

We have an application operation on D

α β = {∆} ∪ {V | ∃U. [U → V] ∈ α ∧ U ∈ β}

Notice that

⊥ β =⊥

> β = >

25

Proof of normalisation using domain theory

Typing rules

(x:U) ∈ Γ
Γ ` x : U

Γ, x : U ` t : V

Γ ` λx.t : U → V

Γ ` t : U → V Γ ` u : U

Γ ` t u : V

Γ ` t : U Γ ` t : V

Γ ` t : U ∩ V

Γ ` t : U U ⊆ V

Γ ` t : V Γ ` t : ∆

26

Proof of normalisation using domain theory

Typing rules for constants

` c : ~U → c ~U

~x : ~U, ~y : ~V ` u : U

` f : ~U → (c ~V) → U

We suppose f ~x (c ~y) = u

` f : ~U → ∇→ ∇

27

Proof of normalisation using domain theory

Typing rules for constants

If we have 0, s, add with the equations

add x 0 = x add x (s y) = s (add x y)

then we have the typing rules

add : U → 0 → U

x:U, y:W ` add x y : V

add : U → (s W) → s V

28

Proof of normalisation using domain theory

Types and finite elements

∆ corresponds to ⊥

U → V corresponds to the step function defined by

[U → V] U ′ = V if U ≤ U ′

[U → V] U ′ =⊥ otherwise

∇ corresponds to >, the top element of the domain

29

Proof of normalisation using domain theory

Denotational semantics

[[t]]ρ ∈ D for ρ : V → D

[[c]] (res. [[f]]) is the filter of all types U such that ` d : U (resp. ` f : U)

[[x]]ρ = ρ(x)

[[t u]]ρ = [[t]]ρ [[u]]ρ

[[λx.t]]ρ = α 7−→ [[t]](ρ,x=α)

30

Proof of normalisation using domain theory

Typing rules and denotational semantics

Theorem: We have ` t : U iff U ≤ [[t]]

More generally, we have x1:U1, . . . , xn:Un ` t : U iff

U ≤ [[t]]x1=U1,...,xn=Un

31

Proof of normalisation using domain theory

Denotational semantics

An alternative approach is to define directly [[t]]ρ ∈ D by

[[t]]ρ = {U | x1:U1, . . . , xn:Un ` t : U, Ui ∈ ρ(xi)}

Lemma: Γ ` λx.t : U → V iff Γ, x:U ` t : V

32

Proof of normalisation using domain theory

Denotational semantics

Theorem: We have

[[x]]ρ = ρ(x)

[[t u]]ρ = [[t]]ρ [[u]]ρ

[[λx.t]]ρ α = [[t]](ρ,x=α)

if [[t]]ρ,x=α = [[u]]ν,y=α for all α then [[λx.t]]ρ = [[λy.u]]ν

33

Proof of normalisation using domain theory

Denotational semantics

This alternative characterisation of the semantics of β-conversion is described
in

R. Hindley and J. Seldin “Combinators and λ-calculus”, University Press, 1986

and goes back to G. Berry

34

Proof of normalisation using domain theory

Adequacy theorem

Theorem: If ` t : U then t ∈ U

Corollary: If [[t]] = c ~U then there exists ~u such that t ⇓ c ~u

35

Proof of normalisation using domain theory

Application: Gödel system T

Weak version of the normalisation theorem in a semantical way

The constants of Gödel system T are 0, s, natrec

natrec u v 0 = u natrec u v (s m) = v m (natrec u v m)

The base type is ι and 0 : ι, s : ι → ι and natrec : σ → (ι → σ → σ) → ι → σ

36

Proof of normalisation using domain theory

Application: Gödel system T

To each type σ we associate a predicate Totσ on D

a ∈ D is a total integer iff a = sk 0 for some k ∈ N

Totσ→τ(b) means that Totσ(a) implies Totτ(b a)

If Γ is a context define TotΓ(ρ) to mean Totσ(ρ(x)) for all x:σ in Γ

37

Proof of normalisation using domain theory

Application: Gödel system T

Lemma 1: If Γ ` t : σ and TotΓ(ρ) then Totσ([[t]]ρ). In particular, if ` t : σ
then Totσ([[t]]).

Lemma 2: If Totσ(a) then a 6=⊥

Corollary: If ` t : ι then t ⇓ 0 or there exists t′ such that t ⇓ s t′

38

Proof of normalisation using domain theory

Strong Normalisation

As explained in the talk of Benjamin Grégoire for the (total) correctness of
the type-checking algorithm we need a (strong) normalisation theorem

B. Grégoire and X. Leroy
A compiled implementation of strong reduction, ICFP 2002, 235-246.

39

Proof of normalisation using domain theory

Strong Normalisation

N subset of strongly normalisable terms

We write w,w′ for strongly normalisable terms

Simple terms

s ::= x | s w | f ~w s

40

Proof of normalisation using domain theory

Head-reduction

(λx.u) v � u(x = v)

f ~u (c ~v) � u(~x = ~u, ~y = ~v)

u � u′

u v � u′ v

u � u′

f ~u u � f ~u u′

We say that u is of head-redex form iff there exists u′ such that u � u′

41

Proof of normalisation using domain theory

Head-reduction and reduction

We let S ⊆ N be the set of strongly normalisable terms that reduce to a
simple term

S ⊆ N ⊆ Λ

We write u → u′ ordinary reduction and

→ (u) = {u′ | u → u′}

42

Proof of normalisation using domain theory

Saturated set

X ⊆ Λ is saturated iff

(CR1) S ⊆ X ⊆ N

(CR2) if t ∈ X then → (t) ⊆ X

(CR3) if t is of head-redex form and → (t) ⊆ X then t ∈ X

43

Proof of normalisation using domain theory

Saturated subsets

lemma: If I 6= ∅ and Xi saturated then ∩i∈IXi are saturated

If X, Y ⊆ Λ then we define

X → Y = {t ∈ Λ | ∀u ∈ X. t u ∈ Y }

lemma: If X and Y are saturated then so is X → Y

44

Proof of normalisation using domain theory

Saturated subsets

If X1, . . . , Xk ⊆ Λ then c X1 . . . Xk is the set of terms defined inductively
as follows

if t1 ∈ X1, . . . , tk ∈ Xk then c ~t ∈ c ~X

if t ∈ S then t ∈ c ~X

if t is of head-redex form and → (t) ⊆ c ~X then t ∈ c ~X

45

Proof of normalisation using domain theory

Finite elements as saturated sets

We consider the new set of finite elements (types)

U ::= ∆ | W W, V ::= c ~W | W ∩W | W → W | ∇

Each finite element W can be interpreted as a saturated set

Notice that if c ~u ∈ W then |~u| = ar(c)

46

Proof of normalisation using domain theory

Meet-semi lattice

∇ ⊆ U ⊆ ∆

c W1 . . . Wk ∩ c W ′
1 . . . W ′

k = c (W1 ∩W ′
1) . . . (W1 ∩W ′

k)

c W1 . . . Wk ∩ (W → V) = ∇ c W1 . . . Wk ∩ c′ W ′
1 . . . W ′

l = ∇

(W → V) ∩ (W → V ′) = W → (V ∩ V ′)

W ′ ⊆ W, V ⊆ V ′ ⇒ (W → V) ⊆ W ′ → V ′

47

Proof of normalisation using domain theory

Meet-semi lattice

The filters over this lattice define a new domain E

As before we have an application

α β = {∆} ∪ {W | ∃V. V ∈ β ∧ (V → W) ∈ α}

Notice that α ⊥=⊥ for all α

48

Proof of normalisation using domain theory

Strict semantics

We consider the new typing system with only judgements of the form Γ ` t : W

Lemma: If ` t : W then t belongs to the saturated set W

49

Proof of normalisation using domain theory

Typing rules

(x:W) ∈ Γ
Γ ` x : W

Γ, x : W ` t : V

Γ ` λx.t : W → V

Γ ` t : W → V Γ ` u : W

Γ ` t u : V

Γ ` t : W Γ ` t : V

Γ ` t : W ∩ V

Γ ` t : W W ⊆ V

Γ ` t : V

50

Proof of normalisation using domain theory

Typing rules for constants

` c : ~W → c ~W

~x : ~W, ~y : ~V ` u : W

` f : ~W → (c ~V) → W

We suppose f ~x (c ~y) = u

` f : ~W → ∇→ ∇

51

Proof of normalisation using domain theory

Strict semantics

We define [t]ρ ∈ E to be the following filter: U ∈ [t]ρ iff

(1) U = ∆, or

(2) x1:W1, . . . , xn:Wn ` t : U in the new system, with Wi ∈ ρ(xi)

52

Proof of normalisation using domain theory

Strict semantics

Theorem: We have

[x]ρ = ρ(x)

[t u]ρ = [t]ρ [u]ρ

[λx.t]ρ α = [t](ρ,x=α) if α 6=⊥

if [t]ρ,x=α = [u]ν,y=α for all α 6=⊥ then [λx.t]ρ = [λy.u]ν

53

Proof of normalisation using domain theory

Strict semantics

Theorem: If [t] 6=⊥ then t is strongly normalisable

If [[u]]ρ 6=⊥ then
[[(λx.t) u]]ρ = [[t(x = u)]]ρ

54

Proof of normalisation using domain theory

Application: Gödel’s system T

Theorem: If Γ ` t : σ and TotΓ(ρ) then Totσ([t]ρ)

The crucial case is the application: if ` t : σ → τ and u : σ then by induction
Totσ→τ([t]) and Totτ([u]). Hence [u] 6=⊥ and

[t u] = [t] [u]

Corollary: If ` t : σ then t is strongly normalisable

55

Proof of normalisation using domain theory

Interpretation of >

The special element > ∈ D satisfies

> β = >

if β 6=⊥, but also
f α1 . . . αn > = >

if α1 6=⊥, . . . , αn 6=⊥

56

An idea coming from ...

• higher-order substitution (Russell, Withehead, Church, Curry,

Henkin, ...)

• λ-calculus (Church, Curry, ...)

• type theory (de Bruijn, Martin-Löf, Coquand, Huet, ...)

• automated deduction (Plotkin, Peterson, Stickel, ...)

• proof-checking (Boyer, Moore, ...)

• the practice of mathematic (Appel, Haken, Hales, ...)

Proofs are built with

Deduction rules, axioms

Proofs are built with

Deduction rules, axioms and computation rules

A simple expression of this idea

In predicate logic: deduction modulo

I. Deduction modulo

a. Deduction modulo

b. Proofs and certificates

c. An example of theory in deduction modulo: Arithmetic

II. A uniform proof language

I. Deduction modulo

a. Deduction modulo

b. Proofs and certificates

c. An example of theory in deduction modulo: Arithmetic

II. A uniform proof language

Assumed

1. Syntax of terms and formulae in predicate logic

2. Natural deduction rules (for constructive logic)

3. Many sorted predicate logic

Deduction modulo

Proof: sequence of deduction steps

Theory: set of axioms

Deduction modulo

Proof: sequence of deduction steps and computation steps

Theory: set of axioms and computation rules

A terminating and confluent system of computation rules

Computation rules apply to terms, e.g.

0 + y −→ y

and to atomic formulae, e.g.

x × y = 0 −→ x = 0 ∨ y = 0

An example: Arithmetic

∀x (x = x)

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

(0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

∀y 0 + y = y

∀x∀y S(x) + y = S(x + y)

∀y 0 × y = 0

∀x∀y S(x) × y = x × y + y

An example: Arithmetic

∀x (x = x)

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

(0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

0 + y −→ y

S(x) + y −→ S(x + y)

0 × y −→ 0

S(x) × y −→ x × y + y

Congruence

The computation rules define a congruence on formulae e.g.

(2 × 2 = 4) ≡ (4 = 4)

Smallest relation that

• is an equivalence relation

• is a congruence (compatible with all the symbols)

• contains l ≡ r for each computation rule l → r

The congruence ≡ is decidable (thanks to termination and

confluence)

Deduction rules

Deduction rules parametrized by the congruence ≡, e.g.

Γ ` A ⇒ B Γ ` A
⇒-elim

Γ ` B

Γ ` C Γ ` A
⇒-elim if C ≡ (A ⇒ B)

Γ ` B

How to squeeze a proof on a single slide ?

Axiom
∀x x = x ` ∀x x = x

∀-elim
∀x x = x ` 2 × 2 = 4

∃-intro
∀x x = x ` ∃y 2 × y = 4

Business as usual (The equivalence lemma)

For each congruence ≡, there is a theory T such that

Γ `≡ A

iff

T ,Γ ` A

e.g. T = {∀ (P ⇔ Q) | P ≡ Q}

Nothing new from the provability point of view

Something new from the proof structure point of view

Proofs and certificates

A test: is 221 prime or composite ?

Proofs and certificates

A test: is 221 prime or composite ?

Four answers: 221 composite

• as you can check yourself

• because 13 is a divisor

• because 221 = 13 × 17

• because

1 7
1 3

1 7
5 1

2 2 1

2

1

• C defined by computation rules:

>-intro
C(221)

(as you can check yourself)

• | defined by computation rules C(x) = ∃y y | x

>-intro
13 | 221

∃-intro
C(221)

(because 13 is a divisor)

• × defined by computation rules C(x) = ∃y∃z x = y × z

axiom
∀x (x = x)

∀-elim
221 = 13 × 17

∃-intro
∃z (221 = 13 × z)

∃-intro
C(221)

(because 221 = 13 × 17)

• only axioms (each step of the computation)

...

221 = 13 × 17
∃-intro

∃z (221 = 13 × z)
∃-intro

C(221)

Purely computational theories

No axioms

Only computation rules and deduction rules

Examples: arithmetic, simple type theory, set theory

Peano fourth and fifth axioms

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

Peano fourth and fifth axioms

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

Pred(S(x)) −→ x

No term rule for the fourth axiom: no one point model

Null(0) −→ >

Null(S(x)) −→ ⊥

Exercise: prove the two axioms

Where are we ?

∀x (x = x)

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

(0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

∀y 0 + y = y

∀x∀y S(x) + y = S(x + y)

∀y 0 × y = 0

∀x∀y S(x) × y = x × y + y

Equality

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

Example:

∀x ∀y (x = y ⇒ x ≤ 4 ⇒ y ≤ 4)

A second sort for sets and the set {z | z ≤ 4}: fz,z≤4

z ∈ {z | z ≤ 4} ⇔ z ≤ 4

∀x ∀y (x = y ⇒ ∀E (x ∈ E ⇒ y ∈ E))

Equality

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

Example:

∀x ∀y (x = y ⇒ x ≤ 4 ⇒ y ≤ 4)

A second sort for sets and the set {z | z ≤ 4}: fz,z≤4

z ∈ {z | z ≤ 4} ⇔ z ≤ 4

∀x ∀y (x = y ⇔ ∀E (x ∈ E ⇒ y ∈ E))

Equality

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

Example:

∀x ∀y (x = y ⇒ x ≤ 4 ⇒ y ≤ 4)

A second sort for sets and the set {z | z ≤ 4}: fz,z≤4

z ∈ {z | z ≤ 4} −→ z ≤ 4

x = y −→ ∀E (x ∈ E ⇒ y ∈ E)

Induction

(0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

Induction

∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ ∀n n ∈ E)

Induction

∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ ∀n (N(n) ⇒ n ∈ E))

Induction

∀n (N(n) ⇒ ∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ n ∈ E))

Induction

∀n (N(n) ⇔ ∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ n ∈ E))

Induction

N(n) −→ ∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ n ∈ E)

x ∈ fx,y1,...,yn,P (y1, . . . , yn) −→ P

y = z −→ ∀E (y ∈ E ⇒ z ∈ E)

Pred(0) −→ 0 Pred(S(x)) −→ x

Null(0) −→ > Null(S(x)) −→ ⊥

N(n) −→ ∀E (0 ∈ E ⇒ ∀y (y ∈ E ⇒ S(y) ∈ E) ⇒ n ∈ E)

0 + y −→ y

S(x) + y −→ S(x + y)

0 × y −→ 0

S(x) × y −→ x × y + y

I. Deduction modulo

II. A uniform proof language

a. λΠ

b. Axioms, non logical deduction rules, computation rules

c. An example: polymorphism

Type theories

A language to express (among other things) proofs

Proofs in which theory ?

It depends: propositional logic (simply typed λ-calculus),

predicate logic (λΠ), arithmetic (T), second-order propositional

logic (F), predicative higher-order arithmetic (ITT), second-order

arithmetic (AF2), higher-order logic (CoC, Fω), full higher-order

arithmetic (CIC), ...

A uniform approach ?

Representing proofs

Proof trees (2-dimensional) are tedious to draw

Data bases, communication

A useful operation on proofs: from a proof of Γ, A ` B and a proof

of Γ ` A build a proof of Γ ` B

• suppress hypothesis A in all sequents

• replace axiom rules using A by the proof of Γ ` A

A better notation for proofs

In A1, ..., An ` B, associate a variable ξi to each hypothesis Ai

A proof of A1, ..., An ` B = a term containing the variables

ξ1, ..., ξn

Axiom
A1, ..., An ` Ai

ξi

To each rule: a function symbol (some are binders)

π1

Γ ` A

π2

Γ ` B
∧-intro

Γ ` A ∧ B

f(π1, π2)
π1

Γ, A ` B
⇒-intro

Γ ` A ⇒ B

g(ξπ1)

The operation

π2 π2 π2

π1

is substitution

(π2/ξ)π1

A notation for proofs

π ::= ξ

| ξ 7→ π | (π1 π2) app(π1, π2)

| 〈π1, π2〉 | fst(π) | snd(π)

| i(π) | j(π) | (δ π1 ξ1π2 ξ2π3)

| I

| (δ⊥ π)

| x 7→ π | (π t)

| 〈t, π〉 | (δ∃ π1 xξπ2)

Brouwer-Heyting-Kolmogorov interpretation of proofs

A proof of A ∧ B is an ordered pair formed with a proof of A and

a proof of B

A proof of A ⇒ B is an algorithmic function mapping a proof of A

to a proof of B

A proof of ∀x A(x) is an algorithmic function mapping n to a

proof of A(n)

Explains the notation ξ 7→ π and (π1 π2)

Curry-de Bruijn-Howard isomorphism

A proof of A ⇒ B is an algorithmic function mapping a proof of A

to a proof of B

If ΦA is the type of the proofs of A then

Φ(A ⇒ B) = ΦA → ΦB

Φ isomorphism between formulae and types

Propositions play the role of types of their proofs

Dependent types

A proof of ∀x (even(x) ∨ odd(x)) is an algorithmic function

mapping n to a proof of even(n) ∨ odd(n)

f(n) : even(n) ∨ odd(n)

f : (x : nat) → (even(x) ∨ odd(x))

f : Πx : nat (even(x) ∨ odd(x))

A choice

Three languages:

S(S(0)) terms

S(S(0)) = 0 formulae

x 7→ x proofs

One language:

S(S(0)), S(S(0)) = 0 and x 7→ x are all terms of the language

One language: λΠ-calculus

A type T (e.g. nat) for the objects of the theory

T : Type

One language: λΠ-calculus

A type T (e.g. nat) for the objects of the theory

T : Type

Translate each term as a term of type T

To each function symbol f f : T → ... → T → T

Translate each atomic formula P (t, u) to a term of type Type

To each predicate symbol P P : T → ... → T → Type

One language: λΠ-calculus

A type T (e.g. nat) for the objects of the theory

T : Type

Translate each term as a term of type T

To each function symbol f f : T → ... → T → T

Translate each atomic formula P (t, u) to a term of type Type

To each predicate symbol P P : T → ... → T → Type

Translate A ⇒ B to A → B

Translate ∀x A(x) to Πx : T A(x)

...

An example

Assume π is a proof of ∀x ∀y (S(x) = S(y) ⇒ x = y)

And π′ of 1 = 2

Find a proof of 0 = 1

Theories

So far: predicate logic

Need to be extended to theories (e.g. arithmetic, simple type

theory, set theory, ...) ?

A first way to arithmetic

For each axiom: a constant

p3 : ∀x ∀y (S(x) = S(y) ⇒ x = y)

p4 : ∀x (0 = S(x) ⇒ ⊥)

RecA : (0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

...

ξ : 1 = 2 ` (p3 0 1 ξ) : 0 = 1

ξ : 1 = 2 ` (p4 0 (p3 0 1 ξ)) : ⊥

` ξ : 1 = 2 7→ (p4 0 (p3 0 1 ξ)) : (1 = 2) ⇒ ⊥

A second way

Replace axioms by non logical deduction rules

Γ ` (0/z)A Γ ` ∀x ((x/z)A ⇒ (S(x)/z)A)

Γ ` ∀n (n/z)A

Introduce a new construction in the proof language: Rec(π1, π2)

Almost the same but Rec a construction (like app), not a constant

A particular case, the folding and unfolding rules

x ∈ (A ∩ B)

x ∈ A ∨ x ∈ B

Axioms poison proof reduction

In predicate logic: a normal closed terms is an introduction

Consistency, disjunction, witness, finite failure of search of ⊥, ...

With constants normal closed terms need not be introductions

e.g. with an axiom ∃x P (x)

No witness property, no finite failure of search of ⊥, ...

Extra reduction rules

e.g.

Rec a b 0 −→ 0

Rec a b S(x) −→ (b x (Rec a b x))

ι-reduction (inductive types)

Each new axiom: a new constant and a new proof-reduction rule

Replacing axioms by computation rules: λΠ modulo

Null(0) −→ >

Null(S(x)) −→ ⊥

x ∈ fNull −→ Null(x)

∀x ¬(0 = S(x)) now has the proof

x : nat 7→ α : (0 = S(x)) 7→ (α fNull I)

Not a constant

No need for extra reduction rules, the terms reduces for itself

Polymorphism

Simple type theory (higher-order logic)

∀P (P ⇒ P)

(Q ⇒ Q) ⇒ (Q ⇒ Q)

Polymorphism

ΠP : Type (P ⇒ P)

built on the same pattens as

Πx : nat (x = x)

But the red part nat must be of type Type

Type : Type ? No way

Extra typing rules to form more products (polymorphism)

Polymorphism through rewriting

Express simple type theory as a first-order theory

∀P (P ⇒ P)

∀p (ε(p) ⇒ ε(p))

substitute by ar(q, q)

ε(ar(q, q)) ⇒ ε(ar(q, q))

Polymorphism through rewriting

Express simple type theory as a first-order theory

∀P (P ⇒ P)

∀p (ε(p) ⇒ ε(p))

substitute by ar(q, q)

ε(ar(q, q)) ⇒ ε(ar(q, q))

Need a rule

ε(ar(x, y)) −→ ε(x) ⇒ ε(y)

Proofs of simple type theory in λΠ modulo

A uniform proof language

λΠ modulo

A simple extension of λΠ with a (parametric) congruence on types

Proofs of all axiom free theories in deduction modulo

Unifies many (more or less esoteric) type theories

Allows to design new type theories (for set theory, ...)

Uniformity allows uniform meta-theory (e.g. termination criteria)

Check Definitions Proofs Inductive types Predicates

Introduction to Coq

Yves Bertot

August 2005

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Running Coq

I the plain command : coqtop
I use your favorite line-editor,

I the compilation command : coqc

I the interactive environment : coqide

I with the Emacs environment : open a file with suffix “.v”

I Also Pcoq developed at Sophia

I All commands terminate with a period at the end of a line.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

The Check command

I Useful first step: load collections of known facts and functions.
Require Import Arith. Require Import ArithRing.
Require Import Omega.

I First know how to construct well-formed terms.
Check 3.
3 : nat
Check plus.
plus : nat−>nat−>nat
Check (nat->(nat->nat)).
nat−>nat−>nat : Set
Check (plus 3).
plus 3 : nat−>nat

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Basic constructs

I abstractions, applications.
Check (fun x => plus x x).
fun x:nat => x + x : nat−>nat

I product types.
Check (fun (A:Set)(x:A)=>x).
fun (A:Set)(x:A) => x : forall A:Set, A−>A

I Common notations.
Check (3=4).
3=4 : Prop
Check (fun (A:Set)(x:A)=>(3,x)).
fun (A:Set)(x:A)=>(3,x) : forall A:Set, A −>nat*A

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Basic constructs (continued)

I Logical statements.
Check (forall x y, x <= y -> y <= x -> x = y).
forall x y:nat, x <= y −> y <= x −> x = y : Prop

I proofs.
Check le S.
le S : forall n m:nat, n <= m −> n <= S m
Check (le S 3 3).
le S 3 3 : 3 <= 3 −> 3 <= 4
Check le n.
le n : forall n:nat, n <= n
Check (le S 3 3 (le n 3))
le S 3 3 (le n 3) : 3 <= 4

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Logical notations

I conjunction, disjunction, negation.
Check (forall A B, A /\ (B \/ ~ A)).
forall A B:Prop, A /\ (B \/ ˜ A) : Prop

I Well-formed statements are not always true or provable.

I Existential quantification.
Check (exists x:nat, x = 3).
exists x:nat, x = 3 : Prop

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Notations

I Know what function is hidden behind a notation:
Locate " + ".
Notation Scope
”x + y” := sum x y : type scope
”x + y” := plus x y : nat scope
(default interpretation)

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Computing

I Unlike Haskell, ML, or OCaml, values are not computed by
default
Check (plus 3 4).
3+4:nat

I A command to require computation.
Eval compute in ((3+4)*5).

= 35 : nat

I A proposition is not a boolean value.
Eval compute in ((3+4)*5=61).

= 35=61:Prop

I Fast computation is not the main concern.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Definitions

I Define an object by providing a name and a value.
Definition ex1 := fun x => x + 3.
ex1 is defined

I Special notation for functions.
Definition ex2 (x:nat) := x + 3.
ex2 is defined

I See the value associated to definitions.
Print ex1.
ex1 = fun x : nat => x + 3 : nat −> nat
Argument scope is [nat scope]
Print ex2.
ex2 = fun x : nat => x + 3 : nat −> nat
Argument scope is [nat scope]

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Sections

I Sections make it possible to have a local context.
Section sectA.

Variable A:Set.
A is assumed

Variables (x:A)(P:A->Prop)(R:A->A->Prop).
x is assumed
. . .

Hypothesis Hyp1 : forall x y, R x y -> P y.
. . .

Check (Hyp1 x x).
Hyp x x : R x x −> P x

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Sections (continued)

I Definitions can use local variables.
Definition ex3 (z:A) := Hyp1 z z.
Print ex3.
ex3 = fun z:A => Hyp1 z z : forall z:A, R z z −> P z

I Defined values change at closing time.
End sectA.
ex3 is discharged.
Print ex3.
ex3 =

fun (A:Set)(P:A−>Prop)(R:A−>A−>Prop)
(Hyp1:forall x y:A,Rxy−>P y)(z :A)=>Hyp1 z z

: forall(A:Set)(P:A−>Prop)(R:A−>A−>Prop),
(forall x y:A, R x y−>P y)−>forall z:A, R z z−>P z

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Parameters and Axioms

I Declaring variables and Hypotheses outside sections.

I Proofs will never be required for axioms.

I Make it possible to extend the logic.

I Make partial experiments easier.

I Beware of inconsistency!

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Goal directed proof

I Finding inhabitants in types.
I Recursive technique:

I observe a type in a given context.
I find the shape of a term with holes with this type.
I restart recursively with the new holes in new contexts.

I The commands to fill holes are called tactics.
I arrow or forall types are function types and can be filled by an

abstraction: the context increases (tactic intro).
I For other types one may use existing functions or theorems

(tactics exact, apply).
I special tactics take care of classes of constructs (tactics elim,

split, exist, rewrite, omega, ring).

I When no hole remains, the proof needs to be saved.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Example proof

Theorem example2 : forall a b:Prop, a/\ b -> b /\ a.
1 subgoal

============================
forall a b : Prop, a /\ b −> b /\ a

Proof.
intros a b H.
1 subgoal

a : Prop
b : Prop
H : a /\ b
============================
b /\ a

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Example proof (continued)

split.
2 subgoals
. . .
H : a /\ b

============================
b

subgoal 2 is:
a

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Example proof (continued)

elim H.
. . .

H : a /\ b
============================

a −> b −> b
. . .
intros H1 H2.
. . .

H1 : a
H2 : b
============================
b

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Example proof (continued)

exact b
1 subgoal . . .

============================
a

intuition.
Proof completed.
Qed.
intros a b H.
. . .
intuition.

example2 is defined

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Second example

Theorem square lt : forall n m, n < m -> n*n < m*m.
Proof.
intros n m H.
SearchPattern (* < *).
mult S lt compat l:

forall n m p : nat, m < p −> S n * m < S n * p
mult lt compat r:

forall n m p : nat, n < m −> 0 < p −> n * p < m * p
Check le lt trans.
le lt trans : forall n m p : nat, n <= m −> m < p −> n < p

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Second example (continued)

apply le lt trans with (n * m).
. . .

H : n < m
============================
n * n <= n * m

. . .
SearchPattern (* <= *).
mult le compat l: forall n m p : nat, n <= m −> p * n <= p * m
mult le compat r: forall n m p : nat, n <= m −> n * p <= m * p
. . .
Check lt le weak.
lt le weak : forall n m : nat, n < m −> n <= m

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Second example (continued)

apply mult le compat l; apply lt le weak; exact H.
. . .

H : n < m
============================
n * m < m * m

apply mult lt compat r.
2 subgoals
. . .

H : n < m
============================
n < m

subgoal 2 is:
0 < m
assumption.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Second example (continued)

Show.
H : n < m
============================
0 < m

omega.
Proof completed.
Qed.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Proofs : a synopsis

⇒ ∀ ∧ ∨ ∃
Hypothesis apply apply elim elim elim

goal intros intros split left or exists v
right

¬ =

Hypothesis elim rewrite
goal intro reflexivity

I Automatic tactics: auto, auto with database, intuition,
omega, ring, fourier, field.

I Possibility to define your own tactics: Ltac.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Automatic tactics

I intuition Automatic proofs for 1st order intuitionnistic logic,

I omega Presburger arithmetic on types nat and Z,

I ring Polynomial equalities on types Z and nat (no
subtraction for the latter)

I fourier Inequations between linear formulas in R,

I field Equations between fractional expressions in R.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Forward reasoning

I apply only supports backward reasoning (it does not
implement ∀-elimination or -¿-elimination),

I Problem “I have H: forall x, P x” how can I add P a to
the context”

I assert (H2 : P a), prove this by apply H and proceed,
I alternatively generalize (H a); intros H2.

I Problem “I have H: A -> B” how can add B to the context
and have an extra goal to prove A.

I Use assert again,
I alternatively use “lapply H;[intros H2 — idtac]”.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inductive types

I Inductive types extend the recursive (algebraic) data-types of
Haskell, ML,

I An inductive type definition provides three kinds of elements:
I A type (or a family of types),
I Constructors,
I A computation process (case-analysis and recursion),
I A proof by induction principle.

Inductive bin : Set :=
L : bin

| N : bin -> bin -> bin.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Computation process

I Pattern-matching and structural recursion.

Fixpoint size (t1:bin): nat :=
match t1 with

L => 1
| N t1 t2 => 1 + size t1 + size t2
end.

Fixpoint flatten aux (t1 t2:bin) {struct t1} : bin
:=

match t1 with
L => N L t2

| N t’1 t’2 =>
flatten aux t’1 (flatten aux t’2 t2)

end.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Recursive definition (continued)

Fixpoint flatten (t:bin) : bin :=
match t with

L => L
| N t1 t2 => flatten aux t1 (flatten t2)
end.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Proof by induction principle

I Quantification over a predicate on the inductive type,

I Premises for all the cases represented by the constructors,

I Induction hypotheses for the subterms in the type.

Check bin ind.
bin ind : forall P:bin−>Prop,
P L −>
(forall b:bin, P b −> forall b0:bin, P b0 −> P (N b b0)) −>
forall b : bin, P b

I The tactic elim uses this theorem automatically.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Proof by induction principle

I Quantification over a predicate on the inductive type,

I Premises for all the cases represented by the constructors,

I Induction hypotheses for the subterms in the type.

Check bin ind.
bin ind : forall P:bin−>Prop,
P L −>
(forall b:bin, P b −> forall b0:bin, P b0 −> P (N b b0)) −>
forall b : bin, P b

I The tactic elim uses this theorem automatically.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Proof by induction principle

I Quantification over a predicate on the inductive type,

I Premises for all the cases represented by the constructors,

I Induction hypotheses for the subterms in the type.

Check bin ind.
bin ind : forall P:bin−>Prop,
P L −>
(forall b:bin, P b −> forall b0:bin, P b0 −> P (N b b0)) −>
forall b : bin, P b

I The tactic elim uses this theorem automatically.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Example proof by induction

Theorem forall aux size :
forall t1 t,

size(flatten aux t1 t) = size t1+size t+1.
Proof.
intros t1; elim t1.

. . .
============================
forall t : bin, size (flatten aux L t) = size L + size t + 1

subgoal 2 is:
. . .
size (flatten aux (N b b0) t) = size (N b b0)+size t+1

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Proof by induction (continued)

simpl.
. . .
============================
forall t : bin, S (S (size t)) = S (size t + 1)
. . .
intros; ring nat.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Proof by induction (continued)

. . .
============================
forall t : bin, size (flatten aux L t) = size L + size t + 1

simpl.
. . .
============================
forall t : bin, S (S (size t)) = S (size t + 1)
. . .
intros; ring nat.

I This goal is solved.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Proof by induction (continued)

============================
forall b : bin,
(forall t : bin, size (flatten aux b t) = size b+size t+1) −>
forall b0 : bin,
(forall t : bin, size (flatten aux b0 t) = size b0+size t+1) −>
forall t : bin, size (flatten aux (N b b0) t) =

size (N b b0)+size t+1
intros b Hrecb c Hrec t; simpl.
. . .

============================
size(flatten aux b (flatten aux c t))=S(size b+size c+size t+1)

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Proof by induction (continued)

. . .
Hrec : forall t : bin, size(flatten aux c t) = size c+size t+1
t : bin
============================
size(flatten aux b (flatten aux c t))=S(size b+size c+size t+1)

rewrite Hrecb.
. . .

============================
size b+size(flatten aux c t)+1 = S(size b+size c+size t+1)

rewrite Hrec; ring nat.
Qed.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inductive type and equality

I For inductive types of type Set, Type,
I Constructors are distinguishable (strong elimination),
I Constructors are injective.
I Tactics: discriminate and injection.

I Not for inductive type of type Prop, bad interaction with
impredicativity.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Discriminate example

Theorem discriminate example : forall t1 t2, L = N
t1 t2 -> 2 = 3.
. . .
intros t1 t2 H.
. . .

H : L = N t1 t2
============================
2 = 3

discriminate H.
Proof completed.

I With no argument, discriminate finds an hypothesis that fits.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Injection example

Theorem injection example :
forall t1 t2 t3, N t1 t2 = N t3 t3 -> t1 = t2.

. . .
intros t1 t2 t3 H.

H : N t1 t2 = N t3 t3
============================
t1 = t2

. . .
injection H.
. . .

============================
t2 = t3 −> t1 = t3 −> t1 = t2

intros H1 H2; rewrite H1; auto.
Proof completed.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Usual inductive data-types in Coq

I Most number types are inductive types,
I Natural numbers à la Peano, the induction principle coincides

with mathematical induction, nat,
I Strictly positive integers as sequences of bits, positive,
I Integers, as a three-branch disjoint sum, Z,
I Strictly positive rational numbers can also be represented as an

inductive type.

I Data structures: lists, binary search trees, finite sets.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inductive propositions

I Dependent inductive types of sort Prop,

I The types of the constructors are logical statements,

I The induction principle is a simplified,

I Easy to understand as a minimal property for which the
constructor hold.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inductive proposition example

Inductive even : nat -> Prop :=
even0 : even 0

| evenS : forall x:nat, even x -> even (S (S x)).

I even is a function that returns a type,

I When x varies, even x intuitively has one or zero element.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Simplified induction principle

Check even ind.
even ind : forall P : nat −> Prop,

P 0 −>
(forall x : nat, even x −> P x −> P (S (S x))) −>
forall n : nat, even n −> P n

I quantification over a predicate on the potential arguments of
the inductive type,

I No universal quantification over elements of the type, only
implication (proof irrelevance).

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Example proof by induction on a proposition

Theorem even mult : forall x, even x -> exists y, x
= 2*y.
intros x H; elim H.
. . .

============================
exists y : nat, 0 = 2 * y

subgoal 2 is:
forall x0 : nat,
even x0 −> (exists y : nat, x0 = 2 * y) −>
exists y : nat, S (S x0) = 2 * y

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Proof by induction on a proposition (continued)

exists 0; ring nat.
intros x0 Hevenx0 IHx.
. . .

IHx : exists y : nat, x0 = 2 * y
============================

exists y : nat, S (S x0) = 2 * y
destruct IHx as [y Heq]; rewrite Heq.
(*alternative to elim IHx; intros y Heq; rewrite Heq
*)
exists (S y); ring nat.
Qed.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inversion

I sometimes assumptions are false because no constructor
proves them,

I sometimes the hypothesis of a constructor have to be tree
because only this constructor could have been used.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Example inversion

not even 1 : ~even 1.
intros even1. . . .
even1 : even 1
============================
False
inversion even1.
Qed.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Usual inductive propositions in Coq

I The order <= on natural numbers (type le).

I The logical connectives.

I The accessibility predicate with respect to a binary relation,

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Logical connectives as inductive propositions

I Parallel with usual present of logic in sequent style,

I Right introduction rules are replaced by constructors,

I Left introduction is automatically given by the induction
principle.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inductive view of False

I No right introduction rule: no constructor.

Inductive False : Prop := .
Check False ind.
False ind

: forall P : Prop, False −> P

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inductive view of and

I one constructor,

I two left introduction rules, but can be modeled as just one.

Print and.
Inductive and (A : Prop) (B : Prop) : Prop :=

conj : A −> B −> A /\ B
Check and ind.
and ind

: forall A B P : Prop, (A −> B −> P) −> A /\ B −> P

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inductive view of or

Print or.
Inductive or (A : Prop) (B : Prop) : Prop :=

or introl : A −> A \/ B | or intror : B −> A \/ B
Check or ind.
or ind : forall A B P : Prop, (A−>P)−>(B−>P)−>A \/ B−>P

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inductive view of exists

Print ex.
Inductive ex (A : Type) (P : A −> Prop) : Prop :=

ex intro : forall x : A, P x −> ex P
Check ex ind.
ex ind : forall (A : Type) (P : A −> Prop) (P0 : Prop),

(forall x : A, P x −> P0) −> ex P −> P0

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Inductive view of eq

Print eq.
Inductive eq (A : Type) (x : A) : A −> Prop :=

refl equal : x = x
Check eq ind.
eq ind : forall (A : Type) (x : A) (P : A −> Prop),

P x −> forall y : A, x = y −> P y

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Dependently typed pattern-matching

I Well-formed pattern-matching constructs where each branch
has a different type,

I Still a constraint of being well-typed,

I Determine the type of the whole expression,

I Verify that each branch is well-typed,

I Dependence on the matched expression.

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Syntax of dependently typed pattern-matching

I match e as x return T with
p1 => v1

| p2 => v2

. . .
end

I The whole expression has type T [e/x],

I Each value v1 must have type T [p1/x].

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Example of dependently typed programming

Print nat.
Inductive nat : Set := O : nat | S : nat −> nat
Fixpoint nat ind (P:nat->Prop)(v0:P 0)

(f:forall n, P n -> P (S n))
(n:nat) {struct n} : P n :=

match n return P n with
O => v0

| S p => f p (nat ind P v0 f p)
end.

I Dependently-typed programming for logical purposes

Yves Bertot Introduction to Coq

Check Definitions Proofs Inductive types Predicates

Dependent pattern-matching with dependent inductive
types

Fixpoint even ind2 (P:nat->Prop)(v0:P 0)
(f:forall n, P n -> P (S (S n)))
(n:nat) (h:even n) {struct h} : P n :=
match h in even x return P x with

even0 => v0
| evenS a h’ => f a (even ind2 P v0 f a h’)
end.

Yves Bertot Introduction to Coq

Exercices in Coq

Yves Bertot

August 23, 2005

1. Define a function of type forall x:nat, {y:nat|2*y<=x<2*y+1},

2. Define a function twopower of type nat -> nat that computes 2n for
every natural number n, and then define a function of type

forall x:nat,
{y : nat | twopower y <= x < twopower(y+1)}+{x=0}

3. Define a sorting function for an abitrary binary relation on an arbitrary
type. You should define suitable predicates sorted and permutation, and
then provide a function with the following type:

forall A:Set, forall R:Set,
forall testR : forall x y,{R x y}+{R y x},
forall l : list A,
{l’ : list A | sorted A R l’ /\ permutation A l l’}

I suggest using insertion sort, which is reasonably simple. As a first ex-
ercise, you may leave aside the notion of permutation and construct a
function that only has the following type:

forall A:Set, forall R:Set,
forall testR : forall x y,{R x y}+{R y x},
forall l : list A, {l’ : list A | sorted A R l’}

But because this specification is weak, you should refrain from cheating
(for instance by providing the constant function that returns the empty
list).

1

Introduction Direct method Use of dependent types Modules and functors

Coq tutorial
Program verification using Coq

Jean-Christophe Filliâtre

CNRS – Université Paris Sud

TYPES summer school – August 23th, 2005

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Introduction

This lecture: how to use Coq to verify purely functional programs

Thursday’s lecture: verification of imperative programs (using Coq
and other provers)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Introduction

This lecture: how to use Coq to verify purely functional programs

Thursday’s lecture: verification of imperative programs (using Coq
and other provers)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The goal

To get a purely functional (ML) program which is proved correct

There are mostly two ways:

1. define your ML function in Coq and prove it correct

2. give the Coq function a richer type (= the specification)
and get the ML function via program extraction

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The goal

To get a purely functional (ML) program which is proved correct

There are mostly two ways:

1. define your ML function in Coq and prove it correct

2. give the Coq function a richer type (= the specification)
and get the ML function via program extraction

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The goal

To get a purely functional (ML) program which is proved correct

There are mostly two ways:

1. define your ML function in Coq and prove it correct

2. give the Coq function a richer type (= the specification)
and get the ML function via program extraction

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The goal

To get a purely functional (ML) program which is proved correct

There are mostly two ways:

1. define your ML function in Coq and prove it correct

2. give the Coq function a richer type (= the specification)
and get the ML function via program extraction

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Program extraction

Two sorts:

Prop : the sort of logic terms

Set : the sort of informative terms

Program extraction turns the informative contents of a Coq term
into an ML program while removing the logical contents

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Program extraction

Two sorts:

Prop : the sort of logic terms

Set : the sort of informative terms

Program extraction turns the informative contents of a Coq term
into an ML program while removing the logical contents

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Outline

1. Direct method (ML function defined in Coq)

2. Use of Coq dependent types

3. Modules and functors

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Running example

Finite sets library implemented with balanced binary search trees

1. useful

2. complex

3. purely functional

The Ocaml library Set was verified using Coq
One (balancing) bug was found (fixed in current release)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Running example

Finite sets library implemented with balanced binary search trees

1. useful

2. complex

3. purely functional

The Ocaml library Set was verified using Coq
One (balancing) bug was found (fixed in current release)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Running example

Finite sets library implemented with balanced binary search trees

1. useful

2. complex

3. purely functional

The Ocaml library Set was verified using Coq
One (balancing) bug was found (fixed in current release)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Direct method

Most ML functions can be defined in Coq

f : τ1 → τ2

A specification is a relation S : τ1 → τ2 → Prop
f verifies S if

∀x : τ1. (S x (f x))

The proof is conducted following the definition of f

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Direct method

Most ML functions can be defined in Coq

f : τ1 → τ2

A specification is a relation S : τ1 → τ2 → Prop
f verifies S if

∀x : τ1. (S x (f x))

The proof is conducted following the definition of f

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Direct method

Most ML functions can be defined in Coq

f : τ1 → τ2

A specification is a relation S : τ1 → τ2 → Prop
f verifies S if

∀x : τ1. (S x (f x))

The proof is conducted following the definition of f

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Binary search trees

The type of trees

Inductive tree : Set :=
| Empty
| Node : tree → Z → tree → tree.

The membership relation

Inductive In (x:Z) : tree → Prop :=
| In_left : ∀ l r y, In x l → In x (Node l y r)
| In_right : ∀ l r y, In x r → In x (Node l y r)
| Is_root : ∀ l r, In x (Node l x r).

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Binary search trees

The type of trees

Inductive tree : Set :=
| Empty
| Node : tree → Z → tree → tree.

The membership relation

Inductive In (x:Z) : tree → Prop :=
| In_left : ∀ l r y, In x l → In x (Node l y r)
| In_right : ∀ l r y, In x r → In x (Node l y r)
| Is_root : ∀ l r, In x (Node l x r).

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The function is empty

ML

let is_empty = function Empty → true | → false

Coq

Definition is_empty (s:tree) : bool := match s with
| Empty ⇒ true
| ⇒ false end.

Correctness

Theorem is_empty_correct :
∀ s, (is_empty s)=true ↔ (∀ x, ¬(In x s)).

Proof.
destruct s; simpl; intuition.
...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The function is empty

ML

let is_empty = function Empty → true | → false

Coq

Definition is_empty (s:tree) : bool := match s with
| Empty ⇒ true
| ⇒ false end.

Correctness

Theorem is_empty_correct :
∀ s, (is_empty s)=true ↔ (∀ x, ¬(In x s)).

Proof.
destruct s; simpl; intuition.
...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The function is empty

ML

let is_empty = function Empty → true | → false

Coq

Definition is_empty (s:tree) : bool := match s with
| Empty ⇒ true
| ⇒ false end.

Correctness

Theorem is_empty_correct :
∀ s, (is_empty s)=true ↔ (∀ x, ¬(In x s)).

Proof.
destruct s; simpl; intuition.
...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The function is empty

ML

let is_empty = function Empty → true | → false

Coq

Definition is_empty (s:tree) : bool := match s with
| Empty ⇒ true
| ⇒ false end.

Correctness

Theorem is_empty_correct :
∀ s, (is_empty s)=true ↔ (∀ x, ¬(In x s)).

Proof.
destruct s; simpl; intuition.
...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The function mem

ML

let rec mem x = function
| Empty →

false
| Node (l, y, r) →

let c = compare x y in
if c < 0 then mem x l
else if c = 0 then true
else mem x r

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The function mem
Coq

Fixpoint mem (x:Z) (s:tree) {struct s} : bool :=
match s with
| Empty ⇒

false
| Node l y r ⇒ match compare x y with

| Lt ⇒ mem x l
| Eq ⇒ true
| Gt ⇒ mem x r
end

end.

assuming

Inductive order : Set := Lt | Eq | Gt.
Hypothesis compare : Z → Z → order.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The function mem
Coq

Fixpoint mem (x:Z) (s:tree) {struct s} : bool :=
match s with
| Empty ⇒

false
| Node l y r ⇒ match compare x y with

| Lt ⇒ mem x l
| Eq ⇒ true
| Gt ⇒ mem x r
end

end.

assuming

Inductive order : Set := Lt | Eq | Gt.
Hypothesis compare : Z → Z → order.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Correctness of the function mem

to be a binary search tree

Inductive bst : tree → Prop :=
| bst_empty :

bst Empty
| bst_node :

∀ x l r,
bst l → bst r →
(∀ y, In y l → y < x) →
(∀ y, In y r → x < y) → bst (Node l x r).

Theorem mem_correct :
∀ x s, bst s → ((mem x s)=true ↔ In x s).

specification S has the shape P x → Q x (f x)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Correctness of the function mem

to be a binary search tree

Inductive bst : tree → Prop :=
| bst_empty :

bst Empty
| bst_node :

∀ x l r,
bst l → bst r →
(∀ y, In y l → y < x) →
(∀ y, In y r → x < y) → bst (Node l x r).

Theorem mem_correct :
∀ x s, bst s → ((mem x s)=true ↔ In x s).

specification S has the shape P x → Q x (f x)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Correctness of the function mem

to be a binary search tree

Inductive bst : tree → Prop :=
| bst_empty :

bst Empty
| bst_node :

∀ x l r,
bst l → bst r →
(∀ y, In y l → y < x) →
(∀ y, In y r → x < y) → bst (Node l x r).

Theorem mem_correct :
∀ x s, bst s → ((mem x s)=true ↔ In x s).

specification S has the shape P x → Q x (f x)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Modularity

To prove mem correct requires a property for compare

Hypothesis compare_spec :
∀ x y, match compare x y with

| Lt ⇒ x < y
| Eq ⇒ x = y
| Gt ⇒ x > y

end.

Theorem mem_correct :
∀ x s, bst s → ((mem x s)=true ↔ In x s).

Proof.
induction s; simpl.
...
generalize (compare_spec x y); destruct (compare x y).
...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Modularity

To prove mem correct requires a property for compare

Hypothesis compare_spec :
∀ x y, match compare x y with
| Lt ⇒ x < y
| Eq ⇒ x = y
| Gt ⇒ x > y

end.

Theorem mem_correct :
∀ x s, bst s → ((mem x s)=true ↔ In x s).

Proof.
induction s; simpl.
...
generalize (compare_spec x y); destruct (compare x y).
...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Modularity

To prove mem correct requires a property for compare

Hypothesis compare_spec :
∀ x y, match compare x y with
| Lt ⇒ x < y
| Eq ⇒ x = y
| Gt ⇒ x > y

end.

Theorem mem_correct :
∀ x s, bst s → ((mem x s)=true ↔ In x s).

Proof.
induction s; simpl.
...
generalize (compare_spec x y); destruct (compare x y).
...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Partial functions

If the function f is partial, it has the Coq type

f : ∀x : τ1. (P x) → τ2

Example: min elt returning the smallest element of a tree

min elt : ∀s : tree. ¬s = Empty→ Z

specification

∀s. ∀h : ¬s = Empty. bst s →
In (min elt s h) s ∧ ∀x . In x s → min elt s h ≤ x

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Partial functions

If the function f is partial, it has the Coq type

f : ∀x : τ1. (P x) → τ2

Example: min elt returning the smallest element of a tree

min elt : ∀s : tree. ¬s = Empty→ Z

specification

∀s. ∀h : ¬s = Empty. bst s →
In (min elt s h) s ∧ ∀x . In x s → min elt s h ≤ x

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Partial functions

If the function f is partial, it has the Coq type

f : ∀x : τ1. (P x) → τ2

Example: min elt returning the smallest element of a tree

min elt : ∀s : tree. ¬s = Empty→ Z

specification

∀s. ∀h : ¬s = Empty. bst s →
In (min elt s h) s ∧ ∀x . In x s → min elt s h ≤ x

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Partial functions

If the function f is partial, it has the Coq type

f : ∀x : τ1. (P x) → τ2

Example: min elt returning the smallest element of a tree

min elt : ∀s : tree. ¬s = Empty→ Z

specification

∀s. ∀h : ¬s = Empty. bst s →
In (min elt s h) s ∧ ∀x . In x s → min elt s h ≤ x

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Even the definition of a partial function is not easy

ML

let rec min_elt = function
| Empty → assert false
| Node (Empty, x,) → x
| Node (l, ,) → min_elt l

Coq

1. assert false ⇒ elimination on a proof of False

2. recursive call requires a proof that l is not empty

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Even the definition of a partial function is not easy

ML

let rec min_elt = function
| Empty → assert false
| Node (Empty, x,) → x
| Node (l, ,) → min_elt l

Coq

1. assert false ⇒ elimination on a proof of False

2. recursive call requires a proof that l is not empty

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Even the definition of a partial function is not easy

ML

let rec min_elt = function
| Empty → assert false
| Node (Empty, x,) → x
| Node (l, ,) → min_elt l

Coq

1. assert false ⇒ elimination on a proof of False

2. recursive call requires a proof that l is not empty

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

min elt: a solution

Fixpoint min_elt (s:tree) (h:¬s=Empty) { struct s } : Z :=
match s return ¬s=Empty → Z with
| Empty ⇒

(fun (h:¬Empty=Empty) ⇒
False_rec (h (refl_equal Empty)))

| Node l x ⇒
(fun h ⇒ match l as a return a=l → Z with

| Empty ⇒ (fun ⇒ x)
| ⇒ (fun h ⇒ min_elt l

(Node_not_empty h))
end (refl_equal l))

end h.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

min elt: a solution

Fixpoint min_elt (s:tree) (h:¬s=Empty) { struct s } : Z :=
match s return ¬s=Empty → Z with
| Empty ⇒

(fun (h:¬Empty=Empty) ⇒
False_rec (h (refl_equal Empty)))

| Node l x ⇒
(fun h ⇒ match l as a return a=l → Z with

| Empty ⇒ (fun ⇒ x)
| ⇒ (fun h ⇒ min_elt l

(Node_not_empty h))
end (refl_equal l))

end h.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Definition by proof

Idea: use the proof editor to build the whole definition

Definition min_elt : ∀ s, ¬s=Empty → Z.
Proof.

induction s; intro h.
elim h; auto.
destruct s1.
exact z.
apply IHs1; discriminate.

Defined.

But did we define the right function?

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Definition by proof

Idea: use the proof editor to build the whole definition

Definition min_elt : ∀ s, ¬s=Empty → Z.
Proof.

induction s; intro h.
elim h; auto.
destruct s1.
exact z.
apply IHs1; discriminate.

Defined.

But did we define the right function?

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Definition by proof

Idea: use the proof editor to build the whole definition

Definition min_elt : ∀ s, ¬s=Empty → Z.
Proof.

induction s; intro h.
elim h; auto.
destruct s1.
exact z.
apply IHs1; discriminate.

Defined.

But did we define the right function?

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Definition by proof

Idea: use the proof editor to build the whole definition

Definition min_elt : ∀ s, ¬s=Empty → Z.
Proof.

induction s; intro h.
elim h; auto.
destruct s1.
exact z.
apply IHs1; discriminate.

Defined.

But did we define the right function?

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Definition by proof (cont’d)

We can check the extracted code:

Extraction min_elt.

(** val min_elt : tree → z **)

let rec min_elt = function
| Empty → assert false (* absurd case *)
| Node (t0, z0, t1) →

(match t0 with
| Empty → z0
| Node (s1_1, z1, s1_2) → min_elt t0)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The refine tactic

Definition min_elt : ∀ s, ¬s=Empty → Z.
Proof.

refine
(fix min (s:tree) (h:¬s=Empty) { struct s } : Z :=
match s return ¬s=Empty → Z with
| Empty ⇒

(fun h ⇒ _)
| Node l x ⇒

(fun h ⇒ match l as a return a=l → Z with
| Empty ⇒ (fun ⇒ x)
| ⇒ (fun h ⇒ min l _)
end _)

end h).
...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The refine tactic

Definition min_elt : ∀ s, ¬s=Empty → Z.
Proof.

refine
(fix min (s:tree) (h:¬s=Empty) { struct s } : Z :=
match s return ¬s=Empty → Z with
| Empty ⇒

(fun h ⇒ _)
| Node l x ⇒

(fun h ⇒ match l as a return a=l → Z with
| Empty ⇒ (fun ⇒ x)
| ⇒ (fun h ⇒ min l _)
end _)

end h).
...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

A last solution

To make the function total

Fixpoint min_elt (s:tree) : Z := match s with
| Empty ⇒ 0
| Node Empty z ⇒ z
| Node l ⇒ min_elt l

end.

Correctness theorem almost unchanged:

Theorem min_elt_correct :
∀ s, ¬s=Empty → bst s →

In (min_elt s) s ∧
∀ x, In x s → min_elt s <= x.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

A last solution

To make the function total

Fixpoint min_elt (s:tree) : Z := match s with
| Empty ⇒ 0
| Node Empty z ⇒ z
| Node l ⇒ min_elt l

end.

Correctness theorem almost unchanged:

Theorem min_elt_correct :
∀ s, ¬s=Empty → bst s →

In (min_elt s) s ∧
∀ x, In x s → min_elt s <= x.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

A last solution

To make the function total

Fixpoint min_elt (s:tree) : Z := match s with
| Empty ⇒ 0
| Node Empty z ⇒ z
| Node l ⇒ min_elt l

end.

Correctness theorem almost unchanged:

Theorem min_elt_correct :
∀ s, ¬s=Empty → bst s →

In (min_elt s) s ∧
∀ x, In x s → min_elt s <= x.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Functions that are not structurally recursive

One solution is to use a well-founded induction principle such as

well_founded_induction
: ∀ (A : Set) (R : A → A → Prop),

well_founded R →
∀ P : A → Set,
(∀ x : A, (∀ y : A, R y x → P y) → P x) →
∀ a : A, P a

Defining the function requires to build proof terms (of R y x)
similar to partial functions ⇒ similar solutions

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Functions that are not structurally recursive

One solution is to use a well-founded induction principle such as

well_founded_induction
: ∀ (A : Set) (R : A → A → Prop),

well_founded R →
∀ P : A → Set,
(∀ x : A, (∀ y : A, R y x → P y) → P x) →
∀ a : A, P a

Defining the function requires to build proof terms (of R y x)
similar to partial functions ⇒ similar solutions

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Example: the subset function

let rec subset s1 s2 = match (s1, s2) with
| Empty, →

true
| , Empty →

false
| Node (l1, v1, r1), Node (l2, v2, r2) →

let c = compare v1 v2 in
if c = 0 then

subset l1 l2 && subset r1 r2
else if c < 0 then

subset (Node (l1, v1, Empty)) l2 && subset r1 s2
else

subset (Node (Empty, v1, r1)) r2 && subset l1 s2

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Example: the subset function

let rec subset s1 s2 = match (s1, s2) with
| Empty, →

true
| , Empty →

false
| Node (l1, v1, r1), Node (l2, v2, r2) →

let c = compare v1 v2 in
if c = 0 then

subset l1 l2 && subset r1 r2
else if c < 0 then

subset (Node (l1, v1, Empty)) l2 && subset r1 s2
else

subset (Node (Empty, v1, r1)) r2 && subset l1 s2

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Induction over two trees

Fixpoint cardinal_tree (s:tree) : nat := match s with
| Empty ⇒

O
| Node l r ⇒

(S (plus (cardinal_tree l) (cardinal_tree r)))
end.

Lemma cardinal_rec2 :
∀ (P:tree→tree→Set),
(∀ (x x’:tree),

(∀ (y y’:tree),
(lt (plus (cardinal_tree y) (cardinal_tree y’))

(plus (cardinal_tree x) (cardinal_tree x’))) → (P y y’))
→ (P x x’)) →

∀ (x x’:tree), (P x x’).

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Induction over two trees

Fixpoint cardinal_tree (s:tree) : nat := match s with
| Empty ⇒

O
| Node l r ⇒

(S (plus (cardinal_tree l) (cardinal_tree r)))
end.

Lemma cardinal_rec2 :
∀ (P:tree→tree→Set),
(∀ (x x’:tree),

(∀ (y y’:tree),
(lt (plus (cardinal_tree y) (cardinal_tree y’))

(plus (cardinal_tree x) (cardinal_tree x’))) → (P y y’))
→ (P x x’)) →

∀ (x x’:tree), (P x x’).

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Defining the subset function

Definition subset : tree → tree → bool.
Proof.

intros s1 s2; pattern s1, s2; apply cardinal_rec2.
destruct x. ... destruct x’. ...
intros; case (compare z z0).
(* z < z0 *)
refine (andb (H (Node x1 z Empty) x’2)

(H x2 (Node x’1 z0 x’2))); simpl; omega.
(* z = z0 *)
refine (andb (H x1 x’1) (H x2 x’2)); simpl ; omega.
(* z > z0 *)
refine (andb (H (Node Empty z x2) x’2)

(H x1 (Node x’1 z0 x’2))); simpl ; omega.
Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Defining the subset function

Definition subset : tree → tree → bool.
Proof.

intros s1 s2; pattern s1, s2; apply cardinal_rec2.
destruct x. ... destruct x’. ...
intros; case (compare z z0).
(* z < z0 *)
refine (andb (H (Node x1 z Empty) x’2)

(H x2 (Node x’1 z0 x’2))); simpl; omega.
(* z = z0 *)
refine (andb (H x1 x’1) (H x2 x’2)); simpl ; omega.
(* z > z0 *)
refine (andb (H (Node Empty z x2) x’2)

(H x1 (Node x’1 z0 x’2))); simpl ; omega.
Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Defining the subset function

Definition subset : tree → tree → bool.
Proof.

intros s1 s2; pattern s1, s2; apply cardinal_rec2.
destruct x. ... destruct x’. ...
intros; case (compare z z0).
(* z < z0 *)
refine (andb (H (Node x1 z Empty) x’2)

(H x2 (Node x’1 z0 x’2))); simpl; omega.
(* z = z0 *)
refine (andb (H x1 x’1) (H x2 x’2)); simpl ; omega.
(* z > z0 *)
refine (andb (H (Node Empty z x2) x’2)

(H x1 (Node x’1 z0 x’2))); simpl ; omega.
Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Defining the subset function

Definition subset : tree → tree → bool.
Proof.

intros s1 s2; pattern s1, s2; apply cardinal_rec2.
destruct x. ... destruct x’. ...
intros; case (compare z z0).
(* z < z0 *)
refine (andb (H (Node x1 z Empty) x’2)

(H x2 (Node x’1 z0 x’2))); simpl; omega.
(* z = z0 *)
refine (andb (H x1 x’1) (H x2 x’2)); simpl ; omega.
(* z > z0 *)
refine (andb (H (Node Empty z x2) x’2)

(H x1 (Node x’1 z0 x’2))); simpl ; omega.
Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Defining the subset function

Definition subset : tree → tree → bool.
Proof.

intros s1 s2; pattern s1, s2; apply cardinal_rec2.
destruct x. ... destruct x’. ...
intros; case (compare z z0).
(* z < z0 *)
refine (andb (H (Node x1 z Empty) x’2)

(H x2 (Node x’1 z0 x’2))); simpl; omega.
(* z = z0 *)
refine (andb (H x1 x’1) (H x2 x’2)); simpl ; omega.
(* z > z0 *)
refine (andb (H (Node Empty z x2) x’2)

(H x1 (Node x’1 z0 x’2))); simpl ; omega.
Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Defining the subset function

Definition subset : tree → tree → bool.
Proof.

intros s1 s2; pattern s1, s2; apply cardinal_rec2.
destruct x. ... destruct x’. ...
intros; case (compare z z0).
(* z < z0 *)
refine (andb (H (Node x1 z Empty) x’2)

(H x2 (Node x’1 z0 x’2))); simpl; omega.
(* z = z0 *)
refine (andb (H x1 x’1) (H x2 x’2)); simpl ; omega.
(* z > z0 *)
refine (andb (H (Node Empty z x2) x’2)

(H x1 (Node x’1 z0 x’2))); simpl ; omega.
Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Extraction

Extraction well_founded_induction.
let rec well_founded_induction x a =

x a (fun y → well_founded_induction x y)

Extraction Inline cardinal_rec2 ...
Extraction subset.

gives the expected ML code

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Extraction

Extraction well_founded_induction.
let rec well_founded_induction x a =

x a (fun y → well_founded_induction x y)

Extraction Inline cardinal_rec2 ...
Extraction subset.

gives the expected ML code

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

To sum up, defining an ML function in Coq and prove it correct
seems the obvious way, but it can be rather complex when the
function

I is partial, and/or

I is not structurally recursive

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Use of dependent types

Instead of

1. defining a pure function, and

2. proving its correctness

let us do both at the same time

We can give Coq functions richer types that are specifications
Example

f : {n : Z | n ≥ 0} → {p : Z | prime p}

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Use of dependent types

Instead of

1. defining a pure function, and

2. proving its correctness

let us do both at the same time

We can give Coq functions richer types that are specifications
Example

f : {n : Z | n ≥ 0} → {p : Z | prime p}

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Use of dependent types

Instead of

1. defining a pure function, and

2. proving its correctness

let us do both at the same time

We can give Coq functions richer types that are specifications
Example

f : {n : Z | n ≥ 0} → {p : Z | prime p}

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The type {x : A | P}

Notation for sig A (fun x ⇒ P) where

Inductive sig (A : Set) (P : A → Prop) : Set :=
exist : ∀ x:A, P x → sig P

In practice, we adopt the more general specification

f : ∀ x : τ1, P x → {y : τ2 | Q x y}

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The type {x : A | P}

Notation for sig A (fun x ⇒ P) where

Inductive sig (A : Set) (P : A → Prop) : Set :=
exist : ∀ x:A, P x → sig P

In practice, we adopt the more general specification

f : ∀ x : τ1, P x → {y : τ2 | Q x y}

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The type {x : A | P}

Notation for sig A (fun x ⇒ P) where

Inductive sig (A : Set) (P : A → Prop) : Set :=
exist : ∀ x:A, P x → sig P

In practice, we adopt the more general specification

f : ∀ x : τ1, P x → {y : τ2 | Q x y}

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Example: the min elt function

Definition min_elt :
∀ s, ¬s=Empty → bst s →
{ m:Z | In m s ∧ ∀ x, In x s → m <= x }.

We usually adopt a definition-by-proof
(which is now a definition-and-proof)

Still the same ML program

Coq < Extraction sig.
type ’a sig = ’a

(* singleton inductive, whose constructor was exist *)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Example: the min elt function

Definition min_elt :
∀ s, ¬s=Empty → bst s →
{ m:Z | In m s ∧ ∀ x, In x s → m <= x }.

We usually adopt a definition-by-proof
(which is now a definition-and-proof)

Still the same ML program

Coq < Extraction sig.
type ’a sig = ’a

(* singleton inductive, whose constructor was exist *)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Example: the min elt function

Definition min_elt :
∀ s, ¬s=Empty → bst s →
{ m:Z | In m s ∧ ∀ x, In x s → m <= x }.

We usually adopt a definition-by-proof
(which is now a definition-and-proof)

Still the same ML program

Coq < Extraction sig.
type ’a sig = ’a

(* singleton inductive, whose constructor was exist *)

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Specification of a boolean function: {A}+{B}
Notation for sumbool A B where

Inductive sumbool (A : Prop) (B : Prop) : Set :=
| left : A → sumbool A B
| right : B → sumbool A B

this is an informative disjunction

Example:

Definition is_empty : ∀ s, { s=Empty } + { ¬ s=Empty }.

Extraction is a boolean

Coq < Extraction sumbool.
type sumbool = Left | Right

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Specification of a boolean function: {A}+{B}
Notation for sumbool A B where

Inductive sumbool (A : Prop) (B : Prop) : Set :=
| left : A → sumbool A B
| right : B → sumbool A B

this is an informative disjunction

Example:

Definition is_empty : ∀ s, { s=Empty } + { ¬ s=Empty }.

Extraction is a boolean

Coq < Extraction sumbool.
type sumbool = Left | Right

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Specification of a boolean function: {A}+{B}
Notation for sumbool A B where

Inductive sumbool (A : Prop) (B : Prop) : Set :=
| left : A → sumbool A B
| right : B → sumbool A B

this is an informative disjunction

Example:

Definition is_empty : ∀ s, { s=Empty } + { ¬ s=Empty }.

Extraction is a boolean

Coq < Extraction sumbool.
type sumbool = Left | Right

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Specification of a boolean function: {A}+{B}
Notation for sumbool A B where

Inductive sumbool (A : Prop) (B : Prop) : Set :=
| left : A → sumbool A B
| right : B → sumbool A B

this is an informative disjunction

Example:

Definition is_empty : ∀ s, { s=Empty } + { ¬ s=Empty }.

Extraction is a boolean

Coq < Extraction sumbool.
type sumbool = Left | Right

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Variant sumor A+{B}

Inductive sumor (A : Set) (B : Prop) : Set :=
| inleft : A → A + {B}
| inright : B → A + {B}

Extracts to an option type

Example:

Definition min_elt :
∀ s, bst s →
{ m:Z | In m s ∧ ∀ x, In x s → m <= x } + { s=Empty }.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Variant sumor A+{B}

Inductive sumor (A : Set) (B : Prop) : Set :=
| inleft : A → A + {B}
| inright : B → A + {B}

Extracts to an option type

Example:

Definition min_elt :
∀ s, bst s →
{ m:Z | In m s ∧ ∀ x, In x s → m <= x } + { s=Empty }.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Variant sumor A+{B}

Inductive sumor (A : Set) (B : Prop) : Set :=
| inleft : A → A + {B}
| inright : B → A + {B}

Extracts to an option type

Example:

Definition min_elt :
∀ s, bst s →
{ m:Z | In m s ∧ ∀ x, In x s → m <= x } + { s=Empty }.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The mem function

Hypothesis compare : ∀ x y, {x<y} + {x=y} + {x>y}.

Definition mem : ∀ x s, bst s → { In x s }+{ ¬(In x s) }.
Proof.

induction s; intros.
(* s = Empty *)
right; intro h; inversion_clear h.
(* s = Node s1 z s2 *)
destruct (compare x z) as [[h1 | h2] | h3].
...

Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The mem function

Hypothesis compare : ∀ x y, {x<y} + {x=y} + {x>y}.

Definition mem : ∀ x s, bst s → { In x s }+{ ¬(In x s) }.
Proof.

induction s; intros.
(* s = Empty *)
right; intro h; inversion_clear h.
(* s = Node s1 z s2 *)
destruct (compare x z) as [[h1 | h2] | h3].
...

Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The mem function

Hypothesis compare : ∀ x y, {x<y} + {x=y} + {x>y}.

Definition mem : ∀ x s, bst s → { In x s }+{ ¬(In x s) }.
Proof.

induction s; intros.
(* s = Empty *)
right; intro h; inversion_clear h.
(* s = Node s1 z s2 *)
destruct (compare x z) as [[h1 | h2] | h3].
...

Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The mem function

Hypothesis compare : ∀ x y, {x<y} + {x=y} + {x>y}.

Definition mem : ∀ x s, bst s → { In x s }+{ ¬(In x s) }.
Proof.

induction s; intros.
(* s = Empty *)
right; intro h; inversion_clear h.
(* s = Node s1 z s2 *)
destruct (compare x z) as [[h1 | h2] | h3].
...

Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The mem function

Hypothesis compare : ∀ x y, {x<y} + {x=y} + {x>y}.

Definition mem : ∀ x s, bst s → { In x s }+{ ¬(In x s) }.
Proof.

induction s; intros.
(* s = Empty *)
right; intro h; inversion_clear h.
(* s = Node s1 z s2 *)
destruct (compare x z) as [[h1 | h2] | h3].
...

Defined.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

To sum up, using dependent types

I we replace a definition and a proof by a single proof

I the ML function is still available using extraction

On the contrary, it is more difficult to prove several properties of
the same function

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

To sum up, using dependent types

I we replace a definition and a proof by a single proof

I the ML function is still available using extraction

On the contrary, it is more difficult to prove several properties of
the same function

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Modules and functors

Coq has a module system similar to Objective Caml’s one

Coq modules can contain definitions but also proofs, notations,
hints for the auto tactic, etc.

As Ocaml, Coq has functors i.e. functions from modules to
modules

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Modules and functors

Coq has a module system similar to Objective Caml’s one

Coq modules can contain definitions but also proofs, notations,
hints for the auto tactic, etc.

As Ocaml, Coq has functors i.e. functions from modules to
modules

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Modules and functors

Coq has a module system similar to Objective Caml’s one

Coq modules can contain definitions but also proofs, notations,
hints for the auto tactic, etc.

As Ocaml, Coq has functors i.e. functions from modules to
modules

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

ML modules

module type OrderedType = sig
type t
val compare: t → t → int

end

module Make(Ord: OrderedType) : sig
type t
val empty : t
val mem : Ord.t → t → bool
...

end

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Coq modules

Module Type OrderedType.
Parameter t : Set.
Parameter eq : t → t → Prop.
Parameter lt : t → t → Prop.
Parameter compare : ∀ x y, {lt x y}+{eq x y}+{lt y x}.
Axiom eq_refl : ∀ x, eq x x.
Axiom eq_sym : ∀ x y, eq x y → eq y x.
Axiom eq_trans : ∀ x y z, eq x y → eq y z → eq x z.
Axiom lt_trans : ∀ x y z, lt x y → lt y z → lt x z.
Axiom lt_not_eq : ∀ x y, lt x y → ¬(eq x y).
Hint Immediate eq_sym.
Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.

End OrderedType.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Coq modules

Module Type OrderedType.
Parameter t : Set.
Parameter eq : t → t → Prop.
Parameter lt : t → t → Prop.
Parameter compare : ∀ x y, {lt x y}+{eq x y}+{lt y x}.
Axiom eq_refl : ∀ x, eq x x.
Axiom eq_sym : ∀ x y, eq x y → eq y x.
Axiom eq_trans : ∀ x y z, eq x y → eq y z → eq x z.
Axiom lt_trans : ∀ x y z, lt x y → lt y z → lt x z.
Axiom lt_not_eq : ∀ x y, lt x y → ¬(eq x y).
Hint Immediate eq_sym.
Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.

End OrderedType.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Coq modules

Module Type OrderedType.
Parameter t : Set.
Parameter eq : t → t → Prop.
Parameter lt : t → t → Prop.
Parameter compare : ∀ x y, {lt x y}+{eq x y}+{lt y x}.
Axiom eq_refl : ∀ x, eq x x.
Axiom eq_sym : ∀ x y, eq x y → eq y x.
Axiom eq_trans : ∀ x y z, eq x y → eq y z → eq x z.
Axiom lt_trans : ∀ x y z, lt x y → lt y z → lt x z.
Axiom lt_not_eq : ∀ x y, lt x y → ¬(eq x y).
Hint Immediate eq_sym.
Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.

End OrderedType.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Coq modules

Module Type OrderedType.
Parameter t : Set.
Parameter eq : t → t → Prop.
Parameter lt : t → t → Prop.
Parameter compare : ∀ x y, {lt x y}+{eq x y}+{lt y x}.
Axiom eq_refl : ∀ x, eq x x.
Axiom eq_sym : ∀ x y, eq x y → eq y x.
Axiom eq_trans : ∀ x y z, eq x y → eq y z → eq x z.
Axiom lt_trans : ∀ x y z, lt x y → lt y z → lt x z.
Axiom lt_not_eq : ∀ x y, lt x y → ¬(eq x y).
Hint Immediate eq_sym.
Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.

End OrderedType.

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

The Coq functor for binary search trees

Module BST (X: OrderedType).
Inductive tree : Set :=
| Empty
| Node : tree → X.t → tree → tree.

Fixpoint mem (x:X.t) (s:tree) {struct s} : bool := ...

Inductive In (x:X.t) : tree → Prop := ...
Hint Constructors In.

Inductive bst : tree → Prop :=
| bst_empty : bst Empty
| bst_node : ∀ x l r, bst l → bst r →

(∀ y, In y l → X.lt y x) → ...

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Conclusion

Coq is a tool of choice for the verification of purely functional
programs, up to modules

ML or Haskell code can be obtained via program extraction

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Introduction Direct method Use of dependent types Modules and functors

Conclusion

Coq is a tool of choice for the verification of purely functional
programs, up to modules

ML or Haskell code can be obtained via program extraction

Jean-Christophe Filliâtre Coq tutorial Program verification using Coq

Agda

Catarina Coquand

August 16, 2005

– Typeset by FoilTEX –

Agda Catarina Coquand [1]

Background

• Agda is an interactive system for developing proofs in a variant of Martin-Löf’s
type theory

• It is based on the idea of direct manipulation of proof-term and not on tactics.
The proof is a term, not a script.

• The language has ordinary programming constructs such as data-types and
case-expressions, signatures and records, let-expressions and modules.

• Has an emacs-interface and a graphical interface, Alfa

– Typeset by FoilTEX – 1

Agda Catarina Coquand [2]

System

Agda is an interactive system.

• It consists of a type checker and a termination checker

• Implemented in Haskell

• You will use a simpler version of Agda (with a small library)

– Typeset by FoilTEX – 2

Agda Catarina Coquand [3]

A proof of A → A

• The proof of A → A is the term λx : A.x

• In Agda

\x -> x
-- alternative: \(x::A) -> x

• The syntax of Agda is rather close to Haskell

– Typeset by FoilTEX – 3

Agda Catarina Coquand [4]

The identity function

• Function definition

id (A::Set) :: A -> A
id = \a -> a

• Application:

id 0
id ’c’

– Typeset by FoilTEX – 4

Agda Catarina Coquand [5]

Syntactic Sugar for Function Definitions

id (A::Set) :: A -> A
id a = a

– Typeset by FoilTEX – 5

Agda Catarina Coquand [6]

Inbuilt type: Pairs

• Pairs are written A × B

• A pair is written (a,b)

• Projection functions

– fst :: A × B -> A
– snd :: A × B -> B

• Corresponds to logical and

– Typeset by FoilTEX – 6

Agda Catarina Coquand [7]

Rule for And

[A&B]
C A B

C

curry (A,B,C::Set) :: (A × B -> C) -> A -> B -> C
curry f a b = f (a,b)

– Typeset by FoilTEX – 7

Agda Catarina Coquand [8]

And-elimination

Stating the &-elimination rule:

[A B]
C A&B

C

uncurry(A,B,C::Set) :: (A -> B -> C) -> A × B -> C

– Typeset by FoilTEX – 8

Agda Catarina Coquand [9]

Swap

Bengt’s proof of A&B =⇒ B&A. We use the &-elimination i.e. uncurry

swap (A,B::Set) :: (A × B) -> B × A
swap p = uncurry (\x y -> (y,x)) p

– Typeset by FoilTEX – 9

Agda Catarina Coquand [10]

Inbuilt Type: Booleans

• Type is Bool

• Constructed by True and False

• We have the ordinary if_then_else construction

– Typeset by FoilTEX – 10

Agda Catarina Coquand [11]

Inbuilt Types: Lists

• Type is List A

• Constructed by Nil and :

• The list [] is syntactic sugar for Nil

• The list [1,2,5] is syntactic sugar for 1:[2,5]

• The list [1,2,5] is syntactic sugar for 1:2:5:Nil

– Typeset by FoilTEX – 11

Agda Catarina Coquand [12]

More Inbuilt Types

• Integer: Infinite integers with usual operations except division

• Char: Characters with some standard operations

• String: Strings are lists of characters

– Typeset by FoilTEX – 12

Agda Catarina Coquand [13]

Let-expressions

We can also use let-notation

ex :: Integer
ex = let {

big :: Integer;
big = 12324567891234566789;
neg :: Integer;
neg = negate 1000;
}

in big*neg

– Typeset by FoilTEX – 13

Agda Catarina Coquand [14]

Layout rule

ex :: Integer
ex = let big :: Integer

big = 12324567891234566789
neg :: Integer
neg = negate 1000

in big*neg

– Typeset by FoilTEX – 14

Agda Catarina Coquand [15]

Equality Type

• We write equality as a == b

• It is reflexive, symmetric, transitive, and substitutive

• Equivalent to Leibniz-equality

– Typeset by FoilTEX – 15

Agda Catarina Coquand [16]

Typechecking a proof of Reflexivity

We have refId x is of type x == x,

refId 6 :: 6 == 6 -- also the inferred type
refId 6 :: 2 * 3 == 4 + 2

This is so since 6 == 6 and 2∗3 == 4+2 are convertible. (See Herman Geuver’s
note on type checking)

– Typeset by FoilTEX – 16

Agda Catarina Coquand [17]

Stating a Quantified Theorem

State that == is symmetrical: ∀ x y.x == y =⇒ y == x

symmEq (A::Set):: (x,y::A) -> x == y -> y == x
symmEq x y =

Equivalent to

symmEq (A::Set) :: (x::A) -> (y::A) -> x == y -> y == x
symmEq x y =

– Typeset by FoilTEX – 17

Agda Catarina Coquand [18]

Defining Type Synonyms

Pred :: Set -> Type
Pred X = X -> Set

Rel :: Set -> Type
Rel X = X -> X -> Set

Symmetrical (X::Set) :: (R::Rel X) -> Set
Symmetrical R = (x1,x2::X) |-> (x1 ‘R‘ x2 -> x2 ‘R‘ x1)

symmEq (A::Set) :: Symmetrical (==)
symmEq x1 x2 = ...

– Typeset by FoilTEX – 18

Agda Catarina Coquand [19]

Language Constructions : Data Types

We introduce a new type by data-type construction

data Bool = True | False
data List (A::Set) = Nil | (:) (a::A) (l::List A)

– Typeset by FoilTEX – 19

Agda Catarina Coquand [20]

Language Constructions :Case Expressions

We can introduce implicitly defined constants by case-expressions. (Should be
thought of as defining functions with pattern-equations.)

(++)(A::Set) :: List A -> List A -> List A
(++) xs ys = case xs of

(Nil) -> ys
(x : xs’) -> x:xs’++ys

Has to cover all possible cases. The term xs ++ ys is on normal form.

– Typeset by FoilTEX – 20

Agda Catarina Coquand [21]

Elimination Rule for Lists

elimList (A ::Set) ::
(C::List A -> Set) ->
C [] ->
((x::A) -> (xs::List A) -> C xs -> C (x:xs)) ->
(xs::List A) ->
C xs

elimList C c_nil c_con xs =
case xs of

(Nil) -> c_nil
(x : xs’) -> c_con x xs’ (elimList C c_nil c_con xs’)

– Typeset by FoilTEX – 21

Agda Catarina Coquand [22]

Logic

• Or: data Plus (X,Y::Set) = Inl (x::X) | Inr (y::Y)

• Exists: data Sigma (X::Set) (Y::X -> Set) = dep_pair (x::X)(y::Y x)

• Truth: data Unit :: Set = unit

• Absurdity: data Empty :: Set =

– Typeset by FoilTEX – 22

Agda Catarina Coquand [23]

Or- elimination

elimPlus (X,Y::Set) ::
(C::Plus X Y -> Set) ->
(c_lft::(x::X) -> C (Inl x)) ->
(c_rgt::(y::Y) -> C (Inr y)) ->
(xy::Plus X Y) ->
C xy

elimPlus C c_lft c_rgt xy = case xy of
(Inl x) -> c_lft x
(Inr y) -> c_rgt y

whenPlus (X,Y,Z::Set) :: (f::X -> Z) -> (g::Y -> Z) -> (Plus X Y -> Z)
whenPlus = elimPlus (\h -> Z)

– Typeset by FoilTEX – 23

Agda Catarina Coquand [24]

Absurdity

data Empty :: Set =

elimEmpty :: (C::Empty -> Set) -> (z::Empty) -> C z
elimEmpty C z = case z of { }

whenEmpty :: (X::Set) -> Empty -> X
whenEmpty X z = case z of { }

Not :: Set -> Set
Not X = X -> Empty
absurdElim (A::Set) :: A -> Not A -> (X::Set) -> X
absurdElim h h’ X = whenEmpty X (h’ h)

– Typeset by FoilTEX – 24

Agda Catarina Coquand [25]

Inductive families

idata (==) (X::Set) :: X -> X -> Set where
refId (x::X) :: (==) x x

Use elimination rules and not case for inductive families.

– Typeset by FoilTEX – 25

Agda Catarina Coquand [26]

Language Constructions : Structures/Signature

PlusSig :: (A::Set) -> Set
PlusSig A = sig

zer :: A
plus :: A -> A -> A

IntPluSig :: PlusSig Integer
IntPluSig = struct

zer :: Integer
zer = 0
plus :: Integer -> Integer -> Integer
plus = (+)

– Typeset by FoilTEX – 26

Agda Catarina Coquand [27]

Another Instance

ListPluSig :: (A::Set) -> PlusSig (List A)
ListPluSig A = struct

zer :: List A
zer = []
plus :: List A -> List A -> List A
plus = (++)

– Typeset by FoilTEX – 27

Agda Catarina Coquand [28]

Using Struct/Sig

f :: Integer
f = IntPlusSig.plus IntPlusSig.zer (IntPlusSig.zer +1)

f :: Integer
f = let open IntPlusSig use plus, zer

in plus zer (zer + 1)

– Typeset by FoilTEX – 28

Agda Catarina Coquand [29]

Packages

Packages

package Natural where
open Prelude use Pred
open Boolean use Bool, False, True

data Nat = Zero | Succ (n::Nat)

natrec (C::Pred Nat)(bc::C Zero)
(ic::(n::Nat) -> C n -> C (Succ n))
(m::Nat)

:: C m =
isZero (a::Nat) :: Bool

=

– Typeset by FoilTEX – 29

Agda Catarina Coquand [30]

Examples : typechecking

F :: Set
F = Bool
f :: Bool -> F
f = \a -> a

Gives an equality constraint:

Bool = F

We must compute F to see that they are equal.

– Typeset by FoilTEX – 30

Agda Catarina Coquand [31]

Example : Typechecking

F :: (A::Set) -> Set
F = \A -> A

f :: (B::Set) -> B -> F B
f = \B -> \a -> a

Gives the equality constraint:

B = F B

– Typeset by FoilTEX – 31

Agda Catarina Coquand [32]

Meta-variables

• A meta-variable can only occur in one typing constraint.

• The result of typechecking is a set of typing constraints and equality constraints
instead of a yes and no answer when type-checking terms with meta-variables.

• Using higher-order unification will sometimes (often) solve the constraints.

– Typeset by FoilTEX – 32

Agda Catarina Coquand [33]

Meta-variables

f :: (A::Set) -> (a::A) -> A
f = \(B::Set) -> \(b::B) -> ?

Is type correct if
B : Set, b : B ` ? : B

– Typeset by FoilTEX – 33

Agda Catarina Coquand [34]

Examples Meta Variables ctd

f :: (A::Set) -> (a::A) -> A
f = \(B::Set) -> \(b::?) -> b

Is type correct if
B : Set ` ? type

and
A ≡ ?(B = A)

– Typeset by FoilTEX – 34

Agda Catarina Coquand [35]

Hidden Arguments

We do not have polymorhism, but hidden arguments

id (A::Set) :: A -> A
id a = a
id ’c’

is translated into id |? ’c’ .

– Typeset by FoilTEX – 35

Agda Catarina Coquand [36]

Hidden Arguments ctd

We can write more explicitly

id :: (A::Set) |-> A -> A
id = \(A::Set) |-> \a -> a

id |Char ’c’

– Typeset by FoilTEX – 36

Agda Catarina Coquand [37]

Emacs-symbols

(global-set-key (kbd "C-*") (lambda () (interactive) (insert "\327")))
;;; Cartesian product
(global-set-key (kbd "C-.") (lambda () (interactive) (insert "\260")))
;;;; Ring
(global-set-key (kbd "C-!") (lambda () (interactive) (insert "\254")))
;;;; not
(global-set-key [f9] (lambda () (interactive) (insert "\330")))
;;;; Empty set
(global-set-key [f10] (lambda () (interactive) (insert "\267"))) ;;;; Multiplication dot
(global-set-key [f11] (lambda () (interactive) (insert "\367")))

– Typeset by FoilTEX – 37

Agda Commands

[Agda-documentation team at AIST CVS]

August 15, 2005

Abstract

Contents

A List of commands 2
A.1 Agda menu . 2
A.2 Goal commands. 3

1

A List of commands

All Agda commands can be invoked by key operations, or by selecting items in
menus. The commands which are effective in the whole of the code are found
in Agda menu in the menu bar. On the other hand, the commands for goals
are found in the popup menu by right-clicking on a goal. Most of items in goal
menu depend on the context.

Commands are classified to four categories roughly.

Necessary commands you must know.

Important commands used very often.

Often commands which help you use Agda effectively. You can do without
them.

A.1 Agda menu

Restart
key: C-c C-x C-c
category: often

(Re-)initializes the type-checker.

Quit
key: C-c C-q
category: necessary

Quits and cleans up after agda. If you do not want Emacs to warn in quiting
Emacs, then you should invoke this command every time.

Goto error
key: C-c ‘
category: important

Jumps to the line the first error occurs.

Load
key: C-c C-x C-b
category: often

Reads and type-checks the current buffer.

Chase-load
key: C-c C-x RET
category: necessary

Reads and type-checks the current buffer and included files.

Show constraints
key: C-c C-e
category: often

Shows all constraints in the code. A constraint is an equation of two goals
or of a goal and an expression.

Compute
key: C-c C-x >
category: often

Compute a closed top-level expression. Does not reduce under lambda.

2

Suggest
key: C-c C-x C-s
category: often

Suggests suitable expressions.

Show goals
key: C-c C-x C-a
category: often

Shows all goals in the current buffer.

Next goal
key: C-c C-f
category: often

Moves the cursor to the next goal, if any.

Previous goal
key: C-c C-b
category: often

Moves the cursor to the previous goal, if any.

Undo
key: C-c C-u
category: important

Cancels the last Agda command or typing.

Text state
key: C-c ’
category: necessary

Resets agda to the state that the current buffer is loaded.

Check termination
key: C-c C-x C-t
category: often

Runs termination check on the current buffer. You will need to retype-check
the buffer.
Submitting bug report

key:
category:

(not implemented)

A.2 Goal commands.

When a goal is replaced with a new expression by the commands below, we
know that it is type-correct.

Give
key: C-c C-g
category: often

Substitute a given expression in the goal.

Intro
key: C-c TAB
category: often

3

Introduces the canonical expression of the type the goal i.e. an abstraction,
a record, or a constructor if only one possible exists

Refine
key: C-c C-r
category: important

Given an expression, e, this command will apply the minimum number of
meta-variables needed for the expression e ? ? ..? to be type-checkable

Refine(exact)
key: C-c C-s
category: often

Given a expression with arity n it applies n meta-variables to the given
expression.

Refine(projection)
key: C-c C-p
category: often

Refines the goal with a expression in a given package. For example, a
function cat is defined in the package OpList. When a goal is filled with
“OpList cat”, the Refine (projection) command accepts it and refine the goal
but refine command fails. (In case a goal is filled with “OpList.cat”, refine
command works.)

Case
key: C-c C-c
category: often

Makes a template of a case expression with a given formal parameter.

Let
key: C-c C-l
category: often

Makes a template of a let expression with given formal parameters.

Abstraction
key: C-c C-a
category: often

Makes a template of a function expression with given formal parameters.

Goal type
key: C-c C-t
category: often

Shows the type of the goal.

Goal type(unfolded)
key: C-c C-x C-r
category: often

Shows the reduced type of the goal.

Context
key: C-c |
category: important

Shows context (names already defined) of the goal.

4

Infer type
key: C-c :
category: important

Prompts an expression and infers the type of it, under the current context.

Infer type(unfolded)
key: C-c C-x :
category: often

Prompts an expression and infers the reduced type of it, under the current
context.

5

References

[1] Programming Logic Team at Chalmers and AIST. Agda, 2000. http://
www.coverproject.org/AgdaPage/.

[2] Lena Magnusson and Bengt Nordstrm. The alf proof editor and its proof
engine. In TYPES ’93: Proceedings of the international workshop on Types
for proofs and programs, pages 213–237. Springer-Verlag New York, Inc.,
1994.

[3] Nordström, B., Petersson, K. and Smith, J.M., Programming in Martin-
Löf ’s Type Theory, available at
http://www.cs.chalmers.se/Cs/Research/Logic/book/.

[4] Nordström, B., Petersson, K. and Smith, J.M., Martin-Löf ’s Type Theory,
pp. 1 - 37 in Handbook of Logic in Computer Science, vol. 5 (2000), Oxford
Science Publication.

6

http://www.coverproject.org/AgdaPage/
http://www.coverproject.org/AgdaPage/

Exercises in Agda

Catarina Coquand

August 11, 2005

In the library /usr/local/share/summerschool/agda/SummerSchool05 (on
the Summer School’s computers) you will find a small library with some stan-
dard files. It is good to look around in the different files.

1. In the file with Exercises/Logic.agda, there are many basic exercises
on the Curry-Howard correspondence between propositions and sets and
in the file Exercises/ListProps.agda there is some exercises on lists

2. Formulate and prove in type theory

((∀x : A)(∃y : B)R x y) → (∃f : A → B)(∀x : A)R x (f x)

This is a possible formulation of the axiom of choice. It was stressed by
Bishop that this form of axiom of choice is constructively valid.

3. In the file Nat.agda you can find the definition of natural numbers, Nat.
Define the equality, eqNat, on Nat by double recursion and show that
this equality is substitutive (if eqNat x y and P x., then P y

4. Define the set of well-founded trees (well-orderings), W : given a family
of sets B(x) over a set A, the set W A B has one constructor sup, where
sup x f : W A B if x : A and f : B(x) → W A B. Write the corresponding
elimination rule in Agda. Prove that

W A B → ¬(∀x : A.B x)

that is, the two propositions W A B and Π A B are incompatible. Explain
intuitively why

W A B → ∃x : A.¬(B x)

should not be provable in type theory.

5. Define the type

F A n = A → . . . → A︸ ︷︷ ︸
n

→ A

i.e. a function F that takes a set A, a natural number, n, and returns a
set.

1

Use this type to define a tautology function, i.e. a function that takes as
arguments a number n, a boolean function with n arguments, and returns
True if and only if this boolean function is a tautology.

6. Let A be a set with a well-founded relation, <, on it. Show that if f :
Nat → A then ¬((∀n : Nat) f (n + 1) < f n), i.e. there is no infinite
decreasing sequence. Show that if < is decidable then we have (∃n :
Nat)¬(f (n + 1) < f n)

7. Let A be a set with a well-founded relation, <, on it (see WellOrder.agda).
Prove that if A is inhabited we have

((∀x : A)(P x ∨ (f x < x))) → (∃x : A)P x

Explain how this proof corresponds to a “for-loop” program.

2

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Introduction to Co-Induction in Coq

Yves Bertot

August 2005

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Motivation

I Reason about infinite data-structures,

I Reason about lazy computation strategies,
I Reason about infinite processes, abstracting away from dates.

I Finite state automata,
I Temporal logic,
I Computation on streams of data.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Inductive types as least fixpoint types

I Inductive types are fixpoints of “abstract functions”,
I If {ci}i∈{1,...,j} are the constructors of I and ci a1 · · · ak is

well-typed then ci a1 · · · ak ∈ I
I Fixpoint property also gives pattern-matching: if

ci : Ti,1 · · · Ti,k → I and fi : Ti,1 · · · Ti,k → B, then there
exists a single function φ : I → B such that
φ(ci a1 . . . ak) = fi a1 · · · ak .

I Initiality:
I if fi are functions with type fi : Ti,1[A/I] · · · Ti,k [A/I] → A,

then there exists a single function φ : I → A such that
φ(c1 a1 · · · ak) = fi a′1 · · · a′k , where a′m = φ(am) if Tm = I
and a′m = am otherwise.

I Initiality gives structural recursion.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

CoInductive types

I Consider a type C with the first two fixpoint properties,
I Images of constructors are in C (the co-inductive type),
I Functions on C can be defined by pattern-matching,

I Take a closer look at pattern-matching:
I With pattern matching you can define a function

σ : C → (T11 ∗ · · · ∗ T1k1) + (T21 ∗ · · · ∗T2k2) + · · · so that
σ(t) = (a1, . . . aki) ∈ (Ti1 ∗ · · · Tiki) when t = ci a1 · · · ak

I Replace initiality with co-initiality, i.e.,
I If

f : A → (T11∗ · · ·∗ T1k1)[A/C]+(T21∗ · · · ∗T2k2)[A/C]+· · ·,
then there exists a single φ : A → C such that
φ(a) = ci a′1 · · · a′ki

when f (a) = (Ti1 ∗ · · · ∗ Tiki)[A/C] and
a′j = φ(aj) if Tij = C and a′j = aj otherwise.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Practical reading of theory

I For both kinds of types,
I constructors and pattern-matching can be used in a similar

way,

I For inductive types,
I Recursion is only used to consume elements of the type,
I Arguments of recursive calls can only be sub-components of

constructors,

I For co-inductive types,
I Co-recursion is only used to produce elements of the type,
I Co-recursive calls can only produce sub-components of

constructors.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Theory on an example

I Consider the two definitions:
Inductive list (A:Set) : Set :=

nil : list A | cons : A -> list A -> list A.
CoInductive Llist (A:Set) : Set :=

Lnil : Llist A
| Lcons : A -> Llist A -> Llist A.
Implicit Arguments Lcons.

I given values and functions v:B and f:A->B->B, we can define
a function phi : list A -> B by the following
Fixpoint phi (l:list A) : B :=

match l with
nil => v | const a t => f a (phi t)

end.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Theory on an example (continued)

I The “natural result type” of pattern-matching on inductive
lists is: unit+(A*list A)

Definition sigma1(A:Set)(l:list A):unit+(A*list A):=
match l with

nil => inl (B:=A*list A) tt
| cons a tl => inr (A:=unit) (a,tl)
end.

I The natural result type of pattern matching on co-inductive
lists (type Llist) is similar: unit+(A*Llist A)

I We can define a co-recursive function phi : B -> Llist A
if we are able to inhabit the type B -> unit+(A*B).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Categorical terminology

I In the category Set, collections of constructors define a
functor F ,

I for a given object A, F (A) corresponds to the natural result
type for pattern-matching as described in the previous slide,

I An F -algebra is an object with a morphism F (A) → A,

I F -algebras form a category, and the inductive type is an initial
object in this category,

I An F -coalgebra is an object with a morphism A → F (A),

I F -coalgebras form a category, and the coinductive type is a
final object in this category.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Co-Inductive types in Coq

I Syntactic form of definitions is similar to inductive types
(given a few frames before),

I pattern-matching with the same syntax as for inductive types.
I Elements of the co-inductive type can be obtained by:

I Using the constructors,
I Using the pattern-matching construct,
I Using co-recursion.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Constructing co-inductive elements

Definition ll123 :=
Lcons 1 (Lcons 2 (Lcons 3 (Lnil nat))).

Fixpoint list to llist (A:Set) (l:list A)
{struct l} : Llist A :=

match l with
nil => Lnil A

| a::tl => Lcons a (list to llist A tl)
end.

Definition ll123’ := list to llist nat (1::2::3::nil).

I list to llist uses plain structural recursion on lists and
plain calls to constructors.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Infinite elements

I list to llist shows that list A is isomorphic to a subset
of Llist A

I Lists in list A are finite, recursive traversal on them
terminates,

I There are infinite elements:
CoFixpoint lones : Llist nat := Lcons 1 lones.

I lones is the value of the co-recursive function defined by the
finality statement for the following f:
Definition f : unit -> unit+(nat*unit) :=

fun => inr unit (1,tt).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Infinite elements (continued)

I Here is a definition of what is called the finality statement in
this lecture:
CoFixpoint Llist finality

(A:Set)(B:Set)(f:B->unit+(A*B)):B->Llist A:=
fun b:B => match f b with

inl tt => Lnil A
| inr (a,b2) => Lcons a (Llist finality A B f b2)
end.

I The finality statement is never used in Coq.

I Instead syntactic check on recursive definitions
(guarded-by-constructors criterion).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Streams

CoInductive stream (A:Set) : Set :=
Cons : A -> stream A -> stream A.

Implicit Arguments Cons.

I an example of type where no element could be built without
co-recursion.
CoFixpoint nums (n:nat) : stream nat :=

Cons n (nums (n+1)).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Computing with co-recursive values

I Unleashed unfolding of co-recursive definitions would lead to
infinite reduction,

I A redex appears only when patern-matching is applied on a
co-recursive value.

I Unfolding is performed (only) as needed.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Proving properties of co-recursive values

Definition Llist decompose (A:Set)(l:Llist A) : Llist
A :=

match l with Lnil => Lnil A | Lcons a tl => Lcons a
tl end.
Implicit Arguments Llist decompose.

I Proofs by pattern-matching as in inductive types.

Theorem Llist dec thm :
forall (A:Set)(l:Llist A), l = Llist decompose l.

Proof.
intros A l; case l; simpl; trivial.

Qed.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Unfolding techniques

I The theorem Llist dec thm is not just an example,

I A tool to force co-recursive functions to unfold.

I Create a redex that maybe reduced by unfolding recursion.

Theorem lones dec : Lcons 1 lones = lones.
simpl.
============================
Lcons 1 lones = lones

pattern lones at 2; rewrite (Llist dec thm nat lones);
simpl.

============================
Lcons 1 lones = Lcons 1 lones

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Proving equality

I Usual equality is an “inductive concept” with no recursion,

I Co-recursion can only provide new values in co-recursive types,

I Need a co-recursive notion of equality.

I Express that two terms are “equal” when then cannot be
distinguished by any amount of pattern-matching,

I specific notion of equality for each co-inductive type.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Co-inductive equality

CoInductive bisimilar (A:Set) : Llist A -> Llist A
-> Prop :=

bisim0 : bisimilar A (Lnil A)(Lnil A)
| bisim1 : forall x t1 t2, bisimilar A t1 t2 ->

bisimilar A (Lcons x t1) (Lcons x t2).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Proofs by Co-induction

I Use a tactic cofix to introduce a co-recursive value,

I Adds a new hypothesis in the context with the same type as
the goal,

I The new hypothesis can only be used to fill a constructor’s
sub-component,

I Non-typed criterion, the correctness is checked using a
Guarded command.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example material

CoFixpoint lmap (A B:Set)(f:A -> B)(l:Llist A) :
Llist B :=

match l with
Lnil => Lnil B

| Lcons a tl => Lcons (f a) (lmap A B f tl)
end.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example proof by co-induction

Theorem lmap bi’ : forall (A:Set)(l:Llist A),
bisimilar A (lmap A A (fun x => x) l) l.

cofix.
1 subgoal

lmap bi’ : forall (A : Set) (l : Llist A),
bisimilar A (lmap A A (fun x : A => x) l) l

============================
forall (A : Set) (l : Llist A),
bisimilar A (lmap A A (fun x : A => x) l) l

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example proof by co-induction (continued)

intros A l; rewrite
(Llist dec thm (lmap A A (fun x=>x) l)); simpl.

. . .
============================
bisimilar A

match
match l with
| Lcons a tl => Lcons a (lmap A A (fun x : A => x) tl)
| Lnil => Lnil A
end

with
| Lcons a tl => Lcons a tl
| Lnil => Lnil A
end l

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example proof by co-induction (continued)

case l.
. . .

============================
forall (a : A) (l0 : Llist A),
bisimilar A (Lcons a (lmap A A (fun x : A => x) l0)) (Lcons a l0)

subgoal 2 is:
bisimilar A (Lnil A) (Lnil A)

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example proof by co-induction (continued)

intros a k; apply bisim1.
. . .

lmap bi’ : forall (A : Set) (l : Llist A),
bisimilar A (lmap A A (fun x : A => x) l) l

. . .
============================
bisimilar A (lmap A A (fun x : A => x) k) k

I A constructor was used, the recursive hypothesis can be used.

apply lmap bi’.
apply bisim0.
Qed.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Minimal real arithmetics

I Represent the real numbers in [0,1] as infinite sequences of
bits,

I add a third bit to make computation practical.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Redundant floating-point representations

I In usual represenation 1/2 is both 0.01111 . . . and 0.1000 . . .,

I Every number p/2n where p and n are integers has two
representations,

I Other numbers have only one,

I A number whose prefix is 0.1010 . . . (but finite) is a number
that can be bigger or smaller than 1/3,

I When computing 1/3 + 1/6 we can never decide what should
be the first bit of the result.

I Problem solved by adding a third bit : Now L, C, or R.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Explaining redundancy

I A number of the form L... is in [0,1/2], (like a number of
the form 0.0 . . .),

I A number of the form R... is in [1/2,1], (like a number of the
form 0.1 . . .),

I A number of the form C... is in [1/4,3/4].

I Taking an infinite stream of bits and adding a L in front
divides by 2,

I Adding a R divides by 2 and adds 1/2,
I Adding a C divides by 2 and adds 1/4.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Coq encoding

Inductive idigit : Set := L | C | R.

CoInductive represents : stream idigit ->
Rdefinitions.R -> Prop :=

reprL : forall s r, represents s r ->
(0 <= r <= 1)%R ->
represents (Cons L s) (r/2)

| reprR : forall s r, represents s r ->
(0 <= r <= 1)%R ->
represents (Cons R s) ((r+1)/2)

| reprC : forall s r, represents s r ->
(0 <= r <= 1)%R ->
represents (Cons C s) ((2*r+1)/4).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Encoding rational numbers

CoFixpoint rat to stream (a b:Z) : stream idigit :=
if Z le gt dec (2*a) b then
Cons L (rat to stream (2*a) b)

else
Cons R (rat to stream (2*a-b) b).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Affine combination of redundant digit streams

I compute the representation of

a

a′ x +
b

b′ y +
c

c ′ ,

where x and y are real numbers in [0,1] given by redundant
digit streams, and a · · · c ′ are positive integers (non-zero when
relevant).

I if 2c > c ′ then the result has the form Rz where z is

2a

a′ x +
2b

b′ y +
2c − c ′

c ′

.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Computation of other digits

I Similar sufficient condition to decide on Cz and Lz , for
suitable values of z :

I

a

a′
+

b

b′
+

c

c ′
≤ 1

2
produce L

I

c

c ′
≥ 1

4
and

a

a′
+

b

b′
+

c

c ′
≤ 3/4 produce C

I if a
a′ + b

b′ is small enough, you can produce a digit,

I But sometimes necessary to observe x and y .

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Consuming input

I if x and y are Lx ′ and Ly ′, then

a

a′ x +
b

b′ y +
c

c ′

is also
a

2a′ x
′ +

b

2b′ y
′ +

c

c ′

I Condition for outputting a digit may still not be ensured, but

a

2a′ +
b

2b′ =
1

2
(
a

a′ +
b

b′)

I Similar for other possible forms of x and y .

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Coq encoding

I Use a well-founded recursive function to consume from x and
y until the condition is ensured to produce a digit,

I Produce a digit and perform a co-recursive call,

I This style of decomposition between well-founded part and
co-recursive is quite powerful (not documented in Coq’Art,
though).

Yves Bertot Introduction to Co-Induction in Coq

Introduction to the Why tool

Jean-Christophe Filliâtre

CNRS – Université Paris Sud

TYPES summer school – August 25th, 2005

Jean-Christophe Filliâtre Introduction to the Why tool

Provers based on HOL are suitable tools to verify purely functional
programs (see Tuesday’s lecture)

What if you want to verify an imperative program with your
favorite prover?

Jean-Christophe Filliâtre Introduction to the Why tool

Provers based on HOL are suitable tools to verify purely functional
programs (see Tuesday’s lecture)

What if you want to verify an imperative program with your
favorite prover?

Jean-Christophe Filliâtre Introduction to the Why tool

Usual methods

I Floyd-Hoare logic

I Dijkstra’s weakest preconditions

I could be formalized in the prover (deep embedding)

I could be applied by a tactic (shallow embedding)

⇒ would be specific to this prover

Jean-Christophe Filliâtre Introduction to the Why tool

Usual methods

I Floyd-Hoare logic

I Dijkstra’s weakest preconditions

I could be formalized in the prover (deep embedding)

I could be applied by a tactic (shallow embedding)

⇒ would be specific to this prover

Jean-Christophe Filliâtre Introduction to the Why tool

Usual methods

I Floyd-Hoare logic

I Dijkstra’s weakest preconditions

I could be formalized in the prover (deep embedding)

I could be applied by a tactic (shallow embedding)

⇒ would be specific to this prover

Jean-Christophe Filliâtre Introduction to the Why tool

Which programming language?

a realistic existing programming language such as C or Java?

I many constructs ⇒ many rules

I would be specific to this language

Jean-Christophe Filliâtre Introduction to the Why tool

Which programming language?

a realistic existing programming language such as C or Java?

I many constructs ⇒ many rules

I would be specific to this language

Jean-Christophe Filliâtre Introduction to the Why tool

Which programming language?

a realistic existing programming language such as C or Java?

I many constructs ⇒ many rules

I would be specific to this language

Jean-Christophe Filliâtre Introduction to the Why tool

The Why tool

makes program verification

I prover-independent but prover-aware

I language-independent

so that we can use it to verify C, Java, etc. programs with HOL
provers but also with FO decision procedures

Jean-Christophe Filliâtre Introduction to the Why tool

The Why tool

makes program verification

I prover-independent but prover-aware

I language-independent

so that we can use it to verify C, Java, etc. programs with HOL
provers but also with FO decision procedures

Jean-Christophe Filliâtre Introduction to the Why tool

The Why tool

makes program verification

I prover-independent but prover-aware

I language-independent

so that we can use it to verify C, Java, etc. programs with HOL
provers but also with FO decision procedures

Jean-Christophe Filliâtre Introduction to the Why tool

An intermediate language

JavaJava CC

KrakatoaKrakatoa CaduceusCaduceus

WhyWhy

CoqCoq PVSPVS HOLHOL MizarMizar

verification conditionsverification conditions

SimplifySimplify haRVeyhaRVey CVCCVC

Jean-Christophe Filliâtre Introduction to the Why tool

Outline

1. A language for program verification
I syntax
I typing
I semantics

2. Proof rules

3. The WHY tool
I Dijkstra’s Dutch flag

4. Verification of C programs

Jean-Christophe Filliâtre Introduction to the Why tool

Outline

1. A language for program verification
I syntax
I typing
I semantics

2. Proof rules

3. The WHY tool
I Dijkstra’s Dutch flag

4. Verification of C programs

Jean-Christophe Filliâtre Introduction to the Why tool

Outline

1. A language for program verification
I syntax
I typing
I semantics

2. Proof rules

3. The WHY tool
I Dijkstra’s Dutch flag

4. Verification of C programs

Jean-Christophe Filliâtre Introduction to the Why tool

Outline

1. A language for program verification
I syntax
I typing
I semantics

2. Proof rules

3. The WHY tool
I Dijkstra’s Dutch flag

4. Verification of C programs

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Part I

A language for program verification

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

The essence of Hoare logic assignment rule

{ P[x ← E] } x := E { P }

1. absence of aliasing

2. side-effects free E shared between program and logic

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

The essence of Hoare logic assignment rule

{ P[x ← E] } x := E { P }

1. absence of aliasing

2. side-effects free E shared between program and logic

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

The essence of Hoare logic assignment rule

{ P[x ← E] } x := E { P }

1. absence of aliasing

2. side-effects free E shared between program and logic

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Data types

Any purely applicative data type from the logic can be used in
programs

Example: a data type int for integers with constants 0, 1, etc.
and operations +, *, etc.
The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable)
containing only pure values, with no possible alias between two
different references

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Data types

Any purely applicative data type from the logic can be used in
programs

Example: a data type int for integers with constants 0, 1, etc.
and operations +, *, etc.
The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable)
containing only pure values, with no possible alias between two
different references

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Data types

Any purely applicative data type from the logic can be used in
programs

Example: a data type int for integers with constants 0, 1, etc.
and operations +, *, etc.
The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable)
containing only pure values, with no possible alias between two
different references

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Data types

Any purely applicative data type from the logic can be used in
programs

Example: a data type int for integers with constants 0, 1, etc.
and operations +, *, etc.
The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable)
containing only pure values, with no possible alias between two
different references

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
⇒ less constructs
⇒ less rules

dereference !x
assignment x := e

local variable let x = e1 in e2

local reference let x = ref e1 in e2

conditional if e1 then e2 else e3

loop while e1 do e2 done

sequence e1; e2 ≡ let = e1 in e2

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
⇒ less constructs
⇒ less rules

dereference !x
assignment x := e

local variable let x = e1 in e2

local reference let x = ref e1 in e2

conditional if e1 then e2 else e3

loop while e1 do e2 done

sequence e1; e2 ≡ let = e1 in e2

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
⇒ less constructs
⇒ less rules

dereference !x
assignment x := e

local variable let x = e1 in e2

local reference let x = ref e1 in e2

conditional if e1 then e2 else e3

loop while e1 do e2 done

sequence e1; e2 ≡ let = e1 in e2

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
⇒ less constructs
⇒ less rules

dereference !x
assignment x := e

local variable let x = e1 in e2

local reference let x = ref e1 in e2

conditional if e1 then e2 else e3

loop while e1 do e2 done

sequence e1; e2 ≡ let = e1 in e2

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
⇒ less constructs
⇒ less rules

dereference !x
assignment x := e

local variable let x = e1 in e2

local reference let x = ref e1 in e2

conditional if e1 then e2 else e3

loop while e1 do e2 done

sequence e1; e2 ≡ let = e1 in e2

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
⇒ less constructs
⇒ less rules

dereference !x
assignment x := e

local variable let x = e1 in e2

local reference let x = ref e1 in e2

conditional if e1 then e2 else e3

loop while e1 do e2 done

sequence e1; e2 ≡ let = e1 in e2

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
⇒ less constructs
⇒ less rules

dereference !x
assignment x := e

local variable let x = e1 in e2

local reference let x = ref e1 in e2

conditional if e1 then e2 else e3

loop while e1 do e2 done

sequence e1; e2 ≡ let = e1 in e2

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
⇒ less constructs
⇒ less rules

dereference !x
assignment x := e

local variable let x = e1 in e2

local reference let x = ref e1 in e2

conditional if e1 then e2 else e3

loop while e1 do e2 done

sequence e1; e2 ≡ let = e1 in e2

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Annotations

I assert {p}; e

I e {p}

Examples:

I assert {x > 0}; 1/x

I x := 0 {!x = 0}
I if !x > !y then !x else !y {result ≥ !x ∧ result ≥ !y}
I x := !x + 1 {!x > old(!x)}

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Annotations

I assert {p}; e

I e {p}

Examples:

I assert {x > 0}; 1/x

I x := 0 {!x = 0}
I if !x > !y then !x else !y {result ≥ !x ∧ result ≥ !y}
I x := !x + 1 {!x > old(!x)}

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Annotations

I assert {p}; e

I e {p}

Examples:

I assert {x > 0}; 1/x

I x := 0 {!x = 0}
I if !x > !y then !x else !y {result ≥ !x ∧ result ≥ !y}
I x := !x + 1 {!x > old(!x)}

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Annotations

I assert {p}; e

I e {p}

Examples:

I assert {x > 0}; 1/x

I x := 0 {!x = 0}
I if !x > !y then !x else !y {result ≥ !x ∧ result ≥ !y}
I x := !x + 1 {!x > old(!x)}

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Annotations (cont’d)

Loop invariant and variant

I while e1 do {invariant p variant t} e2 done

Example:

while !x < N do
{ invariant !x ≤ N variant N − !x }
x := !x + 1

done

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Annotations (cont’d)

Loop invariant and variant

I while e1 do {invariant p variant t} e2 done

Example:

while !x < N do
{ invariant !x ≤ N variant N − !x }
x := !x + 1

done

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Functions

A function declaration introduces a precondition

I fun (x : τ)→ {p} e

I rec f (x1 : τ1) . . . (xn : τn) : β {variant t} = {p} e

Example:

fun (x : int ref)→ {!x > 0} x := !x − 1 {!x ≥ 0}

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Functions

A function declaration introduces a precondition

I fun (x : τ)→ {p} e

I rec f (x1 : τ1) . . . (xn : τn) : β {variant t} = {p} e

Example:

fun (x : int ref)→ {!x > 0} x := !x − 1 {!x ≥ 0}

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Functions

A function declaration introduces a precondition

I fun (x : τ)→ {p} e

I rec f (x1 : τ1) . . . (xn : τn) : β {variant t} = {p} e

Example:

fun (x : int ref)→ {!x > 0} x := !x − 1 {!x ≥ 0}

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Modularity

A function declaration extends the ML function type with a
precondition, an effect and a postcondition

x : τ1 → {p} τ2 reads x1, . . . , xn writes y1, . . . , ym {q}

Example:

swap : x : int ref → y : int ref →
{} unit writes x , y {!x = old(!y) ∧ !y = old(!x)}

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Modularity

A function declaration extends the ML function type with a
precondition, an effect and a postcondition

x : τ1 → {p} τ2 reads x1, . . . , xn writes y1, . . . , ym {q}

Example:

swap : x : int ref → y : int ref →
{} unit writes x , y {!x = old(!y) ∧ !y = old(!x)}

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Auxiliary variables

Used to denote the intermediate values of variables

Example: . . . {!x = X} . . . {!x > X} . . .

We will use labels instead

I new construct L:e

I new annotation at(t, L)

Example:

...
L : while . . . do { invariant !x ≥ at(!x , L) . . . }

. . .
done

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Auxiliary variables

Used to denote the intermediate values of variables

Example: . . . {!x = X} . . . {!x > X} . . .

We will use labels instead

I new construct L:e

I new annotation at(t, L)

Example:

...
L : while . . . do { invariant !x ≥ at(!x , L) . . . }

. . .
done

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Auxiliary variables

Used to denote the intermediate values of variables

Example: . . . {!x = X} . . . {!x > X} . . .

We will use labels instead

I new construct L:e

I new annotation at(t, L)

Example:

...
L : while . . . do { invariant !x ≥ at(!x , L) . . . }

. . .
done

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Auxiliary variables

Used to denote the intermediate values of variables

Example: . . . {!x = X} . . . {!x > X} . . .

We will use labels instead

I new construct L:e

I new annotation at(t, L)

Example:

...
L : while . . . do { invariant !x ≥ at(!x , L) . . . }

. . .
done

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Exceptions

Finally, we introduce exceptions in our language

I a more realistic ML fragment

I to interpret abrupt statements like return, break or
continue

new constructs

I raise (E e) : τ

I try e1 with E x → e2 end

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Exceptions

Finally, we introduce exceptions in our language

I a more realistic ML fragment

I to interpret abrupt statements like return, break or
continue

new constructs

I raise (E e) : τ

I try e1 with E x → e2 end

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Exceptions

Finally, we introduce exceptions in our language

I a more realistic ML fragment

I to interpret abrupt statements like return, break or
continue

new constructs

I raise (E e) : τ

I try e1 with E x → e2 end

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Exceptions

The notion of postcondition is extended

if x < 0 then raise Negative else sqrt x
{ result ≥ 0 | Negative⇒ x < 0 }

So is the notion of effect

div : x : int→ y : int→ {. . . } int raises Negative {. . . }

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Exceptions

The notion of postcondition is extended

if x < 0 then raise Negative else sqrt x
{ result ≥ 0 | Negative⇒ x < 0 }

So is the notion of effect

div : x : int→ y : int→ {. . . } int raises Negative {. . . }

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Loops and exceptions

We can replace the while loop by an infinite loop

I loop e {invariant p variant t}

and simulate the while loop using an exception

while e1 do {invariant p variant t} e2 done ≡
try
loop if e1 then e2 else raise Exit
{invariant p variant t}

with Exit -> void end

simpler constructs ⇒ simpler typing and proof rules

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Loops and exceptions

We can replace the while loop by an infinite loop

I loop e {invariant p variant t}

and simulate the while loop using an exception

while e1 do {invariant p variant t} e2 done ≡
try
loop if e1 then e2 else raise Exit
{invariant p variant t}

with Exit -> void end

simpler constructs ⇒ simpler typing and proof rules

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Loops and exceptions

We can replace the while loop by an infinite loop

I loop e {invariant p variant t}

and simulate the while loop using an exception

while e1 do {invariant p variant t} e2 done ≡
try
loop if e1 then e2 else raise Exit
{invariant p variant t}

with Exit -> void end

simpler constructs ⇒ simpler typing and proof rules

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Summary

Types

τ ::= β | β ref | (x : τ)→ κ
κ ::= {p} τ ε {q}
q ::= p;E ⇒ p; . . . ;E ⇒ p
ε ::= reads x , . . . , x writes x , . . . , x raises E , . . . ,E

Annotations

t ::= c | x | !x | φ(t, . . . , t) | old(t) | at(t, L)
p ::= True | False | P(t, . . . , t)

| p ⇒ p | p ∧ p | p ∨ p | ¬ p | ∀x : β.p | ∃x : β.p

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Summary

Types

τ ::= β | β ref | (x : τ)→ κ
κ ::= {p} τ ε {q}
q ::= p;E ⇒ p; . . . ;E ⇒ p
ε ::= reads x , . . . , x writes x , . . . , x raises E , . . . ,E

Annotations

t ::= c | x | !x | φ(t, . . . , t) | old(t) | at(t, L)
p ::= True | False | P(t, . . . , t)

| p ⇒ p | p ∧ p | p ∨ p | ¬ p | ∀x : β.p | ∃x : β.p

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Programs

u ::= c | x | !x | φ(u, . . . , u)
e ::= u

| x := e
| let x = e in e
| let x = ref e in e
| if e then e else e
| loop e {invariant p variant t}
| L:e
| raise (E e) : τ
| try e with E x → e end
| assert {p}; e
| e {q}
| fun (x : τ)→ {p} e
| rec x (x : τ) . . . (x : τ) : β {variant t} = {p} e
| e e

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Typing

A typing judgment
Γ ` e : (τ, ε)

Rules given in the notes (page 24)

The main purpose is to exclude aliases
In particular, references can’t escape their scopes

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Typing

A typing judgment
Γ ` e : (τ, ε)

Rules given in the notes (page 24)

The main purpose is to exclude aliases
In particular, references can’t escape their scopes

Jean-Christophe Filliâtre Introduction to the Why tool

A language for program verification

Semantics

Call-by-value semantics, with left to right evalutation

Big-step operational semantics given in the notes (page 26)

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Part II

Proof rules

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Weakest preconditions

We define the predicate wp(e, q), called the weakest precondition
for program e and postcondition q

Property: If wp(e, q) holds, then e terminates and q holds at the
end of execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions

The correctness of an annotated program e is thus wp(e,True)

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Weakest preconditions

We define the predicate wp(e, q), called the weakest precondition
for program e and postcondition q

Property: If wp(e, q) holds, then e terminates and q holds at the
end of execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions

The correctness of an annotated program e is thus wp(e,True)

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Weakest preconditions

We define the predicate wp(e, q), called the weakest precondition
for program e and postcondition q

Property: If wp(e, q) holds, then e terminates and q holds at the
end of execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions

The correctness of an annotated program e is thus wp(e,True)

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Weakest preconditions

We define the predicate wp(e, q), called the weakest precondition
for program e and postcondition q

Property: If wp(e, q) holds, then e terminates and q holds at the
end of execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions

The correctness of an annotated program e is thus wp(e,True)

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Definition of wp(e, q)

We actually define wp(e, q; r) where

I q is the “normal” postcondition

I r ≡ E1 ⇒ q1; . . . ;En ⇒ qn is the set of “exceptional” post.

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Basic constructs

wp(u, q; r) = q[result ← u]

wp(x := e, q; r) = wp(e, q[result ← void; x ← result]; r)

wp(let x = e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x ← result]; r)

wp(let x = ref e1 in e2, q; r) = wp(e1,wp(e2, q; r)[!x ← result]; r)

wp(if e1 then e2 else e3, q; r) =
wp(e1, if result then wp(e2, q; r) else wp(e3, q; r); r)

wp(L:e, q; r) = wp(e, q; r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Basic constructs

wp(u, q; r) = q[result ← u]

wp(x := e, q; r) = wp(e, q[result ← void; x ← result]; r)

wp(let x = e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x ← result]; r)

wp(let x = ref e1 in e2, q; r) = wp(e1,wp(e2, q; r)[!x ← result]; r)

wp(if e1 then e2 else e3, q; r) =
wp(e1, if result then wp(e2, q; r) else wp(e3, q; r); r)

wp(L:e, q; r) = wp(e, q; r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Basic constructs

wp(u, q; r) = q[result ← u]

wp(x := e, q; r) = wp(e, q[result ← void; x ← result]; r)

wp(let x = e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x ← result]; r)

wp(let x = ref e1 in e2, q; r) = wp(e1,wp(e2, q; r)[!x ← result]; r)

wp(if e1 then e2 else e3, q; r) =
wp(e1, if result then wp(e2, q; r) else wp(e3, q; r); r)

wp(L:e, q; r) = wp(e, q; r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Basic constructs

wp(u, q; r) = q[result ← u]

wp(x := e, q; r) = wp(e, q[result ← void; x ← result]; r)

wp(let x = e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x ← result]; r)

wp(let x = ref e1 in e2, q; r) = wp(e1,wp(e2, q; r)[!x ← result]; r)

wp(if e1 then e2 else e3, q; r) =
wp(e1, if result then wp(e2, q; r) else wp(e3, q; r); r)

wp(L:e, q; r) = wp(e, q; r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Basic constructs

wp(u, q; r) = q[result ← u]

wp(x := e, q; r) = wp(e, q[result ← void; x ← result]; r)

wp(let x = e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x ← result]; r)

wp(let x = ref e1 in e2, q; r) = wp(e1,wp(e2, q; r)[!x ← result]; r)

wp(if e1 then e2 else e3, q; r) =
wp(e1, if result then wp(e2, q; r) else wp(e3, q; r); r)

wp(L:e, q; r) = wp(e, q; r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Basic constructs

wp(u, q; r) = q[result ← u]

wp(x := e, q; r) = wp(e, q[result ← void; x ← result]; r)

wp(let x = e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x ← result]; r)

wp(let x = ref e1 in e2, q; r) = wp(e1,wp(e2, q; r)[!x ← result]; r)

wp(if e1 then e2 else e3, q; r) =
wp(e1, if result then wp(e2, q; r) else wp(e3, q; r); r)

wp(L:e, q; r) = wp(e, q; r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Traditional rules

Assignment of a side-effects free expression

wp(x := u, q) = q[x ← u]

Exception-free sequence

wp(e1; e2, q) = wp(e1,wp(e2, q))

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Traditional rules

Assignment of a side-effects free expression

wp(x := u, q) = q[x ← u]

Exception-free sequence

wp(e1; e2, q) = wp(e1,wp(e2, q))

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Exceptions

wp(raise (E e) : τ, q; r) = wp(e, r(E); r)

wp(try e1 with E x → e2 end, q; r) =
wp(e1, q;E ⇒ wp(e2, q; r)[x ← result]; r)

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Exceptions

wp(raise (E e) : τ, q; r) = wp(e, r(E); r)

wp(try e1 with E x → e2 end, q; r) =
wp(e1, q;E ⇒ wp(e2, q; r)[x ← result]; r)

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Annotations

wp(assert {p}; e, q; r) = p ∧ wp(e, q; r)

wp(e {q′; r ′}, q; r) = wp(e, q′ ∧ q; r ′ ∧ r)

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Annotations

wp(assert {p}; e, q; r) = p ∧ wp(e, q; r)

wp(e {q′; r ′}, q; r) = wp(e, q′ ∧ q; r ′ ∧ r)

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Loops

wp(loop e {invariant p variant t}, q; r) =
p ∧ ∀ω. p ⇒ wp(L:e, p ∧ t < at(t, L); r)

where ω = the variables (possibly) modified by e

Usual while loop

wp(while e1 do {invariant p variant t} e2 done, q; r)
= p ∧ ∀ω. p ⇒
wp(L:if e1 then e2 else raise E , p ∧ t < at(t, L),E ⇒ q; r)
= p ∧ ∀ω. p ⇒
wp(e1, if result then wp(e2, p ∧ t < at(t, L)) else q, r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Loops

wp(loop e {invariant p variant t}, q; r) =
p ∧ ∀ω. p ⇒ wp(L:e, p ∧ t < at(t, L); r)

where ω = the variables (possibly) modified by e

Usual while loop

wp(while e1 do {invariant p variant t} e2 done, q; r)
= p ∧ ∀ω. p ⇒
wp(L:if e1 then e2 else raise E , p ∧ t < at(t, L),E ⇒ q; r)
= p ∧ ∀ω. p ⇒
wp(e1, if result then wp(e2, p ∧ t < at(t, L)) else q, r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Loops

wp(loop e {invariant p variant t}, q; r) =
p ∧ ∀ω. p ⇒ wp(L:e, p ∧ t < at(t, L); r)

where ω = the variables (possibly) modified by e

Usual while loop

wp(while e1 do {invariant p variant t} e2 done, q; r)
= p ∧ ∀ω. p ⇒
wp(L:if e1 then e2 else raise E , p ∧ t < at(t, L),E ⇒ q; r)
= p ∧ ∀ω. p ⇒
wp(e1, if result then wp(e2, p ∧ t < at(t, L)) else q, r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Loops

wp(loop e {invariant p variant t}, q; r) =
p ∧ ∀ω. p ⇒ wp(L:e, p ∧ t < at(t, L); r)

where ω = the variables (possibly) modified by e

Usual while loop

wp(while e1 do {invariant p variant t} e2 done, q; r)
= p ∧ ∀ω. p ⇒
wp(L:if e1 then e2 else raise E , p ∧ t < at(t, L),E ⇒ q; r)
= p ∧ ∀ω. p ⇒
wp(e1, if result then wp(e2, p ∧ t < at(t, L)) else q, r)[at(x , L)← x]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Functions

wp(fun (x : τ)→ {p} e, q; r) = q ∧ ∀x .∀ρ.p ⇒ wp(e,True)

wp(rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e, q; r)
= q ∧ ∀x1. . . .∀xn.∀ρ.p ⇒ wp(L:e,True)

when computing wp(L:e,True), f is assumed to have type

(x1 : τ1)→ · · · → (xn : τn)→ {p ∧ t < at(t, L)} τ ε {q}

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Functions

wp(fun (x : τ)→ {p} e, q; r) = q ∧ ∀x .∀ρ.p ⇒ wp(e,True)

wp(rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e, q; r)
= q ∧ ∀x1. . . .∀xn.∀ρ.p ⇒ wp(L:e,True)

when computing wp(L:e,True), f is assumed to have type

(x1 : τ1)→ · · · → (xn : τn)→ {p ∧ t < at(t, L)} τ ε {q}

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Function call

Simplified using

e1 e2 ≡ let x1 = e1 in let x2 = e2 in x1 x2

Assuming

x1 : (x : τ)→ {p′} τ ′ ε {q′}

we define

wp(x1 x2, q) = p′[x ← x2] ∧ ∀ω.∀result.(q′[x ← x2]⇒ q)[old(t)← t]

Jean-Christophe Filliâtre Introduction to the Why tool

Proof rules

Function call

Simplified using

e1 e2 ≡ let x1 = e1 in let x2 = e2 in x1 x2

Assuming

x1 : (x : τ)→ {p′} τ ′ ε {q′}

we define

wp(x1 x2, q) = p′[x ← x2] ∧ ∀ω.∀result.(q′[x ← x2]⇒ q)[old(t)← t]

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Part III

The WHY tool

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Dijkstra’s Dutch national flag

Goal: to sort an array where elements only have three different
values (blue, white and red)

0 b i r n
BLUE WHITE . . . to do. . . RED

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Dijkstra’s Dutch national flag

Goal: to sort an array where elements only have three different
values (blue, white and red)

0 b i r n
BLUE WHITE . . . to do. . . RED

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

A few lines of C code

typedef enum { BLUE, WHITE, RED } color;

void swap(int t[], int i, int j) {
color c = t[i]; t[i] = t[j]; t[j] = c;

}

void flag(int t[], int n) {
int b = 0, i = 0, r = n;
while (i < r) {

switch (t[i]) {
case BLUE: swap(t, b++, i++); break;
case WHITE: i++; break;
case RED: swap(t, --r, i); break;
}

}
}

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Modelization

We are not verifying the C code, but rather the algorithm

We model

I colors with an abstract datetype

I arrays using references containing functional arrays

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Modelization

We are not verifying the C code, but rather the algorithm

We model

I colors with an abstract datetype

I arrays using references containing functional arrays

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

An abstract type for colors

type color

logic blue : color
logic white : color
logic red : color

predicate is_color(c:color) = c=blue or c=white or c=red

parameter eq_color :
c1:color → c2:color →
{} bool { if result then c1=c2 else c16=c2 }

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Functional arrays

type color_array

logic acc : color_array, int → color
logic upd : color_array, int, color → color_array

axiom acc_upd_eq :
∀ a:color_array. ∀ i:int. ∀ c:color.
acc(upd(a,i,c),i) = c

axiom acc_upd_neq :
∀ a:color_array. ∀ i,j:int. ∀ c:color.
i 6= j → acc(upd(a,j,c),i) = acc(a,i)

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Array bounds

logic length : color_array → int

axiom length_update :
∀ a:color_array. ∀ i:int. ∀ c:color.
length(upd(a,i,c)) = length(a)

parameter get :
t:color_array ref → i:int →
{ 0<=i<length(t) } color reads t { result=acc(t,i) }

parameter set :
t:color_array ref → i:int → c:color →
{ 0<=i<length(t) } unit writes t { t=upd(t@,i,c) }

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Array bounds

logic length : color_array → int

axiom length_update :
∀ a:color_array. ∀ i:int. ∀ c:color.
length(upd(a,i,c)) = length(a)

parameter get :
t:color_array ref → i:int →
{ 0<=i<length(t) } color reads t { result=acc(t,i) }

parameter set :
t:color_array ref → i:int → c:color →
{ 0<=i<length(t) } unit writes t { t=upd(t@,i,c) }

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

The swap function

let swap (t:color_array ref) (i:int) (j:int) =
{ 0 <= i < length(t) and 0 <= j < length(t) }
let u = get t i in
set t i (get t j);
set t j u
{ t = upd(upd(t@,i,acc(t@,j)), j, acc(t@,i)) }

5 proofs obligations

I 3 automatically discharged by WHY

I 2 left to the user (and automatically discharged by Simplify)

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

The swap function

let swap (t:color_array ref) (i:int) (j:int) =
{ 0 <= i < length(t) and 0 <= j < length(t) }
let u = get t i in
set t i (get t j);
set t j u
{ t = upd(upd(t@,i,acc(t@,j)), j, acc(t@,i)) }

5 proofs obligations

I 3 automatically discharged by WHY

I 2 left to the user (and automatically discharged by Simplify)

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Function code

let dutch_flag (t:color_array ref) (n:int) =
let b = ref 0 in
let i = ref 0 in
let r = ref n in
while !i < !r do

if eq_color (get t !i) blue then begin
swap t !b !i;
b := !b + 1;
i := !i + 1

end else if eq_color (get t !i) white then
i := !i + 1

else begin
r := !r - 1;
swap t !r !i

end
done

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Function specification

predicate monochrome(t:color_array,i:int,j:int,c:color) =
∀ k:int. i<=k<j → acc(t,k)=c

let dutch_flag (t:color_array ref) (n:int) =
{ 0 <= n and length(t) = n and
∀ k:int. 0 <= k < n → is_color(acc(t,k)) }

...
{ ∃ b:int. ∃ r:int.

monochrome(t,0,b,blue) and
monochrome(t,b,r,white) and
monochrome(t,r,n,red) }

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Function specification

predicate monochrome(t:color_array,i:int,j:int,c:color) =
∀ k:int. i<=k<j → acc(t,k)=c

let dutch_flag (t:color_array ref) (n:int) =
{ 0 <= n and length(t) = n and
∀ k:int. 0 <= k < n → is_color(acc(t,k)) }

...
{ ∃ b:int. ∃ r:int.

monochrome(t,0,b,blue) and
monochrome(t,b,r,white) and
monochrome(t,r,n,red) }

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Loop invariant

...
while !i < !r do
{ invariant 0 <= b <= i and i <= r <= n and

monochrome(t,0,b,blue) and
monochrome(t,b,i,white) and
monochrome(t,r,n,red) and
length(t) = n and
∀ k:int. 0 <= k < n → is_color(acc(t,k))

variant r - i }
...

done

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Proof obligations

11 proof obligations

I loop invariant holds initially

I loop invariant is preserved and variant decreases (3 cases)

I swap precondition (twice)

I array access within bounds (twice)

I postcondition holds at the end of function execution

All automatically discharged by Simplify!

Note: to be exhaustive, one has to show that the set of elements
was not changed

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Proof obligations

11 proof obligations

I loop invariant holds initially

I loop invariant is preserved and variant decreases (3 cases)

I swap precondition (twice)

I array access within bounds (twice)

I postcondition holds at the end of function execution

All automatically discharged by Simplify!

Note: to be exhaustive, one has to show that the set of elements
was not changed

Jean-Christophe Filliâtre Introduction to the Why tool

The WHY tool

Proof obligations

11 proof obligations

I loop invariant holds initially

I loop invariant is preserved and variant decreases (3 cases)

I swap precondition (twice)

I array access within bounds (twice)

I postcondition holds at the end of function execution

All automatically discharged by Simplify!

Note: to be exhaustive, one has to show that the set of elements
was not changed

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Part IV

Verification of C programs

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Overview

Annotated C programAnnotated C program

CaduceusCaduceus

Why programWhy programBackground theoryBackground theory

WhyWhy

CoqCoq PVSPVS SimplifySimplify haRVeyhaRVey . . .

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Example: character queue as circular array

0
↓

length− 1
↓

first
↑

last
↑

struct queue {
char contents[];
int length;
int first, last;
unsigned int empty, full :1;

} q;

/*@ invariant q_invariant :
@ \valid_range(q.contents, 0, q.length-1) &&
@ 0 <= q.first < q.length &&
@ 0 <= q.last < q.length
@*/

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Example: character queue as circular array

0
↓

length− 1
↓

first
↑

last
↑

struct queue {
char contents[];
int length;
int first, last;
unsigned int empty, full :1;

} q;

/*@ invariant q_invariant :
@ \valid_range(q.contents, 0, q.length-1) &&
@ 0 <= q.first < q.length &&
@ 0 <= q.last < q.length
@*/

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Example continued: specifying functions

/*@ requires !q.full
@ assigns q.empty, q.full, q.last, q.contents[q.last]
@ ensures !q.empty && q.contents[\old(q.last)] == c
@*/

void push(char c);

/*@ requires !q.empty
@ assigns q.empty, q.full, q.first
@ ensures !q.full && \result == q.contents[\old(q.first)]
@*/

char pop();

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Example continued: body for push function

/*@ requires !q.full
@ assigns q.empty, q.full, q.last, q.contents[q.last]
@ ensures !q.empty && q.contents[\old(q.last)] == c
@*/

void push(char c) {
q.contents[q.last++] = c; // insert ’c’ in the queue
if (q.last == q.length)

q.last = 0; // wrap if needed
q.empty = 0; // queue is not empty
q.full = (q.first == q.last); // queue is full if

// ’last’ reaches ’first’
}

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Modeling C memory heap

I Burstall-Bornat model: memory partition according to
structure fields

I We extend this idea to handle C arrays and pointer arithmetic:
a memory block is

p p +i=shift(p,i)

←−−offset(p)−−→ ↓ ↓
base addr(p)

←−−−−−−−−−−−block length(alloc,p)−−−−−−−−−−−→

I Each structure field is a map from addresses to memory blocks

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Modeling C memory heap

I Burstall-Bornat model: memory partition according to
structure fields

I We extend this idea to handle C arrays and pointer arithmetic:
a memory block is

p p +i=shift(p,i)

←−−offset(p)−−→ ↓ ↓
base addr(p)

←−−−−−−−−−−−block length(alloc,p)−−−−−−−−−−−→

I Each structure field is a map from addresses to memory blocks

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Modeling C memory heap

I Burstall-Bornat model: memory partition according to
structure fields

I We extend this idea to handle C arrays and pointer arithmetic:
a memory block is

p p +i=shift(p,i)

←−−offset(p)−−→ ↓ ↓
base addr(p)

←−−−−−−−−−−−block length(alloc,p)−−−−−−−−−−−→

I Each structure field is a map from addresses to memory blocks

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q

...

4

...
...

q.contents[q.last++] = c
q.last <- 4 + 1
*(q.contents+4) <- c

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q

...

4

...
...

q.contents[q.last++] = c
q.last <- 4 + 1
*(q.contents+4) <- c

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q

...

5

...
...

q.contents[q.last++] = c
q.last <- 4 + 1
*(q.contents+4) <- c

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q

...

5

...
...

q.contents[q.last++] = c
q.last <- 4 + 1
*(q.contents+4) <- c

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q

...

5

...
...

aa

q.contents[q.last++] = c
q.last <- 4 + 1
*(q.contents+4) <- c

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q

...

5

...
...

aa

aa

q.contents[q.last++] = c
q.last <- 4 + 1
*(q.contents+4) <- c

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q

...

5

...
...

aa

aa c

q.contents[q.last++] = c
q.last <- 4 + 1
*(q.contents+4) <- c

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

General structure of C memory heap

alloc f1 · · · fk intP intPP . . .

a1 n.a.
a2 5
a3 1
a4 n.a.
a5 3
...

...
...

...
...

...

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Translation of C statements into Why

The C statement

q.contents[q.last++] = c

becomes in Why:

assert { valid(!alloc,q) }; // proof obligation
let tmp1 = acc(!last,q) in // tmp1 <- q.last
last := upd(!last,q,tmp1+1); // q.last <- tmp1+1
let tmp2 = shift(acc(!contents,q),tmp1) in

// tmp2 <- q.contents + tmp1
assert { valid(!alloc,tmp2) };// proof obligation
intP := upd(!intP,tmp2,c) // *tmp2 <- c

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Axiomatization

I The abstract Why functions acc, upd, shift, etc. are
specified by axioms: the background theory

I Excerpt from this theory:

acc(upd(t,i,v),i) = v
i <> j -> acc(upd(t,i,v),j) = acc(t,j)
shift(p,0) = p
shift(shift(p,i),j) = shift(p,i+j)
...

I An important part of this theory is dedicated to assigns clauses

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Example continued: certification of push function

Caduceus produces 3 verification conditions expressing that

I the code of push contains no unallocated pointer dereference
(e.g. assignment of q.contents[q.last++] is valid)

I the postcondition and the assigns clause of push are
established

I the invariant q invariant is preserved by push

Proofs of these obligations

I with Simplify (100%) and CVC Lite (67%)

I with Coq (100%), very easy (6 lines of tactics)

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Example continued: certification of push function

Caduceus produces 3 verification conditions expressing that

I the code of push contains no unallocated pointer dereference
(e.g. assignment of q.contents[q.last++] is valid)

I the postcondition and the assigns clause of push are
established

I the invariant q invariant is preserved by push

Proofs of these obligations

I with Simplify (100%) and CVC Lite (67%)

I with Coq (100%), very easy (6 lines of tactics)

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Example: in-place list reversal

typedef struct struct_list {
int hd;
struct struct_list *tl;

} *list;

list reverse(list p) {
list r = NULL;
while (p != NULL) {

list q = p ;
p = p->tl;
q->tl = r;
r = q;

}
return r;

}

pp

rr

reverse(p)

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Introduction of new logical types and functions

I New predicates and functions can be introduced

// logical finite list of pointers

//@ logic plist nil()
//@ logic plist cons(list p, plist l)

// concatenation and reversal
//@ logic plist app(plist l1, plist l2)
//@ logic plist rev(plist pl)

I Axioms may be given, e.g.

//@ axiom app nil : \forall plist l; app(nil(),l) == l

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Introduction of new logical types and functions

I New predicates and functions can be introduced

// logical finite list of pointers

//@ logic plist nil()
//@ logic plist cons(list p, plist l)

// concatenation and reversal
//@ logic plist app(plist l1, plist l2)
//@ logic plist rev(plist pl)

I Axioms may be given, e.g.

//@ axiom app nil : \forall plist l; app(nil(),l) == l

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Specification of list reversal

/* llist(p,l) specifies that l is the list of pointers
from p to NULL following tl fields */

//@ predicate llist(list p, plist l) reads p->tl

// is_list(p) specifies that p is finite

//@ predicate is_list(list p) { \exists plist l ; llist(p,l) }

/*@ requires is_list(p)
@ ensures \forall plist l;
@ \old(llist(p, l)) => llist(\result, rev(l)) */

list reverse(list p);

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Specification of list reversal

/* llist(p,l) specifies that l is the list of pointers
from p to NULL following tl fields */

//@ predicate llist(list p, plist l) reads p->tl

// is_list(p) specifies that p is finite

//@ predicate is_list(list p) { \exists plist l ; llist(p,l) }

/*@ requires is_list(p)
@ ensures \forall plist l;
@ \old(llist(p, l)) => llist(\result, rev(l)) */

list reverse(list p);

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Specification of list reversal

/* llist(p,l) specifies that l is the list of pointers
from p to NULL following tl fields */

//@ predicate llist(list p, plist l) reads p->tl

// is_list(p) specifies that p is finite

//@ predicate is_list(list p) { \exists plist l ; llist(p,l) }

/*@ requires is_list(p)
@ ensures \forall plist l;
@ \old(llist(p, l)) => llist(\result, rev(l)) */

list reverse(list p);

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Annotating the code of list reversal

list reverse(list p) {
list r = NULL;

/*@ invariant
\exists plist lp; \exists plist lr;
llist(p, lp) && llist(r, lr) &&
disjoint(lp, lr) &&
\forall plist l; \old(llist(p, l)) =>
app(rev(lp), lr) == rev(l)

@ variant length(p) for length_order */

while (p != NULL) {
list q = p;
p = p->tl; q->tl = r; r = q;

}
return r;

}

rr

pp

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Certification of list reversal

I 7 verification conditions

I With Simplify: 71%

I With Coq: 100%, with 661 lines of tactics

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Example: Schorr-Waite algorithm

I Graph marking algorithm

I Considered as a benchmark for the verification of pointer
programs (Bornat, 1999, Jape system) (Nipkow-Mehta, 2003,
Isabelle/HOL)

I 12 verification conditions

I With Simplify: 33%

I With Coq: 100%, with 2362 lines of tactics

Jean-Christophe Filliâtre Introduction to the Why tool

Verification of C programs

Example: Schorr-Waite algorithm

I Graph marking algorithm

I Considered as a benchmark for the verification of pointer
programs (Bornat, 1999, Jape system) (Nipkow-Mehta, 2003,
Isabelle/HOL)

I 12 verification conditions

I With Simplify: 33%

I With Coq: 100%, with 2362 lines of tactics

Jean-Christophe Filliâtre Introduction to the Why tool

Conclusion

Part V

Conclusion

Jean-Christophe Filliâtre Introduction to the Why tool

Conclusion

Conclusion

I We are able to certify non trivial programs

I We support a large subset of ANSI C and Java/JML
I Tools freely available

I http://why.lri.fr/
I http://caduceus.lri.fr/
I http://krakatoa.lri.fr/

But scaling up issues show up on large programs:

I Generated proof obligations can get large

I Clear need for assistance to write specifications

I Need for more automation of proofs, cooperation of provers

Jean-Christophe Filliâtre Introduction to the Why tool

http://why.lri.fr/
http://caduceus.lri.fr/
http://krakatoa.lri.fr/

Conclusion

Conclusion

I We are able to certify non trivial programs

I We support a large subset of ANSI C and Java/JML
I Tools freely available

I http://why.lri.fr/
I http://caduceus.lri.fr/
I http://krakatoa.lri.fr/

But scaling up issues show up on large programs:

I Generated proof obligations can get large

I Clear need for assistance to write specifications

I Need for more automation of proofs, cooperation of provers

Jean-Christophe Filliâtre Introduction to the Why tool

http://why.lri.fr/
http://caduceus.lri.fr/
http://krakatoa.lri.fr/

Conclusion

Current limitations / work in progress

Limitations of the tools

I (mutually) recursive functions

I arithmetic overflow

I floating point arithmetic

Limitations of the C model

I pointer cast

I unions

I non ANSI (i.e. compiler dependent) features

Jean-Christophe Filliâtre Introduction to the Why tool

Conclusion

Current limitations / work in progress

Limitations of the tools

I (mutually) recursive functions

I arithmetic overflow

I floating point arithmetic

Limitations of the C model

I pointer cast

I unions

I non ANSI (i.e. compiler dependent) features

Jean-Christophe Filliâtre Introduction to the Why tool

Conclusion

Next challenge

Verification of ML programs (with side-effects)

Jean-Christophe Filliâtre Introduction to the Why tool

Conclusion

Next challenge

Verification of ML programs (with side-effects)

Jean-Christophe Filliâtre Introduction to the Why tool

Decision Procedures
1: Survey of decision procedures

John Harrison
Intel Corporation

TYPES summer school 2005, Göteborg

Fri 19th August 2005 (09:00 – 09:45)

0

Summary

• Interesting and uninteresting proofs

• Theory and practice

• Beyond our scope

• Logic and theories

• Pure logic

• Decidable theories

1

Interesting and uninteresting proofs

Much of this summer school emphasizes how interesting and useful
proofs themselves are. But they aren’t always!

6(x2

1
+ x2

2
+ x2

3
+ x2

4
)2 =

(x1 + x2)
4 + (x1 + x3)

4 + (x1 + x4)
4+

(x2 + x3)
4 + (x2 + x4)

4 + (x3 + x4)
4+

(x1 − x2)
4 + (x1 − x3)

4 + (x1 − x4)
4+

(x2 − x3)
4 + (x2 − x4)

4 + (x3 − x4)
4

We’d like to concentrate on interesting parts, automating parts with

• No interesting computational content

• No intellectual interest in the proof method

2

Theory and practice

We may ask what problems are decidable

• In principle

• In a feasible time bound

• On real problems of interest

Not always the same! Consider propositional logic.

• Trivial

• Infeasible

• Very useful

3

What we’ll cover

We’ll consider only theories in classical first-order logic.

• Key decidability results for first order theories

• Focus on pure logic and arithmetical theories

4

What we won’t cover

We miss out several key related areas:

• Decision procedures for constructive/intuitionistic theories

• Decision procedures for fragments of higher-order logic

• Decision procedures for modal or other nonclassical logics.

For example:

• First-order validity semidecidable, but higher-order validity
subsumes arithmetic truth, so not even semidecidable

• Example: first order theories of real and algebraically closed
fields are decidable classically (Tarski 1930) but not
intuitionistically (Gabbay 1973).

5

First-order logic

English Standard Other

false ⊥ 0, F

true > 1, T

not p ¬p p, −p, ∼ p

p and q p ∧ q pq, p&q, p · q

p or q p ∨ q p+ q, p | q, p or q

p implies q p⇒ q p ≤ q, p→ q, p ⊃ q

p iff q p⇔ q p = q, p ≡ q, p ∼ q

For all x, p ∀x. p (x)p, Axp

Exists x s.t. p ∃x. p (∃x.)p, Exp

6

Semantics

Key semantic notion is A |= p: in any model where all formulas in A
hold, then p holds.

Crucial distinction between

• Logical validity — holds whatever the interpretation of symbols

• Truth in a particular theory

For example, x+ y = y+ x holds in most arithmetical models, but not
for any interpretation of ‘+’, so 6|= x+ y = y + x.

7

Theories

A theory is a set of formulas T closed under logical validity, i.e.
T |= p iff p ∈ T . A theory T is:

• Consistent if we never have p ∈ T and (¬p) ∈ T .

• Complete if for closed p we have p ∈ T or (¬p) ∈ T .

• Decidable if there’s an algorithm to tell us whether a given closed
p is in T

Note that a complete theory generated by an r.e. axiom set is also
decidable.

8

Pure first-order logic

Not decidable but at least semidecidable: there is a complete proof
search procedure to decide if |= p for any given p.

• Can search for proofs in any of the standard calculi

• Tends to be easier using ‘cut-free’ systems like sequent calculus

• More convenient, though not necessary, to Skolemize first.

• Exploit unification to instantiate intelligently

9

A significant distinction

A significant characteristic is whether unifiers are global, applying
everywhere, or just local:

• Top-down, global methods (tableaux, model elimination)

• Bottom-up, local methods (resolution, inverse method)

These proof methods tend to have corresponding characteristics.

10

Decidable problems

Although first order validity is undecidable, there are special cases
where it is decidable, e.g.

• AE formulas: no function symbols, universal quantifiers before
existentials in prenex form (so finite Herbrand base).

• Monadic formulas: no function symbols, only unary predicates

These are not particularly useful in practice, though they can be
used to automate syllogistic reasoning.

If all M are P , and all S are M , then all S are P

can be expressed as the monadic formula:

(∀x. M(x) ⇒ P (x)) ∧ (∀x. S(x) ⇒M(x)) ⇒ (∀x. S(x) ⇒ P (x))

11

The theory of equality

A simple but useful decidable theory is the universal theory of
equality with function symbols, e.g.

∀x. f(f(f(x)) = x ∧ f(f(f(f(f(x))))) = x⇒ f(x) = x

after negating and Skolemizing we need to test a ground formula for
satisfiability:

f(f(f(c)) = c ∧ f(f(f(f(f(c))))) = c ∧ ¬(f(c) = c)

Two well-known algorithms:

• Put the formula in DNF and test each disjunct using one of the
classic ‘congruence closure’ algorithms.

• Reduce to SAT by introducing a propositional variable for each
equation between subterms and adding constraints.

12

Decidable theories

More useful in practical applications are cases not of pure validity,
but validity in special (classes of) models, or consequence from
useful axioms, e.g.

• Does a formula hold over all rings (Boolean rings, non-nilpotent
rings, integral domains, fields, algebraically closed fields, . . .)

• Does a formula hold in the natural numbers or the integers?

• Does a formula hold over the real numbers?

• Does a formula hold in all real-closed fields?

• . . .

Because arithmetic comes up in practice all the time, there’s
particular interest in theories of arithmetic.

13

Quantifier elimination

Often, a quantified formula is T -equivalent to a quantifier-free one:

• C |= (∃x. x2 + 1 = 0) ⇔ >

• R |= (∃x.ax2+bx+c = 0) ⇔ a 6= 0∧b2 ≥ 4ac∨a = 0∧(b 6= 0∨c = 0)

• Q |= (∀x. x < a⇒ x < b) ⇔ a ≤ b

• Z |= (∃k x y. ax = (5k + 2)y + 1) ⇔ ¬(a = 0)

We say a theory T admits quantifier elimination if every formula has
this property.

Assuming we can decide variable-free formulas, quantifier
elimination implies completeness.

And then an algorithm for quantifier elimination gives a decision
method.

14

Important arithmetical examples

• Presburger arithmetic: arithmetic equations and inequalities with
addition but not multiplication, interpreted over Z or N.

• Tarski arithmetic: arithmetic equations and inequalities with
addition and multiplication, interpreted over R (or any real-closed
field)

• General algebra: arithmetic equations with addition and
multiplication interpreted over C (or other algebraically closed
field).

However, arithmetic with multiplication over Z is not even
semidecidable, by Gödel’s theorem.

Nor is arithmetic over Q (Julia Robinson), nor just solvability of
equations over Z (Matiyasevich). Equations over Q unknown.

15

Pick ’n mix

There are some known cases of quantifier elimination for combined
theories

• BAPA — Boolean algebra of finite sets plus Presburger
arithmetic (Feferman/Vaught, Kuncac/Nguyen/Rinard)

• Mixed real-integer linear arithmetic with floor function
(Weispfenning)

In lecture 3 we’ll examine more systemtic and modular ways of
combining theories.

16

Summary

• We’d like to be able to automate boring routine proofs

• Well-established repertoire of decidable theories

• Theory/practice distinction can make a dramatic difference

• Many decision methods are based on more general quantifier
elimination

• It is possible, but not routine, to find decidable mixtures.

17

Decision Procedures
2: Real quantifier elimination

John Harrison
Intel Corporation

TYPES summer school 2005, Göteborg

Fri 19th August 2005 (09:55 – 10:40)

0

Summary

• What we’ll prove

• History

• Sign matrices

• The key recursion

• Parametrization

• Real-closed fields

1

What we’ll prove

Take a first-order language:

• All rational constants p/q

• Operators of negation, addition, subtraction and multiplication

• Relations ‘=’, ‘<’, ‘≤’, ‘>’, ‘≥’

We’ll prove that every formula in the language has a quantifier-free
equivalent, and will give a systematic algorithm for finding it.

2

Applications

In principle, this method can be used to solve many non-trivial
problems.

Kissing problem: how many disjoint n-dimensional spheres
can be packed into space so that they touch a given unit
sphere?

Pretty much any geometrical assertion can be expressed in this
theory.

If theorem holds for complex values of the coordinates, and then
simpler methods are available (Gröbner bases, Wu-Ritt
triangulation. . .).

3

History

• 1930: Tarski discovers quantifier elimination procedure for this
theory.

• 1948: Tarski’s algorithm published by RAND

• 1954: Seidenberg publishes simpler algorithm

• 1975: Collins develops and implements cylindrical algebraic
decomposition (CAD) algorithm

• 1983: Hörmander publishes very simple algorithm based on
ideas by Cohen.

• 1990: Vorobjov improves complexity bound to doubly exponential
in number of quantifier alternations.

We’ll present the Cohen-Hörmander algorithm.

4

Current implementations

There are quite a few simple versions of real quantifier elimination,
even in computer algebra systems like Mathematica.

Among the more heavyweight implementations are:

• qepcad —
http://www.cs.usna.edu/˜qepcad/B/QEPCAD.html

• REDLOG — http://www.fmi.uni-passau.de/˜redlog/

5

One quantifier at a time

For a general quantifier elimination procedure, we just need one for a
formula

∃x. P [a1, . . . , an, x]

where P [a1, . . . , an, x] involves no other quantifiers but may involve
other variables.

Then we can apply the procedure successively inside to outside,
dealing with universal quantifiers via (∀x. P [x]) ⇔ (¬∃x. ¬P [x]).

6

Forget parametrization for now

First we’ll ignore the fact that the polynomials contain variables other
than the one being eliminated.

This keeps the technicalities a bit simpler and shows the main ideas
clearly.

The generalization to the parametrized case will then be very easy:

• Replace polynomial division by pseudo-division

• Perform case-splits to determine signs of coefficients

7

Sign matrices

Take a set of univariate polynomials p1(x), . . . , pn(x).

A sign matrix for those polynomials is a division of the real line into
alternating points and intervals:

(−∞, x1), x1, (x1, x2), x2, . . . , xm−1, (xm−1, xm), xm, (xm,+∞)

and a matrix giving the sign of each polynomial on each interval:

• Positive (+)

• Negative (−)

• Zero (0)

8

Sign matrix example

The polynomials p1(x) = x2 − 3x+ 2 and p2(x) = 2x− 3 have the
following sign matrix:

Point/Interval p1 p2

(−∞, x1) + −

x1 0 −

(x1, x2) − −

x2 − 0

(x2, x3) − +

x3 0 +

(x3, +∞) + +

9

Using the sign matrix

Using the sign matrix for all polynomials appearing in P [x] we can
answer any quantifier elimination problem: ∃x. P [x]

• Look to see if any row of the matrix satisfies the formula (hence
dealing with existential)

• For each row, just see if the corresponding set of signs satisfies
the formula.

We have replaced the quantifier elimination problem with sign matrix
determination

10

Finding the sign matrix

For constant polynomials, the sign matrix is trivial (2 has sign ‘+’ etc.)

To find a sign matrix for p, p1, . . . , pn it suffices to find one for
p′, p1, . . . , pn, r0, r1, . . . , rn, where

• p0 ≡ p′ is the derivative of p

• ri = rem(p, pi)

(Remaindering means we have some qi so p = qi · pi + ri.)

Taking p to be the polynomial of highest degree we get a simple
recursive algorithm for sign matrix determination.

11

Details of recursive step

So, suppose we have a sign matrix for p′, p1, . . . , pn, r0, r1, . . . , rn.

We need to construct a sign matrix for p, p1, . . . , pn.

• May need to add more points and hence intervals for roots of p

• Need to determine signs of p1, . . . , pn at the new points and
intervals

• Need the sign of p itself everywhere.

12

Step 1

Split the given sign matrix into two parts, but keep all the points for
now:

• M for p′, p1, . . . , pn

• M ′ for r0, r1, . . . , rn

We can infer the sign of p at all the ‘significant’ points of M as
follows:

p = qipi + ri

and for each of our points, one of the pi is zero, so p = ri there and
we can read off p’s sign from ri’s.

13

Step 2

Now we’re done with M ′ and we can throw it away.

We also ‘condense’ M by eliminating points that are not roots of one
of the p′, p1, . . . , pn.

Note that the sign of any of these polynomials is stable on the
condensed intervals, since they have no roots there.

• We know the sign of p at all the points of this matrix.

• However, p itself may have additional roots, and we don’t know
anything about the intervals yet.

14

Step 3

There can be at most one root of p in each of the existing intervals,
because otherwise p′ would have a root there.

We can tell whether there is a root by checking the signs of p
(determined in Step 1) at the two endpoints of the interval.

Insert a new point precisely if p has strictly opposite signs at the two
endpoints (simple variant for the two end intervals).

None of the other polynomials change sign over the original interval,
so just copy the values to the point and subintervals.

Throw away p′ and we’re done!

15

Multivariate generalization

In the multivariate context, we can’t simply divide polynomials.
Instead of

p = pi · qi + ri

we get

akp = pi · qi + ri

where a is the leading coefficient of pi.

The same logic works, but we need case splits to fix the sign of a.

16

Real-closed fields

With more effort, all the ‘analytical’ facts can be deduced from the
axioms for real-closed fields.

• Usual ordered field axioms

• Existence of square roots: ∀x. x ≥ 0 ⇒ ∃y. x = y2

• Solvability of odd-degree equations:
∀a0, . . . , an. an 6= 0 ⇒ ∃x. anx

n + an−1x
n−1 + · · · + a1x+ a0 = 0

Examples include computable reals and algebraic reals. So this
already gives a complete theory, without a stronger completeness
axiom.

17

Summary

• Real quantifier elimination one of the most significant logical
decidability results known.

• Original result due to Tarski, for general real closed fields.

• A half-century of research has resulted in simpler and more
efficient algorithms (not always at the same time).

• The Cohen-Hörmander algorithm is remarkably simple (relatively
speaking).

• The complexity, both theoretical and practical, is still bad, so
there’s limited success on non-trivial problems.

18

Decision Procedures
3: Combination and certification of decision
procedures

John Harrison
Intel Corporation

TYPES summer school 2005, Göteborg

Sat 20th August 2005 (12:05 – 12:50)

0

Summary

• Need to combine multiple decision procedures

• Basics of Nelson-Oppen method

• Proof-producing decision procedures

• Separate certification

• LCF-style implementation and reflection

1

Need for combinations

In applications we often need to combine decision methods from
different domains.

x− 1 < n ∧ ¬(x < n) ⇒ a[x] = a[n]

An arithmetic decision procedure could easily prove

x− 1 < n ∧ ¬(x < n) ⇒ x = n

but could not make the additional final step, even though it looks
trivial.

2

Most combinations are undecidable

Adding almost any additions, especially uninterpreted, to the usual
decidable arithmetic theories destroys decidability.

Some exceptions like BAPA (‘Boolean algebra + Presburger
arithmetic’).

This formula over the reals constrains P to define the integers:

(∀n. P (n+ 1) ⇔ P (n)) ∧ (∀n. 0 ≤ n ∧ n < 1 ⇒ (P (n) ⇔ n = 0))

and this one in Presburger arithmetic defines squaring:

(∀n. f(−n) = f(n)) ∧ (f(0) = 0)∧

(∀n. 0 ≤ n⇒ f(n+ 1) = f(n) + n+ n+ 1)

and so we can define multiplication.

3

Quantifier-free theories

However, if we stick to so-called ‘quantifier-free’ theories, i.e.
deciding universal formulas, things are better.

Two well-known methods for combining such decision procedures:

• Nelson-Oppen

• Shostak

Nelson-Oppen is more general and conceptually simpler.

Shostak seems more efficient where it does work, and only recently
has it really been understood.

4

Nelson-Oppen basics

Key idea is to combine theories T1, . . . , Tn with disjoint signatures.
For instance

• T1: numerical constants, arithmetic operations

• T2: list operations like cons, head and tail.

• T3: other uninterpreted function symbols.

The only common function or relation symbol is ‘=’.

This means that we only need to share formulas built from equations
among the component decision procedure, thanks to the Craig
interpolation theorem.

5

The interpolation theorem

Several slightly different forms; we’ll use this one (by compactness,
generalizes to theories):

If |= φ1 ∧ φ2 ⇒ ⊥ then there is an ‘interpolant’ ψ, whose only
free variables and function and predicate symbols are those
occurring in both φ1 and φ2, such that |= φ1 ⇒ ψ and
|= φ2 ⇒ ¬ψ.

This is used to assure us that the Nelson-Oppen method is complete,
though we don’t need to produce general interpolants in the method.

In fact, interpolants can be found quite easily from proofs, including
Herbrand-type proofs produced by resolution etc.

6

Nelson-Oppen I

Proof by example: refute the following formula in a mixture of
Presburger arithmetic and uninterpreted functions:

f(v − 1) − 1 = v + 1 ∧ f(u) + 1 = u− 1 ∧ u+ 1 = v

First step is to homogenize, i.e. get rid of atomic formulas involving a
mix of signatures:

u+ 1 = v ∧ v1 + 1 = u− 1 ∧ v2 − 1 = v + 1 ∧ v2 = f(v3) ∧ v1 =

f(u) ∧ v3 = v − 1

so now we can split the conjuncts according to signature:

(u+ 1 = v ∧ v1 + 1 = u− 1 ∧ v2 − 1 = v + 1 ∧ v3 = v − 1)∧

(v2 = f(v3) ∧ v1 = f(u))

7

Nelson-Oppen II

If the entire formula is contradictory, then there’s an interpolant ψ
such that in Presburger arithmetic:

Z |= u+ 1 = v ∧ v1 + 1 = u− 1 ∧ v2 − 1 = v + 1 ∧ v3 = v − 1 ⇒ ψ

and in pure logic:

|= v2 = f(v3) ∧ v1 = f(u) ∧ ψ ⇒ ⊥

We can assume it only involves variables and equality, by the
interpolant property and disjointness of signatures.

Subject to a technical condition about finite models, the pure equality
theory admits quantifier elimination.

So we can assume ψ is a propositional combination of equations
between variables.

8

Nelson-Oppen III

In our running example, u = v3 ∧ ¬(v1 = v2) is one suitable
interpolant, so

Z |= u+ 1 = v ∧ v1 + 1 = u− 1 ∧ v2 − 1 = v + 1 ∧ v3 = v − 1 ⇒ u =

v3 ∧ ¬(v1 = v2)

in Presburger arithmetic, and in pure logic:

|= v2 = f(v3) ∧ v1 = f(u) ⇒ u = v3 ∧ ¬(v1 = v2) ⇒ ⊥

The component decision procedures can deal with those, and the
result is proved.

9

Nelson-Oppen IV

Could enumerate all significanctly different potential interpolants.

Better: case-split the original problem over all possible equivalence
relations between the variables (5 in our example).

T1, . . . , Tn |= φ1 ∧ · · · ∧ φn ∧ ar(P) ⇒ ⊥

So by interpolation there’s a C with

T1 |= φ1 ∧ ar(P) ⇒ C

T2, . . . , Tn |= φ2 ∧ · · · ∧ φn ∧ ar(P) ⇒ ¬C

Since ar(P) ⇒ C or ar(P) ⇒ ¬C, we must have one theory with
Ti |= φi ∧ ar(P) ⇒ ⊥.

10

Nelson-Oppen V

Still, there are quite a lot of possible equivalence relations
(bell(5) = 52), leading to large case-splits.

An alternative formulation is to repeatedly let each theory deduce
new disjunctions of equations, and case-split over them.

Ti |= φi ⇒ x1 = y1 ∨ · · · ∨ xn = yn

This allows two imporant optimizations:

• If theories are convex, need only consider pure equations, no
disjunctions.

• Component procedures can actually produce equational
consequences rather than waiting passively for formulas to test.

11

Shostak’s method

Can be seen as an optimization of Nelson-Oppen method for
common special cases. Instead of just a decision method each
component theory has a

• Canonizer — puts a term in a T-canonical form

• Solver — solves systems of equations

Shostak’s original procedure worked well, but the theory was flawed
on many levels. In general his procedure was incomplete and
potentially nonterminating.

It’s only recently that a full understanding has (apparently) been
reached.

See ICS (http://www.icansolve.com) for one implementation.

12

Certification of decision procedures

We might want a decision procedure to produce a ‘proof’ or
‘certificate’

• Doubts over the correctness of the core decision method

• Desire to use the proof in other contexts

This arises in at least two real cases:

• Fully expansive (e.g. ‘LCF-style’) theorem proving.

• Proof-carrying code

13

Certifiable and non-certifiable

The most desirable situation is that a decision procedure should
produce a short certificate that can be checked easily.

Factorization and primality is a good example:

• Certificate that a number is not prime: the factors! (Others are
also possible.)

• Certificate that a number is prime: Pratt, Pocklington,
Pomerance, . . .

This means that primality checking is in NP ∩ co-NP (we now know
it’s in P).

14

Certifying universal formulas over C

Use the (weak) Hilbert Nullstellensatz:

The polynomial equations p1(x1, . . . , xn) = 0, . . . , pk(x1, . . . , xn) = 0

in an algebraically closed field have no common solution iff there are
polynomials q1(x1, . . . , xn), . . . , qk(x1, . . . , xn) such that the following
polynomial identity holds:

q1(x1, . . . , xn) ·p1(x1, . . . , xn)+ · · ·+qk(x1, . . . , xn) ·pk(x1, . . . , xn) = 1

All we need to certify the result is the cofactors qi(x1, . . . , xn), which
we can find by an instrumented Gröbner basis algorithm.

The checking process involves just algebraic normalization (maybe
still not totally trivial. . .)

15

Certifying universal formulas over R

There is a similar but more complicated Nullstellensatz (and
Positivstellensatz) over R.

The general form is similar, but it’s more complicated because of all
the different orderings.

It inherently involves sums of squares (SOS), and the certificates can
be found efficiently using semidefinite programming (Parillo . . .)

Example: easy to check

∀a b c x. ax2 + bx+ c = 0 ⇒ b2 − 4ac ≥ 0

via the following SOS certificate:

b2 − 4ac = (2ax+ b)2 − 4a(ax2 + bx+ c)

16

Less favourable cases

Unfortunately not all decision procedures seem to admit a nice
separation of proof from checking.

Then if a proof is required, there seems no significantly easier way
than generating proofs along each step of the algorithm.

Example: Cohen-Hörmander algorithm implemented in HOL Light by
McLaughlin (CADE 2005).

Works well, useful for small problems, but about 1000× slowdown
relative to non-proof-producing implementation.

17

Summary

• There is a need for combinations of decision methods

• For general quantifier prefixes, relatively few useful results.

• Nelson-Oppen and Shostak give useful methods for universal
formulas.

• We sometimes also want decision procedures to produce proofs

• Some procedures admit efficient separation of search and
checking, others do not.

• Interesting research topic: new ways of compactly certifying
decision methods.

18

� �� � � � ��

�� �	
 �� �
 � � �� �� �
 � �� 	

��� � �� �� �� ��� ��� !�� �� " #%$ �� � �� ��& � �� '� ()*+ , *-. /0 /1 2 34 56 78 1 26 09 : ;1 6 2 < /= >? 1 2 ; @ >. 1 ; 5 A8

: 1 B BC 2 BC : 1 B D1 ;E 2 ; 5=. B1 E ;F 6 2 ;0 6 B 5 B CG ;0H 8 E ;0 6 A 2

IJ :K < < / E E 8 1 < AH B B FL M MN

O � � � � �
P Q RST SU V S � �W � � �& ! � � � � XY Z � ! !� � �& � � � � �[!& �� ��

\ V]^
P XY Z � �& \ V] $ �� � W � _� � � � � � �& � �` � $ � �a ^ ^ ^

b � � � �� � ' � �� � �[� ��� ced ! '� � ! � # � � �` �[_� � !d) � _ _� c �� " � c _ �

� � � !� c � ! _� ! "� �[[�� "� � � " � � " �[!& �� �� " � �& _� ! "� �[f �� �g ' � � � ! �
h ij h

kl mn � ��
P o � �� !& � ' � � ! �

P !& �� �� " p S qS

P Q RST SU V S

P � ! � '� � � � ! �

P r �[! ! � s � � �� & � c

t ij h

u vwxy z v{

|} ~� ��� � ~� � }

�
 m� � � m�
 � 	

b ! !� � � [� � � !& � $ � � '� �[_� ! f � � � � � � �� �� c !d � !d � $ �� �

& � f �� ! _[� � �

� � ! "� �[� �� ��

P [� � � _ �� � � �& # ' ![_ �� �& � �` � '� � �&)W c � ' ![_ � � ��

P $� �� � � � � �& � � �& W c � � � [� �

� � � � �& �

P � � � �� � � � �[� �� � !� �

P � ` _� � ' �� � �� a W � � $ � � � & ! '� [� � � � � � ! � � �& ' !& �

� ij h

�
 	 	 � 	 n� 	
 nl m�
 � 	

P b c _ �� '� � 'a �� " � � ' ![_ �� � � �[�& � � � ' � � � ' �� � � �� '� � � � !d �� � !� �

� �& � �& � ' � � � � � � [W �� !d & c � �[� ' '� � 'a �

P � � c ' ![[! � �� � !� � �� � � �& � ' �& �W � � �

 � ! �� � �� [�� � � � ! � �& � f � � � ! � W c�� �� ! ^ ^ ^

 W ��� � ' � �� � �� _� � � � � � ! � ' � � � �� _& � � � ' � �� " ' �� � � �� �� � !� �

P � � c [!� � _� ! _ �� � � � � ' � � W � �� � �� � �� �� "d !� � � � _� ! "� �[[��

 � � �� � � c � � � !� � �& � �� �� a �& ��� � ' � �� �& ! � � � ! � ' ! � � � �� ' c '� � �

^ ^ ^
� ! " � ' �� � � � �� � � ! � � � ! W � _� ! f �& ^

� ij h

�
 � m
 � �
 � � � �
 � �� 	 �

P � � ! f �� " _� ! "� �[�� � � � �� � � � ! � � �� c � � �[� � � �[� � � ' �� [!& �� !d

� � � _� ! "� �[� �& �� � � _ � ' � g ' � � � ! � ^

P � ��& � � � _� ! _� � � � �[!& �� #[� � c& �� �� � � � � �[� � � � ' �)

 r � � ! � � � � ! � �� � [� � � �[� � � ' �� d � � ' � � ! � � ! � & ![� �� �

 � _ �� � � � ! � �� � �` � '� � � ! � �� � _ �

 ` � ![� � � '� � �� � � � ! � W � � $ � � � _� ! "� �[� � �& _� ! _ �� � � � � !d

�� � � � �

 ! � �& �� _ �� �d � � ' � � ! � �� � �� [� ! � ' ![_� �` & � � �

P � � ! !d � ' � � W � ��d !� [�� ! � _ � _ �� !� d !� [�� ! � ' ![_ � � ��
j ij h

�
 �� � n � �

 �	
 � �
 � �l m� �	

P � � � " � � " �d !� � _ � ' �g ' � � � ! � �

 � �& �� �� � �& �W � � W c W ! � � ' ![_ � � �� � � �& � � [� � �

P d !� [�� [� � � �[� � � ' �� [!& �� d !� � � � � _ � ' �g ' � � � ! � � � � " � � " �

P d !� [�� ' !� � � ' � � � � �� �� � � � ! � W � � $ � � � _� ! "� �[� � �&

� _ � ' �g ' � � � ! � �

P s � _ _ !� � d !� W � �� & �� " � � �[� � � �[� � � ' �� [!& �� !d W ! � � _� ! "� �[

� �& � _ � ' � g ' � � � ! � � �& '� � 'a �� " ' !� � � ' � � � � �

� ij h

O� � �� � �
 � �� � � � � � � 	 �� �� � � � m�
 � n � � l � � �

P ! �� _� ! "� �[[�� "� � � " � � " � � � � f � ' ![_� �` � c � � � ` � �&

� �[� � � � ' �

P s �[� � � � ' � � � � ! � �� $ � c � �W ��� � ' �� c& � g � �& W � � ' � � W � ' ![_ �� ��

& � _ � �& � � � #� � � � �� � � �� ! $ � � f �� [!& �� !d �` � '� � � ! �)

P s _ � ' �g ' � � � ! � � � � " � � " � � �� ! �� & W � � � �& & �� �� "& � f �� ! _[� � � � �&

' ! � � � � � � � � �� c $ �� � � ' ' � _ � �& W c � � � _� ! "� �[[��

� ij h

O� � m � 	
 l m � � �� �� �
 � � �

b c _ � � � � !� c � �& � g � �� �� c ! � � � !� � � � ! � �

P � � ! "� �[� �� � _ �� �� c d � � ' � � ! � �� � �� [� � $ �� � � � � � �� ��

[� � � �[� � � ' �� [!& �� # ��� ! � " � �� [�� � � � ! �)

P r � _ � �& � � � � c _ � � �� � � � � � �� �� � _ � ' �g ' � � � ! � � � � " � � " �

' � � �` _� � � �& �� � ' �� c _� ! _ �� � � � � !d !W � � ' � � � �& _� ! "� �[�)

P � �� � c� � ! $ �� & � ' !� � � ' � � � � � � � � c _ �� '� � 'a �� "

!d ' ! �� � � $ �� � �& & �� � ! � �� _� ! !d ��d !� [� � � ! �)

 !� � ! � � � � �& �� �� " s � [[�� s '� ! !� �

b � � $!� � & � � � ! � c � �� � �& c � ! � � � b c _ � b � � !� c d !� _� ! "� �[[�� " �
	
 i j h

O� � m � 	
 l m �� � �

 � � "� � � � f �� � � � " � � " �& � � � " � �& d !� � � '�� � � _ _� � ' � � � ! � �

#[!W �� � ' !& � �` � '� � �& ! � & �� �� � � � _� � �d !� [�)

P " �� W � " � ' !� � � ' � � ! �

P ��� ! � " � c _ �� " � � ' ![_ �� � � �[�

P �� � � � ' '� � 'a �� " !d W c � �� ' !& �

P& c � �[� ' '� � 'a �� "

 � � '�� �� c _ !� � ' � � � # � � �& W ! ` � g� � $ �� �)

	 	 i j h

�� � � � ��

P �� W � � � !d p S qS & � � � " � �& d !� �[�� � ' �� & �

� � � � � � � � �� � � !& c � �[� '� ! �& �� " ^ ^ ^)

P & & �� � ! � �� d � � � �� � �d !� �[�� � ' �� & ��

� � ![� ' �� � � � � ' � � ! � � � _ �� � � �� � � � & � � � � � o ^ ^ ^)

P p S qS \ S R� � � � " ! !& � �� " � � d !� f �� �g ' � � � ! �

 � �[_� � � _ _� � � � ^ ^ ^

 � f �& � � ' � !d � � '�� �� c� � � � �� �& # � ![[! � �� �� �� � �)

 [� � c �[�� � ' �� & �W � � �& ! � p S qS \ S R� !� � �[�� ��

� � '� � !� ! " � � �

	 h i j h

u vwxy z v{

� �� �� � } � �� � � � �� � � � � 	
 �

kl mn � ��
P !� � ! � ��� ! � " � c _ �� "

P r � � �� � � � � _ _� ! � '� � � #& � � _ f �� �� � �� �� � ! $ �[W �& & �� ")

P � �� [!& �� !d p S qS

	� i j h

 �� v��� �p S qS

� ~� � } � ~ �� � } �

� 	
 l m 	 m �
 � m � � � �

b c _ � � ! � �& � � � ��

�� � � �� [�� � � �� " _� ! "� �[!d � c _ �� � �� � f �� � � � � � � !� �� !� � � �

!" #" � ' ' � � � � ! � g �� & !� � [� � � !& !d � � ! �� � �� � !W � � ' � �� $ � c �

�� ' ' � �& �

� � � �� & c � �[� ' �� � !� �[� c ! ' '�� �

P � ' ' � � � � ! g �� & � !� [� � � !& � !d � � � � � !W � � ' �

#� � � � � � $ y � �% ��� x v z&' w v (x � ��)

P �� ' !� � � ' � �� �� � � � � � � � ! � !d �� � � c � #� � � � � �) z z * +, x � z v &' w v (x � ��)
	 � i j h

� � 	 m � � m� � m�
 �
 � � � � � � 	 � 	 m � m� � � � � �

b c _ �� "� � � �d !� �� � � c �� � � � �[_� � � � � �� � � � �

�� 	

 - � � � ; � �

�� 	

 � �� � � �
 - � � � � � �

�� � � � �
 � 	 � � � �� � � E ;6 5 � < 0 1 6 5 D ; 1 D 2 ��� �- ; 1 1 - �� � � ; 1 1 � �� � � � �"! � �; 1 1 � � M � � � � �� �;1 1 - � ; 1 1 � �;1 1 - � M � � � - �� �< @ 20 8 E # B / 0 # $ 1 6 5 0 F 5 � ; 1 1 � � M � # �� �

�

	j i j h

� � 	 m � � m� � m�
 �
 � � � � � � 	 � � � � �� � � � � � �

 �� � %&'(�� � (%&*) � � $ (%,+ &'�� � (%"- &) � � $ (#)'�� �) �� � ('�� � %- &) � � $ #)'�� � (%"- &^ W '�� � %- &) � � $ #)'� � � � � �) z z * +, x � z v &' w v (x � ��

;1 1 �
;1 1 -

. /0 0

1 2"3 4
. /0 0

1
; � M

� � M
5

; � M

	 � i j h

 �� v��� �p S qS

6 �7 � � � } ~8 � � � �8 �9 �:

; ml � �� � m� � � � �
 � � � � � � �� � n � m �
 �� 	

b c _ � � � � !� c � � � " ! !& d� �[� $!� a � !d !� [�� � c �� �& c � � � � �& �� � c �� "& � g � �� � ! � � � �� " !� �� � [� � �& _� ! _ �� � � � �^

P b c _ � � ! � �& � � � �

P � _ �� � � � ! � �� � �& � ` � ![� � � ' � �[� � � � ' �

P p S qS � p S qS \ S R� f �� � � �� [� '� �� � �

P (c � �� ' !& � f �� � g �� �

P s � �& W ! ` !� � �� � $ �� � [� '� � � � �[�

h
 i j h

� � �� �� � �� 	

 !& �� � !d _� �d !� [' ![_ ! � � � � � � � �� " _� ! !d � � � � �� � � � ��

P (�� �� � ! � � ' � # b ^ � � _ a ! $ � � � � '�) � � �� " o � �W �� � � � � � �

� � � ��� � � � �� �	 � � 	
 ��
� ��
 	 �� � � � �

P � !� [� f � � _� ! � � ' � # b� � �� �& � ! " � ' � ` �� � !) � � �� " \ V]� ' �� � �g ' � � � ! � � � � � f �� � � �� � ! � � �� � �� d �� � � ' � _� ! _ �� � � � �

P � �� � � ' �� � � � #�� ^ (�� � � � � s ! _� � �� � � � _ !� � �) � � �� " \ V]

� � � ��� � �� � � � � �
 �� � ��
� � �� 	 � � 	 �� 	 � � � � �� � �

� � � ' � � ! � �� & � g � �� � ! � !d � �[� � � � ' � #p ST S RU S)

h 	 i j h

� � � n � � � m�
 � 	

P (� � � �� � �& �� �� � �& �� " !d � �[� � � � ' �

P � � �d �� d !� _� ! "� �[f �� �g ' � � � ! �

 ' !� � � ' � [!& �� !d _� ! "� �[�

 �& � � � �d c _� ! _ �� � � � � f �� �& d� ![� c _ �� '� � 'a �� " � �& _� ! _ �� � � � �

$ � � '� � � �& � ! " � ' �� f �� �g ' � � � ! �

P � ![_ �� �� � � f �� � g �� � �� � _� ! "� �[� � � � � �� �� �a �� c � ! W � $� �� � � �

�� �d � � ' � � ! � �� $ � c

h h i j h

� �
 � � � � 	 �� �� � � �� � � �
 � ��

P r � � _ �[W �& & �� " � d !� [�� � � � � � ! � !d � � � _� ! "� �[[�� "� � � " � � " �

' � �� �� � � � � � $!� a ! � _� � �d !� [�)

 W ��� � ' � � c � � � ` �� � �d !� [�� � � �& �� � � � _� ! !d � � � � �� � � �

 b� � � �� � � � ! � d� ![� c � � � ` � ! � �[� � � � ' �& ! � � W c � � �� � �� � ��

d � � ' � � ! �

P s� �� � ! $ �[W �& & �� " � & �� � ' �� � _� � � � � � � � � ! � !d � � � _� ! "� �[� � �

� ! " � ' �� !W � � ' �

 � � ! "� �[� ' ! � ��� � ' � � ! � � �� � �� _� � � �& � � � ! � � � � ! � �

 b� � � �� � � � ! � d� ![� c � � � ` � ! � �[� � � � ' �& ! � � � � � � �[� � �� � � f ��
h t i j h

�� �� � n�

� �� w z vx v , +� x *'

�� �� � �� � � � � �� 	 � �� �� � �	 � � �� �� � �� ��

, v! *� x � w"

�� � � � �� � �� � � " �� � � � �� � !W � � ' � !� � �d �� � � ' � � �� � � � � � � _
h � i j h

�� �� � n� � �� � � � � 	� � � � �

 W ��� � ' � � c � � � ` �� � � �

� �� � �� �� � 	
 � ��
 � � �� � �� �� � �

� � � �� �� �� � � � �� � �

� �� �� �� �� � � � � �� ��

�� � � �
� �� �
 � � � � �� � �� �� � � � � � � � � � � ��
 � ��

s � � 'a � �& � � � _

� �� � � � �
 � �
 � � �

� �� � � �� � �
 � �� � ! � � �� � �
 � � � "

h � i j h

� � n � m�
 � � n 	 � � � � m� �	

�	 � # �� 	 � � �� � �� �	 � �� 	 # � � � f� � � � �) ��& � ' � � f �� c& � g � �&

�	 � $&% '(') � � $&* + ' % $&* + + �	 � $&% '(', � 	 $&- + '. � � $&- + +

�	 � $&% '('/ '0 	 � $&1 + +

�	 � $&% '('2 � � $/ ' 3 + '($ 1 ' 3 + +

�	 � $&% '('/4 '. � � $&- 4 + + �	 � $&% '('/5 '. � � $&- 5 + +

�	 � $&% '('� �� $/4 ' � '/5 + '. � � $ �	 � � $&- 4 ' - 5 + + +

h � i j h

�l � � m�
 � � n 	 � � � � m� �	

�	 � # �� 	 � � �� � �� �	 � �� 	 # � �)� � � � �	 � � � � � � '�� � � f �� c& � g � �&

 �6 ! 78 7 	
 � ! " " � 9 �6 � ! ! " "

 �6 ! 78 7 �� � !� " " � 9 �6 � ! �� � !� " "

 �6 ! 78 7 � � � ! � 7 � " " � : ; �<= �6 ! 78 7 � "> ? �=

� � � � @ � � � �

� 9 �6 � ! � � � � " @ � � � �

� 9 �6 � ! � � � !
 " " @ 9 �6 � ! 8 !
 7 � " "

� 9 �6 � ! �� � !� " " @ � � � � A 9 8 � � � � � �� 8
 � � � �

 �6 ! 78 7 � �� ! �B 7 � � 7 �C " " �

: ; �< = �6 ! 78 7 �B " 7 �6 ! 7 8 7 �C " > ? �=

9 �6 � ! �� � !� B " " 7 9 �6 � ! �� � !� C " " @ 9 �6 � ! �� � ! �6 � � !� B 7� C " " "

� @ � � � �

h j i j h

;� � n n
 � � � 	� � �� �

� � � � � � �� � � � ' � � �� c � � �d !� � [!� �& �� � ' � d � � ' � � ! � �� �� � �� _� � � � � � ! �

P � ` _� � � � � ! � � !d �� � � � ' � c _ �D EF � G �� �� � �� � �� _� � � �& � �� ! " � ' ��

�� � � " �� �

P HI J �K FL �� � �� � �� _� � � �& � �� �d �� � � ' � f �� � � �

� �� �
 � � � � � � � � � � � � ��
 � ��

P s � � 'a � �& � � � _ �� � � _� �� � �& �� � $! _ �� � �

� �� � � � � �
 � �
 � � �

� �� � � � � �
 � � �� �

� �� � � �� � �
 � �� � ! � � �� � �
 � � � " � ! � � �� � � �� � "
h � i j h

�l � � m�
 � � n � � m� � � �� m � m�
 �

� � ��� � � � �� �� 	 �� � � � � � � � � � �� � � � �� �� 	
 � � � � � � � � �

�� �� � � � �� ��
 9 �6 � �� �

� � � � � � �� � � � �� ��
 � �� �� � � � ��� � � � �� ��� � � � ��� � � � �� �� �� �� �

� 9 �6 � ��� �� 9 �6 � ��� � � � @ 9 �6 � � �6 � � ��� � � � � �� @ � � � �

� �� � � � �� ��
 9 �6 � ���� � � � � �� � � � �� ��
 9 �6 � ���� � � �

� �� � �� � � � �� ��
 � �� �� � � � �� � � � �� �� �� �� �

9 �6 � � � � � ��� � � @ !� � � "� �
 " � � � �# "� �$ �� @ � � � �
h � i j h

� � � � �% 	
P s� �� � ! $ �[W �& & �� " � � a � � �& f � � � � " � !d �� � � � ' � � �� c � � �'�� � f ! �& � � c � � � ' � � ' � � ' !& �� " �

P r � _ � �& � � � � c _ � � �� � ! $ � � ! � � � � '� �� � � � ' � c _ � � � ! �` _� � � � � ! �

� �& � f ! �& � � � � � � � 	 & � � � ! �� � � � � ! � �� & � � _ �[W �& & �� "

& v' v z v� w v"

P �� �� � ! $ �[W �& & �� " !d p S qS �� � # s � � �W � � � & ! � � �� � � �

� ! ! _ _� ! � � ' � # (^ (� ' !W � � � � �[� " � �)

� � � ��� � �� � �
 � �
 � �
 � �
� � � �	 �	 � � � � �� � �

t
 i j h

 �� v��� �p S qS

) � � * 8 � � : � } � �� � � � � � � � 8 * :

+ �	 � � �
 �� n � m � �� 	 � � � � � nl � 	

,- ./ / 0/ �� � � � . �1 � 2	 �� � �� � � � .

� �[_� � �� � �� �� � � ' � � � � �	 �� �� � � � . 3 �� � � � . � � � �

4 56 0/ _� �[�� � f � � c _ � �� �� � � � � � � � � � ^ ^ ^

� �d �� � � ' � � c _ � �� �� � � c � ��& �` �& W c � c _ � � � '� � � � � �^

78 9: 9 ; 9 < 0 < .- = 0/ � � _� � � � � � �& W c� ! " � ' �� f �� � � � !d � c _ � W ! !� � � � ��� � � " �� �� � �� � ^ ^ ^

> 0? 08 0@ A 0 < .- = 0/ � � _� � � � � � �& W c � � �& & � � � � #� c _ � � �) �� � � �

� � � _ !� � � � � �� � f �� � � #� c _ � � � � �)

t h i j h

; m � m�
 � �[_� � ' �� � � � !d � ! ' � � � ! � � ' ! � � � �� �� " f �� � � ��

� ; . A� � ! ' �� f �� � �W � � � � _ �� �[� � �� �

� - �� .- < .8 9 .� - 0/ ' !� � � � _ ! �& �� " � ! �� � � � ' g �� & �

� 0 .6 � � � ' �� � d !� � � �& & � � � � !d � � !W � � ' � � �& � g �� & � !� d !� � � �

�& & � � � � !d � � �� � � c � �& � � ��& �`

� � '� �� � ! ' � � �& �& & � � � � � � � � � ! ' � � � �& � ! � � � � $ � � '� " � f � �& c � �[� '

� c _ � ��d !� [� � � ! � � !W � � ' � # '� � � �) !� �� � � c # � �� � � � c _ � !d �� �[� � � �)^

 � �W � � !d �� � ! ' � � � ! � � #� c _ � �� �) ' ! � � � �� � � g � �� � � � � !d �� � ! ' � � �&

�& & � � � � � � $ �� � ' !� � � � _ ! �& �� " � � " �^

t t i j h

�
 � �l m � m�
 �

P� � �& � � �& $� �� � � �� � � � �� � � �� � � � f �� � �

P _ ! � � �W � � �` ' � _ � � ! � �� W �� � f � !�

�� �� � � � � �� � � � � � �` ' � _ � � ! � �� f �� � � � �& � �� � � �)�` ' � _ � � ! � � �� � �� � ! � � �d �� � ! [!& �� ' ! � �� !� � ! $

# 	 z v *
 � w �� x �� y v ^ ^ ^)

�� v *

p S qS _� ! "� �[� ' � � W � �� � � �� � � �& �� � # � �� � �a �)� � � " � � " � $ �� �

d � � ' � � ! � �� f �� � � � �� �d �� � � ' � � � �& �` ' � _ � � ! � �^

b � � � � � $ � � � X Y Z _� ! f �& � � � �& $ � � � � � � � �& �� Q RST S U V S ^
t � i j h

�
 � � � n �l � � m�
 � 	

� !� � � � _ ! �& �� " � ! _� �[�� � f �p S qS ! _ �� � � � ! � �

P � � � � � 	 � � � � � � � � �	 3 �� �

" � � ��d !� [� � � ! � d� ![� � � � � " �� � � � �� � ! ' � � � ! � � �W � � �

- � � �& �d �� � � f �� � �

P �� �� � � �	 � � � � � � 	 3 2 � � �� � 	 3 � �

� � �� [� � � �	 �& ! � � � ! � " � � �� � � � �� g � �� � '� � �� � � � � � � � � �

�� � ! ' � � � ! � � �W � � � !� ! ! a � � � � �& c � �[� ' � c _ � !d f �� � �

P � 	 � �	 � � � � � � 	

� � � � � � 	 � � � � � 	 3 � � � 3 �� ��

� _& � � � � � � �� !� �

t � i j h

�� �� � n� 	 � � m� � � �� � m�
 � 	

�� � � # # # �= � �> . �> K � A6 �� # # # �

< ; � <= �K � A ! 8 � � # # # �

< ; � <= �K � AL 8 � � # # # �

�� < �� � ? � . �

� � � ��
 � � �

�� � � # # # � ; ? � � � �

� � � �� � � � �� � � # # # �

> ? �= �

� � � � �

?� �� �
 � � � � � 8 K � A ! �= � . # # #

�0 � � ?� �� �
 � � � � � 8 K � AL �= � . # # #

�0 � � � ; ? � � � �

� � � 8 �

> = ?0 � ���� � �� � # # # � � � ;� � # # # �

��� �

�� �> = ?0 � �� � �

� � # # # � ; ? � � �� �
� # # # � � . �

> ? �= �� �
� � �� �

��� �

t � i j h

�
 ��
 � m� � 	 m � m�

� � � ' � � ! � �� �� � �� _� � � � � � ! � !d [!& �g �W � � f �� � �W � � �� � �

� �� 1 � $� � � +�� 3 1

� � ! f �� " � $� + � !� & � �d � �� �` � '� � �� " _� ! "� �[�

�� � $	� � $� + +

t j i j h

� n � �	 � �
 	 n� �

� �� � & �� �� � � � f �� � �W � � ��

$� '
 + �� $&1 '� + � $� � � + $
 � � +�� 3 $ 1 '� +

� !� � � ' � $ � � � & � � �� � � � f �� � �W � � � ' !� � � � _ ! �& � !& � � �� � � � � ! ' � � � ! � �^

� � ! f �� " � �
 �d � �� $� '
 + �� $�� '4 + � � � ! � �� �� � � 4

% �" " � 	 � v" � �y x � ��

� $&% � �� � � 	 + � 3 % �� � � 1 �% $� +� � � '
 �� � �% $� +� � ��

� � � � ! � �� " ! � � f �� � �W � �� � � � � �� � � � � �� c � �� " % � �� �� / � � $� +
t � i j h

� � �
 � � �
 �� n � � � � �

P r � � �� � � � � �d �� f �� � � � #� � / 3 � / ��� �) ' � �� �d �� � ! � � � � �[�� ! ' � � � ! �

P # �� � �W � � � �� � � � _ �� � � �� ! ' � � � ! � � # ' �� � W c f �� � �)

P � ! _ ! � � �W � � ' ! � f �� � � ! � W � � $ � � � W � � � ' � c _ � � � �& � �d �� � � ' � �

P r � � �� � � � g �� & � ' !� � � � _ ! �& � !& �� �� � � � � ! ' � � � ! � � 1 3 � � �

P 1 3 ! �� c �` _� � � � � ! � d !� � � �� ! ' � � � ! � ' !� � � � _ ! �& �� " � ! � g �� & 3

1 3 �� � �� _� � � �& � � � �
� 1 �

$ �� � � � � � $ "� !W �� �� � � � f �� � �W � �d !� � � '� g �� & 3^

� !� � ! $ �� " (�� �� �� � # � � � �� � ! (!� � � � � � � _ a ! $ ^ ^ ^)

t � i j h

�� �� � n�
s � � �& �� & p S qS [�[!� c [!& ��

�� �� � �� ! " #$ % � &'

! " #(�) %

! " # *+, � " -. ! " #+/ , %

�0 � " - . � %

12 	
32 4

52 4
678 9:

;< < ; = >? @AB C D
E

E
E

FG ;H H >I D
JK E

L K B M G G
N O8 P

�
 i j h

�� �� � n� �� � � � � � � � � � �
 � � �
 �� n

b � � � � � _ � � ��� � ' � �� �& �� � � _ �� � � �[� _ � ��& �` �& W c �& & � � � � � � �' ! � � � �� �� " _� �[�� � f � f �� � � � !� � �d �� � � ' � � !� �� � � c �^

12 	
32 4

52 4
678 9 :

� E � � � � �� �	 	
� �� �

� � �� � � � � � �� �	 	
� �� �� ��

E
E

E

� � � � � �

 � �� �� �	 	
� � >� �� �� � D

� � � � � � �

 � ��� �� �	 	
� � >� �� �� �� �� D

;< < ; = >? @A B C D FG ;H H >I D � I � � � �� � �� � �	 	
� � � � �� �

� 	 i j h

u vwxy z v�

 	 � ! � " # �

kl mn � ��
� ! $ � !& ! _� ! !d � !d p S qS _� ! "� �[�$

P p %& _� � � � � � � � � ! �

P Q RST SU V S �� '� �� � ' � �� � W � � �& ! � XY Z

P o � � �� _� � � �� "p S qS �p %& _� ! "� �[� �� XY Z

P s !� f �� " _� ! !d !W � � " � � � ! � �

� t i j h

Q RST SU V S

�' (� � �: � } ~8 ~� � }

�� � � �� � �
 �� n � � � � � l � �

� � � � � � �� � �
 2� � � � 	 � �
 � �

P s �� ! � "� c� �� � � �& � ! � � � _� ! "� �[[�� "� � � " � � " ��

�� '� �& � �p S qS W ! !� � � � �` _� � � � � ! � $ �� � ! � � � �& � � � � ' � �

P o � � � "� � � �& � ! � � � � ! �� ' � ' !& � � � _ � ' � �� ' ![[� � � � � � " � !� �& W c� � �p S qS ' ![_ �� ��

P r � � �� � � � '� � � � � � !d � _ � ' � g ' � � � ! � ��

_� � � �& _ ! �� ' ! �& �� � ! � � � '� � � � �� f �� � � � � � �d� �[� ' ! �& �� � ! � � �

"� ! �� f �� � �W � � � ^ ^ ^

P s _ � ' � �� �& & �� � ! � �� ! _ �� � � !� � #�d !� �� � � � !� & � �� � �� � � ^ ^ ^)
� � i j h

�� � � � �� � n� � � � � n� � m �
 �� � �l �	 �

��
 � �� � �

� �� � �� � � � ��
 � �
 � � �
 �
 � � �� � 	

�� � �
 �
 � � �

� �� � �� � � � � �� 6
 � �� � 8
 � ��

� � � � � �� � � � 	

� 6 � � � � �
 � � � �
 �
 � � �

� � � �� � �
 �
 � � � � � �� � !�
 �
 � � � "�

� � �
� �� � � � � � � �� � � �� ! �� � " �

�
 �
 � � � � �

�

� � i j h

�� �� � m�
 � � n 	� � �� �
 �

�� � ���� � ��� � �� � ��

� �� �� ��� !" # $

�% �& �' � �� � � � �� �(�� $

�� (� ��)" * �� & +� �� �(�� ,- - � �� �(�� " " * �� & +� �� �(�� ,/. $

� � 0 (�� +1 � 2 �� & � 345 �� � 3 � �(,

� ! � �� �(�� - - � �� �(�� " " * �� & +� �� �(�� , $

�� �

��� � � � � � �&6 � 3 � & � �6 + �(3 , 3 � � �6 1 � 2 �� & � 3 45 �� � 3 � �(7

�' +� �� �(�� !" , 7� �� �(�� ." $8

� � � 7 3 � � �6 (� 6 1 � 2 �� & � 3 45 �� � 3 � �(+ , $ 8

8

� j i j h

�

 � 	
� ��� � � 3 � 3 � � �(3 � � 3 + �(3 5 , 7

�(3 � �� (3" # 9 �% " : $

�� �� � � �; �(� �� � �(3

� � �� (3 !" # - - 5 !" � �� (3 � � �� (3 - -

� �% " " + � �� (3< : ,� + � �� (3< : , $

� &� ��� � � 5 . �% $

� � �=>?@ A + �%)" 5 , 7

� �� (3< < $

 �% " �% < B� � �� (3< : $

8
�� 3� � (� �� (3 $

8

� � i j h

�

 n 	 l 	 � � �� �

� �d �� � � ' �� � � � �� � �� � � � �� �	 � � �
 �� �� � � �
 � �� � � � � �

 6 F 6 ; 5 � /1 = @ >J B B 5 26� �H 8 B 5 >� ; 76 = � B� >G 6 AH ;8 F K 1 5 20 >� B 8 � 6 56 1 @ >� ;1 @ I # 8 ; 7 8 5 2 > � # , / 20 ; 5G # 8 6 5 B > ; 5= K 1 6� : B F F # � < I I I >L M MN � #

P r ! '� [� � � � � � ! � # �[� & ! ') � � � �� # �[� � � ��)

P r c � �[� ' '� � 'a �� " #& �d � � � � f � ' !& �) # �[� ' � � � � �)

P � �� � � �� �� � ![� � � ' f �� � g ' � � � ! � # � s � � (� f � #��) � �� � � �)

P b ! � �� �� � �� � ' � � f � f �� �g ' � � � ! � # � ! ! _ � (o # � � (� 'a �� � � a � � ! �)

� � !p %& � _ � ' � g ' � � � ! � !d p S qS \ S R� � o # � ^ � !� � � � � �[� " � �)
� � i j h

Q RST SU V S

� � �9 � ~ � � ~� � �� 8 : �� � } �� �

�� � �� � m

 n

 " � � �� � '� � � " � � " �d !� _� ! f �� " � � � ! � � � �& _� ! "� �[�

(^ � � ^ � �� � � � �� � � � � � � � � �� �
� � �
� �

P s _ � ' �g ' � � � ! � � [�� � �� � !� � �& _� �& � ' � � �� ! " � '

P (!& c !d _� ! "� �[�� d � � ' � � ! � � �� �d �� � � ' � � � �` ' � _ � � ! � � �� �W �� � �� � � �� � � ! � � ^ ^ ^

P s � " � � � �� � !d _� ! "� �[�� �` � � �& �& $ �� � _� � � _ ! ��� ' ! �& �� � ! � � �

 � � � ' � � #� � �& � $� �� � � � f �� � �W � � � � �` ' � _ � � ! � �)

� 	 i j h

�� � � � � � � m � � 	

P [!& �� �� f � � $!d _� ! "� �[� � �& � _ � ' �g ' � � � ! � �

P � � � �� � � � � ��! ' � � � � _� ! !d !W � � " � � � ! � � # _� � � _ ! �� � � � � �� � � ! � �)

P � � ! !d !W � � " � � � ! � � " � � �� � � �& d !� �� � �� � ' � � f � !� �� � ![� � � '

� � � !� �[_� ! f �� �� � # s � � ! � � � � � � �� �� � s �[_� �d c �� � � # � c^ ^ ^
� h i j h

� � � � � � � � � � � �
 � ��

P !& �� � � �p S qS _� ! "� �[# � � � W �d !� �)

P !& �� � � �p % & � _ � ' �g ' � � � ! �

P b� � � �� � � �p S qS �p %& _� ! "� �[� �� � ! X Y Z � � � ! � � � �& _� ! "� �[�

_� � � �� f �� " � �[� � � � ' �)

P � � ! !d � � � � � � � _� ! "� �[[� � � � �� � � _ � ' �g ' � � � ! � W c " � � �� � � �� "

_� ! !d !W � � " � � � ! � � �� XY Z

� t i j h

� � � � � � � � � �� � � n � � �� � m� � ml ��
� ! �� ' �p S qS p %&� � � �� � ' !& �� !d p S qS ��� R V q� R

� �� �� �� �	 O
 �� � P O 9 6 �� 9 �	 O

o � �� � � ' � � � � ! � Q RST SU V S

� � ! !d � W � � " � � � ! � �

X Y Z

o � � �� � ' � � f � � � � ![� � � ' _� ! !d $ �� � � R V q� R

� � i j h

Q RST SU V S

�� � * �� �� �� � � � � � 8 * :

�� � � � � �� � m �� � m� �
 � �

� ; � ; : � � � �
 � � � � � � �� � � ��

� ; � ; : � � � �
 � � � � � � �� � �� � � ! � � ��
 � � " � � �

 � � � � � ; � �
 � � � �> � ? � � �
 � � � �

� � � � � � �
 � � � � ; . � �� � 8 !
 � � � �� 7 � � � � � "

; . � � � � � � � !
 � � � � 7 � � � � � 7 � �
 � � � � ! � " "

; . � � �� � � �� � � � � !
 � � � �� 7
 � � � � " �

�� � � � . ; 0 0 � � ?< �� � 8 � � �� � 7
 � � � � �� � �

�� � � � . ; 0 0 � � ?< � �� � � �� � � � � � � �� � 7 � �� � � �� � �

�� � � � . ; 0 0 � � ?< � � � � � �
 � � �

�� � � � . ; 0 0 � � ?< � �
 � � � � � ��
 � � � �

 � � � �

� � i j h

+
 � �
 � � �
 � �� 	

�� � � � . ; 0 � ; � ; : � � � � � �� �� � � � � �� � �
 � � �

�� � � � . ; 0 � ; � ; : � � � �
 � � � �
 � � � � �� � �
 � � � � �
 � � � �� �

�� � � � . ; 0 � ; � ; : � � � � �� � � ��
 � � � �
 �

0 � �
 � � � � � � �� � �� � � � � � ! � � ��
 � � " � � �

0 � � � 8 � � � �� �� � � �
 � � � � ? .

� � � ? .
 � � � � � �
 � � � �
 � � �
 � � � � � 8 � ! �� � � "
 � 8 � � . �

� � � � � � �
 � � � �

; . � �� � 8 !
 � � � �� 7 � � � � � "

; . � � � � � � � !
 � � � � 7 � � � � � 7 � �
 � � � � ! � " "

; . � � �� � � �� � � � � !
 � � � �� 7
 � � � � "

�

� j i j h

� � � � 	 n � m�
 �
 �� � � �� 	 	 �
 � 	

� ! �& �� � ! � � � ! _� ! � � ' � � ' ' � � � � �& � f ! �& � � � � �[� �` ' � _ � � ! � �

�^ d � � � � �� � � #� � � �d �)

�^ d) f � � � � �� � �d �) # � � � � 	 �d � f)

� % � & � � � � �� � � - � � � #� � � � � 	 � � � � �� � ! ' �) �

#� � � � � � � � �� � � c �� � � �)

� % � &) f � � � � �� � � - � � � #� � � � � 	 � � � � �� � ! ' �)

� �� �� � � �	 � �� � ! ' f #� � � � 	 � 	 � � �	 �� � ! ' �) �

�� � � c !W ��) #� � � � � � � � 	 � �� � � c !W � � � f)
� � i j h

� � � � n � � � � m�
 � 	

P � ��& � X Y Z � _ � ' � g ' � � � ! � d !� � � '� p S qS [� � � !&

 � ![_ � � � � $ � � '� f �� � �W � � � �� �� � �& !� $� �� � � �

g �� & f �� � �W � � � � �� � � c f �� � �W � � � � �� � ! ' ^ ^ ^)

 b� � � �d !� [� � � �p % & � _ � ' �g ' � � � ! � �� � ! _� � � _ ! �� ' ! �& �� � ! � �

P � � � _ �� ! ' �� � �& [!& �� �� � _ _� ! � '�

P � � �& � � _ �� � � �� ' !� � � ' � � � � � !d � � '�� � � f �[� � � !& �

� � i j h

�� � 	 �� �� � � � m�
 � �
 � � � m�
 � 	

� ; � ; : � � � � � �� � � �� � � �� � �
 �
 6 �� �� �

� 8 � �
 � � � � � �� � �

� � 	 	 � 8 � �
 � � � �

	 �� �
 � � � � � !
 � � � � 7� 8 � 7 � �
 � � � � ! � �� � " "

	 � �� � � ��
 � �
 � � ! � �� � ��
 �
 � � � 7� 8 � " �

� � �� � � ; � � � �� � ��
 �
 � � � 7
 � � � � > � ? � � � � �� � ��
 �
 � � �

�
 � � ! � �� � ��
 �
 � � � 7� 8 � " �
 � � ! � � � � ��
 �
 � � � � 7� 8 � "�

	 � �� � � ��
 � �
 � � ! � �� � ��
 �
 � � � 7� 8 � "

	 6 � � � � �
 � � � !
 � � � �� 7 � �� � ��
 �
 � � �� 7 � �� � ��
 �
 � � � 7

 � � � �� � � !� 8 � " " �

�
 i j h

Q RST SU V S

� � � � � } � � � � �� �� � � �8 ~� � } :

�� � �
 � �� 	 �
 � �� � � � � m� �
 � �

� . � / < � ?� � �
 � � � � � � � �� � � ��
 � � � �
 � � �� � � � � � �� � � �
 � �

� �� . ? � ? � . � �� � � � ! � 6
 � � � �
 � "�

� �� . ? � ? � .
 � � � ! 8 � � �� � " ! �
 � � � " � �

: ; � <= > ? �= � � � � �� �� � � � � � �
 �� � �� � 8
 �
 � � � � � . � �

� �� . ? � ? � . � �� � � �� � � � � ! 8 8 � � � �� � " � �

� �
 � � � 7
 � � � 8 � �
 � � � � 8 � �
 � � � � 8 � �

	 � : : ; � � � � � � � �� � � � � � �
 � � � �

� ! 8 8 � � � �� � " !� � �

 � � � � " ! �
 � � � " 7

� � � � � � 8 � � � �� � � �� � � � � 8 8 � � � � � � � � 8 � � �
� h i j h

� � �� � �
 � �� m�
 � �
 �� n � �

 ; � ? ; � 0 � � � � � �

� �� . ? � ? � . 6 �6 �� � � � 6
 � � �
 � � � � �

� �� . ? � ? � . 6 � � �� � � � �
 � � � � �� � � �

� �� . ? � ? � . � � � 8
 � � � � !6 � �6 � � �� � � " ! �
 � � � " � � 6 � �

� �� . ? � ? � . 6 � � � � �
 � � � ! 8 � � �� � " !6 6 � �6 �6 �� � " !6 � �6 � � �� � � " � �

� �
 � � � 7
 � � � 8 � � � � 8
 � � � � 6 � �
 � � 6 �
 � � 6 � �

� �� . ? � ? � .
 � � � �� � � ! �
 � � � " � 6 � � �� � � � � � � � � @ �
 � �

	 � : : ;
 � � � �� � � � �� � � � �

� B �
 � � � 7 B �
 �� � � � 8
 � � � � !
 � � � �� � � B " �

� t i j h

� � � m� �
 � � � �� � � m� � �
 � � � � � m� �l n � � � �
 � ��

� . � / < � ?� � ��
 � � � 9 �� � �

�� � � �� � ��
 � � ��
 � 8 � ��
 � � � � �� � � ��
 � � � � �

� �� . ? � ? � . � � �� ! � � ��
 � � " � � � � � � � ��
 � � � �

: ; � <= �> ? �=

� �� � � �� �� � � � � ��
 � 8 �� 9 �6 � �� � � ��

� � �� � �� 9 �6 � �� � � �� � � � �

� . �
� �� . ? � ? � . � �� � � ��
 � �
 � � ! � �� � ��
 �
 � � � �6 �6 �� � " !� 8 � �
 � � � "

� � !
 � � � �� � ��
 �
 � � � � 8 � "� � 	 �

� � i j h

� l m
 � � m� � � �

 �	

P � ` �� � ' � � � � ` � ![� � � ' g� ��� !� & �� � � � !� c d� ![� � � \ V] [!& ��

P � � � � � �� � ![� � � ' _� ! f �� #[� ��� c � �� �� �� Z) �� !� & �� � !

f �� �& � � � _� ! !d !W � � " � � � ! � �

� ! !& � � ��� � � ! � �[�� � _� ! "� �[� # � !� � �� " � � � � � � _ �� � � ^ ^ ^)
� � i j h

u vwxy z v�
� � } �� : � � }

� � n � m� � �
 �%

b ! !� � $ �� � � �[�� �� " ! �� �

P � s � � (� f � # � ![_ � �)� ! �� c _ �� � � �� ' !� � � ' � � � � � � �� � !� �

P � �� # �� �� [�� � �� �� � �� � � �)� � � � _ � ' �g ' � � � ! � �& c � �[� '� ! " � '

P � � �� # � � �[� " � �)� �� �� � ! $ �[W �& & �� " ��� � �

P (o # � # � � " � �)� �& � � ! ' � ` � ![� � � ' � �[� � � � ' � � "� !W �� [�[!� c ��� � �� d � ' �

P (� 'a #� �[_� � � � o � � o)� !W � � " � � � ! � � !� � " �� �� � c d !� � � � (

_� ! f �� � � � ' � �� � �� d � ' �

� j i j h

� � � � �% 	
 � � � � � � � � �

 " ! !& ' ![W �� � � � ! � !d a � ! $ � � � '� � � � � � �

P � � " !� ! � � � _ _� ! � '�

P s _ � ' �g ' � � � ! � � �& _� ! !d � �� � �� � � "� � � �& ��� � �� _� ! "� �[�

P � � ! !d � �� � _ �� �� c �� � ![� � �&

P � ` _ �� �[� � � �& ! � � $!p S qS \ S R� � _ _� � � �

 f �� c _� �� �[�� �� c � ! !� � �& �� & � f �� ! _[� � �

P � � c �[_ !� � � � � d � � � �� � � !d p S qS �� � � ! � # c � �) ' ! f �� �&

P b � � �� � �� d � ' � � � � ! �� � �� � c � � �� � d� � � �& � c

� � i j h

��
 � ��
 � � � �� � m� � ml ��

P � ! _ � � � � ! �� ' � � c �� �[

P � � '� �� � _ !d �� � � �� � � � ! � � �� � �& �W � �

P XY Z� � � " � � " � #d � � ' � � ! � � �� �d �� � � ' � � � �& �` ' � _ � � ! � �) � � �

_ ! $ �� d � � � � � " � � " �d !� � � _� � � � � � �� " ! _ �� � � � ! � �� � �[� � � � ' �

P b � � � �[� �� '� �� � ' � �� � ' � � W � � � �& d !� ! � � �� �� _ � �

_� ! "� �[[�� "� � � " � � " � ��

\ S � �� � �� d !� � � (^ � � ^ � �� � � � �� � � � ^ �� '� (

P b � � W � �� !d � � '� � � � !� �[_� ! f �� � ' � � W � � � �& # � f � � ' ![W �� �&)
� � i j h

�
 ��
 � 	 �� �� � � � m�
 � 	

�� �� �� " � _� ! _� � � � � � _ � ' �g ' � � � ! � � ' � � W � � � � �� & � � $� �� � �� "

_� ! "� �[� � �& _� ! !d � ^ ^ ^

b � � � ! !� �� ! �� & � �� _ c ! � �� � � � � _� ! ' � � �

j
 i j h

�
 � �
 � � � �� � � m � �� �� � 	 �� �� � � � m�
 � 	 �

P s ![�� �� � � � ! � � �� � � ! � � � � �� c& � g � �& W c _ �� �p S qS _� ! "� �[�

W � � $! � � & W � � � � �� �� � c � _ � ' �g �& ��& � ' � � f �� c^

�� . : 6 - 0� � �� a �& ��� � ' � �� �& ! � � � ! � ' ! � � � �� �� ! ! _ �

P � � !W �� � � '�� �� c _� ! _ �� � � � ��

 s � '�� �� c �� � ![� � � � ' ! � �� !� � � � ' !� � � ' � � � � � � � ' � � !d [� � � !&

' �� � �

 � ! � �� � �� d �� � � ' � _� ! _ �� � � � �� $ � ' � � � ! � ��d �� � � '� � �

��d !� [� � � ! � d� ![� ! ! a �� " � � _ � W � � ' f �� � �W � � �

� � � W � '� � 'a �& � � �� "p S qS �p %& � � '� � !� ! " c

� f �� � �� _� ! � � ' � � s ! _� � �� � � � _ !� � �)

j 	 i j h

�� � m � 	 m� � � � � � � �

�� � 	
 � � � � � �� 	� � � � ���

j h i j h

Formal Proofs
for

Computer Arithmetics

Laurent Théry
Marelle Project INRIA SophiaAntipolis

Computer Arithmetics – p.1

Computer arithmetics

Numbers are everywhere:
Billing system
Weather forecast
Computer vision
Cryptography
. . .

Computer Arithmetics – p.2

Computer arithmetics

Different flavours:
Integer Arithmetic: a ∈ N

Rational Arithmetic: a ∈ Q

FloatingPoint Arithmetic: a ∈ F

Interval Arithmetic: [a, b] ∈ F× F

Exact Arithmetic: a ∈ R

. . .
Computer Arithmetics – p.3

Formal Proofs

Therac25:
Arithmetic overflows could cause the software to bypass safety checks.

Patriot Missile:
The calculation of the time since boot was inacurate.

Pentium FDIV
Some division operations were wrong by a very small amount.

Ariane 5:
A conversion 64 bit floatingpoint number to 16 bit signed integer failed.

Computer Arithmetics – p.4

Outline

• A simple example that illustrates various
aspects of formal verification.

• An overview of the formalisation of
floatingpoint arithmetic.

Computer Arithmetics – p.5

An Example

Take a program that given a parameter n

returns the list of the first n prime
numbers

Prove it correct

Knuth: The Art of Computer Programming

Computer Arithmetics – p.6

Natural Numbers

Inductive N: Set :=
O : N

| S : N→N.

O, S(O), S(S(O)), ...

P (O)

∧ ⇒ ∀n, P (n)

∀n, P (n) ⇒ P (S(n))

Computer Arithmetics – p.7

Addition

Fixpoint + [a,b:N] : N :=
match a with

O => b

| S a′ => S(a′ + b)
end.

Computer Arithmetics – p.8

Multiplication

Fixpoint * [a,b:N] : N :=
match a with

O => O
| S a′ => b + (a′ * b)
end.

Computer Arithmetics – p.9

Divisibility

Definition a|b := ∃c, b = c * a.

Computer Arithmetics – p.10

Primality

Definition prime(p) :=
∀n, n|p ⇒ n = 1 ∨ n = p

∧
p 6= 1.

Computer Arithmetics – p.11

Program Correctness

Verification Condition Generator

Program + Annotations ⇒ Conditions

Krakatoa: Java −→ Coq

Computer Arithmetics – p.12

Program Correctness

{ Pre-conditions }
P

{ Post-conditions }

Example
{ odd(x) }
x = x + 2;

{ odd(x) }

Generated condition:

∀x, odd(x) ⇒ odd(x + 2)

Computer Arithmetics – p.13

Program Correctness

Loop:
while (C) {
{ invariant I

variant V
}

P

}

Computer Arithmetics – p.14

Program Correctness

Example:
while (0 < i--) {

{ invariant odd(x)
variant i

}
x = x + 2

}

Generated conditions:
∀x. odd(x) ⇒ odd(x + 2)

∀i. 0 ≤ i− 1 < i
Computer Arithmetics – p.15

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];

return res;
}

{

}

∀k. 0 ≤ k < n ⇒ prime(res[k])

∧
∀k, j. 0 ≤ k < j < n ⇒ res [k] < res [j]

∧

∀k. ∧
0 ≤ k ≤ res[n − 1]

prime(k)
⇒ ∃j. ∧

0 ≤ j < n

res [j] = k

Computer Arithmetics – p.16

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
int number = 2;
boolean isPrime;
for (int i = 0; i < n; i++) {
while (true) {
isPrime = true;
for (int j = 2; j < number; j++) {

if (number % j == 0) {
isPrime = false;
break;

}
}
if (isPrime) break;
number++;

}
res[i] = number;
number++;

}
return res;

}

2
2
3

3
4X5

5
6X7

7
8X9X10X 11
11

∀p, prime(p) ⇒ 2 ≤ p

∀n, ∃p, n < p ∧ prime(p)

∀m n, m|n ∧ n 6= 0 ⇒ m < n

Computer Arithmetics – p.17

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
int number = 2;
boolean isPrime;
for (int i = 0; i < n; i++) {
while (true) {
isPrime = true;
for (int j = 0; j < i; j++) {

if (number % res[j] == 0) {
isPrime = false;
break;

}
}
if (isPrime) break;
number++;

}
res[i] = number;
number++;

}
return res;

}

2
2
3

3
4X5

5
6X7

7
8X9X10X 11
11

∀n, 2 ≤ n ⇒
(∀p, prime(p) ∧ p < n ⇒ ¬(p|n)) ⇒

prime(n)

Computer Arithmetics – p.18

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
res[0] = 2;
int number = 3;
boolean isPrime;
for (int i = 1; i < n; i++) {
while (true) {
isPrime = true;
for (int j = 1; j < i; j++) {

if (number % res[j] == 0) {
isPrime = false;
break;

}
}
if (isPrime) break;
number += 2;

}
res[i] = number;
number += 2;

}
return res;

}

2
3

3
5

5
7

7
9X 11

11

prime(2)

∀p, prime(p) ⇒ p = 2 ∨ odd(p)

Computer Arithmetics – p.19

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
res[0] = 2;
int number = 3, snum;
boolean isPrime;
for (int i = 1; i < n; i++) {
while (true) {
isPrime = true;
snum = (int) Math.sqrt(number);
for (int j = 1; j < i && res[j] <= snum; j++) {

if (number % res[j] == 0) {
isPrime = false;
break;

}
}
if (isPrime) break;
number += 2;

}
res[i] = number;
number += 2;

}
return res;

}

2
3

3
5

5
7

7
9X 11

11

∀n p q, n = p ∗ q ⇒ p ≤
√

n ∨ q ≤
√

n

Computer Arithmetics – p.20

Knuth Algorithm
int[] firstPrimes(int n) {
int[] res = new int[n];
res[0]=2;
int number=3, snum;
boolean isPrime;
for (int i=1; i<n; i++) {
while (true) {
isPrime=true;
snum = (int)Math.sqrt(number);
for(int j=0; res[j]<= snum; j++) {

if (number%res[j]==0) {
isPrime=false;
break;

}
}
if (isPrime) break;
number+=2;

}
res[i]=number;
number+=2;

}
return res;

}

res[i] res[i]2

n n22n

∀n, 2 ≤ n ⇒
∃p, prime(p) ∧ n < p < 2 ∗ n

Computer Arithmetics – p.21

Bertrand Postulate
For n greater than 2, there is always at least
one prime number strictly between n and 2n.

Proof by Contradiction (Erdös)

Upper Bound:
(2n

n

)

< (2n)
√

2n/2−142n/3

Lower Bound: 4n ≤ 2n
(2n

n

)

Necessary Condition: 4n/3 < (2n)
√

2n/2

Computer Arithmetics – p.22

Example of properties

Upper Bound on the Product of Prime Numbers
∏

p≤n

p < 4n

By Strong Induction on n

2 < 42

If n is odd,
∏

p≤n+1 p =
∏

p≤n p < 4n < 4n+1

If n is even,
∏

p≤2m+1 p = (
∏

p≤m+1 p) (
∏

m+1<p≤2m+1 p)
∏

p≤2m+1 p < 4m+1 (
∏

m+1<p≤2m+1 p)
∏

p≤2m+1 p < 4m+1
(2m + 1

m + 1
)

∏

p≤2m+1 p < 4m+14m

∏

p≤2m+1 p < 42m+1

Computer Arithmetics – p.23

Necessary Condition

4n/3 < (2n)
√

2n/2

Logarithmic Scale
n
3 ln(4) <

√
2n
2 ln(2n)

Simplification:√
8n ln(2)− 3 ln(2n) < 0

Computer Arithmetics – p.24

Function Analysis

Inequality:
√

8n ln(2)− 3 ln(2n) < 0

Function: f(x) =
√

8x ln(2)− 3ln(2x)

Evaluation: f(27) = 25ln(2)− 3.23ln(2) > 0

Derivative: f ′(x) =

√
2x ln(2)− 3

x

Conclusion: For n ≥ 27, ok.

Computer Arithmetics – p.25

Remaining cases

The theorem is true for n < 27

Computing inside Coq:

Write a program that checks the property

Prove it correct

Run it

Computer Arithmetics – p.26

Proof Map

Knuth Program

Krakatoa

VC VCBertrand

2
7 ≤

n

Real Analysis

n
<

2 7

Computing

Computer Arithmetics – p.27

Little Problem
Sort the numbers from 1 to 2n in pairs (ai, bi)

such that each ai + bi is prime ?

1 2 3 4 5
20 6
19 7
18 8
17 9
16 10

15 14 13 12 11
Computer Arithmetics – p.28

FloatingPoint Arithmetic

FloatingPoint Numbers:
R

0 F

Correct Rounding (IEEE 754):

a⊕ b = ◦(a + b)

Computer Arithmetics – p.29

FloatingPoint Numbers

s

sign

e

exponent

f

mantissa

Normal (e > 0): (−1)sβe−B(1 +
∑p−1

i=1 fiβ
−i)

Subnormal (e = 0): (−1)sβ1−B
∑p−1

i=1 fiβ
−i

x	 y = 0 ⇐⇒ x = y

Computer Arithmetics – p.30

FloatingPoint Numbers

Number as pair:
Definition F := Z× Z.

Projections:
Definition m(p) := let (x,_) = p in x.

Definition e(p) := let (_,y) = p in y.

Computer Arithmetics – p.31

FloatingPoint Numbers

Value:
Definition v(p) := m(p) ∗ βe(p).

Equivalence:

Definition p ' q := v(p) = v(q).

Computer Arithmetics – p.32

Bound

Bound as pair:
Definition B := N× N.

Projections:
Definition M(b) := let (x,_) = b in x.

Definition E(b) := let (_,y) = b in y.

Computer Arithmetics – p.33

Bound

Bounded number:
Definition Bb(p):= |m(p)| ≤ M(b) ∧ −E(b) ≤ e(p).

R
0 F

Computer Arithmetics – p.34

Rounding

Rounded Mode:
Toward +∞, Toward ∞, Toward 0, Closest.

Rounded as a Predicate:

R:R → F → Prop

Computer Arithmetics – p.35

Rounding: Min Max

Elements on the left and on the right:
Definition isMin(r, p) :=
Bb(p) ∧ p ≤ r ∧ ∀q, Bb(q) ∧ q ≤ r ⇒ q ≤ p.

Definition isMax(r, p) :=
Bb(p) ∧ r ≤ p ∧ ∀q, Bb(q) ∧ r ≤ q ⇒ p ≤ q.

Rounding chooses one of those:
Definition MinOrMax(R) :=

∀p r, R(r, p) ⇒ isMin(r, p) ∨ isMax(r, p).

Computer Arithmetics – p.36

Rounding: Monotone

Rounding is non decreasing:
Definition Monotone(R) :=
∀p1 p2 r1 r2, R(r1, p1)∧R(r2, p2)∧ r1 < r2 ⇒ p1 ≤ p2.

Rounding is total:
Definition Total(R) := ∀r, ∃p, R(r, p).

Rounding is compatible:
Definition Compatible(R) :=

∀p1 p2 r, R(r, p1) ∧ Bp(p2) ∧ p1 ' p2 ⇒R(r, p2).
Computer Arithmetics – p.37

Example: Malcolm Test

float malcolmTest() {

float x = 1;

float y = 1;

while (((x + 1) - x) == 1) {

x = 2 * x;

}

while (((x + y) - x) != y) {

y = y + 1;

}

return y;

}

x = (, 0)

x = (, 1)

1 = (1, 0) β = (1, 1)
(m + 1, e) 	 (m, e) = (1, e)

(m, e) ⊕ (1, e) ' (m + 1, e)
(m1, e) 	 (m2, e) = (m1 − m2, e)

Computer Arithmetics – p.38

Example: Expansion

Ordered list of nonoverlapping floats:

11011000111000000000011111110000010

(11011,29);(11100,21);(11111,9);(11000,4);(10000,-3)

Addition:

p

q

p⊕ q

∆ = p + q − (p⊕ q)

Computer Arithmetics – p.39

Example: Expansion

p1

q1 q2 . . . qn

r1

. . .

p2

r2

. . .

... ...
pm . . .

Computer Arithmetics – p.40

Pencil and Paper Proof

J. Demmel and Y. Hida,
Accurate floating point summation

19 page proof

Computer Arithmetics – p.41

Pencil and Paper Proof
Property B: The leftmost leading bit of ̂SUM I+1 through ̂SUMn is to the left of the leading bit

of SUMI : maxk>I Ek > EI .

Now we may consider six cases, labeled 1A, 1B, 2A, 2B, 3A and 3B, according to which pair
of properties holds. We may also have subcases of these cases depending on the size of n. There
may be further subcases depending on when the exponents ek and Ej further decrease below their
initial levels.

We would like to believe a simpler proof exists, but have not managed to find one.

8.1 Case 1A - n ≤ n̄ + 1

Property 1 means eI+1 ≤ EI − F + f − 1, so let K be the smallest integer in the range I ≤ K ≤ n
such that ek ≤ EI−F +f−2 for all k > K. In other words, eI+1 through eK are all EI−F +f−1,
and eK+1 through en are all at most EI − F + f − 2. Note that either list, but not both, can be
vacuous. Thus we have the bounds

|sk| ≤

{
2EI−F+f (1− 2−f) for I + 1 ≤ k ≤ K
2EI−F+f−1(1− 2−f) for K + 1 ≤ k ≤ n

(9)

Property A implies Ek ≤ EI for all k ≥ I, so let J be the largest integer in the range I ≤ J ≤ n
such that EJ = EI but Ej < EI for all j > J . In other words ̂SUMJ is the last computed partial
sum with the exponent EI . This enables us to bound 1 ulp on the partial sums:

ulp(̂SUM j) ≤

{
2EI−F+1 for I ≤ j ≤ J
2EI−F for J + 1 ≤ j ≤ n

(10)

We consider the cases J ≤ K and K < J separately.

8.1.1 Case J ≤ K

In this case, we have 1 ≤ I ≤ J ≤ K ≤ n. The additions of sI+1 through sJ , resulting in ̂SUM I+1

through ̂SUMJ , can yield a maximum roundoff error of half an ulp in each of ̂SUM I+1 through
̂SUMJ , which is at most 2EI−F each. If K ≥ J+1, then addition of sJ+1 causes no roundoff, since
̂SUMJ+1 is computed by exact cancellation. Additions of sJ+2 through sK to the partial sums
̂SUMJ+1 through ̂SUMK−1, resulting in the partial sums ̂SUMJ+2 through ̂SUMK , also causes

no roundoff, since all the numbers involved occupies the same F -bit range. Finally, the additions
of sK+1 through sn can cause roundoff errors at most 2EI−F−1 each. Thus we have the roundoff
error bounds

|εi| ≤

2EI−F for I + 1 ≤ i ≤ J
0 for J + 1 ≤ i ≤ K
2EI−F−1 for K + 1 ≤ i ≤ n

(11)

Thus we can bound the total roundoff error

| ̂SUMn − S| ≤
n∑

i=I+1

|εi|

≤ (J − I)2EI−F + (n−K)2EI−F−1

= (2J − 2I + n−K)2EI−F−1

= 2EIN1A, J≤K(I, J,K, n), (12)

19

Computer Arithmetics – p.42

Pencil and Paper Proof
where

N1A, J≤K(I, J,K, n) = (2J − 2I + n−K)2−F−1.

We now bound | ̂SUMn| from below by noting that | ̂SUMJ | ≥ 2EI and using the triangle
inequality:

| ̂SUMn| = | ̂SUMJ + (sJ+1 + · · ·+ sn) + (εJ+1 + · · · + εn)|

≥ | ̂SUMJ | −
n∑

i=J+1

|si| −
n∑

i=J+1

|εi|

≥ 2EI − (K − J)2EI+f−F (1− 2−f)− (n−K)2EI+f−F−1(1− 2−f)− (n−K)2EI−F−1

= 2EI

[
1− (K − 2J + n)2f−F−1(1− 2−f)− (n−K)2−F−1

]

= 2EID1A, J≤K(J,K, n), (13)

where
D1A, J≤K(J,K, n) = 1− (K − 2J + n)2f−F−1(1− 2−f)− (n−K)2−F−1.

The relative error is then bounded by

| ̂SUMn − S|

| ̂SUMn|
≤

N1A, J≤K(I, J,K, n)

D1A, J≤K(J,K, n)
≡ RE1A, J≤K(I, J,K, n). (14)

Note that I = J < K cannot occur since means that EI+1 < EI − 1 and ̂SUM I+1 is computed
without roundoff by exact cancellation, contradicting our choice of I. Hence we must have either
I = J = K or I < J ≤ K, and the worst case relative error is bounded by the maximum of
RE1A, J≤K(I, J,K, n) over the domain U = {(I, J,K) | 1 ≤ I = J = K ≤ n or 1 ≤ I < J ≤ K ≤
n}:

| ̂SUMn − S|

| ̂SUMn|
≤ max

(I,J,K)∈U
RE1A, J≤K(I, J,K, n).

We consider the two cases I = J = K and I < J ≤ K separately.

8.1.1.1 Case I = J = K. We first note that the denominator D1A, J≤K(I, I, n) becomes

D1A, J≤K(I, I, n) = 1− (n− I)2f−F−1.

Since (n− I) ≤ n̄, we can use bound (7) to get

D1A, J≤K(I, I, n) ≥ 1− n̄2f−F−1 > 1−
2−1 + 2f−F−1

1− 2−f
≥ 1−

2−1 + 2−2

1− 2−2
= 0.

Thus n ≤ n̄+ 1 implies that the denominator is positive.
If (n− I) ≤ n̄− 1 (implied by n ≤ n̄), then

RE1A, J≤K(I, I, I, n) ≤
(n̄− 1)2−F−1

1− (n̄− 1)2f−F−1

=
2−1−f − 2−F−1−r

(1− 2−f)− (2−1 − 2f−F−r−1)

20

Computer Arithmetics – p.43

Pencil and Paper Proof
=

2−f (1− 2f−F−r)

1− 21−f + 2f−F−r

<
2−f

1− 21−f
. (15)

If (n− I) = n̄ (implying n = n̄+ 1), then

RE1A, J≤K(I, I, I, n) ≤
n̄2−F−1

1− n̄2f−F−1

=
2−1−f + (1− 2−f − 2−r)2−F−1

(1− 2−f)− 2−1 − (1 − 2−f − 2−r)2f−F−1

=
2−f

[
2−1 + (1− 2−f − 2−r)2f−F−1

]

(1− 2−f)− 2−1 − (1 − 2−f − 2−r)2f−F−1

=
2−f

[
1 + (1− 2−f − 2−r)2f−F

]

1− 21−f − (1− 2−f − 2−r)2f−F
. (16)

To bound the last line in the above inequality, we consider the cases F − f = 1 and F − f ≥ 2
separately. If F − f = 1, then r = f − 1, and so

RE1A, J≤K(I, J,K, n) ≤ 2−f

[
1 + (1− 2−f − 2−r)2f−F

1− 21−f − (1− 2−f − 2−r)2f−F

]

= 2−f

[
1 + (1− 2−f − 21−f)2−1

1− 21−f − (1− 2−f − 21−f)2−1

]

= 2−f

[
3(1 − 2−f)

1− 2−f

]

= 3 · 2−f . (17)

If F − f ≥ 2, then

RE1A, J≤K(I, J,K, n) ≤ 2−f

[
1 + (1− 2−f − 2−r)2f−F

1− 21−f − (1− 2−f − 2−r)2f−F

]

≤ 2−f

[
1 + (1− 21−f)2−2

1− 21−f − (1− 21−f)2−2

]

= 2−f 1

3

[
1 +

4

1− 21−f

]

≤ 3 · 2−f . (18)

Hence in either case, RE1A, J≤K(I, J,K, n) ≤ 3 · 2−f .

8.1.1.2 Case I < J ≤ K. We maximize RE1A, J≤K as follows. First, we need to confirm
that the denominator D1A, J≤K(I, J,K, n) remains positive over the range of parameters, so that
RE1A, J≤K(I, J,K, n) is bounded. Then we compute the derivatives of RE1A, J≤K(I, J,K, n) with
respect to J and K in order to find the maximum.

21

Computer Arithmetics – p.44

Benefits

Finding bugs in proof

typos
missing cases
missing sideconditions
large versus strict inequalities
. . .
−→ Effective?

Computer Arithmetics – p.45

Benefits

Library of validated facts

statements as general as possible
explicit sideconditions

Example (Sterbenz)

if 1
2y ≤ x ≤ 2y then x	 y = x− y

Computer Arithmetics – p.46

Benefits

Improved Results

Example (Fast Two Sum)

b	 ((a⊕ b)	 a) = (a + b)− (a⊕ b)

if |a| ≤ |b|
if ea ≤ eb where a = ma2

ea and b = mb2
eb

if ea ≤ eb where a = ma2
ea and b = mb2

eb

Computer Arithmetics – p.47

Benefits

Alternative Proofs

Different metric

Completly new proofs

Computer Arithmetics – p.48

Challenges

Pencil and Paper Proof + Formal Proof

Single Program Library

Proof Checking Computer Aided Proof

Computer Arithmetics – p.49

Pencil and Paper Proof

Proof + Annotations ⇒ Conditions

CYP tool: text −→ Coq

Computer Arithmetics – p.50

Colouring Proof
Theorem Sterbenz: Let p and q such that bounded(p) and bounded(q), if
q/2≤p≤2 ∗ q then bounded(p− q).

The proof proceeds like this. First of all, we restrict ourselves to the case

q≤p≤2 ∗ q because of the symmetry of the problem. For the exponent, by

definition of the substraction, e(p− q) = min(e(p), e(q)), so e(p− q)≥− E(bound)

since both p and q are bounded. For the mantissa, we do a case analysis on the value

of min(e(p), e(q)). If min(e(p), e(q)) = e(q), the initial equation can be rewritten as

0≤p− q≤q and since e(p− q) = e(q), we obtain 0≤m(p− q)≤m(q). As bounded(q),

we have 0≤m(p− q) < M(bound). Similarly if min(e(p), e(q)) = e(p), we can

rewrite the initial equation as 0≤p− q≤q≤p and since e(p− q) = e(p) we have

0≤m(p− q)≤m(p). In both cases we have 0≤m(p− q) < M(bound). The mantissa

and the exponent are then bounded, so we have bounded(p− q).

Computer Arithmetics – p.51

Related Works
Floating point arithmetic
Barrett (Z), Miner (Pvs), Russinoff (Acl2), Harrison
(Hol), Boldo & al (Coq)

Interval arithmetic
Melquiond (Coq)

Multiprecision arithmetic
Bertot & al (Coq), Bondyfalat (Coq)

Exact arithmetic
Ciaffaglione & al (Coq), Lester & al (Pvs), Niqui (Coq)

Computer Arithmetics – p.52

Little problem

Sort the numbers from 1 to 2n in pairs (ai, bi)

such that each ai + bi is prime ?

0 2n 4npp− 2n

p is prime
p− 2n is odd
p− 2n− 1 is even

Computer Arithmetics – p.53

Types Summer School

Gothenburg Sweden August 2005

Dependently Typed Programming

Benjamin Grégoire

INRIA Sophia Antipolis, France

Lecture 1:

Conversion Rule

1

How to do formal proofs:

• A nice theory (Type Theory)

• A nice implementation:

– A proof checker (type checker)

– A proof assistant

• A nice user

Subject: Conversion rule

1. User point of view:

Why we need it and how we can use it?

2. Implementor point of view:

• Type inference Algorithm with conversion rule

• How to get an efficient conversion test

2

Why we need it?

Because we do not want to do large and boring proofs

2 + 2 = 4 in a deduction style:

eqTrans 2 + 2 = S(1 + 2)

S(1 + 2) = 4 ⇒ 2 + 2 = 4

eqS

eqTrans 1 + 2 = S(0 + 2)

S(0 + 2) = 3 ⇒ 1 + 2 = 3

eqS 0 + 2 = 2

S(0 + 2) = 3

1 + 2 = 3

S(1 + 2) = 4

2 + 2 = 4

eqS : x = y ⇒ Sx = Sy
eqTrans : x = y ⇒ y = z ⇒ x = z

3

How to prove 2 + 2 = 4

Computational style: Replace the axioms on addition by

rewriting rules:

0 + m −→ m
Sn + m −→ S(n + m)

2 + 2 −→ S(1 + 2) −→ SS(0 + 2) −→ SS(2)

Reason modulo rewriting rules:

4 = 4 2 + 2
∗−→ 4

2 + 2 = 4

4

Conversion rule in PTS

A simple set of rewriting rules: reduction rules on terms
(functional programs)

(λx :T. M) N
β−→ M [x := N]

With inductive definitions: reduction rule for pattern matching
and fixpoint

≈ ::= reflexive, symmetric and transitive closure of the
reduction rules (β, ι, . . .)

M1
∗

}}||
||

||
||

∗

��4
44

44
44

44
44

44
44

44
4

A M3
∗

{{xxxxxxxx ∗
##FFFFFFFF B

∗
}}{{

{{
{{

{{

M2 M4

Γ ` M : A Γ ` B : s A ≈ B

Γ ` M : B
[Conv]

5

Encoding rewriting rule of addition

0 + m −→ m
Sn + m −→ S(n + m)

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Fixpoint plus (n m : nat) {struct n} : nat :=
match n with
| O => m
| S n1 => S (plus n1 m)
end.

plus 0 m
∗−→ m

plus (S n) m
∗−→ S(plus n m)

6

2 + 2 = 4 again!

` refl eq : ∀x :nat. x = x ` 4 : nat

` refl eq 4 : 4 = 4 4 = 4 ≈ 2 + 2 = 4

` refl eq 4 : 2 + 2 = 4
[Conv]

• The reduction steps do not appear in the proof

⇒ The proof is small : refl eq 4

• Reduction steps appear in the type checking

⇒ Cost remains in proof checking (in the conversion test)

If we reduce this cost, we get:

• Small proofs

• Quickly type checked

7

Reflexivity

• A predicate P : T → Prop

• A decision procedure f : T → bool

• A correctness lemma C : ∀x :T. f x = true→ P x

Assume f a reduce to true, a proof of P a is C a (refl eq true)

...
` C a : f a = true→ P a

` refl eq true : true = true true = true ≈ f a = true

` refl eq true : f a = true

` C a (refl eq true) : P a

8

Example: primality proof

Pocklington criteria:
Let n be a positive integer, if

• n− 1 = q.p1 . . . pt where pi are prime numbers

• there exits a such that

an−1 = 1(mod n)

gcd(a
n−1
pi − 1, n) = 1 for i = 1 . . . t

• p1.p2 . . . pt ≥
√

n

then n is prime

Formal proof by Martin Oostdijk and Olga Caprotti

Using deduction style the proof of

20988936657440586486151264256610222593863921

take 18509 lines.

Can we use reflexivity?

9

18th Mersenne number: 23217 − 1

259117086013202627776246767922441530941818887553125
427303974923161874019266586362086201209516800483406
550695241733194177441689509238807017410377709597512
042313066624082916353517952311186154862265604547691
127595848775610568757931191017711408826252153849035
830401185072116424747461823031471398340229288074545
677907941037288235820705892351068433882986888616658
650280927692080339605869308790500409503709875902119
018371991620994002568935113136548829739112656797303
241986517250116412703509705427773477972349821676443
446668383119322540099648994051790241624056519054483
690809616061625743042361721863339415852426431208737
266591962061753535748892894599629195183082621860853
400937932839420261866586142503251450773096274235376
822938649407127700846077124211823080804139298087057
504713825264571448379371125032081826126566649084251
699453951887789613650248405739378594599444335231188
280123660406262468609212150349937584782292237144339
628858485938215738821232393687046160677362909315071

A 969 digits number

The proof is 8461 chars!

10

Others examples

Proof automation (useful for the user):

• Ring or field equalities

• Presburger arithmetic

• Decide polynomial inequalities in R (CAD)

Exotic theorems:

• 4-colors theorem (Gonthier, Werner)

• Kepler conjecture (Hales)

11

Conversion rule is very useful and convenient

How to implement a type checker with the conversion rule?

12

Calculus of Constructions

Terms: T ::= s | x | ∀x :T. T | λx :T. T | T T
Contexts: Γ ::= x1 :T1, x2 :T2, . . . , xn :Tn

One reduction rule:

(λx :T. M) N
β−→ M [x := N]

Type judgment:

Γ ` M : T

Type inference: Γ ` M ; T such that Γ ` M : T

13

Typing rules

WF(∅)
WF(Γ) Γ ` T : s

WF(Γ, x :T)

WF(Γ)

Γ ` Set : Type

WF(Γ) (x :T) ∈ Γ

Γ ` x : T

Γ ` A : s1 Γ, x :A ` B : s2 (s1, s2, s3) ∈ Rules

Γ ` ∀x :A. B : s3

Γ ` ∀x :A. B : s Γ, x :A ` M : B

Γ ` λx :A. M : ∀x :A. B

Γ ` M : ∀x :A. B Γ ` N : A

Γ ` M N : B[x := N]

Γ ` M : A Γ ` B : s A ≈ B

Γ ` M : B

14

Definitions on reduction

Using only β-rule:

(λx :T. M) N
β−→ M [x := N]

The term ((λx :T. M) N) P does not reduce

Context rule:
t

β−→ t′

C(t)
β−→ C(t′)

Weak reduction Strong reduction
C ::= [] N | M [] C ::= [] N | M []

| λx : []. M | ∀x : []. B | λx : []. M | ∀x : []. B
| λx :T. [] | ∀x :A. []

NF: Normal form using strong reduction

WNF: Normal form using weak reduction

WHNF: Normal form using C ::= [] N

15

Meta-theory of CC

Subject reduction: Γ ` M : T ⇒ M
β−→ M ′ ⇒ Γ ` M ′ : T

Strong Normalization: Γ ` M : T ⇒ M ∈ SN

Uniqueness of typing: Γ ` M : T1 ⇒ Γ ` M : T2 ⇒ T1 ≈ T2

Correctness of type:

Γ ` M : T ⇒ T = Type ∨ Γ ` T : s

Corollary: Γ ` M : T ⇒ Γ ` M : WHNF(T)

Γ ` M : T Γ ` WHNF(T) : s T ≈ WHNF(T)

Γ ` M : WHNF(T)

16

Inference Algorithm

Type inference: Γ ` M ; T such that WF(Γ) ⇒ Γ ` M : T

Γ ` Set ; Type

(x :T) ∈ Γ

Γ ` x ; T

Γ ` A ; T1 WHNF(T1) = s1 Γ, x :A ` B ; T2 WHNF(T2) = s2

Γ ` ∀x :A. B ; s3

Γ ` A ; T1 WHNF(T1) = s1 Γ, x :A ` M ; B B 6= Type

Γ ` λx :A. M ; ∀x :A. B

Γ ` M ; T1 WHNF(T1) = ∀x :A. B Γ ` N ; T2 T2 ≈ A

Γ ` M N ; B[x := N]

17

Soundness

Soundness: WF(Γ) ⇒ Γ ` M ; T ⇒ Γ ` M : T

Proof: by induction on M

Γ ` M ; T1 WHNF(T1) = ∀x :A. B Γ ` N ; T2 T2 ≈ A

Γ ` M N ; B[x := N]

Γ ` M : ∀x :A. B
Γ ` N : T2 Γ ` A : s T2 ≈ A

Γ ` N : A

Γ ` M N : B[x := N]

18

Completeness

Completeness: Γ ` M : T1 ⇒ Γ ` M ; T2

Proof: by induction on Γ ` M : T1

Γ ` M : ∀x :A. B Γ ` N : A

Γ ` M N : B[x := N]

Γ ` M ; TM WHNF(TM) = ∀x :A′. B′ Γ ` N ; TN TN ≈ A′

Γ ` M N ; B[x := N]

(Geuvers): T ≈ ∀x :A. B ⇒ ∃A′, B′,WHNF(T) = ∀x :A′. B′

(Generation lemma):

Γ ` ∀x :A. B : T ⇒ ∃s1, s2, s3,

Γ ` A : s1 ∧ Γ, x :A ` B : s2
T ≈ s3

19

So

We want a proof assistant

⇒ We develop a proof language

But it is also a nice functional programing language

• We have type checker

• We should now develop compiler

20

Types Summer School

Gothenburg Sweden August 2005

Dependently Typed Programming

Benjamin Grégoire

INRIA Sophia Antipolis, France

Lecture 2:

Conversion test, compilation

1

Summary of the problem

Proof / type checkers based on dependent types work up to
conversion:

Γ ` M : A A ≈ B

Γ ` M : B

It is very convenient: allows small proofs and automation (using
reflexive proofs)

If we have a algorithm for testing convertibility, we get a type
checker

Testing convertibility require strong β-reduction (under λ

abstractions)

For most proofs, the amount of reduction is small (simple
interpreter suffice)

But proofs based on reflection require large amounts of
reductions. The speed of the reducer becomes the limiting
factor

2

Convertibility is decidable

Testing convertibility of two terms is decidable if the reduction

rules are

• Confluents ⇒ Church-Rosser, uniqueness of normal forms

• Strongly normalizing

A

∗

��?
??

??
??

??
??

??
??

? ≈ B

∗

��~~
~~

~~
~~

~~
~~

~~
~~

M
∗

%%KKKKKKKKKK
∗

yyssssssssss

NF(A) = NF(B)

3

λ-calculus

terms t ::= x | λx.t | t t
values(WNF) v ::= λx.t | x v1 . . . vn

Conversion algorithm:

t1 = t2

t1 ≈ t2

WNF(t1) ≈ WNF(t2)

t1 ≈ t2

v1 = v2

v1 ≈ v2

x = y vi ≈ wi

x v1 . . . vn ≈ y w1 . . . wn

WNF(λx.M z) ≈ WNF(λy.M ′ z) z fresh

λx.M ≈ λy.M ′

4

Computing the WNF

type term = Var of var | Abs of var*term | App of term*term

let rec wnf t =
match t with
| Var _ | Abs _ -> t

| App(t1, t2) ->
let v1 = wnf t1 in
let v2 = wnf t2 in
match v1 with
| Abs(x,u) -> wnf (subst u x v2)
| _ -> App(v1,v2)

5

WNF by compilation

WNF : execution of ML-like program

λ-term
Compilation

// bytecode Execution
Abs. Machine

// value

bytecode : sequence of instructions

Problem: usual compilation techniques work only for

closed terms

WNF(λx.Mz)

6

ZINC abstract machine

ZINC : a stack based abstract machine in call by value

Instructions : Acc, Closure, Grab, Pushra, Apply, Return

Representation of values v (closures): [c, e]

Environment e : [v1; . . . ; vn]

Components of the machine:

c code pointer

e environment (values associate to variables)

s stack (arguments + intermediate results + return address)

n number of available arguments on the top of s

7

Compilation and execution of variables

Compilation scheme: [[t]]k ; c

The resulting code c compute the value corresponding to t,

push it on top of the stack, then restart the execution of k

[[x]]k = Acc(i); k

where i = deBruijn index of x

Code Env Stack #args
Acc(i); k e s n
k e e(i).s n

8

Compilation and execution of applications

[[f a1 . . . ai]]k = Pushra(k);
[[ai]] . . . [[a1]] [[f]] Apply(i)

Code Env Stack #args
Pushra(k); c e s n
c e 〈k, e, n〉.s n
Apply(i) e [c, e′].v1 . . . vi.〈k, e, n〉.s n
c e′ v1 . . . vi.〈k, e, n〉.s i

9

Compilation and execution of functions

[[λx1.. . . λxn.t]]k = Closure(c); k
c = Grab; . . . ;Grab︸ ︷︷ ︸

n times

; [[t]]Return

Code Env Stack #args
Closure(c); k e s n
k e [c, e].s n
Grab; k e v.s n + 1
k v.e s n
Return e v.〈k, e′, n〉.s 0
k e′ v.s n

10

Under or over application

Under application:

Code Env Stack #args
Grab; c e 〈k, e′, n〉.s 0
k e′ [(Grab; c), e].s n

Over application:

Code Env Stack #args
Return e [c, e′].s n > 0
c e′ s n

11

Compilation with free variables

Code Env Stack #args
Acc(i); k e s n
k e e(i).s n

Free variables have no associated value in the environment

⇒ add values for free variables

What should be the value associated to a free variables?

What happens when this value is applied?

12

What is the computational behavior of a free variable?

Symbolic calculus:

Terms t ::= x | t t | v
Values v ::= λx.t | [x̃]

Reduction rules:

(λx.t) v −→ t[x := v]
[x̃] v −→ [x̃ v]

13

Computational behavior of a free variable

Symbolic calculus:

Terms t ::= x | t t | v
Values v ::= λx.t | [k]
Accumulators k ::= x̃ | k v

Reduction rules:

(λx.t) v −→ t[x := v]
[k] v −→ [k v]

The value associate to a free variable is a function that

accumulate its arguments

14

Encoding accumulator

Code Env Stack #args
Apply(n) [c, e].v1 . . . vn.〈c′, e′, n′〉.s
c e v1 . . . vn.〈c′, e′, n′〉.s n′

The top value can now be a accumulator, encoding of
accumulator should be compatible with the one of closure

[Accumulate, k̂]

where k̂ is the machine-level encoding of k: k̂ = [x̃; v1; . . . ; vn]

This suffices to trick function application:

Code Env Stack #args
Apply(n) e [Accumulate, k̂].v1 . . . vn.〈c′, e′, n′〉.s
Accumulate k̂ v1 . . . vn.〈c′, e′, n′〉.s n
c′ e′ [Accumulate, (k̂.v1 . . . vn)].s n′

The move from [Accumulate, k̂] to [Accumulate, (k̂.v1 . . . vn)]
implements exactly the symbolic reduction
[k] v1 . . . vn −→ [k v1 . . . vn]

15

Distinguishing feature of this encoding

The representation of [k] looks like a function

⇒ No need to test at application time whether the function is a

closure or an accumulator

⇒ No overhead on evaluation of closed terms

Similarly, we arrange that the representation of [k] looks like the

representation of inductive constructors

⇒ No overhead for ι-reduction

16

Experimental results

4-colors theorem

Perimeter Coq Coq-vm OCaml OCaml
bytecode natif

11 56.7s 1.68s 1.18s 0.30s
12 259s 6.50s 6.18s 1.92s
13 680s 14.8s 15.5s 4.11s

Prime numbers

Size time
1234567891 (10)

Deductive : 3099 13.26 s
Reflexive : 58 0.59 s
20988936657440586486151264256610222593863921 (44)
Deductive : 18509 1862.52 s
Reflexive : 95 21.30 s

17

Conclusion

Conversion is very convenient: allows small proofs and

automation (using reflexive proofs)

The use of a compiler and an abstract machine for testing

convertibility leads to an efficient algorithm

So reflexive proofs can be efficiently type checked

18

A formally verified proof of the

prime number theorem

(draft)

Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff

August 19, 2005

Abstract

The prime number theorem, established by Hadamard and de la Vallée
Poussin independently in 1896, asserts that the density of primes in the
positive integers is asymptotic to 1/ ln x. Whereas their proofs made
serious use of the methods of complex analysis, elementary proofs were
provided by Selberg and Erdös in 1948. We describe a formally verified
version of Selberg’s proof, obtained using the Isabelle proof assistant.

1 Introduction

For each positive integer x, let π(x) denote the number of primes less than or
equal to x. The prime number theorem asserts that the density of primes π(x)/x
in the positive integers is asymptotic to 1/ ln x, i.e. that limx→∞ π(x) ln x/x = 1.
This was conjectured by Gauss and Legendre around the turn of the nineteenth
century, and posed a challenge to the mathematical community for almost a
hundred years, until Hadamard and de la Vallée Poussin proved it independently
in 1896.

On September 6, 2004, the first author of this article verified the following
statement, using the Isabelle proof assistant:

(λx. pi x * ln (real x) / (real x)) ----> 1

The system thereby confirmed that the prime number theorem is a consequence
of the axioms of higher-order logic, together with an axiom asserting the exis-
tence of an infinite set.

One reason the formalization is interesting is simply that it is a landmark,
showing that today’s proof assistants have achieved a level of usability that
makes it possible to formalize substantial theorems of mathematics. Similar
achievements in the past year include George Gonthier’s verification of the four
color theorem using Coq, and Thomas Hales’s verification of the Jordan curve
theorem using HOL-light (see the introduction to [19]). As contemporary math-
ematical proofs become increasingly complex, the need for formal verification
becomes pressing. Formal verification can also help guarantee correctness when,
as is becoming increasingly common, proofs rely on computations that are too
long to check by hand. Hales’s ambitious Flyspeck project [10], which aims for

1

a fully verified form of his proof of the Kepler conjecture, is a response to both
of these concerns. Here, we will provide some information as to the time and
effort that went into our formalization, which should help gauge the feasibility
of such verification efforts.

More interesting, of course, are the lessons that can be learned. This, how-
ever, puts us on less certain terrain. Our efforts certainly provide some indica-
tions as to how to improve libraries and systems for verifying mathematics, but
we believe that right now the work is best viewed as raw data. Here, therefore,
we simply offer some initial thoughts and observations.

The outline of this paper is as follows. In Section 2, we provide some back-
ground on the prime number theorem and the Isabelle proof assistant. In Sec-
tion 3, we provide an overview of Selberg’s proof, our formalization, and the
effort involved. Finally, in Section 4, we discuss some interesting aspects of
the formalization: the use of asymptotic reasoning; calculations with real num-
bers; casts between natural numbers, integers, and real numbers; combinatorial
reasoning in number theory; and the use of elementary methods.

Our formalization of the prime number theorem was a collaborative effort on
the part of Avigad, Donnelly, Gray, and Raff, building, of course, on the efforts
of the entire Isabelle development team. This article was, however, written by
Avigad, so opinions and speculation contained herein should be attributed to
him.

2 Background

2.1 The prime number theorem

The statement of the prime number theorem was conjectured by both Gauss
and Legendre, on the basis of computation, around the turn of the nineteenth
century. In a pair of papers published in 1851 and 1852, Chebyshev made
significant advances towards proving it. Note that we can write

π(x) =
∑

p≤x

1,

where p ranges over the prime numbers. Contrary to our notation above, x
is usually treated as a real variable, making π a step function on the reals.
Chebyshev defined, in addition, the functions

θ(x) =
∑

p≤x

ln p

and
ψ(x) =

∑

pa≤x

ln p =
∑

n≤x

Λ(n),

where

Λ(n) =
{

ln p if n = pa, for some a ≥ 1
0 otherwise.

The functions θ and ψ are more sensitive to the presence of primes less than x,
and have nicer analytic properties. Chebyshev showed that the prime number

2

theorem is equivalent to the assertion limx→∞ θ(x)/x = 1, as well as to the
assertion limx→∞ ψ(x)/x = 1. He also provided bounds

B < π(x) ln x/x < 6B/5

for sufficiently large x, where

B = ln 2/2 + ln 3/3 + ln 5/5− ln 30/30 > 0.92

and 6B/5 < 1.11. So, as x approaches infinity, π(x) ln x/x, at worst, oscillates
between these two values.

In a landmark work of 1859, Riemann introduced the complex-valued func-
tion ζ into the study of number theory. It was not until 1894, however, that
von Mangoldt provided an expression for ψ that reduced the prime number the-
orem, essentially, to showing that ζ has no roots with real part equal to 1. This
last step was achieved by Hadamard and de la Vallée Poussin, independently, in
1896. The resulting proofs make strong use of the theory of complex functions.
In 1921, Hardy expressed strong doubts as to whether a proof of the theorem
was possible which did not depend, fundamentally, on these ideas. In 1948,
however, Selberg and Erdös found elementary proofs based on a “symmetry
formula” due to Selberg. (The nature of the interactions between Selberg and
Erdös at the time and the influence of ideas is a subtle one, and was the source
of tensions between the two for years to come.) Since the libraries we had to
work with had only a minimal theory of the complex numbers and a limited real
analysis library, we chose to formalize the Selberg proof.

There are a number of good introductions to analytic number theory (for
example, [1, 12]). Edwards’s Riemann’s zeta function [9] is an excellent source of
both historical and mathematical information. A number of textbooks present
the Selberg’s proof in particular, including those by Nathanson [14], Shapiro
[16], and Hardy and Wright [11]. We followed Shapiro’s excellent presentation
quite closely, though we made good use of Nathanson’s book as well.

We also had help from another source. Cornaros and Dimitricopoulis [8]
have shown that the prime number theorem is provable in a weak fragment of
arithmetic, by showing how to formalize Selberg’s proof (based on Shapiro’s
presentation) in that fragment.1 Their concerns were different from ours: by
relying on a formalization of higher-order logic, we were allowing ourselves a
logically stronger theory; on the other hand, Cornaros and Dimitricopoulis were
concerned solely with axiomatic provability and not ease of formalization. Their
work was, however, quite helpful in stripping the proof down to its bare essen-
tials. Also, since, our libraries did not have a good theory of integration, we
had to take some care to avoid the mild uses of analysis in the textbook pre-
sentations. Cornaros and Dimtricopoulis’s work was again often helpful in that
respect.

2.2 Isabelle

Isabelle [20] is a generic proof assistant developed under the direction of Larry
Paulson at Cambridge University and Tobias Nipkow at TU Munich. The HOL

1For issues relating to the formalization of mathematics, and number theory in particular,
in weak theories of arithmetic, see [3].

3

instantiation [15] provides a formal framework that is a conservative extension
of Church’s simple type theory with an infinite type (from which the natural
numbers are constructed), extensionality, and the axiom of choice. Specifically,
HOL extends ordinary type theory with set types, and a schema for polymorphic
axiomatic type classes designed by Nipkow and implemented by Marcus Wenzel
[17]. It also includes a definite description operator (“THE”), and an indefinite
description operator (“SOME”).2

Isabelle offers good automated support, including a term simplifier, an au-
tomated reasoner (which combines tableau search with rewriting), and decision
procedures for linear and Presburger arithmetic. It is an LCF-style theorem
prover, which is to say, correctness is guaranteed by the use of a small number
of constructors, in an underlying typed programming language, to build proofs.
Using the Proof General interface [21], one can construct proofs interactively
by repeatedly applying “tactics” that reduce a current subgoal to simpler ones.
But Isabelle also allows one to take advantage of a higher-level proof language,
called Isar, implemented by Wenzel [18]. These two styles of interaction can, fur-
thermore, be combined within a proof. We found Isar to be extremely helpful in
structuring complex proofs, whereas we typically resorted to tactic-application
for filling in low-level inferences. Occasionally, we also made mild use of Is-
abelle’s support for locales [7]. For more information on Isabelle, one should
consult the tutorial [15] and other online documentation [20].

Our formalization made use of the basic HOL library, as well as those parts
of the HOL-Complex library, developed primarily by Jacques Fleuriot, that deal
with the real numbers. Some of our earlier definitions, lemmas, and theorems
made their way into the 2004 release of Isabelle, in which the formalization
described here took place. Some additional theorems in our basic libraries will
be part of the 2005 release.

3 Overview

3.1 The Selberg proof

The prime number theorem describes the asymptotic behavior of a function
from the natural numbers to the reals. Analytic number theory works by ex-
tending the domain of such functions to the real numbers, and then providing
a toolbox for reasoning about such functions. One is typically concerned with
rough characterizations of a function’s rate of growth; thus f = O(g) expresses
the fact that for some constant C, |f(x)| ≤ C|g(x)| for every x. (Sometimes,
when writing f = O(g), one really means that the inequality holds except for
some initial values of x, where g is 0 or one of the functions is undefined; or
that the inequality holds when x is large enough.)

2The extension by set types is mild, since they are easily interpretable in terms of predicate
types σ → bool . Similarly, the definite description operator can be eliminated, at least in
principle, using Russell’s well-known interpretation. It is the indefinite description operator,
essentially a version of Hilbert’s epsilon operator, that gives rise to the axiom of choice.
Though we occasionally used the indefinite description operator for convenience, these uses
could easily be replaced by the definition description operator, and it is likely that uses of the
axiom of choice can be dispensed with in the libraries as well. In any event, it is a folklore
result that Gödel’s methods transfer to higher-order logic to show that the axiom of choice is
a conservative extension for a fragment the includes the prime number theorem.

4

For example, all of the following identities can be obtained using elementary
calculus:

ln(1 + 1/n) = 1/n + O(1/n2)
∑

n≤x

1/n = ln x + O(1)

∑

n≤x

ln n = x ln x− x + O(ln x)

∑

n≤x

ln n/n = ln2 x/2 + O(1)

In all of these, n ranges over positive integers. The last three inequalities hold
whether one takes x to be an integer or a real number greater than or equal to
1. The second identity reflects the fact that the integral of 1/x is ln x, and the
third reflects the fact that the integral of ln x is x ln x − x. A list of identities
like these form one part of the requisite background to the Selberg proof.

Some of Chebyshev’s results form another. Rate-of-growth comparisons be-
tween θ, ψ, and π sufficient to show the equivalence of the various statements
of the prime number theorem can be obtained by fairly direct calculations. Ob-
taining any of the upper bounds equivalent to ψ(x) = O(x) requires more work.
A nice way of doing this, using binomial coefficients, can be found in [14].

Number theory depends crucially on having different ways of counting things,
and rudimentary combinatorial methods form a third prerequisite to the Selberg
proof. For example, consider the set of (positive) divisors d of a positive natural
number n. Since the function d 7→ n/d is a permutation of that set, we have
the following identity: ∑

d|n
f(d) =

∑

d|n
f(n/d).

For a more complicated example, suppose n is a positive integer, and consider
the set of pairs d, d′ of positive integers such that dd′ ≤ n. There are two ways
to enumerate these pairs: for each value of d between 1 and n, we can enumerate
all the values d′ such that d′ ≤ n/d; or for each product c less than n, we can
enumerate all pairs d, c/d whose product is c. Thus we have

∑

d≤n

∑

d′≤n/d

f(d, d′) =
∑

dd′≤n

f(d, d′)

=
∑

c≤n

∑

d|c
f(d, c/d).

(1)

A similar argument yields
∑

d|n

∑

d′|(n/d)

f(d, d′) =
∑

dd′|n
f(d, d′)

=
∑

c|n

∑

d|c
f(d, c/d).

(2)

Yet another important combinatorial identity is given by the partial summation
formula, which, in one formulation, is as follows: if a ≤ b, F (n) =

∑n
i=1 f(i),

5

and G is any function, then

b∑
n=a

f(n + 1)G(n + 1) = F (b + 1)G(b + 1)− F (a)G(a + 1)−

b−1∑
n=a

F (n + 1)(G(n + 2)−G(n + 1)).

This can be viewed as a discrete analogue of integration by parts, and can be
verified by induction.

An important use of (2) occurs in the proof of the Möbius inversion formula,
which we now describe. A positive natural number n is said to be square free
if no prime in its factorization occurs with multiplicity greater than 1; in other
words, n = p1p2 · · · ps where the pi’s are distinct primes (and s may be 0).
Euler’s function µ is defined by

µ(n) =
{

(−1)s if n is squarefree and s is as above
0 otherwise.

A remarkably useful fact regarding µ is that for n > 0,

∑

d|n
µ(d) =

{
1 if n = 1
0 otherwise. (3)

To see this, define the radical of a number n, denoted rad(n), to be the greatest
squarefree number dividing n. It is not hard to see that if n has prime fac-
torization pj1

1 pj2
2 · · · pjs

s , then rad(n) is given by p1p2 · · · ps. Then
∑

d|n µ(d) =∑
d|rad(n) µ(d), since divisors of n that are not divisors of rad(n) are not square-

free and hence contribute 0 to the sum. If n = 1, equation (3) is clear. Other-
wise, write rad(n) = p1p2 · · · ps, write

∑

d|rad(n)

µ(d) =
∑

d|rad(n),p1|d
µ(d) +

∑

d|rad(n),p1-d
µ(d),

and note that each term in the first sum is canceled by a corresponding one in
the second.

Now, suppose g is any function from N to R, and define f by f(n) =∑
d|n g(d). The Möbius inversion formula provides a way of “inverting” the

definition to obtain an expression for g in terms of f . Using (2) for the third
equality below and (3) for the last, we have, somewhat miraculously,

∑

d|n
µ(d)f(n/d) =

∑

d|n
µ(d)

∑

d′|(n/d)

g((n/d)/d′)

=
∑

d|n

∑

d′|(n/d)

µ(d)g((n/d)/d′)

=
∑

c|n

∑

d|c
µ(d)g(n/c)

=
∑

c|n
g(n/c)

∑

d|c
µ(d)

= g(n),

6

since the inner sum on the second-to-last line is 0 except when c is equal to 1.
All the pieces just described come together to yield additional identities

involving sums, ln, and µ, as well as Mertens’s theorem:
∑

n≤x

Λ(n)/n = ln x + O(1).

These, in turn, are used to derive Selberg’s elegant “symmetry formula,” which
is the central component in the proof. One formulation of the symmetry formula
is as follows:

∑

n≤x

Λ(n) ln n +
∑

n≤x

∑

d|n
Λ(d)Λ(n/d) = 2x ln x + O(x).

There are, however, many variants of this identity, involving Λ, ψ, and θ. These
crop up in profusion because one can always unpack definitions of the various
functions, apply the types of combinatorial manipulations described above, and
use identities and approximations to simplify expressions.

What makes the Selberg symmetry formula so powerful is that there are two
terms in the sum on the left, each sensitive to the presence of primes in different
ways. The formula above implies there have to be some primes — to make
left-hand side nonzero — but there can’t be too many. Selberg’s proof involves
cleverly balancing the two terms off each other, to show that in the long run,
the density of the primes has the appropriate asymptotic behavior.

Specifically, let R(x) = ψ(x)− x denote the “error term,” and note that by
Chebyshev’s equivalences the prime number theorem amounts to the assertion
limx→∞R(x)/x = 0. With some delicate calculation, one can use the symmetry
formula to obtain a bound on |R(x)|:

|R(x)| ln2 x ≤ 2
∑

n≤x

|R(x/n)| ln n + O(x ln x). (4)

Now, suppose we have a bound |R(x)| ≤ ax for sufficiently large x. Substituting
this into the right side of (4) and using an approximation for

∑
n≤x ln n/n we

get
|R(x)| ≤ ax + O(x/ ln x),

which is not an improvement on the original bound. Selberg’s method involves
showing that in fact there are always sufficiently many intervals on which one
can obtain a stronger bound on R(x), so that for some positive constant k,
assuming we have a bound |R(x)| ≤ ax that valid for x ≥ c1, we can obtain
a c2 and a better bound |R(x)| ≤ (a − ka3), valid for x ≥ c2. The constant k
depends on a, but the same constant also works for any a′ < a.

By Chebyshev’s theorem, we know that there is a constant a1 such that
|R(x)| ≤ a1x for every x. Choosing k appropriate for a1 and then setting
an+1 = an − ka3

n, we have that for every n, there is a c large enough so that
|R(x)|/x ≤ an for every x ≥ c. But it is not hard to verify that the sequence
a1, a2, . . . approaches 0, which implies that R(x)/x approaches 0 as x approaches
infinity, as required.

7

3.2 Our formalization

All told, our number theory session, including the proof of the prime num-
ber theorem and supporting libraries, constitutes 673 pages of proof scripts, or
roughly 30,000 lines. This count includes about 65 pages of elementary number
theory that we had at the outset, developed by Larry Paulson and others; also
about 50 pages devoted to a proof of the law of quadratic reciprocity and prop-
erties of Euler’s ϕ function, neither of which are used in the proof of the prime
number theorem. The page count does not include the basic HOL library, or
properties of the real numbers that we obtained from the HOL-Complex library.

The overview provided in the last section should provide a general sense of
the components that are needed for the formalization. To start with, one needs
good supporting libraries:

• a theory of the natural numbers and integers, including properties of
primes and divisibility, and the fundamental theorem of arithmetic

• a library for reasoning about finite sets, sums, and products

• a library for the real numbers, including properties of ln

The basic Isabelle libraries provided a good starting point, though we had to
augment these considerably as we went along. More specific supporting libraries
include:

• properties of the µ function, combinatorial identities, and the Möbius
inversion formula

• a library for asymptotic “big O” calculations

• a number of basic identities involving sums and ln

• Chebyshev’s theorems

Finally, the specific components of the Selberg proof are:

• the Selberg symmetry formula

• the inequality involving R(n)

• a long calculation to show R(n) approaches 0

This general outline is clearly discernible in the list of theory files, which can
be viewed online [2]. Keep in mind that the files described here have not been
modified since the original proof was completed, and many of the proofs were
written while various participants in the project were still learning how to use
Isabelle. Since then, some of the basic libraries have been revised and incor-
porated into Isabelle, but Avigad intends to revise the number theory libraries
substantially before cleaning up the rest of the proof.

There are three reasons that it would not be interesting to give a play-
by-play description of the formalization. The first is that our formal proof
follows Shapiro’s presentation quite closely, though for some parts we followed
Nathanson instead. A detailed description of our proof would therefore be
little more than a step-by-step narrative of (one of the various paths through)

8

Selberg’s proof, with page correspondences in texts we followed. For example,
one of our formulations of the Möbius inversion is as follows:

lemma mu_inversion_nat1a: "ALL n. (0 < n −→
f n = (

∑
d | d dvd n. g(n div d))) =⇒ 0 < (n::nat) =⇒

g n = (
∑

d | d dvd n. of_int(mu(int(d))) * f (n div d))"

This appears on page 64 of Shapiro’s book, and on page 218 of Nathanson’s
book. We formalized a version of the fourth identity listed in Section 3.2 as
follows:

lemma identity_four_real_b: "(λx.
∑

i=1..natfloor(abs x).

ln (real i) / (real i)) =o

(λx. ln(abs x + 1)^2 / 2) +o O(λx. 1)"

In fact, stronger assertions can be found on page 93 of Shapiro’s book, and on
page 209 of Nathanson’s book. Here is one of our formulations of the Selberg
symmetry principle:

lemma Selberg3: "(λx.
∑

n = 1..natfloor (abs x) + 1.

Lambda n * ln (real n)) + (λx.
∑

n=1..natfloor (abs x) + 1.

(
∑

u | u dvd n. Lambda u * Lambda (n div u)))

=o (λx. 2 * (abs x + 1) * ln (abs x + 1)) +o O(λx. abs x + 1)"

This is given on page 419 of Shapiro’s book, and on page 293 of Nathanson’s
book. The error estimate given in the previous section, taken from 431 of
Shapiro’s book, takes the following form:

lemma error7: "(λx. abs (R (abs x + 1)) * ln (abs x + 1) ^ 2) <o

(λx. 2 * (
∑

n = 1..natfloor (abs x) + 1.

abs (R ((abs x + 1) / real n)) * ln (real n))) =o

O(λx. (abs x + 1) * (1 + ln (abs x + 1)))"

We will have more to say, below, about handling of asymptotic notation, the
type casts, and the various occurrences of abs and +1 that make the formal
presentation differ from ordinary mathematical notation. But aside from calling
attention to differences like these, a detailed outline of the formal proof would be,
in large part, nothing more than a detailed outline of the ordinary mathematical
one.

The second reason that it does not pay to focus too much attention on the
proof scripts is that they are not particularly nice. Our efforts were designed to
get us to the prime number theorem as quickly as possible rather than as cleanly
as possible, and, in retrospect, there are many ways in which we could make the
proofs more readable. For example, long after deriving some of the basic identi-
ties involving ln, we realized that we needed either stronger or slightly different
versions, so we later incorporated a number of ad-hoc reworkings and fixes. A
couple of months after completing the formalization, Avigad was dismayed to
discover that his definition of the constant γ really described the negation of
the constant, defined by Euler, that goes under the same name. This results
in infelicitous differences between the statements of a few of our theorems and
the ordinary mathematical versions. Our proofs also make use of two different
summation operators that were in the libraries that we used, which will, fortu-
nately, be subsumed by the more general one in future releases of the Isabelle
libraries. Even the presentation of the theorems displayed above could easily be
improved using Isabelle’s various translation and output facilities.

9

This points to a final reason for not delving into too much detail: we know
that our formalization is not optimal. It hardly makes sense for us to describe
exactly how we went about proving the Möbius inversion formula until we are
convinced that we have done it right; that is, until we are convinced the we have
made the supporting libraries as generally useful as possible, and configured the
automated tools in such a way to make the formalization as smooth as possible.
We therefore intend to invest more time in improving the various parts of the
formalization and report on these when it is clear what we have learned from
the efforts.

In the meanwhile, we will devote the rest of this report to conveying two types
of information. First, to help gauge the usability of the current technology, we
will try to provide a sense of the amount of time required to seeing the project
through to its completion. Second, we will provide some initial reflections on the
project, and on the strengths and weaknesses of contemporary proof assistants.
In particular, we will discuss what we take to be some of the novel aspects of the
formalization, and indicate where we believe better automated support would
have been especially helpful.

3.3 The effort involved

As we have noted in the introduction, one of the most interesting features of our
formalization of the prime number theorem is simply its existence, which shows
that current technology makes it possible to treat a proof of this complexity.
The question naturally arises as to how long the formalization took.

This is a question that it hard to answer with any precision. Avigad first
decided to undertake the project in March of 2003, having learned how to use
Isabelle and proved Gauss’s law of quadratic reciprocity with Gray and Adam
Kramer the preceding summer and fall. But this was a side project for everyone
involved, and time associated it includes time spent learning to use Isabelle,
time spent learning the requisite number theory, and so on. Gray developed
a substantial part of the number theory library, including basic facts about
primes and multiplicity, the µ function, and the identity (2), working a few
hours per week in the summer of 2003, before his thesis work in ethics took
over. Donnelly and Avigad developed the library to support big O calculations
[5] while Donnelly worked half-time during the summer of 2003, just after he
completed his junior year at Carnegie Mellon. During that summer, and working
part time the following year, Donnelly also derived some of the basic identities
involving ln. Raff started working on the project in the 2003-2004 academic year,
but most of his contributions came working roughly half-time in the summer
of 2004, just after he obtained his undergraduate degree. During that time, he
proved Chebyshev’s theorem to the effect that ψ(x) = O(x), and also did most
of the work needed to prove the equivalence of statements of the prime number
theorem in terms of the functions π, θ, and ψ. Though Avigad’s involvement
was more constant, he rarely put in more than a few hours per week before the
summer of 2004, and set the project aside for long stretches of time. The bulk
of his proof scripts were written during the summer of 2004, when he worked
roughly half-time on the project from the middle of June to the end of August.

Some specific benchmarks may be more informative. Proving most of the
inversion theorems we needed, starting from (2) and the relevant properties
of µ, took Avigad about a day. (For a “day” read eight hours of dedicated

10

formalization. Though he could put in work-days like that for small stretches,
in some of the estimates below, the work was spread out over longer periods
of time.) Proving the first version of the Selberg symmetry formula using the
requisite identities took another day. Along the way, he was often sidetracked
by the need to prove elementary facts about things like primes and divisibility,
or the floor function on the real numbers. This process stabilized, however, and
towards the end he found that he could formalize about a page of Shapiro’s text
per day. Thus, the derivation of the error estimate described above, taken from
pages 428–431 in Shapiro’s book, took about three-and-a-half days to formalize;
and the remainder of the proof, corresponding to 432–437 in Shapiro’s book,
took about five days.

In many cases, the increase in length is dramatic: the three-and-a-half pages
of text associated with the proof of the error estimate translate to about than
1,600 lines, or 37 pages, of proof scripts, and the five pages of text associated
with the final part of the proof translate to about 4,000 lines, or 89 pages, of
proof scripts. These ratios are abnormally high, however, for reasons discussed
in Section 4.2. The five-line derivation of the Möbius inversion formula in Sec-
tion 3.1 translates to about 40 lines, and the proof of the form of the Selberg
symmetry formula discussed there, carried out in about two-and-a-half pages in
Shapiro’s book, takes up about 600 lines, or 13 pages. These ratios are more
typical.

We suspect that over the coming years both the time it takes to carry out
such formalizations, as well as the lengths of the formal proof scripts, will drop
significantly. Much of the effort involved in the project was spent on the follow-
ing:

• Defining fundamental concepts and gathering basic libraries of easy facts.

• Proving trivial lemmas and spelling out “straightforward” inferences.

• Finding the right lemmas and theorems to apply.

• Entering long formulas and expressions correctly, and adapting ordinary
mathematical notation to the formal notation in Isabelle.

Gradually, all these requirements will be ameliorated, as better libraries, auto-
mated tools, and interfaces are developed. On a personal note, we are entirely
convinced that, although there is a long road ahead, formal verification of math-
ematics will inevitably become commonplace. Getting to that point will require
both theoretical and practical ingenuity, but we do not see any conceptual hur-
dles.3

4 Reflection

In this section, we will discuss features of the formalization that we feel are wor-
thy of discussion, either because they represent novel and successful solutions to
general problems, or (more commonly) because they indicate aspects of formal
mathematical verification where better support is possible.

3For further speculation along these lines, see the preliminary notes [4].

11

4.1 Asymptotics

One of our earliest tasks in the formalization was to develop a library to support
the requisite calculations with big O expressions. To that end, we gave the
expression f = O(g) the strict reading ∃C ∀x (|f(x)| ≤ C|g(x)|), and followed
the common practice of taking O(g) to be the set of all functions with the
requisite rate of growth, i.e.

O(g) = {f | ∃C ∀x (|f(x)| ≤ C|g(x)|)}.

We then read the “equality” in f = O(g) as the element-of relation, ∈.
Note that these expressions make sense for any function type for which the

codomain is an ordered ring. Isabelle’s axiomatic type classes made it possible
to develop the library fully generally. We could lift operations like addition
and multiplication to such types, defining f + g to denote the pointwise sum,
λx.(f(x) + g(x)). Similarly, given a set B of elements of a type that supports
addition, we could define

a +o B = {c | ∃b ∈ B (c = a + b)}.

We also defined a =o B to be alternative input syntax for a ∈ B. This gave
expressions like f =o g +o O(h) the intended meaning. In mathematical texts,
convention dictates that in an expression like x2 + 3x = x2 + O(x), the terms
are to be interpreted as functions of x; in Isabelle we he had to use lambda
notation to make this explicit. Thus, the expression above would be entered

(λx. x^2 + 3 * x) =o (λx. x^2) +o O(λx. x)

This should help the reader make sense of sense of the formalizations presented
in Section 3.2.

An early version of our big O library is described in detail in [5]. That
version is nonetheless fairly close to the version used in the proof of the prime
number theorem described here, as well as a version that is scheduled for the
2005 release of Isabelle. The main differences between the latter and the version
described in [5] are as follows:

1. In the version described in [5], we support reasoning about O applied
to sets, O(S), as well as to functions, O(f). It now seems that uses of
the former can easily be eliminated in terms of uses of the latter, and
having both led to annoying type ambiguities. The most recent library
only defines O(f).

2. In [5], we advocated using f + O(g) as output syntax for f +o O(g). We
no longer think this is a good idea: the greater clarity in keeping the “o”
outweighs the slight divergence from ordinary mathematical notation.

3. The more recent libraries have theorems to handle composition of func-
tions in big O equations.

4. The more recent libraries have better and more general theorems for sum-
mations. (In the most recent library, the function “sumr” is entirely elim-
inated in favor of Isabelle’s “setsum.”)

12

5. The more recent libraries support reasoning about asymptotic inequalities,
f ≤ g + O(h). This is entered as f ≤o g =o O (h), which is a hack, but
an effective one.

There is one feature of our library that seems to be less than optimal, and
resulted in a good deal of tedium. With our definition, a statement like λx. x+
1 = O(λx. x2) is false when the variables range over the natural numbers, since
x2 is equal to 0 when x is 0. Often one wants to restrict one’s attention to
strictly positive natural numbers, or nonnegative real numbers. There are four
ways one can do this:

• Define new types for the strictly positive natural numbers, or nonnegative
real numbers, and state the identities for those types.

• Formalize the notion “f = O(g) on S.”

• Formalize the notion “f = O(g) eventually.”

• Replace x by x + 1 in the first case, and by |x| in the second case, to
make the identities correct. For example, “f(|x|) = O(|x|3)” expresses
that f(x) = O(x3) on the nonnegative reals. Various similar tinkerings
are effective; for example, the relationship intended in the example above
is probably best expressed as λx. x + 1 = O(λx. x2 + 1).

These various options are discussed in [5], and all come at a cost. For example,
the first requires annoying casts, say, between positive natural numbers, and
natural numbers. The second requires carrying around a set S in every formula,
and both the second and third require additional work when composing expres-
sions or reasoning about sums (roughly, one has to make sure that the range of
a function lies in the domain where an asymptotic estimate is valid).

In our formalization, we chose the fourth route, which explains the numerous
occurrences of +1 and abs in the statements in Section 3.2. This often made
some of the more complex calculations painfully tedious, forcing us, for example,
the following “helper” lemma in Selberg:

lemma aux: "1 <= z =⇒ natfloor(abs(z - 1)) + 1 = natfloor z"

We still do not know, however, whether following any of the alternative options
would have made much of a difference.

Donnelly and Avigad have designed a decision procedure for entailments
between linear big O equations, and have obtained a prototype implementation
(though we have not incorporated it into the Isabelle framework). This would
eliminate the need for helper lemmas like the following:

lemma aux5: "f + g =o h +o O(k::’a=>(’b::ordered_ring)) =⇒
g + l =o h +o O(k) =⇒ f =o l +o O(k)"

We believe calculations going beyond the linear fragment would also benefit
from a better handling of monotonicity, just as is needed to support ordinary
calculations with inequalities, as described in the next section.

4.2 Calculations with real numbers

One salient feature of the Selberg proof is the amount of calculation involved.
The dramatic increase in the length of the formalization of the final part of the

13

proof (5 pages in Shapiro, compared to 89 or so in the formal version) is directly
attributable to the need to spell out calculations involving field operations, log-
arithms and exponentiation, the greatest and least integer functions (“ceiling”
and “floor”), and so on. The textbook calculations themselves were complex;
but then each textbook inference had to be expanded, by hand, to what was
often a long sequence of entirely straightforward inferences.

Of course, Isabelle does provide some automated support. For example,
the simplifier employs a form of ordered rewriting for operations, like addition
and multiplication, that are associative and commutative. This puts terms
involving these operations into canonical normal forms, thereby making it easy
to verify equality of terms that differ up to such rewriting. More complex
equalities can similarly be obtained by simplifying with appropriate rewrite
rules, such as various forms of distributivity in a ring or identities for logarithms
and exponents.

Much of the work in the final stages of the proof, however, involved verifying
inequalities between expressions. Isabelle’s linear arithmetic package is complete
for reasoning about inequalities between linear expressions in the integers and
reals, i.e. validities that depend only on the linear fragment of these theories.
But, many of the calculations went just beyond that, at which point we were
stuck manipulating expressions by hand and applying low-level inferences.

As a simple example, part of one of the long proofs in PrimeNumberTheorem
required verifying that

(1 +
ε

3(C∗ + 3)
) · real(n) < Kx

using the following hypotheses:

real(n) ≤ (K/2)x
0 < C∗

0 < ε < 1

The conclusion is easily obtained by noting that 1+ ε
3(C∗+3) is strictly less than

2, and so the product with real(n) is strictly less than 2(K/2)x = Kx. But
spelling out the details requires, for one thing, invoking the relevant monotonic-
ity rules for addition, multiplication, and division. The last two, in turn, require
verifying that the relevant terms are positive. Furthermore, getting the calcula-
tion to go through can require explicitly specifying terms like 2(K/2)x (which
can be simplified to Kx), or, in other contexts, using rules like associativity or
commutativity to manipulate terms into the the forms required by the rules.

The file PrimeNumberTheorem consists of a litany of such calculations. This
required us to have names like “mult-left-mono” “add-pos-nonneg,” “order-
le-less-trans,” “exp-less-cancel-iff,” “pos-divide-le-eq” at our fingertips, or to
search for them when they were needed. Furthermore, sign calculations had
a way of coming back to haunt us. For example, verifying an inequality like
1/(1 + st) < 1/(1 + su) might require showing that the denominators are pos-
itive, which, in turns, might require verifying that s, t, and u are nonnegative;
but then showing st > su may again require verifying that s is positive. Since s
can be carried along in a chain of inequalities, such queries for sign information
can keep coming back. Isar made it easy to break out such facts, name them,
and reuse them as needed. But since we were usually working in a context where

14

obtaining the sign information was entirely straightforward, these concerns al-
ways felt like an annoying distraction from the interesting and truly difficult
parts of the calculations.

In short, inferences like the ones we have just described are commonly treated
as “obvious” in ordinary mathematical texts, and it would be nice if mechanized
proof assistants could recognize them as such. Decision procedures that are
stronger than linear arithmetic are available; for example, a proof-producing
decision procedure for real-closed fields has recently been implemented in HOL-
light [13]. But for calculations like the one above, computing sequences of partial
derivatives, as decision procedures for the real closed fields are required to do, is
arguably unnecessary and inefficient. Furthermore, decision procedures for real
closed fields cannot be extended, say, to handle exponentiation and logarithms;
and adding a generic monotone function, or trigonometric functions, or the floor
function, renders the full theory undecidable.

Thus, in contexts similar to ours, we expect that principled heuristic pro-
cedures will be most effective. Roughly, one simply needs to chain backwards
through the obvious rules in a sensible way. There are stumbling blocks, how-
ever. For one thing, excessive case splits can lead to exponential blowup; e.g. one
can show st > 0 by showing that s and t are either both strictly positive or
strictly negative. Other inferences are similarly nondeterministic: one can show
r + s + t > 0 by showing that two of the terms are nonnegative and the third is
strictly positive, and one can show r + s < t+u+ v +w, say, by showing r < u,
s ≤ t + v, and 0 ≤ w.

As far as case splits are concerned, we suspect that they are rarely needed
to establishing “obvious” facts; for example, in straightforward calculations, the
necessary sign information is typically available. As far as the second sort of
nondeterminism is concerned, notice that the procedures for linear arithmetic
are effective in drawing the requisite conclusions from available hypotheses; this
is a reflection that of the fact that the theory of the real numbers with addition
(and, say, multiplication by rational constants) is decidable.

The analogous theory of the reals with multiplication is also decidable. To see
this, observe that the structure consisting of the strictly positive real numbers
with multiplication is isomorphic to the structure of the real numbers with
addition, and so the usual procedures for linear arithmetic carry over. More
generally, by introducing case splits on the signs of the basic terms, one can
reduce the multiplicative fragment of the reals to the previous case.

In short, when the signs of the relevant terms are known, there are straight-
forward and effective methods of deriving inequalities in the additive and mul-
tiplicative fragments. This suggests that what is really needed is a principled
method of amalgamating such “local” procedures, together with, say, proce-
dures that make use of monotonicity and sign properties of logarithms and
exponentiation. The well-known Nelson-Oppen procedure provides a method
of amalgamating decision procedures for disjoint theories that share only the
equality symbol in their common language; but these methods fail for theories
that share an inequality symbol when one adds, say, rational constants to the
language, which is necessary to render such combinations nontrivial. We be-
lieve that there are principled ways, however, of extending the Nelson-Oppen
framework to obtain useful heuristic procedures. This possibility is explored by
Avigad and Harvey Friedman in [6].

15

4.3 Casting between domains

In our formalization, we found that the most natural way to establish basic
properties of the functions θ, ψ, and π, as well as Chebyshev’s theorems, was
to treat them as functions from the natural numbers to the reals, rather them
as functions from the reals to the reals. Either way, however, it is clear that the
relevant proofs have to use the embedding of the natural numbers into the reals
in an essential way. Since the µ function takes positive and negative values, we
were also forced to deal with integers as soon as µ came into play. In short,
our proof of the prime number theorem inevitably involved combining reasoning
about the natural numbers, integers, and real numbers effectively; and this, in
turn, involved frequent casting between the various domains.

We tended to address such needs as they arose, in an ad-hoc way. For
example, the version of the fundamental theorem of arithmetic that we inherited
from prior Isabelle distributions asserts that every positive natural number can
be written uniquely as the product of an increasing list of primes. Developing
properties of the radical function required being able to express the unique
factorization theorem in the more natural form that every positive number is
the product of the primes that divide it, raised to the appropriate multiplicity;
i.e. the fact that for every n > 0,

n =
∏

p|n
pmultp(n),

where multp(n) denotes the multiplicity of p in n. We also needed, at our
disposal, things like the fact that n divides m if and only if for every prime
number p, the multiplicity of p in n is less than or equal to the multiplicity of p in
m. Thus, early on, we faced the dual tasks of translating the unique factorization
theorem from a statement about positive natural numbers to positive integers,
and developing a good theory of multiplicity in that setting. Later, when proving
Chebyshev’s theorems, we found that we needed to recast some of the facts about
multiplicity to statements about natural numbers.

We faced similar headaches when we began serious calculations involving
natural numbers and the reals. In particular, as we proceeded we were forced
to develop a substantial theory of the floor and ceiling functions, including a
theory of their behavior vis-a-vis the various field operations. In calculations,
expressions sometimes involved objects of all three types, and we often had to
explicitly transport operations in or out of casts in order to apply a relevant
lemma.

When one extends a domain like the natural numbers to the integers, or
the integers to the real numbers, some operations are simply extended. For
example, properties of addition and multiplication of natural numbers carry all
the way through to the reals. On the other hand, one has new operations, like
subtraction on the integers and division in the real numbers, that are mirrored
imperfectly in the smaller domains. For example, subtraction on the integers
extends truncated subtraction x .− y on the natural numbers only when x ≥ y,
and division in the reals extends the function x div y on the integers or natural
numbers only when y divides x. Finally, there are facts the depend on the choice
of a left inverse to the embedding: for example, if n is an integer, x is a real
number, real is the embedding of the integers into the reals, and b·c denotes the

16

floor function from the reals to the integers, we have

(n ≤ bxc) ≡ (real(n) ≤ x).

This is an example of what mathematicians call a Galois correspondence, and
category theorists call an adjunction, between the integers and the real numbers
with the ordering relation.

Our formalization of the prime number theorem involved a good deal of ma-
nipulation of expressions, by hand, using the three types of facts just described.
Many of these inferences should be handled automatically. After all, such issues
are transparent in mathematical texts; we carry out the necessary inferences
smoothly and unconsciously whenever we read an ordinary proof. The guiding
principle should be that anything that is transparent to us can be made trans-
parent to a mechanized proof assistant: we simply need to reflect on why we are
effectively able to combine domains in ordinary mathematical reasoning, and
codify that knowledge appropriately.

4.4 Combinatorial reasoning with sums

As described in Section 3.2, formalizing the prime number theorem involved a
good deal of combinatorial reasoning with sums and products. Thus, we had
to develop some basic theorems to support such reasoning, many of which have
since been moved into Isabelle’s HOL library. These include, for example,

lemma setsum_cartesian_product:

"(
∑

x∈A. (
∑

y∈B. f x y)) = (
∑

z∈A <*> B. f (fst z) (snd z))"

which allows one to view a double summation as a sum over a cartesian product;
as well as

lemma setsum_reindex:

"inj_on f B =⇒ (
∑

x∈f‘B. h x) = (
∑

x∈B. (h ◦ f)(x))"

which expresses that if f is an injective function on a set B, then summing h
over the image of B under f is the same as summing h◦f over B. In particular,
if f is a bijection from B to A, the second identity implies that summing h
over A is the same as summing h ◦ f over B. This type of “reindexing” is often
so transparent in mathematical arguments that when we first came across an
instance where we needed it (long ago, when proving quadratic reciprocity), it
took some thought to identify the relevant principle. It is needed, for example,
to show ∑

d|n
h(n) =

∑

d|n
h(n/d),

using the fact that f(d) = n/d is a bijection from the set of divisors of n to
itself; or, for example, to show

∑

dd′=c

h(d, d′) =
∑

d|c
h(d, c/d),

using the fact that f(d) = 〈d, c/d〉 is a bijection from the set of divisors of c to
{〈d, d′〉 | dd′ = c}.

In Isabelle, if σ is any type, one also has the type of all subsets of σ. The
predicate “finite” is defined inductively for these subset types. Isabelle’s sum-
mation operator takes a subset A of σ and a function f from σ to any type with

17

an appropriate notion of addition, and returns
∑

x∈A f(x). This summation
operator really only makes sense when A is a finite subset, so many identities
have to be restricted accordingly. (An alternative would be to define a type of
finite subsets of σ, with appropriate closure operations; but then work would be
required to translate properties of arbitrary subsets to properties of finite sub-
sets, or to mediate relationships between finite subsets and arbitrary subsets.)
This has the net effect that applying an identity involving a sum or product
often requires one to verify that the relevant sets are finite. This difficulty is
ameliorated by defining

∑
x∈A f(x) to be 0 when A is infinite, since it then turns

out that a number of identities hold in the unrestricted form. But this fix is not
universal, and so finiteness issues tend to pop up repeatedly when one carries
out a long calculation.

In short, at present, carrying out combinatorial calculations often requires
a number of straightforward verifications involving reindexing and finiteness.
Once again, these are inferences that are nearly transparent in ordinary math-
ematical texts, and so, by our general principle, we should expect mechanized
proof assistants to take care of them. As before, there are stumbling blocks;
for example, when reindexing is needed, the appropriate injection f has to be
pulled from the air. We expect, however, that in the types of inferences that
are commonly viewed as obvious, there are natural candidates for f . So this
is yet another domain where reflection and empirical work should allow us to
make proof assistants more usable.

4.5 Devising elementary proofs

Anyone who has undertaken serious work in formal mathematical verification
has faced the task of adapting an ordinary mathematical proof so that it can
be carried out using the libraries and resources available. When a proof uses
mathematical “machinery” that is unavailable, one is faced with the choice of
expanding the background libraries to the point where one can take the orig-
inal proof at face value, or finding workarounds, say, by replacing the original
arguments with ones that are more elementary. The need to rewrite proofs in
such a way can be frustrating, but the task can also be oddly enjoyable: it poses
interesting puzzles, and enables one to better understand the relationship of the
advanced mathematical methods to the elementary substitutes. As more power-
ful mathematical libraries are developed, the need for elementary workarounds
will gradually fade, and with it, alas, one good reason for investing time in such
exercises.

Our decision to use Selberg’s proof rather than a complex-analytic one is an
instance of this phenomenon. To this day, we do not have a sense of how long it
would have taken to build up a complex-analysis library sufficient to formalize
one of the more common proofs of the prime number theorem, nor how much
easier a formal verification of the prime number theorem would have been in
the presence of such a library.

But similar issues arose even with respect to the mild uses of analysis re-
quired by the Selberg proof. Isabelle’s real library gave us a good theory of
limits, series, derivatives, and the basic transcendental functions, but it had
almost no theory of integration to speak of. Rather than develop such a theory,
we found that we were able to work around the mild uses of integration needed

18

in the Selberg proof.4 Often, we also had to search for quick patches to other
gaps in the underlying library. For the reader’s edification and entertainment,
we describe a few such workarounds here.

Recall that one of the fundamental identities we needed asserts

ln(1 + 1/n) = 1/n + O(1/n2).

This follows from the fact that ln(1 + x) is well approximated by x when x
is small, which, in turn, can be seen from the Maclaurin series for ln(1 + x),
or even the fact that the derivative of ln(1 + x) is equal to 1 at 0. But these
were among the few elementary properties of transcendental functions that were
missing from the real library. How could we work around this?

To be more specific: Fleuriot’s real library defined ex by the power series
ex =

∑∞
n=0 xn/n!, and showed that ex is strictly increasing, e0 = 1, ex+y = exey

for every x and y, and the range of ex is exactly the set of positive reals. The
library then defines ln to be a left inverse to ex. The puzzle was to use these
facts to show that | ln(1 + x)− x| ≤ x2 when x is positive and small enough.

Here is the solution we hit upon. First, note that when x ≥ 0, ex ≥ 1 + x,
and so, x ≥ ln(1 + x). Replacing x by x2, we also have

ex2 ≥ 1 + x2. (5)

On the other hand, the definition of ex can be used to show

ex ≤ 1 + x + x2 (6)

when 0 ≤ x ≤ 1/2. From (5) and (6) we have

ex−x2
= ex/ex2

≤ (1 + x + x2)/(1 + x2)
≤ 1 + x,

where the last inequality is easily obtained by multiplying through. Taking
logarithms of both sides, we have

x− x2 ≤ ln(1 + x) ≤ x

when 0 ≤ x ≤ 1/2, as required. In fact, a similar calculation yields bounds on
ln(1 + x) when x is negative and close to 0. This can be used to show that the
derivative of ln x is 1/x; the details are left to the reader.

For another example, consider the problem of showing that
∑∞

n=1 1/n2

converges. This follows immediately from the integral test:
∑∞

n=1 1/n2 ≤∫∞
1

1/x2 = 1. How can it be obtained otherwise? Answer: simply write

M∑
n=1

1/n2 ≤ 1 +
M∑

n=2

1/n(n− 1)

= 1 +
M∑

n=2

(1/(n− 1)− 1/n)

= 1 + 1− 1/M

≤ 2,

4Since the project began, Sebastian Skalberg managed to import the more extensive anal-
ysis library from the HOL theorem prover to Isabelle. By the time that happened though, we
had already worked around most of the applications of analysis needed for the proof.

19

where the second equality relies on the fact that the preceding expression in-
volves a telescoping sum. Having to stop frequently to work out puzzles like
these helped us appreciate the immense power of the Newton-Leibniz calculus,
which provides uniform and mechanical methods for solving such problems. The
reader may wish to consider what can be done to show that the sum

∑∞
n=1 1/xa

is convergent for general values of a > 1, or even for the special case a = 3/2.
Fortunately, we did not need these facts.

Now consider the identity
∑

n≤x

1/n = ln x + O(1).

To obtain this, note that when x is positive integer we can write lnx as a
telescoping sum,

ln x =
∑

n≤x−1

(ln(n + 1)− ln n)

=
∑

n≤x−1

ln(1 + 1/n)

=
∑

n≤x−1

1/n + O(
∑

n≤x

1/n2)

=
∑

n≤x

1/n + O(1).

We learned this trick from [8]. In fact, a slight refinement of the argument shows
∑

n≤x

1/n = ln x + C + O(1/x)

for some constant, C. This constant is commonly known as Euler’s constant,
denoted by γ.

One last puzzle: how can one show that ln x/xa approaches 0, for any a > 0?
Here is our solution. First, note that we have lnx ≤ ln(1 + x) ≤ x for every
positive x. Thus we have

a ln x = ln xa ≤ xa,

for every positive x and a. Replacing a by a/2 and dividing both sides by axa/2,
we obtain lnx/xa ≤ 2/(axa/2). It is then easy to show that the right-hand-side
approaches 0 as x approaches infinity.

References

[1] Tom M. Apostol. Introduction to analytic number theory. Springer-Verlag,
New York, 1976.

[2] Jeremy Avigad. Mathematics in Isabelle.
http://www.andrew.cmu.edu/user/avigad/isabelle/.

[3] Jeremy Avigad. Number theory and elementary arithmetic. Philosophia
Mathematica, 11:257–284, 2003.

20

[4] Jeremy Avigad. Notes on a formalization of the prime number theorem.
Technical Report CMU-PHIL-163, Carnegie Mellon University, 2004.

[5] Jeremy Avigad and Kevin Donnelly. Formalizing O notation in Is-
abelle/HOL. In David Basin and Michaël Rusinowitch, editors, Automated
Reasoning: second international joint conference, IJCAR 2004. Springer-
Verlag, 2005.

[6] Jeremy Avigad and Harvey Friedman. Combining decision procedures for
theories of the real numbers with inequality. In preparation.

[7] Clemens Ballarin. Locales and locale expressions in Isabelle/Isar.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/packages/Isabelle
/doc/locales.pdf.

[8] C. Cornaros and C. Dimitracopoulos. The prime number theorem and
fragments of PA. Arch. Math. Logic, 33:265–281, 1994.

[9] Harold M. Edwards. Riemann’s zeta function. Dover Publications Inc.,
Mineola, NY, 2001. Reprint of the 1974 original [Academic Press, New
York].

[10] Thomas Hales. The flyspeck project fact sheet.
http://www.math.pitt.edu/∼thales/flyspeck/.

[11] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers.
Oxford, fifth edition, 1979.

[12] G. J. O. Jameson. The prime number theorem. Cambridge University Press,
Cambridge, 2003.

[13] Sean McLaughlin and John Harrison. A proof producing decision procedure
for real arithmetic. In Robert Nieuwenhuis, editor, Automated deduction –
CADE-20. 20th international conference on automated deduction, Springer-
Verlag, 2005.

[14] Melvyn B. Nathanson. Elementary methods in number theory. Springer-
Verlag, New York, 2000.

[15] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL.
A proof assistant for higher-order logic. Springer-Verlag, Berlin, 2002.

[16] Harold N. Shapiro. Introduction to the theory of numbers. John Wiley &
Sons Inc., New York, 1983.

[17] Markus Wenzel. Type classes and overloading in higher-order logic. In
E. Gunter and A. Felty, editors, Proceedings of the 10th international con-
ference on theorem proving in higher order logics (TPHOLs’97), pages 307–
322, Murray Hill, New Jersey, 1997.

[18] Markus Wenzel. Isabelle/Isar — a versatile environment for human-
readable formal proof documents. PhD thesis, Institut für Informatik, Tech-
nische Universität München, 2002.

21

[19] Freek Wiedijk. The seventeen provers of the world. Springer-Verlag, to
appear.

[20] The Isabelle theorem proving environment. Developed by Larry Paul-
son at Cambridge University and Tobias Nipkow at TU Munich.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html.

[21] Proof general. http://proofgeneral.inf.ed.ac.uk/.

22

A formally verified proof of
the prime number theorem

Jeremy Avigad

Department of Philosophy

Carnegie Mellon University

http://www.andrew.cmu.edu/∼avigad

– p. 1/50

The prime number theorem

Let π(x) denote the number of primes less than or equal to x .

The prime number theorem: π(x)/x is asymptotic to 1/ ln x , i.e.

lim
x→∞π(x) ln x/x = 1.

Conjectured by Gauss and Legendre, on the basis of computation, around
1800; proved by Hadamard and de la Vallée Poussin in 1896.

Kevin Donnelly, David Gray, Paul Raff, and I used Isabelle to verify:

(λx. pi x ∗ ln (real x) / (real x))−−−−> 1

– p. 2/50

Outline

• Historical background
• Overview of the Selberg proof
• Overview of the formalization
• Interesting aspects of the formalization

◦ Asymptotic reasoning
◦ Calculations with reals
◦ Casts between natural numbers, integers, and reals
◦ Combinatorial reasoning with sums
◦ Elementary workarounds

• Heuristic procedures for the reals

– p. 3/50

Chebyshev’s advances (∼1850)

θ(x) =
∑
p≤x

ln p

ψ(x) =
∑
pa≤x

ln p =
∑
n≤x

�(n) where

�(n) =
{

ln p if n = pa , for some a ≥ 1

0 otherwise.

• The prime number is equivalent to the statements
limx→∞ θ(x)/x = 1 and limx→∞ ψ(x)/x = 1.

• For x large enough,

0.92 < π(x) ln x/x < 1.11.

– p. 4/50

More history

In 1859, Riemann introduces the complex-valued function, ζ .

In 1894, von Mangoldt reduced the PNT to showing that ζ has no roots
with real part equal to 1.

This was done by Hadamard and de la Vallée Poussin, independently, in
1896.

In 1921, Hardy expressed doubts that there is a proof that does not
essentially use these ideas.

In 1948, Selberg and Erdös found elementary proofs based on Selberg’s
“symmetry formula.”

– p. 5/50

Outline

• Historical background
• Overview of the Selberg proof
• Overview of the formalization
• Interesting aspects of the formalization

◦ Asymptotic reasoning
◦ Calculations with reals
◦ Casts between natural numbers, integers, and reals
◦ Combinatorial reasoning with sums
◦ Elementary workarounds

• Heuristic procedures for the reals

– p. 6/50

Asymptotic reasoning

View π(x) as a step function from R to R.

Analytic number theory provides a toolbox for characterizing growth
rates.

For example, f = O(g) means: there is a constant, C , such that for every
x ,

| f (x)| ≤ C |g(x)|.

Sometimes, one really means “for all but a few exceptional cases of x ,” or
“for large enough x .”

– p. 7/50

Examples

Here are some identities involving ln:

ln(1 + 1/n) = 1/n + O(1/n2)∑
n≤x

1/n = ln x + O(1)

∑
n≤x

ln n = x ln x − x + O(ln x)

∑
n≤x

ln n/n = ln2 x/2 + O(1)

These, and a few others, form a starting point for the Selberg proof.

– p. 8/50

Chebyshev’s results

Fairly direct calculations yield θ(x)/x → 1 and π(x) ln x/x → 1 from
ψ(x)/x → 1.

This allows us to prove the prime number theorem in the form
ψ(x)/x → 1.

Along the way, we need ψ(x) = O(x).

There is a nice way to do this, using binomial coefficients.

– p. 9/50

Combinatorial tricks

Since d �→ n/d permutes the set of divisors of n,

∑
d|n

f (d) =
∑
d|n

f (n/d).

Enumerating pairs d, d ′ such that dd ′ ≤ n in two different ways yields

∑
d≤n

∑
d ′≤n/d

f (d, d ′) =
∑

dd ′≤n

f (d, d ′) =
∑
c≤n

∑
d|c

f (d, c/d).

A similar argument yields

∑
d|n

∑
d ′|(n/d)

f (d, d ′) =
∑
dd ′|n

f (d, d ′) =
∑
c|n

∑
d|c

f (d, c/d).

– p. 10/50

Combinatorial tricks

The following is a version of the “partial summation formula”: if a ≤ b,
F(n) = ∑n

i=1 f (i), and G is any function, then

b∑
n=a

f (n + 1)G(n + 1) = F(b + 1)G(b + 1)− F(a)G(a + 1)−

b−1∑
n=a

F(n + 1)(G(n + 2)− G(n + 1)).

This is a discrete analogue of integration by parts.

It is easily verified by induction.

– p. 11/50

Euler’s function µ

A positive natural number n is square free if n = p1 p2 · · · ps with pi ’s
distinct.

µ(n) =
{
(−1)s if n is squarefree and s is as above

0 otherwise.

A remarkably useful fact regarding µ is that for n > 0,

∑
d|n

µ(d) =
{

1 if n = 1

0 otherwise.

This is clear for n = 1.

– p. 12/50

Euler’s function µ

If n = p j1
1 p j2

2 · · · p js
s , define the radical of n to be p1 p2 · · · ps .

Then ∑
d|n

µ(d) =
∑

d|rad(n)

µ(d)

=
∑

d|rad(n),p1|d
µ(d)+

∑
d|rad(n),p1�d

µ(d),

and the two terms cancel.

– p. 13/50

Möbius inversion

Suppose f (n) = ∑
d|n g(d). Then

∑
d|n

µ(d) f (n/d) =
∑
d|n

µ(d)
∑

d ′|(n/d)
g((n/d)/d ′)

=
∑
d|n

∑
d ′|(n/d)

µ(d)g((n/d)/d ′)

=
∑
c|n

∑
d|c
µ(d)g(n/c)

=
∑
c|n

g(n/c)
∑
d|c
µ(d)

= g(n),

expresses g in terms of f .

– p. 14/50

Selberg’s formula

All these pieces come together in the proof of Selberg’s symmetry
formula: ∑

n≤x

�(n) ln n +
∑
n≤x

∑
d|n

�(d)�(n/d) = x ln x + O(x).

There are many variants of this identity.

The reason it is useful is that there are two terms in the sum on the left,
each sensitive to the presence of primes in different ways.

Selberg’s proof involves cleverly balancing the two terms off each other,
to show that in the long run, the density of the primes has the appropriate
asymptotic behavior.

– p. 15/50

The error term

Let R(x) = ψ(x)− x denote the “error term.”

By Chebyshev’s equivalences the prime number theorem amounts to the
assertion limx→∞ R(x)/x = 0.

With some delicate calculation, the symmetry formula yields:

|R(x)| ln2 x ≤ 2
∑
n≤x

|R(x/n)| ln n + O(x ln x). (1)

Selberg used this to show that, given a bound |R(x)| ≤ ax for sufficiently
large x , one can get a better bound, |R(x)| ≤ a′x , for sufficiently large x .

These bounds approach 0.

– p. 16/50

Outline

• Historical background
• Overview of the Selberg proof
• Overview of the formalization
• Interesting aspects of the formalization

◦ Asymptotic reasoning
◦ Calculations with reals
◦ Casts between natural numbers, integers, and reals
◦ Combinatorial reasoning with sums
◦ Elementary workarounds

• Heuristic procedures for the reals

– p. 17/50

Overview of the formalization

To start with, we needed good supporing libraries:
• a theory of the natural numbers and integers, including properties of

primes and divisibility, and the fundamental theorem of arithmetic
• a library for reasoning about finite sets, sums, and products
• a library for the real numbers, including properties of ln

More specific supporting libraries include:
• properties of the µ function, combinatorial identities, and variants of

the Möbius inversion formula
• a library for asymptotic “big O” calculations
• a number of basic identities involving sums and ln
• Chebyshev’s theorems

– p. 18/50

Overview of the formalization

Specific components of the Selberg proof are:
• the Selberg symmetry formula
• the inequality involving R(n)
• a long calculation to show R(n) approaches 0

This outline is clearly discernible in the list of theory files, online at

http://www.andrew.cmu.edu/user/avigad/isabelle

– p. 19/50

Overview of the formalization

Here is a formulation of Möbius inversion:

ALL n. (0 < n −→
f n = (

∑
d | d dvd n. g(n div d)))=⇒ 0 < (n::nat)=⇒

g n = (
∑

d | d dvd n. of-int(mu(int(d))) ∗ f (n div d))

Here is one of the identities given above:

(λx.
∑

i=1..natfloor(abs x).

ln (real i) / (real i))=o

(λx. ln(abs x + 1)ˆ2 / 2)+o O(λx. 1)

– p. 20/50

Overview of the formalization

Here is a version of Selberg’s symmetry formula:

(λx.
∑

n = 1..natfloor (abs x)+ 1.

Lambda n ∗ ln (real n))+ (λx.
∑

n=1..natfloor (abs x)+ 1.

(
∑

u | u dvd n. Lambda u ∗ Lambda (n div u)))

=o (λx. 2 ∗ (abs x + 1) ∗ ln (abs x + 1))+o O(λx. abs x + 1)

Finally, here is the error estimate provided above:

(λx. abs (R (abs x + 1)) ∗ ln (abs x + 1) ˆ 2) <o

(λx. 2 ∗ (∑ n = 1..natfloor (abs x)+ 1.

abs (R ((abs x + 1) / real n)) ∗ ln (real n)))=o

O(λx. (abs x + 1) ∗ (1 + ln (abs x + 1)))

– p. 21/50

Overview of the formalization

There are at least three reasons not to provide too much detail:
• Our proof followed textbook presentations (due to Shapiro,

Nathanson) closely.
• The proof scripts have not been polished, and so are not particularly

nice.
• Much of it is not optimal; we know it is possible to do better.

Instead I will focus on:
• Details that diverge from the mathematical presentation.
• Novel features of the formalization.
• Areas where better support should be possible.

– p. 22/50

Overview of the formalization

Some statistics regarding length, and time, are given in the associated
paper.

A lot of time and effort was spent:
• Building basic libraries of easy facts.
• Spelling out “straightforward” inferences.
• Finding the right lemmas and theorems to apply.
• Entering long formulas and expressions formally and correctly.

We suspect that these requirements will continue to diminish.

On a personal note, I am entirely convinced that formal verification of
mathematics will eventually become commonplace.

– p. 23/50

Outline

• Historical background
• Overview of the Selberg proof
• Overview of the formalization
• Interesting aspects of the formalization

◦ Asymptotic reasoning
◦ Calculations with reals
◦ Casts between natural numbers, integers, and reals
◦ Combinatorial reasoning with sums
◦ Elementary workarounds

• Heuristic procedures for the reals

– p. 24/50

Asymptotic reasoning

Define O(g) = { f | ∃C ∀x (| f (x)| ≤ C |g(x)|)}.
Then take “equals” to be “element of” in f = O(g).

The expression makes sense for any function type for which the codomain
is an ordered ring.

We used Isabelle’s axiomatic type classes to develop the theory in full
generality.

– p. 25/50

Asymptotic reasoning

Define

f + g ≡ λx .(f (x)+ g(x))

a +o B ≡ {c | ∃b ∈ B (c = a + b)}
a =o B ≡ a ∈ B

This gives f =o g +o O(h) the intended meaning.

Note that x2 + 3x = x2 + O(x) really means

(λx. xˆ2 + 3 ∗ x)=o (λx. xˆ2)+o O(λx. x)

– p. 26/50

Asymptotic reasoning

Rewrite rules for addition of elements and sets:

set-plus-rearrange (a+o C)+(b+o D) = (a+b)+o (C +D)

set-plus-rearrange2 a +o (b +o C) = (a + b)+o C

set-plus-rearrange3 (a +o C)+ D = a +o (C + D)

set-plus-rearrange4 C + (a +o D) = a + (C + D)

These put terms in the form (a + b + . . .)+o (C + D + . . .).

– p. 27/50

Asymptotic reasoning

Some monotonicity and arithmetic rules:

set-plus-intro [|a ∈ C, b ∈ D|] ⇒ a + b ∈ C + D

set-plus-intro2 b ∈ C ⇒ a + b ∈ a + C

set-plus-mono C ⊆ D ⇒ a + C ⊆ a + D

set-plus-mono2 [|C ⊆ D, E ⊆ F |] ⇒ C + E ⊆ D + F

set-plus-mono3 a ∈ C ⇒ a + D ⊆ C + D

set-plus-mono4 a ∈ C ⇒ a + D ⊆ D + C

– p. 28/50

Asymptotic reasoning

Some properties of O sets:

bigo-elt-subset f ∈ O(g) ⇒ O(f) ⊆ O(g)

bigo-refl f ∈ O(f)

bigo-plus-idemp O(f)+ O(f) = O(f)

bigo-plus-subset O(f + g) ⊆ O(f)+ O(g)

bigo-mult4 f ∈ k+oO(h) ⇒ g · f ∈ g ·k+oO(g ·h)

bigo-compose1 f ∈ O(g) ⇒ (λx . f (k(x))) ∈
O(λx . g(k(x)))

– p. 29/50

Asymptotic reasoning

An annoyance: how do you indicate that x3 + 3x2 + 1 = x3 + O(x2) for
x ≥ 1?

Options:

1. Define a type of positive reals (or integers).

2. Formalize “ f = O(g) on S”

3. Formalize “ f = O(g) eventually”

4. Write (λx .x3 + 3x2 + 1) =o (λx .x3)+o O(λx .x2 + 1)

We chose the last. This accounts for the endless instances of “+1” and abs
in our proofs.

The other options have drawbacks, too.

– p. 30/50

Calculations with real numbers

The very last part of the proof has, by far, the worst length ratio: a difficult
5 page calculation became 89 pages of formal text.

Reason: the need to carry out straightforward calculations by hand,
especially involving inequalities.

Isabelle has:
• A term simplifier with ordered rewriting
• Decision procedures of linear and Presburger arithmetic

But lots of easy calculations go just beyond that.

– p. 31/50

Calculations with real numbers

(1 + ε

3(C∗ + 3)
) · real(n) < K x

follows from:

real(n) ≤ (K/2)x

0 < C∗

0 < ε < 1

• Need monotonicity rules for arithmetic operations.
• Need to determine signs.
• Need to remember names like “mult-left-mono.” “add-pos-nonneg,”

“order-le-less-trans,” “exp-less-cancel-iff,” “pos-divide-le-eq.”
• Often need to type in long expressions, or cut and paste, or use

explicit rules to manipulate terms

– p. 32/50

Calculations with the real numbers

Sign calculations keep coming back. Consider, for example,

1/(1 + st) < 1/(1 + su).

These inferences are covered by decision procedures for real closed fields,
but

• They are slow.
• Worse: they do not extend to straightforward inferences with

monotone functions, trigonometric functions, exponentiation and
logarithm, etc.

Consider x < y ⇒ 1/(1 + ey) < 1/(1 + ex).

Conclusion: we need principled heuristic procedures. (I will come back to
this.)

– p. 33/50

Casting between domains

One can think of θ , ψ , and π as functions from N to R or from R to R.
• Proofs use arithmetic properties of N.
• Ultimately need to cast them to reals.

Recall that µ takes values {−1, 0, 1}, so we need to deal with integers too.

Casting was an endless source of headaches.
• We had parallel theories of primes and divisibility for ints and nats.
• We had to develop properties of floor and ceiling functions.
• We had to do annoying manipulations of mixed expressions,

e.g. moving +1’s in and out of casts, etc.

– p. 34/50

Casting between domains

When extending a domain (e.g. nats to ints, or ints to reals):
• some operations are extended, like addition and multiplication
• some new operations are mirrored imperfectly in the smaller domain

(e.g. x .− y requires x ≥ y, x div y requires y|x).
• some properties depend on the choice of a left inverse, e.g.

(n ≤ �x�) ≡ (real(n) ≤ x).

The guiding motto should be: anything that is transparent to us should be
transparent to a mechanized proof assistant.

– p. 35/50

Outline

• Historical background
• Overview of the Selberg proof
• Overview of the formalization
• Interesting aspects of the formalization

◦ Asymptotic reasoning
◦ Calculations with reals
◦ Casts between natural numbers, integers, and reals
• Combinatorial reasoning with sums
◦ Elementary workarounds

• Heuristic procedures for the reals

– p. 36/50

Combinatorial reasoning with sums

Some of our theorems are now in Isabelle’s HOL library. For example:

inj-on f B =⇒ (
∑

x∈f‘B. h x)= (
∑

x∈B. (h ◦ f)(x))

“reindexes” a sum.

It is needed, for example, to show

∑
d|n

h(n) =
∑
d|n

h(n/d),

using f (d) = n/d , and

∑
dd ′=c

h(d, d ′) =
∑
d|c

h(d, c/d),

using f (d) = 〈d, c/d〉.

– p. 37/50

Combinatorial reasoning with sums

In the Isabelle formalization,
∑

x∈A f (x) is notation for setsum A f .

This really only makes sense when A is finite, so finiteness verifications
keep popping up in calculations.

(Defining setsum A f to be 0 when A is infinite helps.)

According to our motto, there should be better support for finiteness and
reindexing.

– p. 38/50

Elementary workarounds

We relied on the Selberg proof because Isabelle didn’t (and still doesn’t)
have a complex analysis library.

We still don’t have a sense of how long it would take to:
• develop a sufficient complex analysis library
• formalize the complex-analytic proof

Of course, the task of finding elementary workarounds is part of the
business. It can be oddly enjoyable.

Alas, the need to do this will diminish as formal libraries improve.

– p. 39/50

Elementary workarounds

Question: how to prove ln(1 + x) ≈ x when x is small?

The Isabelle library did not compute the derivative of ln.

It had:
• By definition, ex = ∑∞

n=0 xn/n!

• ex strictly increasing

• e0 = 1, ex+y = ex ey

• ex is surjective on the positive reals
• By definition, ln x is a left inverse to ex

Puzzle: show | ln(1 + x)− x | ≤ x2 when x is positive and small enough.

– p. 40/50

Elementary workarounds

Our solution: x ≥ 0 implies ex ≥ 1 + x , so x ≥ ln(1 + x). Replacing x by

x2, we also have ex2 ≥ 1 + x2.

On the other hand, the definition of ex can be used to show

ex ≤ 1 + x + x2

when 0 ≤ x ≤ 1/2. From these we get

ex−x2 = ex/ex2 ≤ (1 + x + x2)/(1 + x2) ≤ 1 + x .

Taking logarithms of both sides, we have

x − x2 ≤ ln(1 + x) ≤ x

when 0 ≤ x ≤ 1/2, as required.

– p. 41/50

Elementary workarounds

Another puzzle: show

∑
n≤x

1/n = ln x + O(1)

without integration. When x is positive, write

ln x =
∑

n≤x−1

(ln(n + 1)− ln n)

=
∑

n≤x−1

ln(1 + 1/n)

=
∑

n≤x−1

1/n + O(
∑
n≤x

1/n2)

=
∑
n≤x

1/n + O(1).

– p. 42/50

Outline

• Historical background
• Overview of the Selberg proof
• Overview of the formalization
• Interesting aspects of the formalization

◦ Asymptotic reasoning
◦ Calculations with reals
◦ Casts between natural numbers, integers, and reals
◦ Combinatorial reasoning with sums
◦ Elementary workarounds

• Heuristic procedures for the reals

– p. 43/50

Heuristic procedures for the reals

Remember the example: verify

(1 + ε

3(C∗ + 3)
) · real(n) < K x

using the following hypotheses:

real(n) ≤ (K/2)x

0 < C∗

0 < ε < 1

Idea: work backwards, applying obvious monotonicity rules.

– p. 44/50

Heuristic procedures for the reals

Problems:

1. Case splits: e.g. st > 0 ≡ (s > 0 ∧ t > 0) ∨ (s < 0 ∧ t < 0).

2. Nondeterminism: e.g. many ways to show s + t < u + v + w.

Observations:

1. “Straightforward” inferences usually don’t need case splits.

2. In practice, Fourier-Motzkin is efficient for linear inequalities.

3. Modulo cases over signs, the same thing works for the multiplicative
fragment of the reals.

– p. 45/50

Heuristic procedures for the reals

Let T1 be the theory of 〈R, 0,+, <〉. T1 is decidable.

Let T2 be the theory of 〈R, 1,×, <〉. T2 is decidable.

Let T = T1 ∪ T2. By Nelson-Oppen methods, the universal fragment of T
is decidable.

Problem: T is too weak; it doesn’t prove 2 × 2 = 4.

– p. 46/50

Heuristic procedures for the reals

A better version: let fa(x) = ax for rational constants a.

Let T1[Q] be the theory of 〈R, 0, 1,+,−, <, . . . , fa, . . .〉.

Let T2[Q] be the theory of 〈R, 0, 1,×,÷, n
√·, <, . . . , fa, . . .〉.

Let T [Q] = T1[Q] ∪ T2[Q].

Both of these are decidable, but Nelson-Oppen methods fail when there is
a nontrivial overlap.

The situation here is much more complex!

– p. 47/50

Heuristic procedures for the reals

This is joint work with Harvey Friedman.

Here are some things we (think we) know:
• T [Q] has good normal forms.
• Valid equations are independent of the ordering.
• T [Q] is undecidable.
• In fact, the ∀∀∀∃ . . . ∃ fragment is complete r.e.
• Assuming that the solvability of Diophantine equations in the

rationals is undecidable, then so is the existential fragment of T [Q].
• The universal fragment of T [Q] is decidable.

We have similar results, for example, with the real algebraic numbers A in
place of Q.

– p. 48/50

Heuristic procedures for the reals

Our decidability results are not practical. But the proofs provide ideas and
guidelines.

General strategy for amalgamation:
• Maintain a database of facts in the common language.
• Iteratively use each of T1 and T2 to add new facts.

Issues:
• Heuristically, how to decide which facts to focus on?
• When to split on cases?
• How to look for disjunctions?
• How to incorporate distributivity?
• How to amalgamate other local decision or heuristic procedures?

– p. 49/50

Conclusions

Formally verified mathematics is becoming increasingly important:
• Proofs are getting very complex.
• Proofs rely on extensive computations.

Fortunately, we are entering “the golden age of metamathematics”
(Shankar).

Continued progress will require
• thoughtful reflection
• good theory
• solid engineering

This makes the field an auspicious combination of theory and practice.

– p. 50/50

Bishop’s set theory1

Erik Palmgren
Uppsala Universitet

www.math.uu.se/˜palmgren

TYPES summer school
Göteborg

August 2005

1Errett Bishop (1928-1983) constructivist mathematician.

1

Introduction - What is a set?

The iterative notion of set (G. Cantor 1890, E. Zermelo 1930)

- sets built up by collecting objects, or other sets, according to some selec-
tion criterion Q(x)

{x | Q(x)}

Frege’s “naive” set theory is inconsistent (Russell’s paradox). Remedy: in-
troduce size limitations, use explicit set constructions as power sets, products
or function sets, start from given sets X

{x ∈ X | Q(x)}

2

Encoding of mathematical objects as iterative sets

All mathematical objects are built from the empty set (E. Zermelo 1930)

Natural numbers are for example usually encoded as

0 = /0 1 = 0∪{0} = { /0} 2 = 1∪{1} = { /0,{ /0}} · · · .

Pairs of elements can be encoded as 〈a,b〉 = {{a},{a,b}}. Functions are
certain sets of pairs objects ... etc.

Quotient structures are constructed by the method of equivalence classes
— only one notion of equality is necessary.

(J.Myhill and P.Aczel (1970s): constructive versions of ZF set theory.)

3

What is a set? A more basic view

“A set is not an entity which has an ideal existence: a set exists only when
it has been defined. To define a set we prescribe, at least implicitly, what we
(the constructing intelligence) must do in order to construct an element of the
set, and what we must do to show that two elements are equal” (Errett Bishop,
Foundations of Constructive Analysis, 1967.)

Martin-Löf type theory conforms to this principle of defining sets.

4

Abstraction levels

One may disregard the particular representations of set-theoretic construc-
tions, and describe their properties abstractly (in the spirit of Bourbaki).

For instance, the cartesian product of two sets A and B may be described
as a set A×B together with two projection functions

π1 : A×B → A π2 : A×B → B,

such that for each a ∈ A and each b∈ B there exists a unique element c ∈ A×B
with π1(c) = a and π2(c) = b. Thus πk picks out the kth component of the
abstract pair.

Reference to the particular encoding of pairs is avoided. This is a good
principle in mathematics as well as in program construction.

5

Some references using Bishop’s set theory

E. Bishop and D.S. Bridges (1985). Constructive Analysis. Springer-Verlag.

D.S. Bridges and F. Richman (1987). Varieties of Constructive Mathematics.
London Mathematical Society Lecture Notes, Vol. 97. Cambridge University
Press.

R. Mines, F. Richman and W. Ruitenburg (1988). A Course in Constructive
Algebra. Springer.

Among constructivists, one often says that constructive mathematics is
mathematics based on intuitionistic logic.

6

Plan of lectures

(Based on Ch. 3 and 4 of Type-theoretic foundation of constructive mathematics
by T. Coquand, P. Dybjer, E. Palmgren and A. Setzer, version August 5, 2005.)

1. Introduction

2. Terminology for type theory

3. Intuitionistic logic

4. Sets and equivalence relations

5. Choice sets and axiom of choice

7

6. Relations and subsets

7. Finite sets and relatives

8. Quotients

9. Universes and restricted power sets

10. Categories

11. Relation to categorical logic

Exercises: see lecture notes.

8

2. Terminology for type theory

later Martin-Löf lect. notes Bishop early M.-L. other

type sort category kind
set type preset type
extensional set set set setoid, E-set
function operation operation function
extensional function function function setoid map, E-function

(Thanks for the table, Peter!)

The application of an operation f : A → B to an element a : A is denoted

f a

9

Recall: A proposition may be regarded as a type according to the following
translation scheme

(∀x : A)P x (Πx : A)P x
(∃x : A)P x (Σx : A)P x
P∧Q P×Q
P∨Q P+Q
P ⇒ Q P → Q
> N1

⊥ N0
¬P (= P ⇒⊥) P → N0

The judgement
A is true

means that there is some p so that p : A.

10

Relations and predicates on types

A predicate P on a type X is a family of propositions P x (x : X).

A relation R between types X and Y is a family of propositions R x y (x :
X ,y : Y). If X = Y , we say that R is a binary relation on X .

A binary relation R on X is an equivalence relation if there are functions ref ,
sym and tra with

ref a : R a a (a : X),

sym a b p : R b a (a : X ,b : X , p : R a b),

tra a b c p q : R a c (a,b,c : X , p : R a b,q : R b c).

11

We may suppress the proof objects and simply write, for instance in the last line

R a c true (a,b,c : X ,R a b true,R b c true),

which is equivalent to

(∀a : X)(∀b : X)(∀c : X)(R a b∧R b c ⇒ R a c) true.

12

3. Intuitionistic logic

The logic governing the judgements of the form

A true

is intuitionistic logic. It is best described by considering the derivation rules for
natural deduction and then remove the Reductio Ad Absurdum rule (principle of
indirect proof):

Derivation rules:

A B
A∧B

(∧I)
A∧B

A
(∧E1)

A∧B
B

(∧E2)

13

A
h

...
B

A → B
(→ I,h)

A → B A
B

(→ E)

A
A∨B

(∨I1)
B

A∨B
(∨I2)

A
h1 Bh2

... ...
A∨B C C

C
(∨E,h1,h2)

A
(∀x)A

(∀I)
(∀x)A
A[t/x]

(∀E)

14

A[t/x]
(∃x)A

(∃I)

A
h

...
(∃x)A C

C
(∃E,h)

⊥

A
(⊥E)

¬A
h

...
⊥
A (RAA,h)

15

4. Sets and equivalence relations

Definition A set X is a type X together with an equivalence relation =X on
X . Write this as

X = (X ,=X).

We shall also write x ∈ X for x : X .

Remark

In Bishop (1967) X is called a preset, rather than a type.

In the type theory community X = (X ,=X) is often known as a setoid.

16

Examples Let N be the type of natural numbers. Define equivalence relations

x =N y iff Tr (eqN x y)

(Here eqN : N → N → Bool is the equality tester for N and Tr tt = > and
Tr ff = ⊥)

x =n y iff x− y is divisble by n

Then

• N = (N,=N) is the set of natural numbers

• Zn = (N,=n) is the set of integers modulo n.

17

Functions vs operations

What is usually called functions in type theory, we call here operations.

Definition. A function f from the set X to the set Y is a pair (f ,ext f) where
f : X → Y is an operation so that

(ext f a b p) : f a =Y f b (a,b : X , p : a =X b).

To conform with usual mathematical notation, function application will be written

f (a) =def f a

Two functions f ,g : X →Y are extensionally equal, f =[X→Y] g, if there is e with

e a : f (a) =Y g(a) (a ∈ X).

18

Set constructions

The product of sets A and B is a set P = (P,=P) where P = A×B (cartesian
product as types) and the equality is defined by

(x,y) =P (u,v) iff x =A u and y =B v.

Standard notation for this P is A×B. Projection function are π1(x,y) = x and
π1(x,y) = y. This construction can be verified to satisfy the abstract property
(page 5). (It can as well be expressed by the categorical universal property for
products.)

The disjoint union A∪̇B (or A+B) is definied by considering the correspond-
ing type construction.

19

The functions from A to B form a set BA defined to be the type

(Σ f : A → B)(∀x,y : A)[x =A y → f x =B f y],

together with the equivalence relation

(f , p) =BA (g,q) ⇐⇒def (∀x : A) f x =B gx.

The evaluation function evA,B : BA ×A → B is given by

evA,B((f , p),a) = f a

Proposition. Let A, B and X be sets. For every function h : X ×A → B there is
a unique function ĥ : X → BA with

evA,B(ĥ(x),y) = h(x,y) (x ∈ X ,y ∈ A).

20

A set X is called discrete, if for all x,y ∈ X

(x =X y) ∨ ¬ (x =X y).

In classical set theory all sets are discrete. This is not so constructively, but we
have

Proposition. The unit set 1 and the set of natural numbers N are both discrete.
If X and Y are discrete sets, then X ×Y and X +Y are discrete too.

However, the assumption that N
N is discrete implies a nonconstructive prin-

ciple (WLPO):
(∀n ∈ N) f (n) = 0 ∨ ¬(∀n ∈ N) f (n) = 0

21

Coarser and finer equivalences

An equivalence relation ∼ is finer than another equivalence relation ≈ on a
type A if for all x,y : A

x ∼ y =⇒ x ≈ y.

It is easy to prove by induction that =N is the finest equivalence relation on N.

If there is a finest equivalence relation =A on a type A, the set A = (A,=A)
has the substitutivity property

x =A y =⇒ (Px ⇔ Py)

for any predicate P on the type A.

22

Sets are rarely substitutive, and the notion is not preseved by isomorphisms.
Zn as constructed above is not substitutive; an isomorphic construction yields
substitutivity.

Theorem. To any type A, the identity type construction Id assigns a finest
equivalence Id A. The resulting set, also denoted A, is substitutive.

Remark. Substitutive sets are however very convenient for direct formalisation
in e.g. Agda, as extensionality proofs can be avoided.

23

5. Choice sets and axiom of choice

A set S is a choice set, if for any surjective function f : X → S, there is right
inverse g : S → X , i.e.

f (g(s)) = s (s ∈ S).

Theorem. Every substitutive set is a choice set.

(Zermelo’s) Axiom of Choice may be phrased thus:

Every set is a choice set.

Theorem. Zermelo’s AC implies the law of excluded middle.

24

Though Zermelo’s AC is incompatible with constructivism, there is related
axiom (theorem of type theory) freely used in Bishop constructivism.

Theorem. For any set A there is a choice set A and surjective function p : A →
A. (In categorical logic often referred to as “existence of enough projectives”.)

As a consequence, Dependent Choice is valid (see notes, p. 76).

Theorem. If A and B are choice sets, then so are A×B and A+B.

25

6. Relations and subsets

Definition A (extensional) property P of the set X is a family of propositions P x
(x ∈ X) with

x =X y,P x =⇒ P y.
We also say that P is a predicate on X .

A relation R between sets X and Y is a family of propositions R x y (x ∈
X ,y ∈ Y) such that

x =X x′,y =Y y′,R x y =⇒ R x′ y′.

The relation is univalent if y =Y y′, whenever R x y and R x y′.

Write P(x), R(x,y) etc. in the extensional situation.

26

Restatement of choice principles for relations.

The following is the theorem of unique choice.

Thm. Let R be a univalent relation between the sets X and Y . It is total if, and
only if, there exists a function f : X → Y , called a selection function, such that

R(x, f (x)) (x ∈ X).

(This function is necessarily unique if it exists.)

An alternative characterisation of choice sets is

Thm. A set X is a choice set iff for every set Y , each total relation R between X
and Y has a selection function g : X → Y so that

R(x,g(x)) (x ∈ X).

27

Dependent choice

Dependent choice. Let A be a set which is the surjective image of a choice
set. Let R be a binary relation on A such that

(∀x ∈ A)(∃y ∈ A)R(x,y).

Then for each a ∈ A, there exists a function f : N → A with f (0) = a and

R(f (n), f (n+1)) (n ∈ N).

Proof. Let p : P → A be surjective, where P is a choice set. By surjectivity, we
have

(∀u ∈ P)(∃v ∈ P)R(p(u), p(v)).

28

Since P is a choice set we find h : P → P with R(p(u), p(h(u))) for all u ∈ P.

For a ∈ A, there is b0 ∈ P with a = p(b0).

Define by recursion g(0) = b0 and g(n + 1) = h(g(n)), and let f (n) =
p(g(n)). Thus R(p(g(n)), p(g(n+1))), so f is indeed the desired choice func-
tion. �

Remark Thus we have proved the general dependent choice theorem in type
theory with identity types. We also get another proof of countable choice, with-
out requiring a particular subsititutive construction of natural numbers.

29

Subsets as injective functions

Let X be a set. A subset of X is a pair S = (∂S, ιS) where ∂S is a set and
ιS : ∂S → X is an injective function.

An element a ∈ X is a member of S (written a ∈X S) if there exists d ∈ ∂S
with a =X ιS(d).

Inclusion ⊆X and equality ≡X of subsets of X can be defined in the usual
logical way.

Prop. For subsets A and B of X , the inclusion A⊆X B holds iff there is a function
f : ∂A → ∂B with ιB ◦ f = ιA. (Such f are unique and injective.)

The subsets are equal iff f is a bijection.

30

Separation of subsets

For a property P on a set X , the subset

{x ∈ X | P(x)} =
(
{x ∈ X : P(x)}, ι

)

is defined by the data:

{x ∈ X : P(x)} =def (Σx ∈ X)P(x)

and
〈x, p〉 ={x∈X : P(x)} 〈y,q〉 ⇐⇒def x =X y

and ι(〈x, p〉) =def x.

(Note the pedantic syntactic distinction of “:” and “|”.)

31

Note that

a ∈X {x ∈ X | P(x)} ⇔ (∃d ∈ {x ∈ X : P(x)}) a = ι(d)

⇔ (∃x ∈ X)(∃p : P x) a = ι(〈x, p〉)

⇔ P a

⇔ P(a)

The usual set-theoretic operations ∩, ∪, () can now be defined “logically”
for subsets.

A subset S of X is decidable, or detachable, if for all a ∈ X

a ∈X S ∨ ¬(a ∈X S).

32

Union of subsets: logical definition.

Let A = (∂A, ιA) and B = (∂B, ιB) be subsets of X .

Their union is the following subset of X

A∪B = {z ∈ X | z ∈X A or z ∈X B}.

Taking U = A∪B apart as U = (∂U, ιU) we see that ∂U is

(Σz : X)(z ∈X A or z ∈X B) = (Σz : X)((z ∈X A)+(z ∈X B)).

whereas ιU(z, p) = z.

33

Complement

The complement of the subset A of X is defined as

A = {z ∈ X | ¬z ∈X A}.

For A = (∂C, ιC) we have

∂C = (Σz : X)((z ∈X A) →⊥).

That A is a decidable subset of X can be expressed as A∪A = X .

The decidable subsets form a boolean algebra.

34

Partial functions

A partial function f from A to B consists of a subset (D f ,d f) of A, its domain
of definition (denoted dom f) and a function m f : D f → B. We write this with a
special arrow symbol as f : A ⇁ B.

Such f : A ⇁ B is total if its domain of definition equals A as a subset, or
equivalently, if d f is an isomorphism.

Another partial function g : A ⇁ B extends f , writing f ⊆ g : A ⇁ B, if for
each s ∈ D f there exists t ∈ Dg with d f (s) = dg(t) and m f (s) = mg(t). If both
f ⊆ g and g ⊆ f , we define f and g to be equal as partial functions.

35

Example. Let F = (F, ·,+,0,1) be a field, and let

U = {x ∈ F | (∃y ∈ F)x · y = 1}

be the subset of invertible elements. Define a function mr : ∂U → F to be
mr(x) = y, where y is unique such that x · y = 1. Thus the reciprocal is a partial
function r = (·)−1 : F ⇁ F .

In fact, for any univalent relation R between sets X and Y there is partial
function fR = (D,d,m) given by

∂D = {u ∈ X ×Y : R(π1(u),π2(u))}

d = π1 ◦ ιD and m = π2 ◦ ιD.

36

Example For any pair of subsets A and B of X that are disjoint A∩B = /0, we
may define a partial characteristic function

χ : X ⇁ {0,1}

satisfying

χ(z) = 0 iff z ∈X A,

χ(z) = 1 iff z ∈X B,

by considering the univalent relation R(z,n):

(z ∈X A∧n = 0)∨ (z ∈X B∧n = 1).

37

Partial functions are composed in the following manner: if f : A ⇁ B and
g : B ⇁ C, define the composition h = g◦ f : A ⇁ C by

Dh = {(s, t) ∈ D f ×Dg : m f (s) = dg(t)}

The function dh : Dh → A given by composing the projection to D f with dd is in-
jective. The function mh : Dh →C is defined by the composition of the projection
to Dg and dg.

38

7. Finite sets and relatives

The canonical n-element set is

Nn = {k ∈ N : k < n} ↪→ N.

Any set X isomorphic to such a set is called finite. It may be written

{x0, . . . ,xn−1}

where k 7→ xk : Nn → X is the isomorphism.

Since x j = xk iff j = k, we can always decide whether two elements of a
finite set are equal by comparison of indices.

39

A related notion is more liberal:

A set X is called subfinite, or finitely enumerable, if there is, for some n ∈ N,
a surjection x : Nn → X .

Here we are only required to enumerate the elements, not tell them apart.

We can always tell whether a subfinite set is empty by checking if n = 0.

Remark. A subset of a finite set need not be finite, or even subfinite. Consider

{0 ∈ N1 : P}

where P is some undecided proposition.

40

Some basic properties

Let X and Y be sets. Then:

(i) X finite ⇐⇒ X subfinite and discrete

(ii) X subfinite, f : X → Y surjective =⇒ Y subfinite

(iii) Y discrete, f : X → Y injective =⇒ X discrete

(iv) Y discrete, X ↪→ Y =⇒ X discrete

(v) Y finite, X ↪→ Y decidable =⇒ X finite.

41

8. Quotients

Let X = (X ,=X) be a set and let ∼ be a relation on this set. Then by the
extensionality of the relation

x =X y =⇒ x ∼ y. (1)

Thus if ∼ is an equivalence relation on X

X/∼ = (X ,∼)

is a set, and q : X → X/∼ defined by q(x) = x is a surjective function.

42

We have the following extension property. If f : X → Y is a function with

x ∼ y =⇒ f (x) =Y f (y), (2)

then there is a unique function f : X/∼→ Y (up to extensional equality) with

f (i(x)) =Y f (x) (x ∈ X).

We have constructed the quotient of X with respect to ∼: q : X → X/∼

Remark. Every set is a quotient of a choice set. Namely, X is the quotient of X
w.r.t. =X .

Proposition. A set is subfinite iff it is the quotient of a finite set.

43

9. Universes and restricted powersets

A general problem with (or feature of) predicative theories like Martin-Löf
type theory is their inability to define a set of all subsets of a given set. It is,
though, often sufficient to consider certain restricted classes of subsets in a
certain situation.

A set-indexed family F = (F, I) of subsets of a given set X consists of an
index set I = (I,=I) and a subset Fi of X for each i : I, which are such that if
i =I j then Fi and Fj are equal as subsets of X .

A subset S of X belongs to the family F , written S ∈ F , if S = Fi (as subsets
of X) for some i ∈ I.

44

Consider any family of types U = (T,U), where T i is a type for each i : U .
It represents a collection of sets, the U-sets, as follows.

First, a U-representation of a set is a pair r = (i0,e) where i0 : I and e :
T i0×T i0 →U is an operation so that

a =r b ⇔def T (e a b)

defines an equivalence relation on the type T i0. Then this is a set

r̂ = (T i0,=r).

A set X is U-representable, or simply a U-set, if it is in bijection with r̂ for
some U-representation r. The U-sets defines, in fact, a full subcategory of the
category of sets, equivalent to a small category.

Example For U = N and T n = Nn, the (N,N(−))-sets are the finite sets.

45

Restricted power sets

For any set X and any family of types U, define the family RU(X) of subsets
of X as follows.

• Its index set I consists of triples (r,m, p) where r is a U-representation,
m : r̂ → X is a function and p is a proof that m is injective.

• Two such triples (r,m, p) and (s,n,q) are equivalent, if (r̂,m) and (ŝ,n) are
equal as subsets.

• For index (r,m, p) ∈ I, the corresponsing subset of X is F(r,m,p) = (r̂,m).

Proposition A subset S = (∂S, ιS) of X belongs to RU(X) iff ∂S is a U-set.

46

Unless U has some closure properties, RU(X) will not be closed under
usual set-theoretic operations. We review some common such properties below.
Suppose that U is a type-theoretic universe.

• If U is closed under Σ, then RU(X) is closed under binary ∩, and
S

i∈I
indexed by U-sets I.

• If U is closed under Π, then RU(X) is closed under
T

i∈I indexed by U-sets
I, and the binary set operation

(A ⇒ B) = {x ∈ X : x ∈ A ⇒ x ∈ B}.

• If U is closed under +, then RU(X) is closed under binary ∪.

• If U contains an empty type, then RU(X) contains /0.

47

Standard Martin-Löf type universes U (see Martin-Löf 1984) satisfies indeed
the conditions above. Recall from Dybjer’s lecture how such universes are de-
fined:

N̂ : U T N̂ = N

N̂0 : U T N̂0 = N0

N̂1 : U T N̂1 = N1
(+̂) : U →U →U T (a+̂b) = T a+T b

Σ̂ : (a : U) → (T a →U) →U T (Σ̂ a b) = Σ (T a) (λx.T (bx))
Π̂ : (a : U) → (T a →U) →U T (Π̂ a b) = Π (T a) (λx.T (bx))

... ...

48

10. Categories

We use a definition of category where no equality relation between objects
is assumed, as introduced in type theory by P. Aczel 1993, P. Dybjer and V.
Gaspes 1993. Such categories are adequate for developing large parts of ele-
mentary category theory inside type theory (Huet and Saibi 2000).

A small E-category C consists of a type Ob of objects (no equivalence rela-
tion between objects is assumed) and for all A,B : Ob there is a set Hom(A,B)
of morphisms from A to B. There is a identity morphism idA ∈ Hom(A,A) for
each A : Ob. There is a composition function ◦ : Hom(B,C)×Hom(A,B) →
Hom(A,C). These data satisfy the equations id ◦ f = f , g ◦ id = g and
f ◦ (g◦h) = (f ◦g)◦h.

For a locally small E-category we allow Ob to be a sort.

49

Example. The category of sets, Sets, has as objects sets. The set of functions
from A to B is denoted Hom(A,B). The category Sets is locally small, but not
small.

Example. The discrete category given by a set A = (A,=A). The objects of
the category are the elements of A. Define Hom(a,b) as the type (of proofs
of) a =A b. Any two elements of this type are considered equal. (The proofs
of reflexivity and transitivity provide id and ◦ respectively. Also the proof of
symmetry, gives that two objects a and b are isomorphic if, and only if, a =A b.)
Denote the discrete category by A#. This is a small category.

50

Families of sets

Families of sets have more structure than in set theory.

A family F of sets indexed by a set I is a functor F : I# → Sets.

Explication:

For each element a of I, F(a) is a set.

For any proof object p : a =I b, F(p) is function from F(a) to F(b), a so-
called transporter function.

Moreover, since any two morphisms p and q from a to b in I# are identi-
fied, we have F(p) = F(q). The functoriality conditions thus degenerate to the
following:

51

(a) F(p) = idF(a) for any p : a =I a.

(b) F(q)◦F(p) = F(r) for all p : a =I b, q : b =I c, r : a =I c.

Note that each F(p) is indeed an isomorphism, and that F(q) is the inverse of
F(p) as soon as p : a =I b and q : b =I a.

Remark. If each set in the family F is a subset of a fixed set X , i.e. ia : F(a) ↪→X
and so that ia ◦F(r) = ib for r : a =I b, then (F(a), ia) = (F(b), ib) as subsets
of X , if a =I b.

Remark. Families of sets are treated in essentially this way in (Bishop and
Bridges 1985, Exercise 3.2).

52

Example. Let β : B → I be any function. Define for each a ∈ I a set

β−1(a) ≡ {u ∈ B : β(u) =I a},

the fiber of β over a. Then β−1 extends to a functor I# → Sets.

This example indicates another way of describing a families of sets indexed
by I: as the fibers of a function β : B → I. These are in turn precisely the objects
of the slice category Sets/I. We have the following equivalence of categories

Thm.
SetsI# ∼= Sets/I.

53

Constructions:

Given β : B → I. Construct functor β−1 : I# → Sets. Define for r : a =I b a
function β−1(r) : β−1(a) → β−1(b) by

β−1(r)(u, p) = (u,kβ(u),a,b(r, p)).

Here ka,b,c is the proof object for b =I c → a =I b → a =I c,

For F ∈ SetsI#
, define B = (Σi ∈ I)F(i), where (a,x) =B (b,y) iff a =I b and

F(r)(x) =F(b) y and r : a =I b. Let βF : B → I be the first projection.

54

11. Relation to categorical logic

Category theory provides an abstract way of defining the essential mathe-
matical proporties of sets, in terms of universal constructions.

An elementary topos is a category with properties similar to the sets, though
neither classical logic (discreteness of sets), or axioms of choice are assumed
among these properties.

C. McLarty: Elementary Categories, Elementary Toposes. Oxford University
Press 1992.

J. Lambek and P.J. Scott: Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press 1986.

55

Also predicative versions of toposes have been developed

I. Moerdijk and E. Palmgren: Type Theories, Toposes and Constructive Set
Theory, Annals of Pure and Applied Logic 114(2002).

The syntactical category of a type theory

Given is any type theory T including the constructions Σ, Π and + and
constants N0,N1. (This can be precised using a logical framework.)

Build a category ST of closed terms for sets and functions of T . In this
category the standard (Heyting-) algebraic method of interpreting logic can be
used.

We associate to any first order formula ϕ with free variables among x1 :
X1, . . . ,xn : Xn a subobject [[ϕ]]x1,...,xn of X1×·· ·×Xn in ST .

56

Completeness Theorem. For any first-order formulas ϕ and ψ whose types
are in ST :

[[ϕ]]x1,...,xn ≤ [[ψ]]x1,...,xn in ST iff

`T (∀x1 : X1) · · ·(∀xn : Xn)(ϕ → ψ).

57

formalization of mathematics

Freek Wiedijk

Radboud University Nijmegen

TYPES Summer School 2005

Göteborg, Sweden

2005 08 23, 11:10

0

intro

the best of two worlds

formalization of mathematics is like:

• computer programming

concrete, explicit

a formalization is much like a computer program

• doing mathematics

abstract, non-trivial

a formalization is much like a mathematical textbook

you will like it only if you like both programming and mathematics

but in that case you will like it very very much!

1

table of contents: the two parts of this talk

first hour: an overview of

the current state of the art in formalization of mathematics

in the reader: QED manifesto

second hour: an overview of

Mizar, the most ‘mathematical’ proof assistant

in the reader: Mizar tutorial

2

first hour:
state of the art in formalization of mathematics

3

mathematics in the computer

four ways to do mathematics in the computer

• numerical mathematics, experimentation, visualisation

numbers: computer → human

• computer algebra

formulas: computer → human

• automated theorem provers

proofs: computer → human

• proof assistants

proofs: human → computer

4

numerical mathematics: Merten’s conjecture

Möbius function:

µ(n) =

0 when n has duplicate prime factors

1 when n has an even number of different prime factors

−1 when n has an odd number of different prime factors

Mertens, 1897:
∣

∣

n
∑

k=1

µ(n)
∣

∣ <
√

n ?

5

Merten’s conjecture (continued)

Odlyzko & te Riele, 1985: Mertens conjecture is false!

50 uur computer time

first n where it fails has tens of digits

indirect proof!

2000 zeroes of the Riemann zeta function to 100 decimals precision

14.1347251417346937904572519835624702707842571156992431756855674601499634298092567649490103931715610127. . .

21.0220396387715549926284795938969027773343405249027817546295204035875985860688907997136585141801514195. . .

25.0108575801456887632137909925628218186595496725579966724965420067450920984416442778402382245580624407. . .

30.4248761258595132103118975305840913201815600237154401809621460369933293893332779202905842939020891106. . .

32.9350615877391896906623689640749034888127156035170390092800034407848156086305510059388484961353487245. . .

37.5861781588256712572177634807053328214055973508307932183330011136221490896185372647303291049458238034. . .

40.9187190121474951873981269146332543957261659627772795361613036672532805287200712829960037198895468755. . .

43.3270732809149995194961221654068057826456683718368714468788936855210883223050536264563493710631909335. . .

48.0051508811671597279424727494275160416868440011444251177753125198140902164163082813303353723054009977. . .

49.7738324776723021819167846785637240577231782996766621007819557504335116115157392787327075074009313300. . .

52.9703214777144606441472966088809900638250178888212247799007481403175649503041880541375878270943992988. . .

56.4462476970633948043677594767061275527822644717166318454509698439584752802745056669030113142748523874. . .

59.3470440026023530796536486749922190310987728064666696981224517547468001526996298118381024870746335484. . .

60.8317785246098098442599018245240038029100904512191782571013488248084936672949205384308416703943433565. . .

65.1125440480816066608750542531837050293481492951667224059665010866753432326686853844167747844386594714. . .

67.0798105294941737144788288965222167701071449517455588741966695516949012189561969835302939750858330343. . .

69.5464017111739792529268575265547384430124742096025101573245399996633876722749104195333449331783403563. . .

72.0671576744819075825221079698261683904809066214566970866833061514884073723996083483635253304121745329. . .

75.7046906990839331683269167620303459228119035306974003016477753015741970277063236083840370218346527980. . .

77.1448400688748053726826648563046370157960324492344610417652314531511391642537150894082886946997377597. . .

79.3373750202493679227635928771162281906132467431200308784387204971015419326770909746774519946121241090. . .

82.9103808540860301831648374947706094975088805937821491465713062832359290863566190755125631923348968187. . .

. . .

6

computer algebra: symbolic integration of

∫ ∞

0

e
− (x−1)2

√

x dx

> int(exp(-(x-t)^2)/sqrt(x), x=0..infinity);

1

2

e−t2
(

−
3(t2)

1
4 π

1
2 2

1
2 e

t
2

2 K3
4
(t

2

2)

t2
+ (t2)

1
4 π

1
2 2

1
2 e

t
2

2 K7
4
(t2

2)
)

π
1
2

> subs(t=1,%);

1

2

e−1
(

−3π
1
2 2

1
2 e

1
2 K3

4
(1
2) + π

1
2 2

1
2 e

1
2 K7

4
(1
2)
)

π
1
2

> evalf(%);

0.4118623312

> evalf(int(exp(-(x-1)^2)/sqrt(x), x=0..infinity));

1.973732150

7

automated theorem proving: Robbins’ conjecture

computers

. . . can in the near future play chess better than a human

. . . can in the near future do mathematics better than a human?

Robbins, 1933: is every Robbins algebra a Boolean algebra?

EQP, 1996: yes!

eight days of computer time

one of the very few proofs that has first been found by a computer

not very conceptual: just searches through very many possibilities

interesting research, but currently not relevant for mathematics

8

the QED manifesto

let’s formalize all of mathematics!

QED manifesto, 1994:

QED is the very tentative title of a project to build a computer

system that effectively represents all important mathematical

knowledge and techniques.

pamphlet by anonymous group, led by Bob Boyer

utopian vision

proposed many times

never got very far (yet)

9

the two kinds of computer proof

• correctness of computer software and hardware

(serious branch of computer science: ‘formal methods’)

statements: big

proofs: shallow

computer does the main part of the proof

• correctness of mathematical theorems

(slow and thorough style of doing mathematics, still in its infancy)

statements: small

proofs: deep

human does the main part of the proof

10

a brief overview of proof assistants for mathematics

four prehistorical systems

1968 Automath

Netherlands, de Bruijn

1971 nqthm

US, Boyer & Moore

1972 LCF

UK, Milner

1973 Mizar

Poland, Trybulec

11

seven current systems for mathematics

Mizar

''

most mathematical

LCF //

((
P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

--

HOL // Isabelle most pure

Automath //
Coq

NuPRL
most logical

PVS most popular

nqthm //

11

ACL2 most computational

12

a ‘top 100’ of mathematical theorems

1. The Irrationality of the Square Root of 2 ← all systems

2. Fundamental Theorem of Algebra ← Mizar, HOL, Coq

3. The Denumerability of the Rational Numbers ← Mizar, HOL, Isabelle

4. Pythagorean Theorem ← Mizar, HOL, Coq

5. Prime Number Theorem ← Isabelle

6. Gödel’s Incompleteness Theorem ← HOL, Coq, nqthm

7. Law of Quadratic Reciprocity ← Isabelle, nqthm

8. The Impossibility of Trisecting the Angle and Doubling the Cube ← HOL

9. The Area of a Circle

10. Euler’s Generalization of Fermat’s Little Theorem ← Mizar, HOL, Isabelle

.

63% formalized

http://www.cs.ru.nl/~freek/100/

13

(advertisement) the seventeen provers of the world

LNCS 3600

one theorem

seventeen formalisations + explanations about the systems

HOL, Mizar, PVS, Coq, Otter, Isabelle, Agda, ACL2, PhoX, IMPS,

Metamath, Theorema, Lego, NuPRL, Ωmega, B method, Minlog

http://www.cs.ru.nl/~freek/comparison/

14

state of the art: recent big formalizations

Prime Number Theorem

Bob Solovay’s challenge:

I suspect that fully formalizing the usual proof of the prime

number theorem [. . .] is beyond the current capacities of the

[formalization] community. Say within the next ten years.

Jeremy Avigad e.a.:

"pi(x) == real(card(y. y<=x & y:prime))"

"(%x. pi x * ln (real x) / (real x)) ----> 1"

1 megabyte = 30,000 lines = 42 files of Isabelle/HOL

the elementary proof by Selberg from 1948

15

Four Color Theorem

Georges Gonthier:

(m : map) (simple_map m) -> (map_colorable (4) m)

2.5 megabytes = 60,000 lines = 132 files of Coq 7.3.1

streamlined proof by Robertson, Sanders, Seymour & Thomas from 1996

• contains interesting mathematics as well

‘planar hypermaps’

• very interesting ‘own’ proof language on top of Coq

Move=> x’ p’; Elim: p’ x’ => [|y’ p’ Hrec] x’ //=; Rewrite: ~Hrec.

By Congr andb; Congr orb; Rewrite: /eqdf (monic2F_eqd (f_finv (Inode g’))).

• heavily relies on reflection

‘this formalization really needs Coq’

16

Jordan Curve Theorem

Tom Hales:

‘!C. simple_closed_curve top2 C ==>

(?A B. top2 A /\ top2 B /\

connected top2 A /\ connected top2 B /\

~(A = EMPTY) /\ ~(B = EMPTY) /\

(A INTER B = EMPTY) /\ (A INTER C = EMPTY) /\

(B INTER C = EMPTY) /\

(A UNION B UNION C = euclid 2))‘

2.1 megabytes = 75,000 lines = 15 files of HOL Light

proof through the Kuratowski characterization of planarity

• ‘warming up exercise’ for the Flyspeck project

• beat the Mizar project at formalizing this first

• also uses an ‘own’ proof style

17

state of the art: current big projects

the continuous lattices formalization

formalize a complete ‘advanced’ mathematics textbook

A Compendium of Continuous Lattices

by Gierz, Hofmann, Keimel, Lawson, Mislove & Scott

[. . .] For if not, then V ⊆
S

{L \ ↓v : v ∈ V }; and by

quasicompactness and the fact that the L \ ↓v form a

directed family, there would be a v ∈ V with V ⊆ L \ ↓v,

notably v 6∈ V , which is impossible. [. . .]

project led by Grzegorz Bancerek

about 70% formalized

4.4 megabytes = 127,000 lines = 58 files of Mizar

18

the Flyspeck project

Kepler in strena sue de nive sexangula, 1661:

is the way one customarily stacks oranges the

most efficient way to stack spheres?

Tom Hales, 1998: yes !

proof: depends on computer checking

3 gigabytes programs & data, couple of months of computer time

referees say to be 99% certain that everything is correct

FlysPecK project

‘Formal Proof of Kepler’

19

so why did the qed project not take off?

reason one: differences between systems

foundations differ very much

set theory ←→ type theory ←→ higher order logic ←→ PRA

classical ←→ constructive

extensional ←→ intensional

impredicative ←→ predicative

choice ←→ only countable choice ←→ no choice

two utopias simultaneously?

• formalization of mathematics

• doing mathematics in weak logics

20

(advertisement) a questionnaire about intuitionism

http://www.intuitionism.org/

ten questions about intuitionism

currently: seventeen sets of answers by various people

3. Do you agree that there are only three infinite cardinalities?

7. Do you agree that for any two statements the first implies the

second or the second implies the first?

21

putting systems together

OMDoc

XML standard for encoding of mathematical documents

developed by Michael Kohlhase

can be used both for natural language documents and for formalizations

modularized language architecture

supports both OpenMath and Content MathML encoding of formulas

does not really address semantical differences between systems

22

Logosphere

converting between the foundations of various systems

project led by Carsten Schürmann

formalize foundations of each system in the Twelf logical framework

translate all formalizations into Twelf

use Twelf to relate those formalizations

systems that are currently supported:

• first order resolution provers

• HOL

• NuPRL

• PVS

23

reason two: why mathematicians are not interested (yet)

the cost is too high. . .

de Bruijn factor =
size of formalization

size of normal text

question: is this a constant?

experimental: around 4

de Bruijn factor in time =
time to formalize

time to understand

much larger than 4

formalizing one textbook page ≈ 1 man·week = 40 man·hours

24

. . . and the gain is too little

l’art pour l’art

Paul Libbrecht in Saarbrücken: ‘mental masturbation’

it’s not impossibly expensive

formalizing all of undergraduate mathematics ≈ 140 man·years
the price of about one Hollywood movie

but: after formalization we just have a big incomprehensible file

we don’t have a good argument yet for spending that money

certainty that it’s fully correct?

is that important enough to pay for 140 man·years?

25

and it does not look like mathematics

most systems: ‘proof’ = list of tactics = unreadable computer code

even in Mizar and Isar: still looks like code

even formulas: too much ‘decoding’ needed to understand what it says

Variable J : interval. Hypothesis pJ : proper J.

Variable F, G : PartIR. Hypothesis derG : Derivative J pJ G F.

Let G_inc := Derivative_imp_inc _ _ _ _ derG.

Theorem Barrow : forall a b (H : Continuous_I (Min_leEq_Max a b) F) Ha Hb,

let Ha’ := G_inc a Ha in let Hb’ := G_inc b Hb in

Integral H [=] G b Hb’[-]G a Ha’.

G′ = F ⇒
∫ b

a

F (x) dx = G(b)−G(a)

26

so what is needed most to promote formalization of mathematics?

• decision procedures

very important, main strength of PVS

• in particular: computer algebra

Macsyma, Maple, Mathematica

(really: computer calculus)

high school mathematics should be trivial!

x = i/n , n = m + 1 ` n! · x = i ·m!

k

n
≥ 0 `

∣

∣

∣

∣

n− k

n
− 1

∣

∣

∣

∣

=
k

n

n ≥ 2 , x =
1

n + 1
` x

1− x
< 1

27

second hour:
a tour of Mizar, a proof assistant for mathematics

28

why is Mizar interesting?

• a system for mathematicians

• the proof language

only other system with similar language: Isabelle/Isar

• many other interesting ideas

– type system

soft typing

‘attributes’

multiple inheritance between structure types

– expression syntax

type directed overloading

bracket-like operators

arbitrary ASCII strings for operators

29

example formalizations

example: Coq version

Definition ge (n m : nat) : Prop :=

exists x : nat, n = m + x.

Infix ">=" := ge : nat_scope.

Lemma ge_trans :

forall n m p : nat, n >= m -> m >= p -> n >= p.

Proof.

unfold ge. intros n m p H H0.

elim H. clear H. intros x H1.

elim H0. clear H0. intros x0 H2.

exists (x0 + x).

rewrite plus_assoc. rewrite <- H2. auto.

Qed.

30

example: Mizar version

reserve n,m,p,x,x0 for natural number;

definition let n,m;

pred n >= m means :ge: ex x st n = m + x;

end;

theorem ge_trans: n >= m & m >= p implies n >= p

proof

assume that H: n >= m and H0: m >= p;

consider x such that H1: n = m + x by H,ge;

consider x0 such that H2: m = p + x0 by H0,ge;

n = p + (x + x0) by H1,H2;

hence n >= p by ge;

end;

31

procedural versus declarative

0

∞

• procedural

E E S E N E S S S W W W S E E E

HOL, Isabelle, Coq, NuPRL, PVS

• declarative

(0,0) (1,0) (2,0) (3,0) (3,1) (2,1) (1,1) (0,1) (0,2) (0,3) (0,4) (1,4) (1,3) (2,3) (2,4) (3,4) (4,4)

Mizar, Isabelle

32

another small example

If every poor person has a rich father,

then there is a rich person with a rich grandfather.

assume that

A1: for x st x is poor holds father(x) is rich and

A2: not ex x st x is rich & father(father(x)) is rich;

consider p being person;

now let x;

x is poor or father(father(x)) is poor by A2;

hence father(x) is rich by A1;

end;

then father(p) is rich & father(father(father(p))) is rich;

hence contradiction by A2;

33

demo example

Theorem. There are irrational numbers x and y such that xy is rational.

Proof. We have the following calculation

(
√

2

√
2)

√
2

=
√

2

√
2·
√

2
=
√

2
2

= 2

which is rational. Furthermore Pythagoras showed that
√

2 is irrational.

Now there are two cases:

• Either
√

2
√

2
is rational. Then take x = y =

√
2.

• Or
√

2
√

2
is irrational. In that case take x =

√
2
√

2
and y =

√
2.

And by the above calculation then xy = 2, which is rational. ¤

34

lemmas used in the proof

AXIOMS:22 x ≤ y ∧ y ≤ z ⇒ x ≤ z

INT_2:44 2 is prime

IRRAT_1:1 p is prime ⇒ √p 6∈ Q

POWER:38 a > 0 ⇒ (ab)
c

= abc

SQUARE_1:def 3 x2 = x · x
SQUARE_1:def 4 0 ≤ a ⇒ (x =

√
a ⇔ 0 ≤ x ∧ x2 = a)

SQUARE_1:84 1 <
√

2

POWER:53 ‘ a to_power 2 = a^2 ’

35

DEMO

reserve x,y for real number;

theorem ex x,y st x is irrational & y is irrational &

x to_power y is rational

proof

set r = sqrt 2;

C: r > 0 by SQUARE_1:84,AXIOMS:22;

B1: r is irrational by INT_2:44,IRRAT_1:1;

B2: (r to_power r) to_power r

= r to_power (r * r) by C,POWER:38

.= r to_power r^2 by SQUARE_1:def 3

.= r to_power 2 by SQUARE_1:def 4

.= r^2 by POWER:53

.= 2 by SQUARE_1:def 4;

per cases;

suppose

A1: r to_power r is rational;

take x = r, y = r;

thus thesis by A1,B1;

end;

suppose

A2: r to_power r is irrational;

take x = r to_power r, y = r;

thus thesis by A2,B1,B2;

end;

end;

35

example of how Mizar is like English

Hardy & Wright, An Introduction to the Theory of Numbers

Theorem 43 (Pythagoras’ theorem).
√

2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows. If√
2 is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and

therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is

also even, contrary to the hypothesis that (a, b) = 1. ¤

36

Mizar language approximation of this text

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

consider a,b such that

4 3 1: aˆ2 = 2 ∗ bˆ2 and

a,b are relative prime;

aˆ2 is even;

a is even;

consider c such that a = 2 ∗ c;

4 ∗ cˆ2 = 2 ∗ bˆ2;

2 ∗ cˆ2 = bˆ2;

b is even;

thus contradiction;

end;

37

full Mizar

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

then consider a, b such that

A1: b <> 0 and

A2: sqrt 2 = a/b and

A3: a, b are relative prime by Def1;

A4: bˆ2 <> 0 by A1, SQUARE 1:73;

2 = (a/b)ˆ2 by A2, SQUARE 1:def 4

.= aˆ2/bˆ2 by SQUARE 1:69;

then

4 3 1: aˆ2 = 2 ∗ bˆ2 by A4, REAL 1:43;

aˆ2 is even by 4 3 1, ABIAN:def 1;

then

A5: a is even by PYTHTRIP:2;

:: continue in next column

then consider c such that

A6: a = 2 ∗ c by ABIAN:def 1;

A7: 4 ∗ cˆ2 =(2 ∗ 2) ∗ cˆ2

.= 2ˆ2 ∗ cˆ2 by SQUARE 1:def 3

.= 2 ∗ bˆ2 by A6, 4 3 1, SQUARE 1:68;

2 ∗ (2 ∗ cˆ2) = (2 ∗ 2) ∗ cˆ2 by AXIOMS:16

.= 2 ∗ bˆ2 by A7;

then 2 ∗ cˆ2 = bˆ2 by REAL 1:9;

then bˆ2 is even by ABIAN:def 1;

then b is even by PYTHTRIP:2;

then 2 divides a & 2 divides b by A5,Def2;

then

A8: 2 divides a gcd b by INT 2:33;

a gcd b = 1 by A3, INT 2:def 4;

hence contradiction by A8, INT 2:17;

end;

38

some explanations about Mizar

the proof language

forward reasoning

〈statement〉 by 〈references〉
〈statement〉 proof 〈steps〉 end

natural deduction

thus 〈statement〉 → closes the proof

assume 〈statement〉 → →-introduction

let 〈variable〉 → ∀-introduction

thus 〈statement〉 → ∧-introduction

consider 〈variable〉 such that 〈statement〉 → ∃-elimination

take 〈term〉 → ∃-introduction

per cases; suppose 〈statement〉; . . . → ∨-elimination

39

‘semantics’?

Mizar is just first order predicate logic + set theory

Mizar proofs are just Fitch-style natural deduction

but:

• Mizar variables have types. . .

. . . and these types are quite powerful!

• Mizar has ‘second-order theorems’ called schemes

• Mizar defines function symbols using something like Church’s

ι operator (‘unique choice’)

40

Tarski-Grothendieck set theory

TARSKI:def 3 X ⊆ Y ⇔ (∀x. x ∈ X ⇒ x ∈ Y)

TARSKI:def 5 〈x, y〉 = {{x, y}, {x}}

TARSKI:def 6 X ∼ Y ⇔ ∃Z. (∀x. x ∈ X. ⇒ ∃y. y ∈ Y ∧ 〈x, y〉 ∈ Z) ∧

(∀y. y ∈ Y. ⇒ ∃x. x ∈ X ∧ 〈x, y〉 ∈ Z) ∧

(∀x∀y∀z∀u. 〈x, y〉 ∈ Z ∧ 〈z, u〉 ∈ Z ⇒ (x = z ⇔ y = u))

TARSKI:def 1 x ∈ {y} ⇔ x = y

TARSKI:def 2 x ∈ {y, z} ⇔ x = y ∨ x = z

TARSKI:def 4 x ∈
S

X ⇔ ∃Y. x ∈ Y ∧ Y ∈ X

TARSKI:2 (∀x. x ∈ X ⇔ x ∈ Y) ⇒ X = Y

TARSKI:7 x ∈ X ⇒ ∃Y. Y ∈ X ∧ ¬∃x. x ∈ X ∧ x ∈ Y

TARSKI:sch 1 (∀x∀y ∀z. P [x, y] ∧ P [x, z] ⇒ y = z) ⇒

(∃X. ∀x. x ∈ X ⇔ ∃y. y ∈ A ∧ P [y, x])

TARSKI:9 ∃M. N ∈ M ∧ (∀X∀Y. X ∈ M ∧ Y ⊆ X ⇒ Y ∈ M) ∧

(∀X. X ∈ M ⇒ ∃Z. Z ∈ M ∧ ∀Y. Y ⊆ X ⇒ Y ∈ Z) ∧

(∀X. X ⊆ M ⇒ X ∼ M ∨ X ∈ M)

41

types!

Mizar is based on set theory but it is a typed system

Mizar types are soft types:

M : N(t1, . . . , tn)

should really be read as a predicate

N(t1, . . . , tn, M)

This means that:

• one Mizar term can have many different types at the same time

• a Mizar typing can be used as a logical formula!

let x be Real; ←→ assume not x is Nat;

42

types! (continued)

think of Mizar types as predicates that the system keeps track of for you

Mizar types are used for three things:

• type based overloading

x + y sum of two numbers

X + Y adding the elements of two sets

X + y mixing these two things

v + w sum of two elements of a vector space

I + J sum of two ideals in a ring

x + y ‘join’ of two elements of a lattice

p + i adding an offset to a pointer

• inferring implicit arguments

• automatic inference of propositions

43

types! (continued)

• Mizar has dependent types

(much like in all the other dependent type systems)

• Mizar has a subtype relation

every type except the type ‘set’ has a supertype

• Mizar has ‘type modifiers’ called attributes

a type can be prefixed with one or more adjectives

an adjective is either an attribute or the negation of an attribute

(behaves like intersection types)

non empty finite Subset of NAT

44

notation

any ASCII string can be used for a Mizar operator

func].a,b.] -> Subset of REAL means

:: MEASURE5:def 3

for x being R_eal holds

x in it iff (a <’ x & x <=’ b & x in REAL);

pred a,b are_convergent<=1_wrt R means

:: REWRITE1:def 9

ex c being set st ([a,c] in R or a = c) & ([b,c] in R or b = c);

45

Mizar in the world

Mizar Mathematical Library

the biggest library of formalized mathematics

49,588 lemmas

1,820,879 lines of ‘code’

64 megabytes

165 ‘authors’

912 ‘articles’

46

Mizar, the program

• implemented in Delphi Pascal/Free Pascal

• source not freely available, but

write Mizar ‘article’

↓
become member of Association of Mizar Users

↓
get source

• no small proof checking ‘kernel’

correctness of Mizar check depends on correctness of whole program

• users can not automate proofs inside the system

47

publishing formalizations: MML and FM

Mizar Mathematical Library

theorem :: RUSUB_2:35

for V being RealUnitarySpace, W being Subspace of V,

L being Linear_Compl of W holds

V is_the_direct_sum_of L,W & V is_the_direct_sum_of W,L;

Formalized Mathematics

(35) Let V be a real unitary space, W be a subspace of V ,

and L be a linear complement of W . Then V is the direct

sum of L and W and the direct sum of W and L.

48

Mizar versus Isar

some reasons to prefer Mizar over Isar

• the set theory of Mizar is much more powerful and expressive than

the HOL logic of Isabelle/HOL

• Mizar is much more able to talk about abstract mathematics, and in

particular about algebraic structures, with nice notation

• dependent types are way cool

some reasons to prefer Isar over Mizar

• Isabelle gives you an interactive system

• Isabelle allows you to mix declarative and procedural proof

• Isabelle has much more possibilities of automation

• Isabelle allows you to define binders

49

is Mizar a difficult system?

no, not difficult at all!

Mizar is about as complex as the Pascal programming language

(proof assistants tend to resemble their implementation language)

reasons that people sometimes think Mizar is a complex language

• lack of proper documentation

• natural language-like syntax

50

extro

gazing into the crystal ball

Henk’s futuristic QED questions

• will proof assistants ever become common among mathematicians?

• if so: when will this happen?

– the most optimistic answer: it already is here!

– the experienced user’s answer: fifty years

but what do you expect?

51

