Inductive and Recursive Definitions
in Constructive Type Theory

Peter Dybjer
Chalmers Tekniska Hogskola

TYPES summer school
Goteborg
August 2005

Some questions

What is an inductive definition of a set? What is a recursive definition
of a function? Classically? Constructively?

What are the differences and similarities wrt recursive data types in
functional languages?

What is the role of inductive definitions in the foundations of constructive
mathematics? What is Martin-Lof type theory? What is the role of inductive
definitions in Martin-Lof type theory? What other foundational systems
for constructive mathematics are there? What is the role of inductive
definitions for them?

What is the nature of Martin-Lof's meaning explanations? What is the
syntactico-semantical approach to constructive foundations?

More questions

What inductive definitions are constructively acceptable? The versatility
of the constructive notion of an inductive definition. What are inductive
families (indexed inductive definitions)? What are generalized inductive
definitions? What are inductive-recursive definitions?

What recursive definitions are constructively acceptable? What are the
differences and similarities wrt recursive function definitions in functional
languages? What is the role of pattern matching? What is the role of
well-founded recursion vs structural recursion? What is the relationship
between Martin-Lof type theory and Agda? How do you program with
inductive definitions?

How can you axiomatize a general theory of inductive and recursive
definitions in Martin-Lof type theory with a minimum of coding?

Plan

1. Martin-Lof type theory with one universe (MLTTy). Rules for natural
numbers. Large elimination.

2. What is an inductive definition?
(a) Examples

(b) Classical definition. Rule sets. Monotone operators.

3. What is the language of constructive mathematics? What is the data?
What is the role of inductive definitions?

4. Ordinary inductive definitions.

(a) Inductive sets. Lists, binary trees, propositional formulas. General
schema.
(b) Inductive families. Family of theorems. General schema.

5. Generalized inductive definitions.

(a) Brouwer ordinals.
(b) Well-orderings. Hereditarily finite sets. Aczel's V and CZF.
(c) Well-founded part of a relation. Termination of programs.

6. Induction-recursion. More about meaning explanations.

7. (Finite axiomatization of inductive and inductive-recursive definitions, if
time permits)

Terminology

later Martin-Lof lecture notes
type sort

set type
extensional set set

function operation

extensional function function

We here follow later Martin-Lof. The “lecture notes’ above refer to
“Type-theoretic Foundations of Constructive Mathematics” by Coquand,

Dybjer, Palmgren, and Setzer.

Bishop

preset

set
operation
function

early Martin-Lof

category
type

function

other
kind
setoid, E-set

setoid map,

Original Martin-Lof type theory with one universe
(MLTTy)

e Set formers for predicate logic: 0,1, +, x, —, >, I
e Natural numbers N.

e Universe of small sets U.

All these were introduced in Martin-Lof 1972.

More set formers

Identity I (Martin-Lof 1973) - an inductive family/predicate
Well-orderings W (Martin-Lof 1979) - a generalized inductive definition
Hierarchy of universes Uy, U, Us,

Universe a la Tarski (Martin-Lof 1984) U, T - an inductive-recursive
definition

Rules for natural numbers

Formation rule:

N : Set

Introduction rules:

0O : N
Sucec : N —= N

Elimination and equality rules for natural numbers

Elimination rule:

R : (C:N—=Set) >C0— ((z:N)—>Cz— C (Succzx)) —
(n:N)—=Cn

Dependent elimination rule = rule for building proofs by mathematical
induction = rule for typing functions from natural numbers where the target
Is a dependent type.

Equality rules:

RCdeO = d:CO0
R C d e (Succ n) en(RCden):C (Succn)

10

Primitive recursive schema

If C:N — Set,d:C0,e:(x:N)—Cazxz— C (Succ x), and

fo = d
f (Succ n) en (fn)

then we can define

f=RCde:(n:N)—=>Cn

11

Exercise: define some functions in MLT Ty

1. addition, subtraction, and multiplication of natural numbers

2. the half function:

half 0 = 0
half (Succ0) = 0
half (Succ (Succn)) = Succ (half n)

3. division of natural numbers

12

Equality of natural numbers

Define

eqy : N — N — Bool

by pattern matching on constructors

eqyn 00
eqn 0 (Succ n)
eqn (Succm) 0

eqy (Succ m) (Succ n)

True
False
False

eqn M n

13

Exercise: define equality of natural numbers in MLT Ty

Hint. Use the elimination rule for N and define it by primitive recursion
of higher type (primitive recursive functional) as follows. Define

eqy m : N — Bool

by induction on m : N. The base case is “to be equal to zero” and the step
case is to define “to be equal to m + 1" in terms of “to be equal to m”.

Note that in MLT Ty we define Bool =1 + 1.

14

Recursive function definitions in Agda

The Alf/Agda philosophy: we do not limit ourselves to the primitive
recursive schema formalized by N-elimination, but allow more general
recursion patterns. There is a termination checker which checks that the

recursive calls refer to “structurally smaller” arguments.

For example, the above definition of equality is accepted as a good
definition (syntax may use case analysis) since it passes the termination
checker. There is ongoing research on extending the termination checker.

15

Recursive definitions of sets

Define
Vect : Set — N — Set
abbreviated A™ = Vect A n

A = 1
ASuccn — A x A™

This definition is directly accepted by Agda (using case). Can we define it
in MLTTy? Note that we cannot use R directly. Why?

16

Large elimination

If we modify R, so that the result type is Set instead of a set C' n, then
we get a large elimination rule

Rlrg&e . Set — (N — Set — Set) — N — Set
Now we can define

A" = RPe1 Nz, X.Ax X)n

17

The universe of small sets

Large elimination rules are not part of MLTTy. Instead we show how
to use the universe U to approximate the effect of large elimination. We
here choose the formulation a la Tarski (Aczel 1974, Martin-Lof 1984),
where we have a set U of codes for small sets, and a decoding function T

U : Set
T : U — Set

Remark: earlier versions of Martin-Lof type theory used universes a la
Russell, where a : Set if a : U.

18

Inductive-recursive definition of the universe a la Tarski

We have one introduction rule for U and one equality rule for T for each
small set former:

N : U TN = N
0 : U TO = 0
1 U Tl = 1
(+) U—-U—=TU T(atb) = Ta+Th
(%) U—-U—U T (axb) = TaxTh
S ¢ (@:U)=» (Ta—=U)—>U T(Zab)

- Y (Ta) (Mz.T (bx))

Note that U is not a small set.

19

The universe at work

Now we can define
A" =T (R (A\z.U) 1 (\z, X.AXX) n)

for A : U. (Note that we only define A™ for small A!)

Exercise: Define a family
Fin : N — Set

so that Fin n is a set with n elements.

20

The equality proposition

We would like to have
Eqy : N —= N — Set

so that Eqy m n is inhabited iff eqy m n = True. How is this defined in
MLTTvy? In Agda we can define directly (using case)

Eqy 00 = 1
Eqy (Sucem)0 = 0
Eqx 0 (Succn) = 0

Eqy (Succ m) (Succn) = Eqymmn

21

Exercise: some uses large elimination for truth values

Define the following functions in MLTTy:

1. the following function which converts a truth value to a proposition:

Tgoor : Bool — Set
Tgool True = 1
Tgool False = 0

2. Eqy : N = N — Set.

22

Lists and other inductive definitions

List is not a primitive set former in MLTTy. Can we encode it?

Martin-Lof 1984: “We can follow the same pattern used to define
natural numbers to introduce other inductively defined sets. We see here
the example of lists”. Exercise: write down the rules for list (formation,
introduction, elimination, and equality rules).

Martin-Lof 1972: “The type N is just the prime example of a type
introduced by an ordinary inductive definition. However, it seems preferable
to treat this special case rather than to give a necessarily much more
complicated general formulation which would include (X € A)B(z), A+ B,
N,, and N as special cases. See Martin-Lof 1971 for a general formulation of
inductive definitions in the language of ordinary first order predicate logic.”

23

Inductive definitions — examples

the rules for generating natural numbers by zero and successor
the rules for generating well-formed formulas of a logic

the axioms and inference rules generating theorems of the logic
the productions of a context-free grammar

the computation rules for a programming language

the reflexive-transitive closure of a relation

24

Inductive definitions and recursive datatypes

lists generated by Nil and Cons

binary trees generated by EmptyTree and MkTree

algebraic types in general: parameterized, many sorted term algebras
infinitely branching trees; Brouwer ordinals; etc.

inductive dependent types (vectors of a certain length, trees of a certain
height, balanced trees, etc)

inductive-recursive definitions (sorted lists, freshlists, etc)

25

Reflexive and nested datatypes

Note that recursive datatypes in functional languages (e g Haskell)
include reflexive datatypes

data Lambda = Nil | Lambda (Lambda -> Lambda)
and nested datatypes

data Nest a = Nil | Cons a (Nest (a,a))
data Bush a = Nil | Cons a (Bush (Bush a))

Neither is accepted verbatim as an inductive definition in Martin-Lof type
theory.

26

What is an inductive definition in general, classically?

Two equivalent notions of inductive definition of subset of a set V via

o rulesetson V

e monotone operators on subsets of V

See Aczel 1977: “An Introduction to Inductive Definitions” in Handbook of
Mathematical Logic.

27

Sets inductively generated by rule sets

X)’

A rule on a base set V' in Aczel's sense is a pair (X, z) (also written =-

suchthat X CV andz € V.
Let ® be a set of rules on V. A set Y is &-closed if for all % cod
XCY>DzeY
The set inductively generated by ® is defined to be the least ®-closed set
Z(P) = ﬂ{Y CV|Y ®-closed},
The induction principle for Z(®) is “if Y is ®-closed, then Z(®) C Y".
The introduction rules are “Z(®) is ®-closed, that is, if X C Z(®) then

z € I(d)".

28

Example: reflexive-transitive closure of a relation

Rules for inductively generating R* C A x A from R C A x A:

xR*y yR*z xRy
rR*x rR*z rR*y

Formal rule set (in the sense of Aczel) on V = A x A:

e A}U{{(w,y),(y,z)}m,y’Z € AV U

{ (z,2)

(z,y) € R}

(x,x) (z,y)

29

Example: inference rules for minimal logic

=y -
-y Fr= Y=o Fr=>y=>2) =2 (=>y) ==z

The corresponding rule set on V = Form (the set of formulas)

{r =y, x})
,y€EF U ,y€F U
{ lz,y € Form} {:1: g x\x y € Form}

0

(r=y=2)=@=>y) =>r=2

{

z,y, 2z € Form}U

30

The w-rule is

Infinitary rules

(F fl?z')z'ew
- /\iEw Lq
We have the rule set
{{lez < w}\xz € Form for all i € w}

We here assume that /\

/\iEw X

1EW

(

x; € Form whenever x; € Form for all © € w.

31

Rules for generating natural numbers

Type-theoretic introduction rules

0O : N
Succ : N —=N

Rule set (What is V7 N is given by a fundamental inductive definition)

(5 U gt € V)

Monotone operator ¢ : P(V) — P(V') which generates natural numbers:
d(X)={0}U{Succ(n)ln e X} =1+ X

32

Inductively defined sets
generated by monotone operators

Let ¢ : P(V) — P(V) be monotone, that is, if X C Y C V, then
d(X) C p(Y) CV. Then ¢ has a least prefixed point

I(¢) = X C V|¢(X) C X}

The induction principle is “if $(X) C X then Z(¢) C X". The introduction
rule is “¢(Z(9)) C T(4)"-

Exercise. Show that inductive generation by rule sets and monotone
operators are equivalent.

33

Inductive definitions and constructive foundations

Classically, inductive definitions are understood as least fixed points of
monotone operators (or least sets closed under a set of rules).

P. Aczel (An introduction to inductive definitions, Handbook of Mathe-
matical Logic, 1976, pp 779 and 780.):

An alternative approach is to take induction as a primitive notion,
not needing justification in terms of other methods. ... It would be
interesting to formulate a coherent conceptual framework that made
induction the principal notion.

No universal principle. We may discover new stronger inductive generation
principles.

34

Inductive definitions and the notion of set
in Martin-Lof type theory

Martin-Lof type theory is such a coherent conceptual framework.

“(1) a set A is defined by prescribing how a canonical element of
A is formed as well as how two equal canonical elements of A are
formed.”

Per Martin-Lof (p8 in Intuitionistic Type Theory, Bibliopolis 1984)

This is the same as saying that a set is defined by its introduction rules, i
e, the rules for inductively generating its members.

35

Towards a language for constructive mathematics

Constructivism:

e Functions are computable
e Proofs of implications are computable functions (“methods”)
e A proof of a disjunction is either a proof of left or of right disjunct

e A proof of existence gives a witness

Hence, not excluded middle, not double negation.

36

What is the data?

e Kleene's partial recursive functions: natural numbers
e Turing machines: strings of characters

e Lambda calculus (untyped): lambda expressions (mix program and data)

Code natural numbers as strings of characters or as lambda expressions.

Code functions, pairs, etc as natural numbers (Godel coding). Even
coding proofs as natural numbers (Kleene realizability).

37

Types of data

Natural numbers N

Higher order functions A — B (cf Godel's T)

Propositions. Church type theory. Cf type U of small types.
More types? Cf development of programming languages.

In logic. Curry-Howard: 0,1, A+ B,A X B,¥,.4B,11,.4B.

This yields Martin-Lof type theory 1972. (Cf also Scott 1970: Construc-
tive validity - check. Has also version of W-type.).

38

Martin-Lof type theory and inductive definitions

Basic set formers: 1I,X,+,I,N,N,,, W, U,

Adding new set formers with their rules when there is a need for them:

lists, binary trees, the well-founded part of a relation,

Exactly what is a good inductive definition? Schemata for inductive

definitions, indexed inductive definitions, inductive-recursive definitions

Generic formulation: universes for inductive definitions, indexed inductive

definitions, inductive-recursive definitions

39

Formulae of minimal propositional logic

Another example of an ordinary inductive definition acceptable as a
primitive notion in Martin-Lof type theory:

Form : Set
Atom : N — Form
= : Form — Form — Form

Can it be defined in MLTTy?

40

Schema for ordinary inductive definitions of sets

Ordinary as opposed to generalized inductive definitions
Sets as opposed to families of sets.

We can introduce a new set P with finitely many constructors, where
each constructor has finitely many arguments, the types of which are either
P itself (an inductive argument/premise) or a set A (a side condition/non-
inductive premise). The set A may depend on previous side-conditions, and
may also make use of previously defined constants. It may not contain P.

The conclusion has type P.

41

Parameterized ordinary inductive definitions of sets

A definition can moreover depend on parameters which can have arbitrary
types (including the type of sets). This is a third kind of argument to a
constructor. The parameters always come before the side-conditions and
the inductive arguments. (Inductive arguments and side-conditions can be
mixed.)

All parameters appear as the initial arguments in formation, introduction,
and elimination rules for P.

Remark: more general schemata exist for inductive families, generalized
induction, and induction-recursion.

42

Lists as an example of a parameterized ordinary
inductive definition of a set

Example, lists are given by a parameterized ordinary inductive definition
of a set. The constructor

Cons : (A:Set) > A— [A] — [4]

has three arguments: A : Set is a parameter, a : A is a side-condition,
as : [A] is an inductive argument.

Exercise: Analyse the constructors of natural numbers, binary trees with
information in the leaves, the set Form of formulas of minimal logic above.
Analyse also x and X! What about — and II?

43

The inductive family of theorems

Thm : Form — Set

K : (a,b:Form) — Thm (a = b= a)
S : (a,b,c:Form) — Thm ((e == b=1¢) = (a = b) = a=c)
Mp : (a,b:Form)— Thm (¢ = b) - Thm ¢ — Thm b

Exercise. By Curry-Howard, Thm represents an inductively defined
predicate. Define the predicate Thm in MLT Ty up to logical equivalence!

44

Elimination rule for Thm

(C : (a : Form) = Thm a — Set) —

((a,b:Form) - C (a=b=a) (Kab)) —

((a,b,c:Form) - C ((a=b=c¢)=(a=b) =a=c¢) (Sabc)) —

((a,b: Form) = (p: Thm (¢ = b)) = (¢ : Thm a) —
Cla=bp—-Caq—>CbMpabpq)) —

(a : Form) = (p: Thma) > Cap

1:{Thm

45

Classical soundness of Thm

Exercise: use the elimination rules for Form and Thm to write the
follwoing two functions:

eval : (N — Bool) - Form — Bool

sound : (p:N — Bool) — (a: Form) — Thm a — (eval p a =g, True)

eval assigns classical semantics in Bool to each formula.

sound is a proof that all theorems are evaluated to True under this
semantics:

46

Equality rules for Thm

Rrim Cde f(a=b=a) (Kab) = dab

Rrim Cde f((a=b=c)=(a=0b)=a))(Sabc) = eabc

Rraim Cde foO(Mpabpq) = fabRmmCdef(a=0b)p)(RmmCde faq)

47

Schema for ordinary inductive definitions of families of
sets

Like for sets, except that we have indices (cf Martin-Lof 1971):

We can introduce a new family of sets P : I — Set with finitely many
constructors, where each constructor has finitely many arguments, the types
of which are either P p (an inductive argument/premise) or a set A (a
side condition/non-inductive premise). The index p : I and the set A may
depend on previous side-conditions, and may also make use of previously
defined constants. (A must not contain P.)

The conclusion has the type P q, where again ¢ : I may depend
on previous side-conditions, and may also make use of previously defined
constants.

48

Inductive families in Agda

One can use idata in Agda for defining inductive families.

If the index ¢ (in the conclusion type P q) is a variable, then one can
also use data in Agda.

49

A generalized inductive definition: the Brouwer ordinals

O : Set

0(9 . O
Succo : O —0
Supp, : N—0)—= 0O

Note that the type of the argument of Sup, is a function type, representing
the fact that it has an infinite number of (inductive) arguments. Note that
O appears strictly positively in the argument type.

50

Aczel rule set for Brouwer ordinals

We get set-theoretic semantics of (O by taking the set inductively
generated by the following rule set:

5Vl la e ViU R E s e vy 1)

51

Elimination rule

ordrec : (C:0 — Set) —
C0p —
((z:0) = Cz— C (Succop) —
(f:N=>0) = ((z:0)=>C(fz) = C (Supp f)) =
(c: 0) —
Cc

Exercise: write down the equality rules.

52

Some Brouwer ordinals

w = Supyp (Ananon): O
Nno N—O
ino 0 = Op
iNno (Succn) = Succo (tno n)

Why is
2w = Supy (An.R (An.0) w (Ay, z.Succe 2))?

Exercise. Do some more ordinals, eg w?, w¥, €g. Do ordinal addition.

53

Well-orderings

W : (A:Set) —» (A — Set) — Set

(A : Set) —

(B: A — Set) —
(a:A4)—
(Ba— W AB) —
W AB

Sup

Exercise: write down the elimination and equality rules.

54

Schema for generalized inductive definitions

Inductive arguments of constructors in a generalized inductive definition
of a set P can have types

(x1:41)—> ...~ A, —> P

where P does not appear in A;. (A; may depend on previous arguments,
etc.)

It is also possible to encode all sets given by a generalized inductive
definition in terms of W up to extensional equality.

Exercise: Find A and B so that W A B encodes N. Similar question
for the Brouwer ordinals. (See Martin-Lof 1984)

55

The set of finitely branching trees

We can define the set of finitely branching trees with arbitrary finite
branching degree (no information in the nodes)

Vo = W N Fin

56

Hereditarily finite iterative sets

The elements of Vg, can represent the hereditarily finite sets, i e, finite
sets all of whose elements are also hereditarily finite sets. However, when
comparing two hereditarily finite sets for equality, order and repetition of
elements do not matter. We define extensional equality as bisimilarity:

SUP N b =ext Supn' b = Vi:Finn. 3¢ :Finn'. bi=cx b ¢/ A

Vi :Finn'. 3 :Finn. b’ i/ =ext b1

(Note: we have omitted the two parameter arguments of Sup.)

Extensional membership is defined by

A Eext SUupnb = di:Finn.a =ex b1

57

Operations on hereditarily finite sets

Exercise: Define the empty hereditarily finite set. Define union and
intersection, and power set of a hereditarily finite set! Define the finite
ordinals.

58

Aczel’s constructive cumulative hierarchy V

Vin only contains hereditarily finite iterative sets. In a similar way we
can define Aczel’s set V of iterative sets by

V=WUT

The branching can now be indexed by an arbitrary (possibly infinite) small
set T a. The definitions of extensional equality and extensional membership
are analogous to those for Vgy,.

Aczel gives axioms for a constructive version CZF of ZF set theory,
where the axioms hold for V with extensional equality and extensional
membership.

59

Exercise: constructions in V

Check that the subset relation, the operations of union and intersection,
and the finite ordinals are defined in the same way as in Vgy,.

Construct the first infinite ordinal w : V!

What happens if we try to define the powerset of an arbitrary element
in V?

60

Constructive foundations

Predicative constructive systems:

Type theory. Martin-Lof type theory

Lambda calculus (untyped). Aczel's first order theory of combinators
(logical theory of constructions etc.). Use intuitionistic predicate logic
and inductive predicates on domain of lambda expressions. Cf Feferman’s
explicit mathematics.

Set theory. Aczel's Constructive ZF - use axioms for V

Category theory. Moerdijk - Palmgren’s predicative topos - axioms for the
category of setoids in Martin-Lof type theory

61

The well-founded part of a relation

Given a set A and a binary relation (>) on A an element z is in the
well-founded part of (>) if there is no infinite descending chain z > z; >
a:2 > « ..

An alternative definition is by a generalized inductive definition: z is in
the well-founded part of (>) provided all elements =’ which are “smaller”
(z > 2') are in the well-founded part. In particular each “smallest” element
is in the well-founded part.

Wip : A — Set

Sup : (z:4)—= ((¢':A) = (z>2") > Wipz') > Wipx

62

Exercise: correspondence between the two definitions of
well-foundedness

Prove that the inductive definition implies the no-infinite descending
chain definition in Martin-Lof type theory!

Wip on the previous page was defined for a fixed set A and a fixed
relation (>). Rewrite the definiton so that A and (>) become parameters!

63

Using the well-founded part to encode general recursive
definitions

Encode general recursive function
f : A ->B

by
fli(x:A) - WipA(>¢)z— B

where (>:) is the recursive call relation: x >¢ ' whenever the computation
of £ = will generate a call £ 2'.

64

Encoding division

For example, the partial recursive division function
divmn = if (n < m) then 0 else (divm (n - m))

has the recursive call relation (>g4ivy ,,,), Where

n>divm P = N=NmM+D

What is Wip (>giv .,)? What happens if m =y 07

65

Inductive-recursive definitions

Recall the inductive-recursive definition of the universe 4 la Tarski. We
only display one constructor to show the inductive-recursive nature of the
definition:

U : Set
T : U — Set

> ¢ (a:U)= (Ta—=U)—=U
T(Xab) = Xz:TaT(bax)

Why is such a strange definition constructively valid? Use Martin-Lof style
meaning explanations!

66

Inductive-recursive definition of ordered lists

OrdList : Set
Ilb : N — OrdList — Bool

Nil : OrdList
Cons : (x:N)— (zsp:OrdList) - T (Ib x zsp) — OrdList

Ibxz Nil = True
bz (Consyzspq) = <y

67

Set-theoretic semantics of the universe a la Tarski

Rule set

{{(a’jA)}U{(b(x),B(x)NxEA}|a,7AEVJ),BEA—)V}U

A

(X(a,b), Xz B(x))

Exercise: give similar set-theoretic semantics to the inductive-recursive
definition of sorted lists with the lower bound function!

68

Some references

e P. Aczel, An introduction to inductive definitions, chapter C.7 in the
Handbook of Mathematical Logic, North-Holland 1977.

e Inductive and inductive-recursive definitions in Martin-Lof type theory:
http://www.cs.chalmers.se/ “peterd/papers/inductive.html
e The calculus of inductive constructions:

http://pauillac.inria.fr/cdrom/www/coq/doc/node.0.3.html

69

System F

Alexandre Miquel — PPS & U. Paris 7

Alexandre.Miquel@pps. jussieu.fr

Types Summer School 2005
August 15-26 — Goteborg

B o

@ System F: independently discovered by
«O>» «Fr «=)» «=)» = DA
e 4 4 444

Introduction

e System F: independently discovered by
Girard: System F (1970)

Introduction

e System F: independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic A-calculus (1974)

Introduction

e System F: independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic A-calculus (1974)

@ Quite different motivations. ..

Girard: Interpretation of second-order logic
Reynolds: Functional programming

... connected by the Curry-Howard isomorphism

Introduction

e System F: independently discovered by

Girard: System F (1970)
Reynolds: The polymorphic A-calculus (1974)

@ Quite different motivations. ..

Girard: Interpretation of second-order logic
Reynolds: Functional programming

... connected by the Curry-Howard isomorphism

e Significant influence on the development of Type Theory

— Interpretation of higher-order logic [Girard, Martin-L6f]
— Type:Type [Martin-Lo6f 1971]

— Martin-L6f Type Theory [1972, 1984, 1990, ...]
— The Calculus of Constructions [Coquand 1984]

Part |
«O>» «Fr «=)» «=)» = DA
e 4 4 444

System F syntax

Definition

Types

Terms

A B

t,u

a| A-B | YaB

X
A:At | tu
N .t | tA

(term abstr./app.)
(type abstr./app.)

System F syntax

Definition

Types A B

Terms t,u = X
| Ax
| A
Notations
@ Set of free (term) variables:
@ Set of free type variables:
@ Term substitution:
@ Type substitution:

a| A—-B | VaB

tu (term abstr./app.)
tA (type abstr./app.)
FVv(t)
TV(t), TV(A)
u{x:=t}

u{a:= A}, Bl{a:=A}

Perform a-conversion to prevent captures of free (term/type) variables!

System F typing rules

Contexts

Typing judgments

System F typing rules

Contexts M = xx:A1, ..., xp: A,
Typing judgments FrEt: A
Thx:A 0O
N x:A-t:B r-t:A—B Fr~-uv:A
r'EXx:A.t: A— B l-tu: B
Fr'=t: B wg TV(T) l-t:Va B

N-Aa.t:VaB I tA: B{a:= A}

System F typing rules

Contexts N o= x1:A1, ..., xp: A
Typing judgments FrEt: A
TFx:A O
N x:A-t:B r-t:A—B Fr~-uv:A
M- Ax:A.t: A—B MN-tu:B
Fr'-t: B wg TV(T) -t:Va B
N-Aa.t:VaB I tA: B{a:= A}

@ Declaration of type variables is implicit (for each oo € TV/(I))
@ Type variables could be declared explicitly: «: % (cf PTS)

@ One rule for each syntactic construct = System is syntax-directed

o Set: 4

N IA\x: o .x

it
v

«gOr «Fr < < o

Example: the polymorphic identity

o Set; id = Aa.Xx:a.x

@ One has:

id : Vo (o — a)

Example: the polymorphic identity

o Set; id = Aa.Xx:a.x

@ One has:
id : Vo (o — a)
dB : B—B for any type B

Example: the polymorphic identity

o Set: id = Aa.Ax:a.x
@ One has:
id : Vo (o — a)
dB : B—B for any type B

dBu : B for any term v : B

Example: the polymorphic identity

@ Set: id = Aa.Xx:a.x

@ One has:
id : Vo (o — a)
dB : B—B for any type B
dBu : B for any term v : B

@ In particular, if we take B = Va (o« —«) and u = id

Example: the polymorphic identity

o Set; id = Aa.Xx:a.x

@ One has:
id . Va (o — «a)
dB : B—B for any type B
dBu : B for any term v : B

@ In particular, if we take B = Va (o« —«) and u = id

id (Va (a — «)) : Va (oo —a) — YVa (o— «a)

Example: the polymorphic identity

o Set; id = Aa.Xx:a.x

@ One has:
id . Va (o — «a)
dB : B—B for any type B
dBu : B for any term v : B

@ In particular, if we take B = Va (o« —«) and u = id

id (Va (a — «)) : Va (oo —a) — YVa (o— «a)

id (Vo (0 — @))id : Vo (a— a)

Example: the polymorphic identity

o Set: id = Aa.Xx:a.x
@ One has:
id . Va (o — «a)
dB : B—B for any type B
dBu : B for any term v : B
@ In particular, if we take B = Va (o« —«) and u = id
id (Va (a — «)) : Va (oo —a) — YVa (o— «a)

id (Vo (0 — @))id : Vo (a— a)

= Type system is impredicative (or cyclic)

o T o

B o

ol ku: B

=

Mo = A} - u{a:= A} : B{a = A}

«Or «F>r «Er «EHr» EF DA

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Decidability of type checking / type inference

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Decidability of type checking / type inference
O Given I, t and A, decide whether [t: A is derivable

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Decidability of type checking / type inference

@ Given I, t and A, decide whether T -t : A s derivable

@ Given I and t, compute a type A such that T ¢t: A
if such a type exists, or fail otherwise.

Properties

Substitutivity (for types/terms):
olNtu:B = [{a=A}Fu{a:=A}: B{a:=A}
o x:Aku:B, r-t:A = MN-u{x:=t}:B

Uniqueness of type
M=t:A, ret: A = A=A (a-conv.)

Decidability of type checking / type inference
O Given I, t and A, decide whether [t: A is derivable

@ Given I and t, compute a type A such that T ¢t: A
if such a type exists, or fail otherwise.

Both problems are decidable

Two kinds of redexes:

it
v

«Or «Fr < < r = QX

Two kinds of redexes:
(M A t)u >

t{x = u}

1st kind redex

«O0>» «4F)r «=>» «) = Q>

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(Aa.t)A = t{a:= A} 2nd kind redex

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(Aa.t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(Aa.t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(A . t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

@ One step (-reduction t =t =
contextual closure of both rules above

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(A . t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

@ One step (-reduction t =t =
contextual closure of both rules above

o [-reduction t =t =
reflexive-transitive closure of >

Reduction rules

Two kinds of redexes:

(A:At)u = t{x:=u} 1st kind redex
(A . t)A = t{a:= A} 2nd kind redex

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

@ One step (-reduction t =t =
contextual closure of both rules above

o [-reduction t =t =
reflexive-transitive closure of >

o [-convertibility t~t =
reflexive-symmetric-transitive closure of >~

o T o

@ The polymorphic identity, again
«0>» «Fr «Z»>» «E>» = QU
e 4 4 444

Examples

o The polymorphic identity, again

idBu = (Aa.Xx:a.x)Bu

Examples

o The polymorphic identity, again

idBu = (Aa.Xx:a.x)Bu » (Ax:B.x)u

Examples

o The polymorphic identity, again

idBu = (Aa.Xx:a.x)Bu » (M:B.x)u > u

Examples

o The polymorphic identity, again
idBu = (Aa.Xx:a.x)Bu » (M:B.x)u > u

id (Va (a—a)) id (Va (a—a)) -+ id (Va (e—a))idBu ¥ u

Examples

o The polymorphic identity, again
idBu = (Aa.Xx:a.x)Bu » (M:B.x)u > u

id (Va (a—a)) id (Va (a—a)) -+ id (Va (e—a)) idBu ¥

@ A little bit more complex example. ..

Examples

o The polymorphic identity, again
idBu = (Aa.Xx:a.x)Bu » (M:B.x)u > u

id (Va (a—a)) id (Va (a—a)) -+ id (Va (e—a))idBu ¥ u

@ A little bit more complex example. ..

32 times
——
(/\a.)\x:a.)\f:a—u. f(-- (fx)))

(Vo (a—(a—a)—a)) (Aa.Ax:a. M :a—a.fx)
(An:Va (a—(a—a)—a) . Aa. Ax:a. Af a—a.na(naxf)f)

Examples

o The polymorphic identity, again

dBu = (Aa.Xx:a.x)Bu > (x:B.x)u > u

id (Va (a—a)) id (Va (a—a)) -+ id (Va (e—a)) idBu ¥

@ A little bit more complex example. ..

32 times
——
(Ao dAx:a M ia—a. £ (- (Fx)--))
(Vo (a—(a—a)—a)) (Aa.Ax:a. M ra—a.fx
(An:Va (a—(a—a)—a) . Aa. Ax:a. Af a—a.na(naxf)f)

*

= A dxra A Afra—al (F - (Fx)---)

——
4294 967 296 times

o T o

t=th At = 3 (=t A Pt

«O>r «Fr o« e

i
v

t=th At = 3 (=t A Pt
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)

«O>» «4F»r « > < » = Q>

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Subject-reduction
If THt:A and t>t then TH¢t:A

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Subject-reduction
If THt:A and t>t then TH¢t:A

Proof. By induction on the derivation of I I t : A, with t = t’ (one step reduction)

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Subject-reduction

If THt:A and t>*t then THt:A

Proof. By induction on the derivation of I I t : A, with t = t’ (one step reduction)
Strong normalisation

All well-typed terms of system F are strongly normalisable

Properties

Confluence

tH Attt = (=t A t)
Proof. Roughly the same as for the untyped A-calculus (adaptation is easy)
Church-Rosser

ti~t, & It (=t At t)

Subject-reduction

If THt:A and t>*t then THt:A

Proof. By induction on the derivation of I I t : A, with t = t’ (one step reduction)
Strong normalisation

All well-typed terms of system F are strongly normalisable

Proof. Girard and Tait’s method of reducibility candidates (postponed)

Part Il
«Or «Fr «=r «=)r» = 9HQE
e 4 4 444

o T o

Bool

o O

«Or «F>r <) (=) = 9OQQ

Bool

o (g — 20—)
e =

Ay dx.y iy x

Bool

«Or «F>r <) (=) = 9OQQ

Booleans (1/3)

Encoding of booleans

Bool

Vv (v = =)
true Ay.dx,y:v.x : Bool

false = Ay.Ax,y:v.y : Bool

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)
true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifgy v then t; else &b = uUAH b

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)

true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifgy v then t; else &b = uUAH b

Correctness w.r.t. typing

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)
true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifg u then t; else b uAt b

Correctness w.r.t. typing

[+ u: Bool =t : A FlEt: A
'+ if4, u then t; else t, : A

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)
true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifg u then t; else b uAt b

Correctness w.r.t. typing

[+ u: Bool =t : A FlEt: A
'+ if4, u then t; else t, : A

Correctness w.r.t. reduction

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)

true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifgy v then t; else &b = uUAH b

Correctness w.r.t. typing

[+ u: Bool =t : A FlEt: A
'+ if4, u then t; else t, : A

Correctness w.r.t. reduction

if4 true then t; else b, = 1

Booleans (1/3)

Encoding of booleans

Bool = Vy(v—v—7)

true = Ay.A\x,y:v.x : Bool
false = Ay.Ax,y:v.y : Bool

ifgy v then t; else &b = uUAH b

Correctness w.r.t. typing

[+ u: Bool =t : A FlEt: A
'+ if4, u then t; else t, : A

Correctness w.r.t. reduction

if4 true then t; else b, = 1
ifs false then t; else tp = t

Obje(:tion:

i
v

«O> «Fr <) } o

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!
true = Ax,y.x
false = Mx,y.y

if u then t; else tpb = ut; b

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!
true = Ax,y.x .
false = Mx,y.y Same reduction

rules as before
if

u then t1 else &b = ut b

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!
true = Ax,y.x .
false = Mx,y.y Same reduction

rules as before
if u then t; else tpb = ut; b

But nothing prevents the following computation:

if Ax.x thent;jelsety; = (Ax.x)t;ty >
1 2 ()t ta

t1t
~—
bad bool

meaningless result

Booleans (2/3)

Objection: We can do the same in the untyped A-calculus!
true = Ax,y.x .
false = Mx,y.y Same reduction

rules as before
if u then t; else tph = ut b

But nothing prevents the following computation:

if Ax.x thent;jelsety; = (Ax.x)t;ty > t1 t:
1 2 ()t ta 1t2
bad bool

meaningless result

Question: Does the type discipline of system F avoid this?

= o

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

The terms true =Ay.\x,y:v.x and false=Ay.Ax,y:v.y
are the only closed normal terms of type Bool = Vv (y—v—7)

Booleans (3/3)

Principle (that should be satisfied by any functional programming language)

When a program P of type A evaluates to a value v, then v has
one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be
true or false (i.e. the canonical forms of type bool).

In system F: Subject-reduction ensures that the normal form of a term of
type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

The terms true =Ay.\x,y:v.x and false=Ay.Ax,y:v.y
are the only closed normal terms of type Bool = Vv (y—v—7)

Proof. Case analysis on the derivation.

B o

Cartesian product

Encoding of the cartesian product A x B

Ax B

(t1, t2)

fst
snd

vy ((A=B—7) —7)
A’y.)\f:A—>B—>'y.f t) t

Ap:AxB.pA(Ax:A. \y:B.x)
Ap:AxB.pB (M:A.\y:B.y)

AxB— A
AxB—B

Cartesian product

Encoding of the cartesian product A x B

AxB = ¥y ((A=B—7) —1)

<t1,t2> = A’y.)\f:A—>B—>’)/.ft1 [5)

fst = M AXxB.pA(MXx:Ady:B.x) : AxB—A
snd = Mp:AxB.pB(M:A.\y:B.y) : AxB—B

Correctness w.r.t. typing and reduction

Fr-t:A l-t:B fst <t1,t2> P =1
(I <t17f2> :Ax B snd <t1,t2> PRI %

Cartesian product

Encoding of the cartesian product A x B

AxB = ¥y ((A=B—7) —1)

<t1,t2> = A’y.)\f:A—>B—>’y.ft1 [5)

fst = M AXxB.pA(MXx:Ady:B.x) : AxB—A
snd = Mp:AxB.pB(M:A.\y:B.y) : AxB—B

Correctness w.r.t. typing and reduction

Fr-t:A l-t:B fst <t1,t2> P =1
(I <t17f2> :Ax B snd <t1,t2> PRI %

Lemma (Canonical forms of type A x B)

The closed normal terms of type A x B are of the form (t1, t2), where t; and t>
are closed normal terms of type A and B, respectively.

o T o

Disjoint union

Encoding of the disjoint union A+ B

A+B = Vv ((A—7y) = (B—=v)—1)

inllv) = M. M:A—-~y.Xg:B—~y.fv : A+B (with v : A)
inrlv) = M. AM:A—-~vy.Xg:B—~v.gv : A+B (with v : B)
casec uof inl(x)—t | inr(y)—to = uvC (M:A.t1) (A\y:B.t)

Disjoint union

Encoding of the disjoint union A+ B

A+B = Vv ((A—7y) = (B—=v)—1)

inllv) = M. M:A—-~y.Xg:B—~y.fv : A+B (with v : A)
inrlv) = M. AM:A—-~vy.Xg:B—~v.gv : A+B (with v : B)
casec uof inl(x)—t | inr(y)—to = uvC (M:A.t1) (A\y:B.t)

Correctness w.r.t. typing and reduction
Fr-uv:A+B M x:AkFt:C My:BFt:C
' - casec uof inl(x)—t1 | inr(y)—t : C

casec inl(v) of inl(x) —t1 | inr(y)—ta > t{x:=v}
casec inr(v) of inl(x)—t1 | inr(y)—t ¥ t{y:=v}

Disjoint union

Encoding of the disjoint union A+ B

A+B = Vv ((A—7y) = (B—=v)—1)

inllv) = M. M:A—-~y.Xg:B—~y.fv : A+B (with v : A)
inrlv) = M. AM:A—-~vy.Xg:B—~v.gv : A+B (with v : B)
casec uof inl(x)—t | inr(y)—to = uvC (M:A.t1) (A\y:B.t)

Correctness w.r.t. typing and reduction
Fr-uv:A+B M x:AkFt:C My:BFt:C
' - casec uof inl(x)—t1 | inr(y)—t : C

casec inl(v) of inl(x) —t1 | inr(y)—ta > t{x:=v}
casec inr(v) of inl(x)—t1 | inr(y)—t ¥ t{y:=v}

+ Canonical forms of type A+ B (works as expected)

o T o

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
——
n times
e; = Ay dxgiy. o Ay X

Finite types

Encoding of Fin, (n > 0)

Finp = Vy(y—---—=7—17)
5,—/
n times
e = M. Axg:iy...A\xp:v.x; : Fing (1<i<n)

Again, e, ..., e, are the only closed normal terms of type Fin,,.

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
————
n times
e = M. Axg:iy...A\xp:v.x; : Fing (1<i<n)
Again, e, ..., e, are the only closed normal terms of type Fin,,.
In particular:
Fing Vy(y—=~v—7) = Bool (type of booleans)

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
————
n times
e = M. Axg:iy...A\xp:v.x; : Fing (1<i<n)
Again, e, ..., e, are the only closed normal terms of type Fin,,.
In particular:
Fing Yy (y —v—v) = Bool (type of booleans)

Finp, = Yy (y—17) = Unit (unit data-type)

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
————
n times

e; = M. A3 :v...X:v.x; : Fin, (1<i<n)
Again, e, ..., e, are the only closed normal terms of type Fin,,.
In particular:

Finp, = Vv(y—~v—1) Bool (type of booleans)

Finp, = Yy (y—17) = Unit (unit data-type)

Fing = Vv~ = 1 (empty data-type)

Finite types

Encoding of Fin, (n > 0)

Fing, = ¥y (y—=-—7—1)
————
n times

e; = M. A3 :v...X:v.x; : Fin, (1<i<n)
Again, e, ..., e, are the only closed normal terms of type Fin,,.
In particular:

Finp, = Vv(y—~v—1) Bool (type of booleans)

Finp, = Yy (y—17) = Unit (unit data-type)

Fing = Vv~ = 1 (empty data-type)

(Notice that there is no closed normal term of type L.)

B o

Natural numbers

Encoding of the type of Church numerals

Nat = Vy(vy—=(v—=7)—")

Natural numbers

Encoding of the type of Church numerals

Nat = Vy(v—=>(v—v)—7)

0 = M. dx:y M iy—oy.x

1 = M. Xy M:iy—y.fx

2 = Ay . dAx:iy M iy—y. f (f x)

n = M. Axiy AMiy—y (- (Fx)---) : Nat
—_——

n times

Natural numbers

Encoding of the type of Church numerals

Nat = Vy(v—=>(v—v)—7)

0 = M. dx:y M iy—oy.x

1 = M. Xy M:iy—y.fx

2 = Ay . dAx:iy M iy—y. f (f x)

n = M. Axiy AMiy—y (- (Fx)---) : Nat
\—Y—/
n times

Lemma (Canonical forms of type Nat)

The terms 0, 1, 2, ... are the only closed normal terms of type Nat.

B o

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)

e Addition

pluss = An,m:Nat. Ay . dx:y M :y—=y.my(nyxf)f

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)

e Addition

plus
plus’

An,m:Nat Ay Ax:y M iy—=y.my(nyxf)f
An, m:Nat. m Nat n succ

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)
e Addition
pluss = An,m:Nat. Ay . dx:y M :y—=y.my(nyxf)f
plus’ = An,m:Nat.m Nat n succ

@ Multiplication

mult = An,m:Nat.Ay. Ax:y. M :y—=v.nyx (Ay:v.m~yf)

Computing with natural numbers (1/2)

Intuition: Church numeral 7 acts as an iterator:

nAfx ¥ f(--(f x)--) (f:A—=A x:A)
——

n

@ Successor

succ = An:Nat. Ay . Ax:y. A :y—vy.f (nyxf)
e Addition
pluss = An,m:Nat. Ay . dx:y M :y—=y.my(nyxf)f
plus’ = An,m:Nat.m Nat n succ

@ Multiplication

mult
mult’

An,m:Nat Ay . dAx:y. AMfiy—=y.nyx (Ay:y.myyf)
An,m:Nat.n Nat 0 (plus m)

B o

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat

pred 0 ~
pred (n+1) =~

3l Ol

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat

@ Ackerman function ack : Nat — Nat — Nat

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat
@ Ackerman function ack : Nat — Nat — Nat
ack 0 m ~ m+1
ack (n+1) 0 ~ acknl
ack (n+1) (m+1) =~ ackn (ack (n+1)m)

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat
@ Ackerman function ack : Nat — Nat — Nat
ack 0 m ~ m+1
ack (n+1) 0 ~ acknl
ack (n+1) (m+1) =~ ackn (ack (n+1)m)
down Af:(Nat—Nat). Ap:Nat.p Nat (f I) f : (Nat—Nat) — (Nat—Nat)

ack An, m:Nat.n (Nat—Nat) succ down m : Nat — Nat — Nat

Computing with natural numbers (2/2)

@ Predecessor function pred : Nat — Nat
pred 0 ~ 0
pred (n+1) ~ 7
fst = Ap:NatxNat.p Nat (Ax,y:Nat.x) : NatxNat — Nat
snd = Ap:NatxNat.p Nat (Ax,y:Nat.y) : NatxNat — Nat
step = Ap:NatxNat. (snd p, succ (snd p)) : NatxNat — NatxNat
pred = An:Nat.fst (n (NatxNat) (0,0) step) : Nat — Nat
@ Ackerman function ack : Nat — Nat — Nat
ack 0 m ~ m+1
ack (n+1) 0 ~ acknl
ack (n+1) (m+1) =~ ackn (ack (n+1)m)
down = Af:(Nat—Nat).Ap:Nat.p Nat (f 1) f : (Nat—Nat) — (Nat—Nat)
ack = An,m:Nat.n (Nat—Nat) succ down m : Nat — Nat — Nat

> SN theorem guarantees that all well-typed computations terminate

Part [l
«O>» «Fr «=)» «=)» = DA
e 4 4 444

B o

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}
= Type system is predicative

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}
= Type system is predicative

System F polymorphism

Types AB = a| A—-B | YaB

The type Va B and its instances B{a:=A} are defined simultaneously

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}
= Type system is predicative

System F polymorphism

Types AB = a| A—-B | YaB

The type Va B and its instances B{a:=A} are defined simultaneously

Vo (a — a) and Va (@ — a) — Va (a — «a)

System F polymorphism

ML /Haskell polymorphism

Types AB = «a| A— B | --- (userdatatypes)
Schemes S = VaB

The type scheme Va B is defined after its particular instances B{a:= A}
= Type system is predicative

System F polymorphism

Types AB = a| A—-B | YaB

The type Va B and its instances B{a:=A} are defined simultaneously
Vo (a — a) and Va (@ — a) — Va (a — «a)

= Type system is impredicative, or cyclic

B o

Extracting pure A-terms

In Church-style system F, polymorphism is explicit:
id = Aa. MAx:a.x and id Nat 2

e Two kind of redexes (Ax:A.t)u and (Aa.t)A

Extracting pure A-terms

In Church-style system F, polymorphism is explicit:
id = Aa. MAx:a.x and id Nat 2

e Two kind of redexes (Ax:A.t)u and (Aa.t)A

Idea: Remove type abstractions/applications/annotations

Extracting pure A-terms

In Church-style system F, polymorphism is explicit:

id = Aa. \Xx:a.x and id Nat 2

e Two kind of redexes (Ax:A.t)u and (Aa.t)A

Idea: Remove type abstractions/applications/annotations
Erasing function t — |t

x| = x
IAx:A.t| = Ax.|t| N t| = [t
tu] = [t]]u] |tA| t]

Extracting pure A-terms

In Church-style system F, polymorphism is explicit:
id = Aa. MAx:a.x and id Nat 2
e Two kind of redexes (Ax:A.t)u and (Aa.t)A

Idea: Remove type abstractions/applications/annotations

Erasing function t — |t

x| = x
IAx:A.t| = Ax.|t| N t| = [t
tu] = [t]]u] Al = [t]

o Target language is pure \-calculus

@ Second kind redexes are erased, first kind redexes are preserved

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:

@ The whole syntax

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:
@ The whole syntax

@ The judgements

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:
@ The whole syntax
@ The judgements
@ The typing rules

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:
@ The whole syntax

The judgements

The typing rules

e o6 o

The derivations

Extending the erasing function

Erased terms have a nice computational behaviour. ..
@ Only one kind of redex, easy to execute (Krivine's machine)
@ Irrelevant part of computation has been removed

@ The essence of computation has been preserved (to be justified later)

... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:
@ The whole syntax

The judgements

The typing rules

e o6 o

The derivations

= Induces a new formalism: Curry-style system F

Church-style system F

Types AB = a| A-B | YaB

Terms tbu = x | M:A.t | tu | At | tA
Judgments r==1 | T, xA

Reduction (M A t)u = t{x :=u}

(A t)A = t{a:= A}

Church-style system F

Types AB = a| A-B | YaB

Terms tbu = x | M:At | tu | Nt | tA
Judgments r==1 | T, xA

Reduction (M A t)u = t{x :=u}

(A t)A = t{a:= A}

Curry-style system F

Types A B
Terms t,u
Judgments r
Reduction

[Leivant 83]

= a | A-B | YaB
t= x| Ax.t | tu
= | T, xA

(M. t)u = t{x:=u}

Curry-style system F [Leivant 83]

Types AB = a| A-B | YaB
Terms t,bu = x | Ax.t | tu
Judgments r==1 | T, xA
Reduction (M. t)u = t{x:=u}
Remarks:

@ Types (and contexts) are unchanged
@ Terms are now pure A-terms

@ Only one kind of redex

Church-style system F: typing rules

TEx-A A
I x:A-t:B 't A— B TFu:A
I Mx:A.t:A—B +~tu: B
r-t: B ag TV(F) =¢t:Va B

N-Aa.t:vVa B [+ tA: B{a:=A}

Curry-style system F: typing rules

Trx: A A

I x:A-t:B rM-t:A—B MrM-u:A
lNXx.t:A— B Ftu:B

[-t:B [Ft:VaB
rre:vaB “F770 [Ft:Bla:=A)

Curry-style system F: typing rules

FEx:A XA
I x:A-t:B rM-t:A—B MrM-u:A
lNXx.t:A— B Ftu:B
lr-t: B agd TV(F) +t:Va B

r-t:va B MN-t: B{a:=A}

= Rules are no more syntax directed

Curry-style system F: properties

Things that do not change

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A = Mx.xx

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)
Vaa — YVa o

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types
A= Xx.xx : Va(a—a) — Va(a—a)

Vaa — Va o
Va o — Va (@ — a)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)
. Vaa — Vaa
Va o — Va (@ — a)
Bool — Bool — Bool

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)
D Voo — Vaao
Va o — Va (@ — a)
Bool — Bool — Bool (‘or’ function!)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types
A= Xx.xx : Va(a—a) — Va(a—a)
i Yaa — YVaa

Va o — Va (@ — a)
Bool — Bool — Bool (‘or’ function!)

@ No principal type (cf later)

Curry-style system F: properties

Things that do not change
@ Substitutivity + [-subject reduction
@ Strong normalisation (postponed)

Things that change
@ A term may have several types

A= Xx.xx : Va(a—a) — Va(a—a)
D Voo — Vaao
Va o — Va (@ — a)
Bool — Bool — Bool (‘or’ function!)

@ No principal type (cf later)
e Type checking/inference becomes undecidable [Wells 94]

B o

= o

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

The erasing function maps:

Church’s world Curry’s world

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

The erasing function maps:

Church’s world Curry’s world

1. derivations to derivations (isomorphism)

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)

QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

The erasing function maps:

Church’s world Curry’s world

1. derivations to derivations (isomorphism)

2. valid judgements to valid judgements (surjective only)

Erasing and typing

Equivalence between Church and Curry’s presentations
QIf Tt :A (Church), then T F |t|: A (Curry)
QIf THt:A (Curry), then Tkt : A (Church)
forsome t; st || =t

The erasing function maps:

Church’s world Curry’s world
1. derivations to derivations (isomorphism)

2. valid judgements to valid judgements (surjective only)

@ On valid judgements, erasing is not injective:

Va (a—a) — Vo (a—a)

A (Vo (a—a)). f(Va (a—a))f
Va (a—a) — Va (a—a)

A (Va (a—a)) . A f(a — a)(fa)
~ M. ff : Va(a—a) — Va (a—a)

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

(Church) (AN Mx:a.x)By > (Ax:B.x)y > vy

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

(Church) (AN Mx:a.x)By > (Ax:B.x)y > vy
| Erasing
(Curry) (MAx.x)y = (M&x.x)y > vy

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

(Church) (AN Mx:a.x)By > (Ax:B.x)y > vy
| Erasing
(Curry) (MAx.x)y = (M&x.x)y > vy

Fact 1 (Church to Curry):
If to,t) € Church, then

t="t = |to| =" |t} (with p < n)

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

(Church) (Aa.Xx:a.x)By = (M:B.x)y > vy
| Erasing
(Curry) (MAx.x)y = (M&x.x)y > vy

Fact 1 (Church to Curry):
If to,t) € Church, then

t="t = |to| =" |t} (with p < n)

Fact 2 (Curry to Church):
If to € Church, t' € Curry and ty well-typed, then

o] =Pt = 3t (Il =t A to =" 1) (with n > p)

B o

= o

Normalisation equivalence

Fact 3 (Combinatorial argument):

© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase

Normalisation equivalence

Fact 3 (Combinatorial argument):
© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex

Normalisation equivalence

Fact 3 (Combinatorial argument):
© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex
e the number of 1st-kind redexes may increase

Normalisation equivalence

Fact 3 (Combinatorial argument):
© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex

e the number of 1st-kind redexes may increase
o the number of 2nd-kind redexes does not increase

Normalisation equivalence

Fact 3 (Combinatorial argument):

© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex

e the number of 1st-kind redexes may increase
o the number of 2nd-kind redexes does not increase
o the number of type abstractions (A« . t) decreases

Normalisation equivalence

Fact 3 (Combinatorial argument):

© During the contraction of a 1st-kind redex, the number of
redexes of both kinds may increase
@ During the contraction of a 2nd-kind redex

e the number of 1st-kind redexes may increase
o the number of 2nd-kind redexes does not increase
o the number of type abstractions (A« . t) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:
O All typable terms of syst. F-Church are strongly normalisable
@ All typable terms of syst. F-Curry are strongly normalisable

o T o

A<B

In Curry-style system F, subtyping is introduced as a macro:

x:AF x: B

«0>» «Fr «Z»>» «E>» A

Subtyping

In Curry-style system F, subtyping is introduced as a macro:
A<B = x:AF x : B

Admissible rules

Subtyping

In Curry-style system F, subtyping is introduced as a macro:
A<B = x:AF x : B

Admissible rules

IN

(Reflexivity, transitivity)

Subtyping

In Curry-style system F, subtyping is introduced as a macro:
A<B = x:AF x : B

Admissible rules

A<

B B <C
A< A AL C

(Reflexivity, transitivity)

A< B
Va B < B{a:= A} A < VaB

(Polymorphism) ag¢ TV(A)

Subtyping

In Curry-style system F, subtyping is introduced as a macro:
A<B = x:AF x : B

Admissible rules

Reflexivi . A< B B<C
(Reflexivity, transitivity) A< A A< C

Pol hi AsB FTV(A)
(Polymorphism) Va B < B{a:= A} A< VaB

Fr=t: A A< B
Mr=t:B

(Subsumption)

= o

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A-=B

is not admissible

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A-=B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A- B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A- B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

@ This shows that:

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A- B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

@ This shows that:
© Curry-style system F does not enjoy 7n-subject reduction

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A-=B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

@ This shows that:

© Curry-style system F does not enjoy 7n-subject reduction
@ This problem is connected with subtyping in arrow-types

Problem with n-redexes in Curry-style system F

@ The (desired) subtyping rule for arrow-types
A<A B<PB
A—-B < A-=B

is not admissible

@ In particular, we have: f:Nat—V88 I/ f : Va a — Bool
but if we n-expand: f:Nat—-V3 8 F Ax.fx : Va a — Bool

@ This shows that:

© Curry-style system F does not enjoy 7n-subject reduction
@ This problem is connected with subtyping in arrow-types

The well-typed term: Ax.fx : (Va a) — Bool (Curry-style)
comes from the term Ax:(Va a).f (x Nat) Bool (Church-style)

not an 7-redex

B o

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

N Xx.tx: A

ree-a V0

to enforce 7-subject reduction

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

N Xx.tx: A

ree-a V0

to enforce 7-subject reduction

Properties:

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

CEM.tx A
rre.a V0
to enforce 7-subject reduction

Properties:

@ Substitutivity, Sn-subject-reduction, strong normalisation

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

N Xx.tx: A

ree-a V0

to enforce 7-subject reduction

Properties:

@ Substitutivity, Sn-subject-reduction, strong normalisation

A< A B<PB
A—-B < A—= B

@ Subtyping rule is now admissible

System F,, [Mitchell 88]

Extend Curry-style system F with a new rule

N Xx.tx: A

ree-a V0

to enforce 7-subject reduction

Properties:

@ Substitutivity, Sn-subject-reduction, strong normalisation

A< A B<PB
A—-B < A—= B

@ Subtyping rule is now admissible
Expansion lemma

If THt:A isderivablein F,, then Tk ¢ :A is derivable in system F
for some n-expansion t’ of the term t.

More subtyping

If we set
1 = ny'y
AxB = Vy((A—=B—7v)—"7)
A+B = Yy (A=) —=(B—=7)—")
List(A) = VV (Y—=(A—=y—7)—7)

then, in F, the following subtyping rules are admissible:

A< A
1 <A List(A) < List(A')
A<A B<PH A<A B<PH

AxB < A xB A+B < A+PB

More subtyping

If we set
1 = ny'y
AxB = Vy((A—=B—7v)—"7)
A+B = Yy (A=) —=(B—=7)—")
List(A) = VV (Y—=(A—=y—7)—7)

then, in F, the following subtyping rules are admissible:

A< A
1 <A List(A) < List(A')
A<A B<PH A<A B<PH
AxB < A'x B A+B < A+B

@ But most typable terms have no principal type

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B FrEt: AN
rt: AnB FrEt: A N=t: B

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

@ Subtyping rules
C<A C<B

ANnB < A ANB < B C < AnB

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

@ Subtyping rules
C<A C<B

ANnB < A ANB < B C < AnB

@ All the strongly normalising terms are typable. ..

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

@ Subtyping rules
C<A C<B

ANnB < A ANB < B C < AnB

@ All the strongly normalising terms are typable. ..
... but nothing to do with V: already true in A—n

Adding intersection types

Extend system F, with binary intersections

Types AB = a | A-B | YVaB | ANB

FrEt: A rFt:B rFt:AnB rFt:ANB
rt: AnB FrEt: A N=t: B

@ [In-subject reduction, strong normalisation, etc.

@ Subtyping rules
C<A C<B

ANnB < A ANB < B C < AnB

@ All the strongly normalising terms are typable. ..
... but nothing to do with V: already true in A—n

@ All typable terms have a principal type
Ax:ixx. : Va VB ((a—p)Na— p)

Part IV
«O>» «Fr «=)» «=)» = DA

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

Since all the types A — A are inhabited:

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

Since all the types A — A are inhabited:

@ The cartesian product Vo (a—«) should be larger than all the
types of the foom A — A

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

Since all the types A — A are inhabited:

@ The cartesian product Vo (a—«) should be larger than all the
types of the foom A — A

@ In particular, Vo (a—«) should be larger than its own function
space Vo (a—a) — Va (a—a)...

The meaning of second-order quantification (1/2)

Question: What is the meaning of Vo (o — «) 7

First scenario: an infinite Cartesian product (& la Martin-L6f)

Va (o — a) =~ H (a — a)

o type
~ (L — 1) x (Bool — Bool) x (Nat — Nat) x - --

Since all the types A — A are inhabited:

@ The cartesian product Vo (a—«) should be larger than all the
types of the foom A — A

@ In particular, Vo (a—«) should be larger than its own function
space Vo (a—a) — Va (a—a)...

... seems to be very confusing!

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:

@ The intersection Va (a—a) is smaller thanall A — A

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:
@ The intersection Va (a—a) is smaller thanall A — A

@ In particular, Va (a—a) is smaller than its own function
space Va (a—a) — Va (a—a)...

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:
@ The intersection Va (a—a) is smaller thanall A — A

@ In particular, Va (a—a) is smaller than its own function
space Va (a—a) — Va (a—a)...

... our intuition feels much better!

The meaning of second-order quantification (2/2)

Second scenario: In F-Curry, both rules V-intro and V-elim

r-t:B [Ft:VaB
rre.vaB “F770 [-t:Bla:=A)

suggest that V' is not a cartesian product, but an intersection

Taking back our example:
@ The intersection Va (a—a) is smaller thanall A — A

@ In particular, Va (a—a) is smaller than its own function
space Va (a—a) — Va (a—a)...

... our intuition feels much better!

= We will prove strong normalisation for Curry-style system F

Remember that SN(F-Church) < SN(F-Curry) (combinatorial equivalence)

Strong normalisation: the difficulty

Try to prove that
N-t:A = tisSN

by induction on the derivation of THt: A

Strong normalisation: the difficulty

Try to prove that
N-t:A = tisSN

by induction on the derivation of THt: A

TFx:a OO
M x:AFt: B r-t:A—B FrFu:A
'EFXx.t:A— B l-tu:B
r'-t: B g TV() [Ft:VaB

[-t:VaB M t: B{a:=A}

Strong normalisation: the difficulty

Try to prove that
N-t:A = tisSN

by induction on the derivation of THt: A

TEx:a 0O
I x:AFt:B r-t:A—B r-u:A
r'-XMx.t: A— B N-tu: B
r'-t: B g TV() [~t:VaB
F-t:VaB Mk t:B{a:=A}

All the cases successfully pass the test except application

Two terms t and u may be SN, whereas tu is not [Take t = u = Ax . xx]

Strong normalisation: the difficulty

Try to prove that
N-t:A = tisSN

by induction on the derivation of THt: A

TEx:a 0O
I x:AFt:B r-t:A—B r-u:A
r'-XMx.t: A— B N-tu: B
r'-t: B g TV() [~t:VaB
F-t:VaB Mk t:B{a:=A}

All the cases successfully pass the test except application

Two terms t and u may be SN, whereas tu is not [Take t = u = Ax . xx]

= The induction hypothesis “t is SN” is too weak (in general)

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A
Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that fulfill this invariant

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A
Intuition:
The more complex the type, the stronger its invariant,

the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:
e Reducibility candidates [Girard]

Reducibility candidates [Girard 1971]

To prove that
Nr-t:A = tisSN,

the induction hypothesis “t is SN” is too weak.

= Should replace it by an invariant that depends on the type A

Intuition:

The more complex the type, the stronger its invariant,
the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:
e Reducibility candidates [Girard], or
e Saturated sets [Tait]

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

@ Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable \-terms as elements

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

@ Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable \-terms as elements

© Associate to each type A a reducibility candidate [A]

Type constructors ‘—' and 'V’ have to be reflected at the level of candidates

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

@ Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable \-terms as elements

© Associate to each type A a reducibility candidate [A]

Type constructors ‘—' and 'V’ have to be reflected at the level of candidates

© Check (by induction) that T+ t: A implies t € [A]

This is actually a little bit more complex, since we must take care of the typing context

Outline of the proof

@ Define a suitable notion of reducibility candidate
= the sets of A-terms that will interpret/represent types

(Here, we use Tait's saturated sets)

@ Ensure that the notion of candidate captures the property of
strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable \-terms as elements

© Associate to each type A a reducibility candidate [A]

Type constructors ‘—' and 'V’ have to be reflected at the level of candidates

© Check (by induction) that T+ t: A implies t € [A]

This is actually a little bit more complex, since we must take care of the typing context

© Conclude that any well-typed term t is SN by step 2.

B o

Preliminaries (1/2)

o Notations:

A

SN
Var
TVar

set of all untyped A-terms (open & closed)
set of all strongly normalisable untyped A-terms
set of all (term) variables

set of all type variables

Preliminaries (1/2)

o Notations:

A = set of all untyped A-terms (open & closed)

SN = set of all strongly normalisable untyped \-terms
Var = set of all (term) variables

TVar = set of all type variables

@ A reduct of a term t is a term t’ such that t = t' (one step)

The number of reducts of a given term is finite and bounded by the number of redexes

Preliminaries (1/2)

o Notations:

A = set of all untyped A-terms (open & closed)

SN = set of all strongly normalisable untyped \-terms
Var = set of all (term) variables

TVar = set of all type variables

@ A reduct of a term t is a term t’ such that t = t' (one step)

The number of reducts of a given term is finite and bounded by the number of redexes

@ A finite reduction sequence of a term t is a finite sequence
(ti)icfo..n such that t=ty >t > > th_1 >t

Infinite reduction sequences are defined similarly, by replacing [0..n] by N

Preliminaries (1/2)

o Notations:

A = set of all untyped A-terms (open & closed)

SN = set of all strongly normalisable untyped \-terms
Var = set of all (term) variables

TVar = set of all type variables

@ A reduct of a term t is a term t’ such that t = t' (one step)

The number of reducts of a given term is finite and bounded by the number of redexes

@ A finite reduction sequence of a term t is a finite sequence
(ti)icfo..n such that t=ty >t > > th_1 >t

Infinite reduction sequences are defined similarly, by replacing [0..n] by N

o Finite reduction sequences of a term t form a tree, called the
reduction tree of t

B o

Preliminaries (2/2)

Definition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are finite

Preliminaries (2/2)

Definition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences
starting from t are finite

Proposition

The following assertions are equivalent:
O t is strongly normalisable
@ All the reducts of t are strongly normalisable
© The reduction tree of t is finite

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

@ (SAT1) expresses the property we want to prove

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

@ (SAT1) expresses the property we want to prove

@ Saturated sets contain all the variables (SAT2)

Extra-arguments v € list(SN) are here for technical reasons

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

@ (SAT1) expresses the property we want to prove

@ Saturated sets contain all the variables (SAT2)

Extra-arguments v € list(SN) are here for technical reasons

@ Saturated sets are closed under head [-expansion (SAT3)

Notice the condition u € SN to avoid a clash with (SAT1) for K-redexes

Saturated sets [Tait]

Definition (Saturated set)

A set S C A is saturated if:

(SAT1) S CSN

(SAT?2) x€Var, velst(SN) = xveS

(SAT3) t{x:=ujveS, veSN = (Ax.t)uves

@ (SAT1) expresses the property we want to prove

@ Saturated sets contain all the variables (SAT2)

Extra-arguments v € list(SN) are here for technical reasons

@ Saturated sets are closed under head [-expansion (SAT3)

Notice the condition u € SN to avoid a clash with (SAT1) for K-redexes

@ The set of all saturated sets is written SAT [C B(SN) C P(A)]

= o

Properties of saturated sets

Proposition (Lattice structure)
© SN is a saturated set

Properties of saturated sets

Proposition (Lattice structure)

© SN is a saturated set
@ SAT is closed under arbitrary non-empty intersections/unions:

142, (SheesAT = (Ns),(Usi) esAT
iel

icl

Properties of saturated sets

Proposition (Lattice structure)

© SN is a saturated set
@ SAT is closed under arbitrary non-empty intersections/unions:

142, (SheesAT = (Ns),(Usi) esAT
iel iel
(SAT, C) is a complete distributive lattice, with
T=SN and L ={teSN|t> xur---un} (Neutral terms)

Properties of saturated sets

Proposition (Lattice structure)
© SN is a saturated set
@ SAT is closed under arbitrary non-empty intersections/unions:
142, (SheesAT = (Ns),(Usi) esAT
iel icl
(SAT, C) is a complete distributive lattice, with
T=SN and L ={teSN|t> xur---un} (Neutral terms)

Realisability arrow: Forall S, T C A we set

S—T = {teA|VweS tweT}

Properties of saturated sets

Proposition (Lattice structure)
© SN is a saturated set
@ SAT is closed under arbitrary non-empty intersections/unions:
142, (SheesAT = (Ns),(Usi) esAT
iel icl
(SAT, C) is a complete distributive lattice, with
T=SN and L ={teSN|t> xur---un} (Neutral terms)

Realisability arrow: Forall S, T C A we set
S—T = {teA|VweS tweT}

Proposition (Closure under realisability arrow)
If S,T cSAT, then (S— T)e SAT

Principle:

Interpret syntactic types by saturated sets

«O>» «Fr o« «E>» = Q>

it
v

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection ﬂ
SeSAT

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection ﬂ
SeSAT

Remark: this intersection is impredicative since S ranges over all saturated sets

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection ﬂ
SeSAT

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: Vo (o — «) should be interpreted by ﬂ (§—9)
SESAT

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection m
SeSAT

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: Vo (o — «) should be interpreted by ﬂ (§—9)
SESAT

To interpret type variables, use type valations:

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

@ Type arrow A — B is interpreted by S — T (realisability arrow)

@ Type quantification Va .. is interpreted by the intersection m
SeSAT

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: Vo (o — «) should be interpreted by ﬂ (§—9)
SESAT

To interpret type variables, use type valations:

Definition (Type valuations)

A type valuation is a function p: TVar — SAT
The set of type valuations is written TVal (= TVar — SAT)

Interpreting types (2/2)

By induction on A, we define a function [A] : TVal — SAT

Interpreting types (2/2)

By induction on A, we define a function [A] : TVal — SAT

[A— B]]p = [[A]]p - [[B]]p [[a]]p = pla)
[[VO(B]]p = m [[B]]p;cw—s
SESAT

(p;a—S)(a) =S

Note: (p; a < S) is defined by {(p: a—8)(8) = p(8) forall B#a

Interpreting types (2/2)

By induction on A, we define a function [A] : TVal — SAT

[A— B]]p = [[A]]p . [[B]]p [[a]]p = p(a)
[[VO(B]]p = m [[B]]p;cw—s
SESAT

: Jo— is define (pro=S)(a) = S
Note: - (pie = 5) s defined by {(p: aS)(8) = p(8) for all B # a
Problem: The implication

r-t:A = telA,

cannot be proved directly. (One has to take care of the context)

Interpreting types (2/2)

By induction on A, we define a function [A] : TVal — SAT

[A— B]]p = [[A]]p - [[B]]p [[a]]p = pla)
[[VO(B]]p = m [[B]]p;cw—s
SESAT

(p;a—S)(a) =S

Note: (p; a < S) is defined by {(p: a—8)(8) = p(8) forall B#a

Problem: The implication
ret:A = telA,
cannot be proved directly. (One has to take care of the context)

= Strengthen induction hypothesis using substitutions

B o

Substitutions

Definition (Substitutions)

A substitution is a finite list o =[x := v1;...; X := Uy
where x; # x; (for i # j) and u; € A

Substitutions

Definition (Substitutions)

A substitution is a finite list o =[x := v1;...; X := Uy
where x; # x; (for i # j) and u; € A

Application of a substitution o to a term t is written t[o]

Exercise: Define it formally

Substitutions

Definition (Substitutions)

A substitution is a finite list o =[x := v1;...; X := Uy
where x; # x; (for i # j) and u; € A

Application of a substitution o to a term t is written t[o]

Exercise: Define it formally

Definition (Interpretation of contexts)

Forall T=x3:A1;...;xa: A, and pe€ TVal set:

M, = {o=k=u...ixo:=up]; vj€[A], (i=1.n)}

Substitutions o € [[], are said to be adapted to the context I' (in the type valuation p)

B o

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

The strong normalisation invariant

Lemma (Strong normalisation invariant)
If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

The strong normalisation invariant

Lemma (Strong normalisation invariant)
If THt:A in Curry-style system F, then

Vp € TVal Vo e [, tlo] € [Al,
Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume x;:A:;...;xn:AnHt:B

The strong normalisation invariant

Lemma (Strong normalisation invariant)
If THt:A in Curry-style system F, then

Vp € TVal Vo e [, tlo] € [Al,
Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume x;:A:;...;xn:AnHt:B
Consider an arbitrary type valuation p (for instance: p(a) = SN for all «)

The strong normalisation invariant

Lemma (Strong normalisation invariant)
If THt:A in Curry-style system F, then

Vp € TVal Vo e [, tlo] € [Al,
Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume x;:A:;...;xn:AnHt:B
Consider an arbitrary type valuation p (for instance: p(a) = SN for all «)

We have: x1 € [A1]p, x2 € [A2]p, ..., xn € [An]l, (SAT2)

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Proof. Assume x;:A:;...;xn:AnHt:B
Consider an arbitrary type valuation p (for instance: p(a) = SN for all «)

We have: x1 € [A1],, x2 € [A2]p, ..., xn € [An], (SAT2), hence:
o=[x1:=x1;...ixn = Xn] € [x1: A1; ... %n : An],p

From the lemma we get t = t[o] € [B],, hence te& SN (SAT1)

The strong normalisation invariant

Lemma (Strong normalisation invariant)

If THt:A in Curry-style system F, then
Vp € TVal Vo e [, tlo] € [Al,

Proof. By induction on the derivation of T+ t: A.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Corollary (Church-style SN)
The typable terms of F-Church are strongly normalisable

A remark on impredicativity

In the SN proof, interpretation of V relies on the property:

If (Si)ier (I # @) is a family of saturated sets,
then (Y;c,; Si Is a saturated set

in the special case where | = SAT (impredicative intersection)

A remark on impredicativity

In the SN proof, interpretation of V relies on the property:

If (Si)ier (I # @) is a family of saturated sets,
then (Y;c,; Si Is a saturated set

in the special case where | = SAT (impredicative intersection)

@ In ‘classical’ mathematics, this construction is legal

A remark on impredicativity

In the SN proof, interpretation of V relies on the property:

If (Si)ier (I # @) is a family of saturated sets,
then (Y;c,; Si Is a saturated set

in the special case where | = SAT (impredicative intersection)

@ In ‘classical’ mathematics, this construction is legal

= Standard set theories (Z, ZF, ZFC) are impredicative

A remark on impredicativity

In the SN proof, interpretation of V relies on the property:

If (Si)ier (I # @) is a family of saturated sets,
then (Y;c,; Si Is a saturated set

in the special case where | = SAT (impredicative intersection)

@ In ‘classical’ mathematics, this construction is legal

= Standard set theories (Z, ZF, ZFC) are impredicative

@ In (Bishop, Martin-L6f's style) constructive mathematics, this
principle is rejected, mainly for philosophical reasons:

e No convincing ‘constructive’ explanation
e Suspicion about (this kind of) cyclicity

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:
@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}

@ Fact: & is non empty, since E € &
© Take: S=(eeF

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

© Take: S=(eeF

@ By definition, S is included in all the sub-spaces of E containing S

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

© Take: S=(eeF

@ By definition, S is included in all the sub-spaces of E containing S

© But S is itself a sub-vector space of E containing S (so that S € &)

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

© Take: S=(eeF

@ By definition, S is included in all the sub-spaces of E containing S

© But S is itself a sub-vector space of E containing S (so that S € &)

@ So that S is actually the smallest of all such spaces

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:

@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &

© Take: S=(eeF

@ By definition, S is included in all the sub-spaces of E containing S

© But S is itself a sub-vector space of E containing S (so that S € &)

@ So that S is actually the smallest of all such spaces

ThIS deﬁnition iS impredicative (Step 3) (but legal in ‘classical’ mathematics)

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors.
How to define the sub-vector space S C E generated by S in E 7

Standard ‘abstract’ method:
@ Consider the set: & = {F; F is a sub-vector space of E and F D 5}
@ Fact: & is non empty, since E € &
© Take: S=(eeF
@ By definition, S is included in all the sub-spaces of E containing S

© But S is itself a sub-vector space of E containing S (so that S € &)
@ So that S is actually the smallest of all such spaces

ThIS deﬁnition iS impredicative (Step 3) (but legal in ‘classical’ mathematics)

The set S is defined from &, that already contains S as an element

discovered a fortiori

Impredicativity: An example (2/2)

But there are other ways of defining S...

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:
Let S be the set of all vectors of the form v=ca1-vi+ - 4 an - Va

where (v;) ranges over all the finite families of elements of S,
and (i) ranges over all the finite families of scalars

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:
Let S be the set of all vectors of the form v=ca1-vi+ - 4 an - Va

where (v;) ranges over all the finite families of elements of S,
and (i) ranges over all the finite families of scalars

o Inductive definition:

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:
Let S be the set of all vectors of the form v=ca1-vi+ - 4 an - Va

where (v;) ranges over all the finite families of elements of S,
and (i) ranges over all the finite families of scalars

o Inductive definition:

Let S be the set inductively defined by:
@0¢cS,
Q@ IfveS, thenves,
Q If veSand aisascalar, thena-veSs
QIfvueSandw, €8S, thenvy +v, € S.

Impredicativity: An example (2/2)

But there are other ways of defining S...

e Standard ‘concrete’ definition, by linear combinations:
Let S be the set of all vectors of the form v =1 -vi+ -+ an - va
where (v;) ranges over all the finite families of elements of S,
and (i) ranges over all the finite families of scalars

e Inductive definition:

Let S be the set inductively defined by:
Q0¢cS, _
Q IfveS, thenves,

© If veSand ais ascalar, thena-v €S
Q fvieSand vo € S, then vi +wv, € S.

= Both definitions are predicative (and give the same object)

Normalisation of Second Order Arithmetic

Alexandre Miquel — PPS & U. Paris 7

Alexandre.Miquel@pps. jussieu.fr

Types Summer School 2005
August 15-26 — Goteborg

or «F» -

Syntax of HA2

Variables

Individuals

Formulae

Contexts

X, Y2z,

an’ ﬁn, 7”7

t,u

A, B

of individuals (i.e. natural numbers)
of predicates (for each arity n > 0)

x |0 | s(b)

a(ty, ..., ta) (for all n > 0)

A=B

Vx B (first-order)

VYo" B (second order, for all n > 0)

A, ... A, (lists of formula)

Syntax of HA2

Variables x, y,z, ... of individuals (i.e. natural numbers)
a", B", 4", ... of predicates (for each arity n > 0)

Individuals t,u x | 0 | s(t)

Formulz AB n= a(t1,..., ta) (for all n > 0)

| A=B

| Vx B (first-order)

| Va" B (second order, for all n > 0)
Contexts [,A n= A, A, (lists of formulae)

o Predicate variables of arity 0 represent propositions
o Predicate variables represent sets (of numerals, of pairs, etc.)

@ Real numbers can be represented as predicate variables
(intuitionistic analysis)

or «F» -

o Term substitution

u{x:=t} = defined in the usual way

«Or «Fr o4 > < > = A

Substitution

o Term substitution u{x:=1t} = defined in the usual way

o First-order substitution B{x:=t} = defined in the usual way

Substitution

o Term substitution u{x:=1t} = defined in the usual way
o First-order substitution B{x:=t} = defined in the usual way

o Second-order substitution B{a" := Ax1,...,xa.A}

In the formula B, replace each atomic subformula of the form
Ol"(tl, ey t,.)
by the (substituted) formula

A{x1 :=t1;...;%Xn = tn}

Substitution

o Term substitution u{x:=1t} = defined in the usual way
o First-order substitution B{x:=t} = defined in the usual way

o Second-order substitution B{a" := Ax1,...,xa.A}

In the formula B, replace each atomic subformula of the form
Ol"(tl, ey t,.)
by the (substituted) formula

A{x1 :=t1;...;%Xn = tn}

@ The notation ‘Axy,..., xn.A" is not part of the syntax

Encoding missing constructions

@ Other connectives can be encoded:

T = (" =17
1 = Y0,
ANB = ¥ (A= B=1") =1

AV B VP (A=1°) = (B=17")=1°
‘!A = A:>L

Encoding missing constructions

@ Other connectives can be encoded:

T = " E =)

1 = V4% 4°

ANB = ¥ (A= B=1") =1

AVB = ¥y° ((A:>7°):>(B:>'y°):>’y°)
-A = A= 1

o Existential quantifier (1st + 2nd order)
Ix BIx] VY (¥x (Blx] = 7°) = %)
Ja” Bla"] vA° (Ya” (Bla"] = 1°) = °)

Encoding missing constructions

@ Other connectives can be encoded:

T = " E =)

1 = V4% 4°

ANB = ¥ (A= B=1") =1

AVB = ¥y° ((A:>7°):>(B:>'y°):>’y°)
-A = A= 1

o Existential quantifier (1st + 2nd order)
Ix BIx] VY (¥x (Blx] = 7°) = %)
Ja” Bla"] vA° (Ya” (Bla"] = 1°) = °)

o Leibniz equality:

t=u = ¥ (v'(t) = 7' (u))

Deduction rules of HA2

o General rules for second-order intuitionistic logic:

rFa
rNnNA-B r-A=-.B r-A
r-A=B r-B
r-B IVvxB
rrvx g o0 [FB{x =t}
(B nsrvan VYo" B

Va" B M B{a:=Ax1,...,%: . A}

Deduction rules of HA2

o General rules for second-order intuitionistic logic:

rEa
rMA-B rFrA=B TFA
r'-A=2B r=B
r-B [-Vx B
— = x¢FV _— =
rrvx g o0 [FB{x =t}
(EB norvam [Va" B
Va" B M B{a:=Ax1,...,%: . A}
@ Specific rules (axioms) for arithmetic:
M- VxVy (s(x) =s(y) = x=y) M=vx = s(x)=0

@ Remember that constructions ‘t = ¢’ and ‘A’ are not primitive, but encoded!

Derivable rules (1/2)

Logical deduction rules of HA2 only talk about the primitive constructions

=' and 'V (implication + 1st/2nd-order universal quantification)

Derivable rules (1/2)

Logical deduction rules of HA2 only talk about the primitive constructions

=' and 'V (implication + 1st/2nd-order universal quantification)

But in this framework, the other constructions (T, L, A, V, J etc.) are
definable and their (standard) deduction rules can be derived:

Derivable rules (1/2)

Logical deduction rules of HA2 only talk about the primitive constructions

=' and 'V (implication + 1st/2nd-order universal quantification)

But in this framework, the other constructions (T, L, A, V, J etc.) are
definable and their (standard) deduction rules can be derived:

o Logical connectives: T, L and A

rEA r-B8 r'-AAB r'EAAB
FrEAAB r=A r=B

Derivable rules (2/2)

o Logical connectives: V

_rea - _TFEB
r-AvVB r-AvB

rA-C T,BFC TFAVB

r=c¢

Derivable rules (2/2)

o Logical connectives: V

_rea - _TFEB
r-AvVB r-AvB

NAEC rBrcC r=AvB
r=c¢

o Existential quantifier: 1st and 2nd-order

M- B{x:=t} B+ C N-3x B
x&FV1(F,C)
-3x B r=c¢
M- B{a" :=Ax1,...,xn. A} rBrC M- 3a" B
a¢FV2(r,C)

N-=3a" B r=c

Leibniz equality is defined as: t=u =

vyt (H(t) = 71 (v))

«O» «Fr (= « = = Qe

v

Equality rules

Leibniz equality is defined as: t=u = Yy (¥ (t) =+ (v)

@ The following formulae are provable (by purely logical means):
Vx (x = x)
VxVy (x=y = y=x)
VxVyVz(x=y = y=z = x=2)
Vol Vx Vy (el (x) = x=y = o'(y))

Equality rules

Leibniz equality is defined as: t=u = Yy (¥ (t) =+ (v)

@ The following formulae are provable (by purely logical means):
Vx (x = x)
VxVy (x=y = y=x)
VxVyVz(x=y = y=z = x=2)
Vol Vx Vy (el (x) = x=y = o'(y))

@ Moreover, HA2 assumes the following two axioms:
(Injectivity) Vx Yy (s(x) =s(y) = x=y)
(Non-surjectivity) Vx = (s(x) =0)

or «F» -

Induction principle

@ Induction can be recovered via the predicate:

Nat(x) = Vo' (al(O) = Yy (a'(y) = a'(s(y))) = al(x))

Induction principle

@ Induction can be recovered via the predicate:
Nat(x) = Vo' (al(O) = Yy (a'(y) = a'(s(y))) = al(x))

= defines the smallest class containing zero and closed under successor

Induction principle

@ Induction can be recovered via the predicate:
Nat(x) = Vo' (al(O) = Yy (a'(y) = a'(s(y))) = al(x))

= defines the smallest class containing zero and closed under successor

o In particular, we have: Nat(0) and Vx (Nat(x) = Nat(s(x)))

Induction principle

@ Induction can be recovered via the predicate:
Nat(x) = Vo' (al(O) = Vy (al(y)éal(s(y))) = al(x))
= defines the smallest class containing zero and closed under successor

o In particular, we have: Nat(0) and Vx (Nat(x) = Nat(s(x)))

o All the first-order quantifications should be restricted to this class:

= Systematically use Vx (Nat(x) = A) and 3Ix (Nat(x) A A)

Induction principle

Induction can be recovered via the predicate:
Nat(x) = Vo' (al(O) = Vy (al(y)éal(s(y))) = al(x))
= defines the smallest class containing zero and closed under successor

o In particular, we have: Nat(0) and Vx (Nat(x) = Nat(s(x)))

o All the first-order quantifications should be restricted to this class:

= Systematically use Vx (Nat(x) = A) and 3Ix (Nat(x) A A)

Thanks to this trick, induction becomes provable:

Vot (al(O) = V¥x (Nat(x) = a'(x) = a'(s(x))) = Vx (Nat(x) = al(x))>

The notion of cut (1/2)

@ A cut is a piece of a proof constituted by an introduction rule immediately
followed by the corresponding elimination rule

The notion of cut (1/2)

@ A cut is a piece of a proof constituted by an introduction rule immediately
followed by the corresponding elimination rule

@ Each cut can be contracted in order to make the reasoning more direct. . .
... but not necessarily shorter [And actually, usually larger!]

The notion of cut (1/2)
@ A cut is a piece of a proof constituted by an introduction rule immediately
followed by the corresponding elimination rule

@ Each cut can be contracted in order to make the reasoning more direct. . .
... but not necessarily shorter [And actually, usually larger!]

o Implication cut:

[FA,IFA]
— ;2
rA+B - - rrEA
r’FA=B TFA Cm
rFB res

Here, [, A, T’ - A] represents all the instances of an axiom with the formula A in the
proof 7y. (Such instances may occur in extended contexts of the form I, A, ")

These instances are then used as placeholders that are filled by the proof 7> during the
contraction of the cut (after some weakenings due to the presence of extra contexts I')

The notion of cut (2/2)

o Cut of the 1st-order universal quantification:

reB " !
r-vx.B e B{x:=t}
e B{x:=t}

The first piece of proof is replaced by the proof 7 in which the 1st-order variable x is
replaced by the term t recursively. Notice that the substitution has no effect on I, since
x & FV(I). (Of course, the substitution has to be performed on each context too.)

The notion of cut (2/2)

o Cut of the 1st-order universal quantification:

™

reB " !
r-vx.B e B{x:=t}
e B{x:=t}

The first piece of proof is replaced by the proof 7 in which the 1st-order variable x is
replaced by the term t recursively. Notice that the substitution has no effect on I, since
x & FV(I). (Of course, the substitution has to be performed on each context too.)

@ Cut of the 2nd-order universal quantification:

.o

reB . D rfami=.)
r-ve".B M B{a" := Ax1,...,xn. A}

e B{a" := Ax1,...,xn.A}

Same principle, but with a 2nd-order substitution (ie. with a predicate Axi, ..., xn.A)

or «F» -

From the encoding of the connectives A and V, one can derive other cuts:

N
o
B
N
8]
-
a
it
-
a
m
-
it
S
0
0]

Derived cuts

From the encoding of the connectives A and V, one can derive other cuts:

o Cuts of the conjunction:

— .

: B . ™1
rrA TkEB ~ TFA (+ symmetric cut with A-elimz)
TrANB

r=A

Derived cuts

From the encoding of the connectives A and V, one can derive other cuts:

o Cuts of the conjunction:

— D ora

: : D om
rFA kB ~ TFA (+ symmetric cut with A-elimy)
T'FAAB
A
@ Cuts of the disjunction:
[MA,-A] [F.B,I'FB] S -
- D rFA . TLIHA
rAFC T,BFC TFAVB s
e rec

(+ symmetric cut with V-introz)

Filling placeholders in 7y with 7 is done in the same way as for the cut of implication

or «F» -

Cut-free proofs

A cut-free proof is a proof that contains no cut

= Cut-free proofs have a simpler structure that make them easier to analyse

Cut-free proofs

A cut-free proof is a proof that contains no cut

= Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

Cut-free proofs

A cut-free proof is a proof that contains no cut

= Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

O If 1 is a cut-free proof of the formula t=u [= Vo' (o'(t) = o'(u))]
in the empty context, then the terms t and u are syntactically identical

Cut-free proofs

A cut-free proof is a proof that contains no cut

= Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

O If 1 is a cut-free proof of the formula t=u [= Vo' (o'(t) = o'(u))]
in the empty context, then the terms t and u are syntactically identical

© There is no cut-free proof of L [= Va® o] in the empty context

Cut-free proofs

A cut-free proof is a proof that contains no cut

= Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

O If 1 is a cut-free proof of the formula t=u [= Vo' (o'(t) = o'(u))]
in the empty context, then the terms t and u are syntactically identical
© There is no cut-free proof of L [= Va® o] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of -t =t has one of the following two forms:

- FVx Vy (s(x) =s(y) = x=y) (cut-free)
ol Fat() F Yy (s(t) = s(y) = t =) :
Fal(t) = o'(1) Fs(t)=s(t) > t=t F s(t) = s(t)
F Vol (o(1) = o' (1) Fr=t
N e

t=t

Cut-free proofs

A cut-free proof is a proof that contains no cut

= Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

O If 1 is a cut-free proof of the formula t=u [= Vo' (o'(t) = o'(u))]
in the empty context, then the terms t and u are syntactically identical
© There is no cut-free proof of L [= Va® o] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of -t =t has one of the following two forms:

- FVx Vy (s(x) =s(y) = x=y) (cut-free)
ol Fat() F Yy (s(t) = s(y) = t =) :
Fal(t) = o'(1) Fs(t)=s(t) > t=t F s(t) = s(t)
F Vol (o(1) = o' (1) Fr=t
N e

t=t

= Reasoning on cut-free proofs is purely combinatorial

or «F» -

Cut-elimination

o L = Va® a® has no cut-free proof (in the empty context)
= Means that a proof of L necessarily contains at least one cut

Cut-elimination

o L = Va® a® has no cut-free proof (in the empty context)
= Means that a proof of L necessarily contains at least one cut

@ But each cut can be individually contracted

(Keeping in mind that contracting a cut may produce several new cuts)

Cut-elimination

o L = Va® a® has no cut-free proof (in the empty context)
= Means that a proof of L necessarily contains at least one cut

@ But each cut can be individually contracted

(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof 7

Cut-elimination

o L = Va® a® has no cut-free proof (in the empty context)
= Means that a proof of L necessarily contains at least one cut

@ But each cut can be individually contracted

(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof 7

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a finite number of contraction steps)

Cut-elimination

o L = Va® a® has no cut-free proof (in the empty context)
= Means that a proof of L necessarily contains at least one cut

@ But each cut can be individually contracted

(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof 7

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a finite number of contraction steps)

Corollary (Cut-free proofs & Consistency)

@ Any proposition that has a proof has also a cut-free proof

© The proposition | has no proof in the empty context

or «F» -

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

© Map each formula A of HA2 to a type A™ of system F

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

© Map each formula A of HA2 to a type A™ of system F

@ Map each logical context I' of HA2 to a typing context ™ of system F

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F
© Map each formula A of HA2 to a type A™ of system F
@ Map each logical context I' of HA2 to a typing context ™ of system F

© Map each proof 7 of a sequent ' - A in HA2 to a term 7" of system F
such that the judgement " 7™ : A* s derivable

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

© Map each formula A of HA2 to a type A™ of system F
@ Map each logical context I' of HA2 to a typing context ™ of system F

© Map each proof 7 of a sequent ' - A in HA2 to a term 7" of system F
such that the judgement " 7™ : A* s derivable

@Q Check that each cut of ™ becomes a redex in 7~

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

© Map each formula A of HA2 to a type A™ of system F
@ Map each logical context I' of HA2 to a typing context ™ of system F

© Map each proof 7 of a sequent ' - A in HA2 to a term 7" of system F
such that the judgement " 7™ : A* s derivable

@Q Check that each cut of ™ becomes a redex in 7~

[Note: this works only for =--cuts and 2nd-order V-cuts. The case of 1st-order V-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F-Curry) entails SN(F-Church)]

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

© Map each formula A of HA2 to a type A™ of system F
@ Map each logical context I' of HA2 to a typing context ™ of system F

© Map each proof 7 of a sequent ' - A in HA2 to a term 7" of system F
such that the judgement " 7™ : A* s derivable

@Q Check that each cut of ™ becomes a redex in 7~

[Note: this works only for =--cuts and 2nd-order V-cuts. The case of 1st-order V-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F-Curry) entails SN(F-Church)]

@ Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Translating HA2 formulae (1/2)

o Each predicate variable of HA2 is mapped to a type variable of system F

Translating HA2 formulae (1/2)

o Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

Translating HA2 formulae (1/2)

o Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

o Formulae of HA2 are translated into the types of system F:

(a"(tr,...,tn))" = «

(A= B)* = A~ B
(vx.B)" = B
(Va". B)* = VaB

Translating HA2 formulae (1/2)

o Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

o Formulae of HA2 are translated into the types of system F:

(a"(tr,...,tn))" = «
(A= B)* = A" =B
(vx.B)" = B
(Va". B)* = VYaB

o Remarks: - arity of predicate variables is lost

— all the first-order constructions disappear

= The translation only preserves (pure) second-order constructions

Translating HA2 formulae (1/2)

o Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

o Formulae of HA2 are translated into the types of system F:

(a"(tr,...,tn))" = «
(A= B)* = A" =B
(Vx.B)* = B
(Va". B)* = VYaB

o Remarks: - arity of predicate variables is lost

— all the first-order constructions disappear

= The translation only preserves (pure) second-order constructions

o Substitutivity: (B{x:=t}) = A"
(B{a" =)\Xl,...,X,,.A})* = B*{a = A*}

Translating HA2 formulae (2/2)

@ We can test the translation on derived formulze:
(AANB)* = A*xB* (cartesian product of system F)
(AvB) = A*+B* (disjoint union)

(t=u)* = (Vo' ol (t) = al(v))* = Vaa—a = Unit

Translating HA2 formulae (2/2)

@ We can test the translation on derived formulz:

(AANB)* = A*xB* (cartesian product of system F)
(AvB) = A*+B* (disjoint union)
(t=u)* = (Vo' ol (t) = al(v))* = Vaa—a = Unit

= Equality proofs have no computational contents

Translating HA2 formulae (2/2)

@ We can test the translation on derived formulz:

(AANB)* = A*xB* (cartesian product of system F)
(AvB) = A*+B* (disjoint union)
(t=u)* = (Vo' ol (t) = al(v))* = Vaa—a = Unit

= Equality proofs have no computational contents

o Translation of contexts: Each logical context

r = Ay, ..., A
is translated into a typing context of system F
" = &A% ..., & A,

by associating a term variable & (a ‘name’) to each hypothesis

Translating proofs (1/4)

Principle: Translate each proof 7 of a sequent T~ A into a term ©*
such that " 7" : A" is derivable

Translating proofs (1/4)

Principle: Translate each proof 7 of a sequent T~ A into a term ©*
such that " 7" : A" is derivable

o Axiom: .
(rAFA) = ¢

where ¢ is the variable associated to the formula A in the context ', A

Translating proofs (1/4)

Principle: Translate each proof 7 of a sequent T~ A into a term ©*
such that " 7" : A" is derivable

o Axiom: .
(Fara) = ¢

where ¢ is the variable associated to the formula A in the context ', A

@ Introduction of the implication:

rAFB = M:ATT
r'FA=_B

where ¢ is the variable associated to A in the context ', A

Translating proofs (2/4)

o Elimination of the implication:

Cm

r-A=B

U

r-A

r=B

* *
]

Translating proofs (2/4)

o Elimination of the implication:

:7\'1 :772
r-A=B TH+HA = mm
r-B8

@ Introduction of the 1st-order universal quantification:
r-8 = 7
FVx B

Translating proofs (2/4)

o Elimination of the implication:

:7\'1 :772
r-A=B TH+HA = mm
r-B8

@ Introduction of the 1st-order universal quantification:

r-8 = 7
M+ vx B

o Elimination of the 1st-order universal quantification:

r+VxB =
e B{x:=t}

Remark: 1st-order V-intro/elim are invisible in the extracted system F term

Translating proofs (3/4)

o Introduction of the 2nd-order universal quantification:
re B = Aa.7w
I va" B

*

Translating proofs (3/4)

o Introduction of the 2nd-order universal quantification:
re B = Aa.7w
I va" B

*

o Elimination of the 2nd-order universal quantification:

M VYa" B = A
M- B{a" == Ax1,...,%,. A}

Translating proofs (3/4)

o Introduction of the 2nd-order universal quantification:
re B = Aa.7w
I va" B

*

o Elimination of the 2nd-order universal quantification:

M VYa" B = A
M- B{a" == Ax1,...,%,. A}

Properties:

Each stage preserves the invariant ™ F 7" : A*

Translating proofs (3/4)

o Introduction of the 2nd-order universal quantification:
re B = Aa.7w
I va" B

*

o Elimination of the 2nd-order universal quantification:

M VYa" B = A
M- B{a" == Ax1,...,%,. A}

Properties:
Each stage preserves the invariant ™ F 7" : A*

O Cuts of implication become 1st-kind redexes

Translating proofs (3/4)

o Introduction of the 2nd-order universal quantification:
re B = Aa.7w
I va" B

*

o Elimination of the 2nd-order universal quantification:

M VYa" B = A
M- B{a" == Ax1,...,%,. A}

Properties:
Each stage preserves the invariant ™ F 7" : A*

O Cuts of implication become 1st-kind redexes

@ Cuts of 2nd-order universal quantification become 2nd-kind redexes ...

Translating proofs (3/4)

o Introduction of the 2nd-order universal quantification:
re B = Aa.7w
I va" B

*

o Elimination of the 2nd-order universal quantification:

M VYa" B = A
M- B{a" == Ax1,...,%,. A}

Properties:
Each stage preserves the invariant ™ F 7" : A*

O Cuts of implication become 1st-kind redexes

@ Cuts of 2nd-order universal quantification become 2nd-kind redexes ...

© ... but cuts of Ist-order universal quantification disappear

o Injectivity: Since
(Vx Vy (s(x) =s(y) = x=y))"

Unit — Unit

«O» «Fr (= « = = Qe

v

Translating proofs (4/4)

o Injectivity: Since

(Vx Vy (s(x) =s(y) = x=y))" = Unit — Unit
it is natural to set:

(I'FVXVy (s(x)=s(y) = x=y))* = A¢:Unit.¢

Translating proofs (4/4)

o Injectivity: Since

(Vx Vy (s(x) =s(y) = x=y))" = Unit — Unit

it is natural to set:

(I'FVXVy (s(x)=s(y) = x=y))* = A¢:Unit.¢

o Non-surjectivity: Quite problematic, since the type
(Vx = s(x)=0)" = Unit— L

has no closed inhabitant in system F.

Translating proofs (4/4)

o Injectivity: Since

(Vx Vy (s(x) =s(y) = x=y))" = Unit — Unit

it is natural to set:

(I'FVXVy (s(x)=s(y) = x=y))* = A¢:Unit.¢

o Non-surjectivity: Quite problematic, since the type
(Vx = s(x)=0)" = Unit— L

has no closed inhabitant in system F.

Solution (hack ?): Add a dummy constant Q: L in the system and put:

(M-Vx - s(x)=0)* = A:Unit.Q

or «F» -

Cut-elimination

@ Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Q)

Note: From the point of view of normalisation, system F + Q is the same as system F:
Q merely acts as a free variable that we have declared in all contexts once and for all

Cut-elimination

@ Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Q)

Note: From the point of view of normalisation, system F + Q is the same as system F:
Q merely acts as a free variable that we have declared in all contexts once and for all

@ Via the translation of proofs:

o Cuts of implication become 1st kind redexes
o Cuts of 2nd-order quantification become 2nd kind redexes
o cuts of 1st-order quantification disappear

Cut-elimination

@ Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Q)

Note: From the point of view of normalisation, system F + Q is the same as system F:
Q merely acts as a free variable that we have declared in all contexts once and for all

@ Via the translation of proofs:

o Cuts of implication become 1st kind redexes
o Cuts of 2nd-order quantification become 2nd kind redexes
o cuts of 1st-order quantification disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F-Curry) = SN(F-Church)

Cut-elimination

@ Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Q)

Note: From the point of view of normalisation, system F + Q is the same as system F:
Q merely acts as a free variable that we have declared in all contexts once and for all

@ Via the translation of proofs:

o Cuts of implication become 1st kind redexes
o Cuts of 2nd-order quantification become 2nd kind redexes
o cuts of 1st-order quantification disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F-Curry) = SN(F-Church), noticing that
Fact (Contraction of 1st-order V cuts)

Each time we contract a cut of Ist-order quantification, the number of
first-order V-intro decreases in the proof

Cut-elimination

@ Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Q)

Note: From the point of view of normalisation, system F + Q is the same as system F:
Q merely acts as a free variable that we have declared in all contexts once and for all

@ Via the translation of proofs:

o Cuts of implication become 1st kind redexes
o Cuts of 2nd-order quantification become 2nd kind redexes
o cuts of 1st-order quantification disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F-Curry) = SN(F-Church), noticing that

Fact (Contraction of 1st-order V cuts)

Each time we contract a cut of Ist-order quantification, the number of
first-order V-intro decreases in the proof

© Then we conclude that HA2 enjoys the property of cut-elimination

or «F» -

@ Problem:

The translation of formula and proofs erased all the terms!

N
o
-
N
8]
-
a
it
-
a
m
-
it
S
0
0]

Natural numbers

@ Problem: The translation of formula and proofs erased all the terms!

= Where did my numerals go ?

Natural numbers

@ Problem: The translation of formula and proofs erased all the terms!

= Where did my numerals go ?

o Answer: To benefit from induction, we restricted all the 1st-order
quantifications with the predicate

Nat(x) = Va' (al(O) =y (a}(y) = aX(s(y))) = ozl(x))

Natural numbers

@ Problem: The translation of formula and proofs erased all the terms!

= Where did my numerals go ?

o Answer: To benefit from induction, we restricted all the 1st-order
quantifications with the predicate

Nat(x) = va' (a}(0) = Wy (a*(y) = a’(s(y))) = o'(x))
whose translation in system F is:

(Nat(x))* =

Natural numbers

@ Problem: The translation of formula and proofs erased all the terms!

= Where did my numerals go ?

o Answer: To benefit from induction, we restricted all the 1st-order
quantifications with the predicate

Nat(x) = va' (a}(0) = Wy (a*(y) = a’(s(y))) = o'(x))
whose translation in system F is:

(Nat(x))" = Va (a—(a—a)—a)

Natural numbers

@ Problem: The translation of formula and proofs erased all the terms!

= Where did my numerals go ?

o Answer: To benefit from induction, we restricted all the 1st-order
quantifications with the predicate

Nat(x) = va' (a}(0) = Wy (a*(y) = a’(s(y))) = o'(x))
whose translation in system F is:

(Nat(x))" = Va(a—(a—a)—a) = Nat (ofsystem F)

Natural numbers

@ Problem: The translation of formula and proofs erased all the terms!

= Where did my numerals go ?

o Answer: To benefit from induction, we restricted all the 1st-order
quantifications with the predicate

Nat(x) = va' (a}(0) = Wy (a*(y) = a’(s(y))) = o'(x))
whose translation in system F is:

(Nat(x))" = Va(a—(a—a)—a) = Nat (ofsystem F)

Fact (Translation of natural numbers)

For each term of the form s"(0) (concrete numeral)

Natural numbers

@ Problem: The translation of formula and proofs erased all the terms!

= Where did my numerals go ?

o Answer: To benefit from induction, we restricted all the 1st-order
quantifications with the predicate

Nat(x) = va' (a}(0) = Wy (a*(y) = a’(s(y))) = o'(x))
whose translation in system F is:

(Nat(x))" = Va(a—(a—a)—a) = Nat (ofsystem F)

Fact (Translation of natural numbers)

For each term of the form s"(0) (concrete numeral)

@ The proposition Nat(s"(0)) has exactly one cut-free proof in HA2 . ..

Natural numbers

@ Problem: The translation of formula and proofs erased all the terms!

= Where did my numerals go ?

o Answer: To benefit from induction, we restricted all the 1st-order
quantifications with the predicate

Nat(x) = va' (a}(0) = Wy (a*(y) = a’(s(y))) = o'(x))
whose translation in system F is:

(Nat(x))" = Va(a—(a—a)—a) = Nat (ofsystem F)

Fact (Translation of natural numbers)
For each term of the form s"(0) (concrete numeral)
@ The proposition Nat(s"(0)) has exactly one cut-free proof in HA2 . ..

© ... whose translation in system F is precisely Church numeral i

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat — Nat [Converse is also true]

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat — Nat [Converse is also true]

Proof. Consider a proof w in HA2 of a statement of the form
¥x (Nat(x) = 3y (Nat(y) A P[x,]))

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat — Nat [Converse is also true]

Proof. Consider a proof w in HA2 of a statement of the form
¥x (Nat(x) = 3y (Nat(y) A P[x,]))
By translating the proof 7 into system F, we obtain a term

™ : Nat — Va ((Nat x P* — a) — «)

(using the 2nd-order encoding of 3 given in slide 3)

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat — Nat [Converse is also true]

Proof. Consider a proof w in HA2 of a statement of the form
Vx (Nat(x) = 3y (Nat(y) A P[x, y]))
By translating the proof 7 into system F, we obtain a term
7 ¢ Nat — Va ((Nat x P* — a) — «)
(using the 2nd-order encoding of 3 given in slide 3), so that the term
A¢:Nat.7m" & Nat fst : Nat — Nat

(where fst : Nat x P* — Nat is the first projection) actually computes the desired function

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat — Nat [Converse is also true]

Proof. Consider a proof w in HA2 of a statement of the form
Vx (Nat(x) = 3y (Nat(y) A P[x, y]))
By translating the proof 7 into system F, we obtain a term
7 ¢ Nat — Va ((Nat x P* — a) — «)
(using the 2nd-order encoding of 3 given in slide 3), so that the term
A¢:Nat.7m" & Nat fst : Nat — Nat

(where fst : Nat x P* — Nat is the first projection) actually computes the desired function

*

Remark: We cheated a little bit, since 7* may contain the dummy constant Q2 that could
block some computations.

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat — Nat [Converse is also true]

Proof. Consider a proof w in HA2 of a statement of the form
Vx (Nat(x) = 3y (Nat(y) A P[x, y]))
By translating the proof 7 into system F, we obtain a term
7 ¢ Nat — Va ((Nat x P* — a) — «)
(using the 2nd-order encoding of 3 given in slide 3), so that the term
A¢:Nat.7m" & Nat fst : Nat — Nat

(where fst : Nat x P* — Nat is the first projection) actually computes the desired function

Remark: We cheated a little bit, since 7 may contain the dummy constant Q that could
block some computations. There are two solutions to fix this:

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat — Nat [Converse is also true]

Proof. Consider a proof w in HA2 of a statement of the form
Vx (Nat(x) = 3y (Nat(y) A P[x, y]))
By translating the proof 7 into system F, we obtain a term
7 ¢ Nat — Va ((Nat x P* — a) — «)
(using the 2nd-order encoding of 3 given in slide 3), so that the term
A¢:Nat.7m" & Nat fst : Nat — Nat

(where fst : Nat x P* — Nat is the first projection) actually computes the desired function

Remark: We cheated a little bit, since 7 may contain the dummy constant Q that could
block some computations. There are two solutions to fix this:

© Use the shape of cut-free proofs of Nat(s"(0)) to show that this never happens

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat — Nat [Converse is also true]

Proof. Consider a proof w in HA2 of a statement of the form
Vx (Nat(x) = 3y (Nat(y) A P[x, y]))
By translating the proof 7 into system F, we obtain a term
7 ¢ Nat — Va ((Nat x P* — a) — «)
(using the 2nd-order encoding of 3 given in slide 3), so that the term
A¢:Nat.7m" & Nat fst : Nat — Nat

(where fst : Nat x P* — Nat is the first projection) actually computes the desired function

Remark: We cheated a little bit, since 7 may contain the dummy constant Q that could
block some computations. There are two solutions to fix this:

© Use the shape of cut-free proofs of Nat(s"(0)) to show that this never happens
@ Define a modified translation that avoids the use of Q [cf Proofs and Types]

Inconsistent Type Systems

Alexandre Miquel — PPS & U. Paris 7

Alexandre.Miquel@pps.jussieu.fr

Types Summer School 2005
August 15-26 — Goteborg

Introduction

System F [Girard 1971]

‘A theory of types’ (Type:Type) [Martin-L6f 1971]

Inconsistency of system U [Girard 1971]

Inconsistency of Type:Types comes as a consequence
@ Inconsistency of System U~ [Coquand 1991]

e Simplification of Girard’s paradox (system U~) [Hurkens 1995]

Russell's paradox in systems U/U~ [Miquel 2000]

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
mn1rx:T

Contexts rA

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
Contexts LA == [| ILx:T
Fr=T:T
e x¢Dom(IN)
=[] etx FT,ox: T ctx
T ctx e F T ctx I, x: THU:Type
Fr=x:T ' I = Type : Type FETMx:T.U: Type
N x:TEM:U r’EM:Nx:T.U r=EN:T
FEX:T.M:Nx:T.U e MN : U{x := N}

r=EM: T I T : Type
r=M: T’

T =~

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
Contexts LA == [| ILx:T
Fr=T:T
e x¢Dom(IN)
=[] etx FT,ox: T ctx
T ctx e F T ctx I, x: THU:Type
Fr=x:T ' I = Type : Type FETMx:T.U: Type
N x:TEM:U r’EM:Nx:T.U r=EN:T
FEX:T.M:Nx:T.U e MN : U{x := N}

r=EM: T I T : Type
r=M: T’

T ~

@ Computationally correct: Church-Rosser, subject reduction

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
Contexts LA == [| ILx:T
Fr=T:T
e x¢Dom(IN)
=[] etx FT,ox: T ctx
T ctx e F T ctx I, x: THU:Type
Fr=x:T ' I = Type : Type FETMx:T.U: Type
N x:TEM:U r’EM:Nx:T.U r=EN:T
FEX:T.M:Nx:T.U e MN : U{x := N}

r=EM: T I T : Type
r=M: T’

T'=T

@ Computationally correct: Church-Rosser, subject reduction
o Logically inconsistent: closed term of type L =X :Type. X

System A« (Type:Type) [Martin-Lof 71]

Terms M,N, T, U == x | Mx:T.M | MN | Type | MNx:T.U
Contexts LA == [| ILx:T
Fr=T:T
e x¢Dom(IN)
=[] etx FT,ox: T ctx
T ctx e F T ctx I, x: THU:Type
Fr=x:T ' I = Type : Type FETMx:T.U: Type
N x:TEM:U r’EM:Nx:T.U r=EN:T
FEX:T.M:Nx:T.U e MN : U{x := N}

r=EM: T I T : Type
r=M: T’

T ~

@ Computationally correct: Church-Rosser, subject reduction
o Logically inconsistent: closed term of type L =X :Type. X

@ Non (weakly) normalising, since:

Fact: Closed terms of type | =TX:Type.X have no head normal form

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

© Typing relation and membership relation have not the same status

o Typing belongs to the meta-language
= Precondition for an expression to be well-formed

o Membership is a relation of the language
= Can be used to form propositions (may be negated)

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

© Typing relation and membership relation have not the same status

o Typing belongs to the meta-language
= Precondition for an expression to be well-formed

o Membership is a relation of the language
= Can be used to form propositions (may be negated)

© No comprehension scheme in Type: Type
= Cannot form a type of the form {x: T | P(x)}

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

© Typing relation and membership relation have not the same status

o Typing belongs to the meta-language
= Precondition for an expression to be well-formed

o Membership is a relation of the language
= Can be used to form propositions (may be negated)

© No comprehension scheme in Type: Type
= Cannot form a type of the form {x: T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

Is a type of all types like a set of all sets?

The analogy between Type:Type and the set of all sets of Cantor-Frege's
(inconsistent) set theory is erroneous, since:

© Typing relation and membership relation have not the same status
o Typing belongs to the meta-language
= Precondition for an expression to be well-formed

o Membership is a relation of the language
= Can be used to form propositions (may be negated)

© No comprehension scheme in Type: Type
= Cannot form a type of the form {x: T | P(x)}

Historically, the inconsistency of Type:Type has been derived [Girard]
from the inconsistency of system U

No cycle in the sorts (Prop : Type : Kind)...
... but two levels of impredicativity (Prop and Type)

Systems U and U~

Kind U~ = copy of F glued on top of Fw
N U = system U~ + (Kind, Prop)-quantification

@ Kind = sort for kinds

Type H Type @ Type = sort for constructors
\v @ Prop = sort for proof-terms
\ Both Type and Prop are impredicative
Prop — Prop
Higher-level is isomorphic to F:
Type inference/checking is decidable
S = {Prop, Type,Kind}
A = {(Prop: Type), (Type : Kind)}
R = {(Prop: Prop), (Type: Prop), (Type, Type), (Kind, Type), (Kind,Prop)}
————

system U— U only

From system Fw

S Prop,

A = Prop: Type
R = (Prop, Prop),
Kinds

Constructors

Proof-terms

Type

(Type, Prop),

T, 0 =

M,N =

;"‘
IS
|

(Type, Type)

Prop
T—0

Mx:Tt.M | MN

M= N
Vx:17. M

MMt | tu
Ax:T.t | tM

(Type, Type)

(Type, Type)

(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

From system Fw...

S Prop,

A = Prop: Type,
R = (Prop, Prop),
Kinds

Constructors

Proof-terms

Type,
Type : Kind
(Type, Prop),

T,0 u=
\

M,N =

;"‘
IS
|

Kind

(Type, Type)

Prop
T—0

| «

Mx:Tt.M | MN

M= N
Vx:17. M

MMt | tu
Ax:T.t | tM

(Type, Type)

(Type, Type)

(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

From system Fw...

(Type, Prop),

S = Prop, Type,

A = Prop: Type, Type:Kind
R = (Prop, Prop),

Kinds T, O
Constructors M, N
Proof-terms t,u

Kind

(Type, Type),

Prop |
T—o0

Mo Type. T

3
Ax:1. M

Ao M
M= N
Vx:17. M

3
XM .t
AX:T.t

to system U~

(%

MN
Mt

tu
tM

(Kind, Type)

(Type, Type)
(Kind, Type)

(Type, Type)
(Kind, Type)
(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

From system Fw... to system U

S = Prop, Type, Kind
A = Prop:Type, Type: Kind
R = (Prop,Prop), (Type,Prop), (Type, Type), (Kind, Type),
Kinds 7,0 == Prop e
| T—0o (Type, Type)
‘ Mo Type . T (Kind, Type)
Constructors M,N == ¢
‘ Ax:1. M | MN (Type, Type)
‘ Ao M | Mt (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:17. M (Type, Prop)
Proof-terms t,u ¢
)\gi M.t | tu (Prop, Prop)

AX:T.t | tM (Type, Prop)

Examples

(Kind, Type) Ma:Type... Polymorphism in data types
(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Examples

(Kind, Type) Ma:Type... Polymorphism in data types
(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Nat := Tla:Type.(a — (a—a) —«a) : Type

Examples

(Kind, Type) Ma:Type... Polymorphism in data types

(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Nat := Tla:Type.(a — (a—a) —«a) : Type

id = Ja:Type.dAx:a.x : [Na:Type. (e — «)

Examples

(Kind, Type) Ma:Type... Polymorphism in data types
(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Nat := Tla:Type.(a — (a—a) —«a) : Type
id = Ja:Type.dAx:a.x : [Na:Type. (e — «)

X =y = Vp:(a—Prop). (px=py) : Prop

Examples

(Kind, Type) Ma:Type... Polymorphism in data types

(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types

Nat := Tla:Type.(a — (a—a) —«a) : Type

id = Ja:Type.dAx:a.x : [Na:Type. (e — «)

X =0y = Vp:(a—Prop). (px=py) : Prop

Vx:oo. ddax =, x : Prop

Examples

(Kind, Type) Ma:Type... Polymorphism in data types
(Type : Prop) Vx:7... Quantification over all objects (of a given type)
Va:Type... Quantification over all types
Nat := Tla:Type.(a — (a—a) —«a) : Type
id = Ja:Type.dAx:a.x : [Na:Type. (e — «)
X =0y = Vp:(a—Prop). (px=py) : Prop
Vx:oo. ddax =, x : Prop

MAx:a. Ap:(a—Prop). X :px.&

Hurkens' paradox in system U~

For any kind 7 : Type write:

€L

-

U

Iemz

lems

: Prop
: Prop — Prop

: Type

P(P(U)) - U

U — P(P(V))
: PR(L))

- PU)

:U

:QC

: Prop

A

paradox : L

Br) =
Va:Prop.a
Aa:Prop.a= L

Mo : Type. ((POR(@)) — @) — B(P(a)))

Aq: P(P(V)) Ao Type A : (F(P() = a)
Ap:P(a). g (Ax:U.p (f (x a f)))

Mx:U. xUi

Ap:PU). Vx:U.(jxp=px)

Ay:U. ~Vp:BU).(Jyp=p(i(y)

iQ

Ax: U AERC AP B(U) - (kp=p(i(ix))) |
¢CE(Mp:BU).COy:U.p (i ()

Vp:P(U). (@ p=>p B)

AEA € Clemi (Ap:P(U).€ Ay U.p (i (y))))

Ap:P(U). AP £ B (Ax:U.€ (i (j x)))

lemy lems

7 — Prop

Encoding sets as pointed graphs

Pointed graph = triple (X, A, a) where
o X : Type the type of vertices
@ A: X — X — Prop the (local) membership relation

e a: X the root

Encoding sets as pointed graphs

Pointed graph = triple (X, A, a) where
o X : Type the type of vertices
@ A: X — X — Prop the (local) membership relation
@ a: X the root

A(x,y) is represented by e, < e,, and the root a by e,

Encoding sets as pointed graphs

Pointed graph = triple (X, A, a) where
o X : Type the type of vertices
@ A: X — X — Prop the (local) membership relation
@ a: X the root

A(x,y) is represented by e, < e,, and the root a by e,

0=w2 | 1={0} | 2={0;1} | 3={0;1;2} | 4={0;1;2;3}

.

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

no sharing (tree)

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

no sharing (tree) with sharing

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

no sharing (tree) with sharing duplicate elements

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

S SN

no sharing (tree) with sharing duplicate elements unreachable parts

|dentifying related pointed graphs

A set can be represented by several non-isomorphic pointed graphs

Example: the set 2 = {@; {o}}

S SN

no sharing (tree) with sharing duplicate elements unreachable parts

+ Problems related to (possible) non well-foundedness

Extensional equality as bisimilarity

R : X—Y—Prop bisimulation between (X,A,a) and (Y,B,b) if:

Q@ Vx,xX'X VyY (A(x’,x)/\R(X,y) = Iy (R(x/,y’)/\B(y’,y))>
Q@ VxX Vy,y:Y (B(y’,y)/\R(x,y) = Ix:X (R(X’,y’)/\A(X’,x)))
Q R(ab)

(1) i{i (2) .

A

Extensional equality as bisimilarity

R : X—Y—Prop bisimulation between (X,A,a) and (Y,B,b) if:

Q@ Vx,xX'X VyY (A(x’,x)/\R(X,y) = Iy (R(x/,y’)/\B(y’,y))>
Q@ VxX Vy,y:Y (B(y’,y)/\R(x,y) = Ix:X (R(X’,y’)/\A(X’,x)))
Q R(ab)

(1) i{i (2) Y

™ “A

(X,A,a)~ (Y,B,b) = 3R:X—Y—Prop bisimulation

(X,A,a) e (Y,B,b) =

I Y ((X,Aa)~(Y,B,b) A B(b,b))

«O» «Fr (= « = = Qe

v

Membership as shifted bisimilarity

(X,Aa)e(Y.B,b) = 3b:Y ((X,Aa)~(Y,B,b) A B(b,b))

Membership as shifted bisimilarity

(X,A,a) e (Y.B.b) = 3b:Y ((X,Aa)=(Y,B,b) A B(b,b))

o Compatibility of € w.rt =
Gi~Gy N Gz €G3 = G: € G3
Gie G A GQRG3 = G1€G3

Membership as shifted bisimilarity

(X,A,a) e (Y.B.b) = 3b:Y ((X,Aa)=(Y,B,b) A B(b,b))

o Compatibility of € w.rt =
Gi~Gy N Gz €G3 = G: € G3
Gie G A Gz%G3 = G1€G3

o Extensionality of ~ w.rt. €

VG (GeGL & GeG) = Gi=G

El represents a set x such that x = {x}

«Or «Fr o4 = A

Non well-founded sets

EI represents a set x such that x = {x}
@ represents a set y such that y = {z} and z = {y} for some z

Non well-founded sets

@ represents a set x such that x = {x}
@ represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have ﬂ
A

x—y—z={x) =y} = {2} (o]

Non well-founded sets

@ represents a set x such that x = {x}
@ represents a set y such that y = {z} and z = {y} for some z

Since there is a bisimulation, we have ﬂ
A

x—y—z={x) =y} = {2} (o]

Sets as pointed graphs + Equality as a bisimulation

= Interprets the Anti-Foundation Axiom (AFA) [P. Aczel]

The universal type for representing pointed graphs

The universal type for representing pointed graphs

Let U = (m.(-r—)T—ﬂDrop) ST Prop) — Prop

and i : MX:Type.(X—=X—Prop) = X = U
MX,A;a. M. f X Aa

The universal type for representing pointed graphs

Let U = (m.(-r—)T—ﬂDrop) ST Prop) — Prop

and i : MX:Type.(X—=X—Prop) = X = U
MX,A;a. M. f X Aa

@ Higher-level impredicativity (Kind, Type) ensures that U : Type

The universal type for representing pointed graphs

Let U = (N7 :Type.(T—T—Prop) — T — Prop) — Prop

and i : MX:Type.(X—=X—Prop) = X = U
= M,Aa. M .fXAa

@ Higher-level impredicativity (Kind, Type) ensures that U : Type

@ The map i is an embedding of pointed graphs into U

i(X,A,a)=i(Y,B,b) = (X,Aa) ~ (Y,B,b)

The universal type for representing pointed graphs

Let U = (m.(rﬁrﬁmp) ST Prop) — Prop

and i : MX:Type.(X—=X—Prop) = X = U
MX,A;a. M. f X Aa

@ Higher-level impredicativity (Kind, Type) ensures that U : Type

@ The map i is an embedding of pointed graphs into U

i(X,A,a)=i(Y,B,b) = (X,Aa) ~ (Y,B,b)

@ The map i is not surjective:

r:U = M .L isoutside the codomain of i

Translating equivalence and membership on U

b
A v=i(Y,B,b) A (X,A a)=~(Y,B,b))

, b
u=i(X,Aa) A v=i(Y,B,b) A (X,Aa) € (Y,B,b))

Translating equivalence and membership on U

b
A v=i(Y,B,b) A (X,A a)=~(Y,B,b))

, b
u=i(X,Aa) A v=i(Y,B,b) A (X,Aa) € (Y,B,b))

set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

Translating equivalence and membership on U

ux~v = 3X,Aa 3Y,B,b

(u=i(X,Aa) A v=1i(Y,B,b) A (X,A a)~(Y,B,b))
ucyv IX,A,a 3Y,B,b

(u=i(X,Aa) A v=i(Y,B,b) A (X,A a) € (Y,B,b))
set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

@ =~ (on U) is now a partial equivalence relation

Translating equivalence and membership on U

b

A v=i(Y,B,b) A (X,Aa)~ (Y,B,b))
, b

u=i(X,Aa) A v=i(Y,B,b) A (X,A a) e (Y,B,b))
set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

@ =~ (on U) is now a partial equivalence relation

o Relations ~ and € are defined on elements v: U s.t. set(u)

Translating equivalence and membership on U

ux~v = 3IX,Aa 3Y,B,b

(u=i(X,A,a) A v=i(Y,B,b) A (X,Aa)~(Y,B,b))
ucyv IX,A,a 3Y,B,b

(u=i(X,A,a) A v=i(Y,B,b) A (X,A,a) € (Y,B,b))

set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

@ ~ (on U) is now a partial equivalence relation
o Relations ~ and € are defined on elements v: U s.t. set(u)

o Other properties of =~ and € are kept (compatibility, extensionality)

Translating equivalence and membership on U

ux~v = 3IX,Aa 3Y,B,b

(u=i(X,A,a) A v=i(Y,B,b) A (X,Aa)~(Y,B,b))
vev = 3IX,A,a 3Y,B,b

(u=i(X,A,a) A v=i(Y,B,b) A (X,A,a) € (Y,B,b))

set(u) = 3IX,Aa u=1i(X,A,a) (= codomain of i)

@ ~ (on U) is now a partial equivalence relation
o Relations ~ and € are defined on elements v: U s.t. set(u)
o Other properties of =~ and € are kept (compatibility, extensionality)

o Exists some object r : U such that —set(r)

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,uv’:U.(P(u)Au=u = P(u'))

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,uv’:U.(P(u)Au=u = P(u'))

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,uv’:U.(P(u)Au=u = P(u'))

© Connect r to all e s.t. P(e)

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,uv’:U.(P(u)Au=u = P(u'))

© Connect r to all e s.t. P(e)

Q Let Rp = {—=}U{—>}

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,u’:U.(P(u) Au=u = P(u'))

© Connect r to all e s.t. P(e)
Q Let Rp = {—}U{—}

@ Reflect (U, Rp, r) into U, setting
fold(P) = i(U,Rp,r) (=)

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,u’:U.(P(u) Au=u = P(u'))

© Connect r to all e s.t. P(e)
Q Let Rp = {—}U{—}

@ Reflect (U, Rp, r) into U, setting
fold(P) = i(U,Rp,r) (=)

= Relies on the embedding property

(X,A,8) ~ (U, €,i(X, A, a))

The unbounded comprehension scheme

Let P: U — Prop be a predicate over objects of type U
We assume P extensional: Vu,u’:U.(P(u) Au=u = P(u'))

© Connect r to all e s.t. P(e)
Q Let Rp = {—}U{—}

@ Reflect (U, Rp, r) into U, setting
fold(P) = i(U,Rp,r) (=)

= Relies on the embedding property

(X,A,8) ~ (U, €,i(X, A, a))

Fact (Unbounded comprehension)
Vu:U.(u€i(URp,r) < P(u)) (if P is extensional)

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =

@ = is extensional w.r.t. €

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €

@ The unbounded comprehension scheme is derivable

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €

@ The unbounded comprehension scheme is derivable

= An embedding of Cantor-Frege's (insonsistent) set theory into U/U~

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €

@ The unbounded comprehension scheme is derivable

= An embedding of Cantor-Frege's (insonsistent) set theory into U/U~

All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €
@ The unbounded comprehension scheme is derivable

= An embedding of Cantor-Frege's (insonsistent) set theory into U/U~
All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(Ax.x ¢ x). ..

Cantor-Frege's set theory in systems U/ U~

Type U + two relations =~ and €
@ € is compatible w.r.t. =
@ = is extensional w.r.t. €

@ The unbounded comprehension scheme is derivable

= An embedding of Cantor-Frege's (insonsistent) set theory into U/U~
All the usual paradoxes can be derived (Burali-Forti, Russell, ...)

Russell's paradox: Consider the set fold(Ax.x ¢ x). ..
Remark: The formalization has been presented in system U

If we only consider pointed graphs based on X = U, we can drop the
(Kind, Prop)-quantification, thus restricting to system U~

Why is system U~ inconsistent?

Kinds

Constructors

Proof-terms

M, N

Prop |

T —0

Ma: Type. T

13
Ax:T. M
Ao M
M= N
Vx:17.M

13
Ax: M.t

Ax:T.t

«

MN
Mt

tu
tM

(Type, Type)
(Kind, Type)

(Type, Type)
(Kind, Type)
(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

Why is system U~ inconsistent?

Kinds

Constructors

Proof-terms

M, N

Prop |

T —0

Ma: Type. T

13
Ax:T. M
Ao M
M= N
Vx:17.M

13
Ax: M.t

Ax:T.t

«

MN
Mt

tu
tM

(Type, Type)
(Kind, Type)

(Type, Type)
(Kind, Type)
(Prop, Prop)
(Type, Prop)

(Prop, Prop)
(Type, Prop)

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax:t. M | MN (Type, Type)
‘ Ao M ‘ M (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:t. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax:T7. M | MN (Type, Type)
‘ Ao M ‘ Mt (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax .t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction/application can be erased

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax. M | MN (Type, Type)
‘ (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

o Wecanerase Aa.M + M7t 4+ typein Ix:7.M..

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax. M | MN (Type, Type)
‘ (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

o Wecanerase Aa.M 4+ M7 + typein Ax:7.M..
... but makes no sense to remove 7 in Vx:7.M

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax. M | MN (Type, Type)
‘ (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

o Wecanerase Aa.M 4+ M7 + typein Ax:7.M..
... but makes no sense to remove 7 in Vx:7.M
Would identify propositions Vx,y:Unit.x =y with Vx,y:Bool.x=y

Why is system U~ inconsistent?

Kinds 7,0 == Prop | «
‘ T — 0 (Type, Type)
‘ Ma: Type. T (Kind, Type)
Constructors MN == ¢
‘ Ax. M | MN (Type, Type)
‘ (Kind, Type)
‘ M= N (Prop, Prop)
‘ Vx:7. M (Type, Prop)
Proof-terms t,u = ¢
‘ Ax.t ‘ tu (Prop, Prop)

o (Type, Prop)-abstraction /application can be erased

o Wecanerase Aa.M 4+ M7 + typein Ax:7.M..
... but makes no sense to remove 7 in Vx:7.M
Would identify propositions Vx,y:Unit.x =y with Vx,y:Bool.x=y

= (Kind, Type)-impredicativity is not parametric
i.e. cannot be reduced to an intersection

Types, Propositions and Problems

an introduction to type theoretical ideas

Bengt Nordstrom

Computing Science, Chalmers and University of Goteborg

Types Summer School, Hisingen, 15 August 2005

Brouwer-Heyting-Kolmogorov

Brouwer

Brouwer rejected the idea that the meaning of a
mathematical proposition is its truth value.
Mathematical propositions do not exist
independently of us.

We cannot say that a proposition is true without
having a proof of it.

Brouwer-Heyting-Kolmogorov

Classical logic, truth tables

T >
o T oW
T IS

Implication

v

A|B|ADB
T|T T
/ T|F F
FITT
F|F T
A|B|AVB
T| T T This assumes that a proposition is
T|F T either true or false!
F| T T
FlF F

Brouwer-Heyting-Kolmogorov

Heyting

Heyting was a student of Brouwer.
He gave the following explanation of
the logical constants.

Brouwer-Heyting-Kolmogorov Brouwer-Heyting-Kolmogorov

Kolmogorov

Heyting’s explanation of the logical constants (1930)

A proof of: | consists of:

A& B a proof of A and a proof of B
AV B a proof of A or a proof of B
ADB a method which takes any proof of A to a proof of Independently of
B _ Heyting, Kolmogorov
-A a method which takes any proof of A to a proof of interpreted propositions
absurdity as problems.
4 has no proof

R HOR36HHYTS
¢T8a. NOSHINM MATEMaTHKa, NOHHM
'MECTO H [pOMb CBOGH HayKH B PasBATAM.
proof of B[X = a] SCTCTBOHHBIX HayK, TEXHNKH, fa W Beol “Ws
+6n08edeckoR KyAbTYpbl..

dx € A.B | an element ain A and a proof of B[x := 3]
Vx € A.B | a method, which takes any element x in A to a

Brouwer-Heyting-Kolmogorov Brouwer-Heyting-Kolmogorov

Heyting’s and Kolmogorov’s explanation

Kolmogorov understood the logical constants as problems A proof (solution) of: | consists of:
(1932) A& B a proof (solution) of A and a proof (solution) of B
s . . AV B a proof (solution) of A or a proof (solution) of B
The problem. is solved if we can: ADB a method which takes any proof (solution) of A to a proof
(solution) of B
A& B solve A and solve B -A a method which takes any proof (solution) of A to a proof
(solution) of absurdity
AV B solve A or solve B L has no proof (solution)
ADB reduce the solution of B to the solution of dx € A.B an element a in A and a proof (solutlon). of B[x := a]
x € A a method, which takes any element x in 0 a proo
A Vx € A.B thod, which tak I t At f
(solution) of B[x := 4]
-A show that there is no solution of A ’
= has no solution
v

Is this correct? Could not a proof (solution) of A& B be obtained by induction, for
instance?

A

Brouwer-Heyting-Kolmogorov Brouwer-Heyting-Kolmogorov

Direct and indirect proofs

Examples of indirect proofs

When we say that we have a proof of a proposition, then we mean

that we have a method which when computed yields a direct proof

of it. A& B
Compare this with mathematics and programming: When we say

A
that 2 + 4 and fst(< 452, —9 >) are natural numbers, then we _ _
mean that they can be computed to a natural number. If we have a proof of A& B, then we can compute it to a direct
proof. This always consists of a proof of A and a proof of B.

Hence we may always obtain a proof of A from a proof of A& B.)
proofs: objects:
direct vs. indirect proof value vs. expression
canonical vs. non-canonical proof | canonical vs. non- neN P(0) (YneN)P(n) > P(succ(n))
canonical element P(i)
introduction vs. elimination proof 4

Brouwer-Heyting-Kolmogorov Curry-Howard

What is a proposition (problem)?

Propositions and sets

A proof (element) of: | consists of:
To summarize Heyting's and Kolmogorov's explanations:
A& B a proof (solution) of A and a proof (solution) of B
What does it mean to understand a proposition? AxB an element in A and an element in B
— - AV B a proof (solution) of A or a proof (solution) of B
| understand a proposition when | understand what a direct proof A+ B an element in A or an element in B
of it is ADB a method which takes any proof (solution) of A to a proof
- (solution) of B
. . A— B a method which takes any element in A to an element in
This looks very similar to: B
2 1 has no proof (solution)
What does it mean to understand a set? 0 has no elements
| understand a set when | understand what a canonical element of S an element 2 in A and a proof (solution) of Blx:= a]
L Vx € A.B a method, which takes any element x in A to a proof
It Is. (solution) of B[x := a]

Curry-Howard Curry-Howard

Curry’s contribution

This similarity leads to the Curry noticed the formal similarity between the axioms of positive
implicational logic:

Curry-Howard isomorphism

ADBDA
A&B=AxB (ADBD>(C)>D(A>B)D> C
AVB=A+B and the type of the basic combinators:
ADB=A—B
1= KeA—-B—A
Se(A-B—-(C)—-(A—-B)—C
-A=A—1(

and modus ponens corresponds to the typing rule for application:

ADB A feA—B acA

A facB

Curry-Howard Curry-Howard
Proofs as Programs in a functional programming Constructors are introduction rules
language
A
AV B Orile A— AVB
A direct | consists of: As a type:
proof of: B
AV B Ori2e B— AVB
AV B | aproof of Aor | data Or AB = Oril A | Ori2 B;
a proof of B A B
A&B aprOOfOannd dataAndAB:AndlAB, A&B AndiGAHBHA&B
a proof of B
A D B | a method taking [A]
a proof of A data Implies A B = Impi A — B; B
to a proof of B ADB Implic(A—B)—A>DB
Falsity data Falsity = ;

Curry-Howard

Elimination rules can be defined

orelc AVB—-(A—-C)—-(B—-C)—C

[Al - [B]
orel (Orila)f g=fa AVE CC_ ¢ orel
orel (Ori2 b) f g=g b
[A, B]
andel € A&AB—- (A—-B—C)—C A&BC ¢ andel
andel (Andiab) f=fab
implelc ADB—-A— B % implel

implel (Impli f) a="f a

Curry-Howard

What about the quantifiers?

Curry-Howard

Proof checking = Type checking

In this way we can prove propositional formulas in a typed
functional programming language. The problem of proving for
instance

(A& B) > (B&A)

is then the problem of finding a program in this type. The type
checker will check if the proof is correct. In this case, we can use
the following program:

Impli (Ax.Andi (andel x \y.\z.z)
(andel x \y.\z.y))

Martin-Lof

Overview of Martin Lof “s type theory

Propositions and sets

A proof (element) of:

consists of:

dxeA.B

>xcA.B

VxeA.B

NxeA.B

an element a in A and a proof (solution)
of B[x := 3]

an element a in A and an element in
B[x := a]

a method, which takes any element x in
A to a proof (solution) of B[x := a]

a method, which takes any element x in
A to an element in B[x := a]

@ Type theory is a small typed functional language with one
basic type and two type forming operation.

o It is a framework for defining logics.

@ A new logic is introduced by definitions.

Martin-Lof Martin-Lof
What types are there? What programs are there?

Programs are formed from variables and constants using
abstraction and application:

@ Set is a type @ Application

@ El(A) is a type, if A € Set. ce(xeA)—-B acA
c ac Blx:= 3]

@ (x€A) — Bis a type, if Ais a type and B a family of types

for x € A. @ Abstraction
be B [xe€A

[x]be€ (xeA) — B

@ constants are either primitive or defined

Martin-Lof Martin-Lof
Constants Primitive constants

@ computes to themselves (i.e. are values).
@ constructors in functional languages.

There are two kinds of constants: e introduction rules and formation rules in logic

primitive: (not defined) have a type but no definiens (RHS): @ postulates
identifier € Type Examples:
N € Set
defined: have a type and a definiens: 0 € N
identifier = expr € Type s € N—N
& € Set — Set — Set
There are two kinds of defined constants: &l € (AcSet) — (BeSet) > A— B — A&B
° _eXP'Ii_ci_ttlly :Ieffi_nei M € (AeSet) — (A — Set) — Set
°
Implcitly detine A € (A€Set) — (B € A— Set) — ((x€A) — B(x)) —

MN(A, B)

Martin-Lof Martin-Lof

Explicitly defined constants Implicitly defined constants
@ have a type and a definiens (RHS). The definiens (RHS) may contain pattern matching and may
@ the definiens is a welltyped expression contain occurrences of the constant itself. The correctness of the
@ abbreviation definition must in general be decided outside the system
@ derived rule in logic. @ Recursively defined programs
@ names for proofs and theorems in math. @ Elimination rules (the step from the definiendum to the
Examples: definiens is the contraction rule).
Examples:
2¢eN add(xeN)(yeN) € N
= succ(succ 0) add 0y =y
V(A€Set)(BeA — Set) € Set add (succ u) y = succ (add v y)
—MAB &E(A€Set)(BeSet)(C€A — B — Set)
(fe(x€A) — (yeB) — C(&l x y))
+(xeN)(yeN) e N (AL B)
= natrec [x]N x y [u, v](succ v) e C(2)
D (A€Set)(B€Set) € Set QEABCf(&lab)=fab

=MNAI[xB

Martin-Lo6f Proof editing

Two approaches to the usage of implicit constants: The editing process

@ The conservative approach: Use them only to define induction
principles for sets (elimination rules). These are functions, The idea is to build expressions from incomplete expressions with

which for an inductively defined set A produces a function in holes (placeholders). Each editing step replaces a place holder with
(x€A) — (C z) for a family of sets C € A — Set. another incomplete expression

@ The liberal approach: Use them when they are convenient.

Proof editing

Place holders

Proof editing

To construct an object

We use the notation
Oy, ..., 0,

for place holders (holes).
Each place holder has an expected type and a local context
(variables which may be used to fill in the hole).

Proof editing

Refinement of an object

We start to give the name of the object to define, and the
computer responds with

cell
C:D2

We must first give the type of ¢ by refining [J;.
We can either enter text from the keyboard, or do it stepwise,
replace it by

] (X€D3)HD4
@ Set, or
(] CD3 D,,

Proof editing

Refinement of an object: application

When we have constructed the type of the constant ¢, we can
start to define it:

ceC
C:DO

Here, the expected type of [y is C .
In general, we are in a situation like

C:...Dl...DQ...

where we know the expected type of the place holders.

To refine a place holder
e A

with a constant ¢ (or a variable) is to replace it by
cl ...0,€A

where [; € By,...,0, € B,,.

The system computes the expected types of the new place holders
and some constraints from the condition that the type of

c [y ... O, must be equal to A.

We have reduced the problem A to the subproblems Bj, ... B,
using the rule c. J

Proof editing Proof editing

Refinement of an object: abstraction Hence: to prove is to build a proof object

To refine a place holder
e A

with an abstraction is to replace it by @ To apply a rule c is to construct an application of the

constant c.
[X]Dl €A
@ To assume A is to construct an abstraction of a variable of
The system checks that A is a functional type (x€ B) — C and type A.

the expected type of [J; is C and the local context for it will

@ To refer to an assumption of A is to use a variable of type A.
contain the assumption x € B.

We have reduced the problem (x€ B) — C to the problem C by
using the assumption x € B. J

Proof editing

Summary: Type Theory

@ Types:
T = Set | Elle) | (xeT)—T'
@ Programs:
e=¢eée | [xle| x| c
o Constants:
e Primitive (without a definition):

ceT
o Explicitly defined:
c=ecT
o Implicitly defined:
cpL.-.-pn = €

/ /
cpy ... p, = e

Proof of normalisation using domain theory

Thierry Coquand and Arnaud Spivak

Aug. 24, 2005

Proof of normalisation using domain theory

Goal of the presentation

Show an example where computer science helps in simplifying an argument in
proof theory

How to prove normalisation for some computation rules introduced in proof
theory (variant of bar recursion)

Intuition: if the computation rules make sense, the system should be
normalising

Proof of normalisation using domain theory

Goal of the presentation

This presentation aims to present a simplified version of

Ulrich Berger “Continuous Semantics for Strong Normalisation”
LNCS 3526, 23-34, 2005

This work itsef simplifies the argument in

W.W. Tait “Normal form theorem for bar recursive functions of finite type”
Proceedings of the Second Scandinavian Logic Symposium, North-Holland, 1971

Proof of normalisation using domain theory

PCF

Introduced by D. Scott in 1969
“A type-theoretical alternative to CUCH, ISWIM and OWHY"
Published in Theoret. Comput. Sci. 121 (1993), no. 1-2, 411-440.

This was the basis of the LCF system

Proof of normalisation using domain theory

PCF

G. Plotkin “LCF considered as a programming language”
Theoretical Computer Science, 5:223-255, 1977

Simply typed A-calculus with with base types o, ¢ and constants
Basic operations

tt:o, ff:o, kpn:t, (+F1):t—1, (=1):t—1, Z:1—0
D, 0,L,L — Ly, Dy 0,0,0 — 0

Yo:(0—0)—0

Proof of normalisation using domain theory

Operational semantics

td et te=u)lv
Ax.tl Ax.t tul v

all tt bllv al ff clv

D abe Jw D abe Jw

f Y f)lv
Y flo

aUkn ai}kn—l—l aJU'kO aUkn+1

(+1) a | kpt1 (=) alk, Zaltt Zalff

Proof of normalisation using domain theory

Denotational semantics

A domain is a complete partial order D, with a least element L and a top
element T

If D, E are domains, [D — F] is the complete lattice of continuous functions,
i.e. monotone and such that f(V;c;X;) = Vier f(X;) for directed families (X;)

We have natural choices for D, and D,
DO‘—>’T — [DO' — D’T]
We have natural choices for [c] € D, if c: o

Y] f=V,enf" Lsothat [Y] € |[Dy; — Ds| — D]

Proof of normalisation using domain theory

Denotational semantics

Given p: V, — Dy and t : o we define [{] , € D, by induction on ¢
2], = o(x)

Mt], = u— [t](, 2u)

Proof of normalisation using domain theory

Adequacy theorem

Theorem: For any closed term t of base type « and any value k, we have
[t] =n ifft | k,

For instance [t] = 0 iff ¢ |} kg

Proof of normalisation using domain theory

Application: transformation of programs

Assume we have a program t = C'|u] having u as a subprogram

If [u] = [w] then [t] = [Clu]] = [C[u]]

This follows from the compositionality property of the denotational semantics
If t |} ko then [t] = 0 hence [C[u/]] =0

Hence by the adequacy theorem C'[u'] |} kg

Elegant way of proving the equivalence of programs (for instance for
justification of compiler optimisations)

Avoids messy syntactical details

Proof of normalisation using domain theory

Adequacy theorem

Plotkin's result is for a simply typed language

Proof by induction on the types, reminiscent of reducibility, by introduction of
a computability predicate

The adequacy result holds for untyped languages!

In some sense, untyped A-calculus has a type structure

10

Proof of normalisation using domain theory

Finite elements

d € D is finite iff d < \/,.; o; implies d < \/, ;- a; for some finite K C I
The finite elements represent observable pieces of information about a program
0: the program t reduces to 0

0 — 0: if we apply t to O the result ¢t O reduces to 0

1L — 0: if we apply t to a looping program [the result ¢ [reduces to 0

For the last example this means intuitively that the program t does not even
look at its argument during the computation

11

Proof of normalisation using domain theory

Finite elements

If di,d> are finite so is dy V ds

Algebraic domains: any element is the sup of the set of finite elements below
it

If D, E are algebraic then [D — E] is algebraic: the finite elements are exactly
finite sups of step functions d — e

(d—e)d =cifd<d

(d — e) d’ =1 otherwise

12

Proof of normalisation using domain theory

Finite elements

In set theory ¢,0 — ¢,... have greater and greater cardinality

For each type o the finite elements of D, form a countable set

13

Proof of normalisation using domain theory

Adequacy theorems

S. Abramsky “Domain theory in logical form."
Annals of Pure and Applied Logic, 51:1-77, (199)1.

R. Amadio and P.L. Curien Domains and Lambda-Calculi.
Cambridge tracts in theoretical computer science, 46, (1997).

H. Barendregt, M. Coppo and M. Dezani-Ciancaglini
“A filter lambda model and the completeness of type assignment.”
J. Symbolic Logic 48 (1983), no. 4, 931-940 (1984).

P. Martin-Lof “Lecture note on the domain interpretation of type theory.”
Workshop on Semantics of Programming Languages, Chalmers, (1983).

14

Proof of normalisation using domain theory

An untyped programming language

t n=n|tt]| .t n =ux|c|f
Two kind of constants: defined f,g,... and primitive c,c, . ..

f is defined by equations (computation rules) of the form

fxy ...z (cyr ... Yp) — u
Each constant has an arity ar(f) =n+ 1,ar(c) = k

We write h, h/,... for a constant f or ¢

15

Proof of normalisation using domain theory

Operational semantics

il < ar(n)
et | et ctlct htlht
td Axt! t(x=u) v
tul v
tict w@=u,7=1) v
futlwv

We suppose [T (¢ §) = u

16

Proof of normalisation using domain theory

Finite elements

Given a set of constants ¢ with arity ar(c) € N

UV := AM|U-V|UNV |cU|V
If U is a vector Ui,..., U, we write U — U for

U—(— Un,—U)...)

and ¢ U for
CU1 Um

17

Proof of normalisation using domain theory

Finite elements as set of closed programs

Let A be the set of all programs

Ais A, Vis0
cU; ... Uk:{t‘tUC?“ coe Uk, UZEUz}

U — V is the set of programs ¢ such that ¢t computes to Az.t’ or to h t,
t] < ar(h) andVueU. tueV

UNnvV={t|teU AN teV}

18

Proof of normalisation using domain theory

Meet-semi lattice

VCUCA

cU ... UNcU] ... U, =c(UNU]) ... (UiNUj)

cU ... UsNU —-V)=V U ... UyNd U] ... U =V
U—=V)NU = V)=U — (VAV

UCU VCV = U—V)CU -V

Proof of normalisation using domain theory

Key property

Lemma: We have Nic;(U; — Vi) C U — V iff (NierVi) €V where

This holds only, a priori, for the formal inclusion relation

20

Proof of normalisation using domain theory

Decidability

Given U,V we can decide whether U C V or not

21

Proof of normalisation using domain theory

Filters

A filter o is a set of types such that

(1) A €«

(2)ifU,VeathenUNV € «
(3)ifU€aand U CV thenV € a

These elements are ordered by inclusion
TOUNV)=tUV1TV

There is a least element L. =7 A and a top element T =T V

We identify U and T U

22

Proof of normalisation using domain theory

Filters

The poset of all these filters is a complete lattice D

This poset is algebraic: any element is the directed sup of all finite elements
below it

Notice that the greatest element T is finite!

The finite elements of D are exactly the types

23

Proof of normalisation using domain theory

Filters

This domain D contains 0, s 0, but alsos 1, s (s 1),...
We have a continuous functions: D — D

D contains the sup of these elements w such that w =s w

w={l,s 1,s(s 1),...}

24

Proof of normalisation using domain theory

Filters

We have an application operation on D

a={AYu{V |JU.[U—-V]ea AN U e}

Notice that
1 =1

T8=T

25

Proof of normalisation using domain theory

Typing rules

(x:U) el Ce:UkFt:V

I'Fx:U I'FXxet:U—=YV

I't:U '=t: v T'FHt:U UCV

I't:UNV

I't:U—V I'Fu:U
I'Etu:V
'H¢t:V 'Ht: A

26

Proof of normalisation using domain theory

Typing rules for constants

Fe:U—cU
T _),yH:VI—u:U
Ff:U—(cV)—=U

We suppose f T (c §) = u

-f:U—>V—>V

27

Proof of normalisation using domain theory

Typing rules for constants

If we have 0, s, add with the equations
add x 0 =« add z (s y) = s (add x y)

then we have the typing rules

x:UyWhraddzxzy:V

add: U - 0—U add: U — (s W) —sV

28

Proof of normalisation using domain theory

Types and finite elements

A corresponds to L

U — V corresponds to the step function defined by
U—-VU=Vifu<U

U — V| U' =1 otherwise

V corresponds to T, the top element of the domain

29

Proof of normalisation using domain theory

Denotational semantics

[t],eDforp:V—D
[c] (res. [f]) is the filter of all types U such that = d : U (resp. - f : U)

30

Proof of normalisation using domain theory

Typing rules and denotational semantics

Theorem: We have -t : U iff U < [t]

More generally, we have x1:Uq,...,z,:U, -t : U iff

U < [t]

z1=U1,...,.xn=Uy

31

Proof of normalisation using domain theory

Denotational semantics

An alternative approach is to define directly [[t]]p € D by

[t], =4U | z1:Ux, ..., 2n:Up B 12U, U; € p(xi) }

Lemma: ')Azt : U —-V iffFl,z:UFt:V

32

Proof of normalisation using domain theory

Denotational semantics

Theorem: We have

[t ul, = [t], [u],

[Az.t], o = [¢]

(p,x=av)

if [t] = [ul, =, for all a then [Ax.t] = [Ay.u],

Py T=0x

33

Proof of normalisation using domain theory

Denotational semantics

This alternative characterisation of the semantics of 3-conversion is described

R. Hindley and J. Seldin “Combinators and A-calculus’, University Press, 1986

and goes back to G. Berry

34

Proof of normalisation using domain theory

Adequacy theorem

Theorem: If=t:U thent €¢ U

Corollary: If [t] = ¢ U then there exists @ such that t |} ¢ @

35

Proof of normalisation using domain theory

Application: Godel system T

Weak version of the normalisation theorem in a semantical way

The constants of Godel system 1" are 0, s, natrec

natrec u v 0 = u natrec u v (s m) = v m (natrec u v m)

The base typeistandQ: ¢, s: v —cvandnatrec: 0 —- (1t >0 —0) 21— 0

36

Proof of normalisation using domain theory

Application: Godel system T

To each type o we associate a predicate Tot, on D
a € D is a total integer iff a = s* 0 for some k € N
Tot,_.-(b) means that Tot,(a) implies Tot,(b a)

If I" is a context define Totr(p) to mean Tot,(p(x)) for all z:o in T

37

Proof of normalisation using domain theory

Application: Godel system T

Lemma 1: /fI'-¢: 0 and Totr(p) then Tot,([t]). In particular, ift-1: 0
then Tot,([t]).

Lemma 2: /fTot,(a) then a #1

Corollary: IfEt: ¢ thent || O or there exists t’ such thatt || st

38

Proof of normalisation using domain theory

Strong Normalisation

As explained in the talk of Benjamin Grégoire for the (total) correctness of
the type-checking algorithm we need a (strong) normalisation theorem

B. Grégoire and X. Leroy
A compiled implementation of strong reduction, ICFP 2002, 235-246.

39

Proof of normalisation using domain theory

Strong Normalisation

N subset of strongly normalisable terms
We write w, w’ for strongly normalisable terms

Simple terms

s n=x|sw| fuWs

40

Proof of normalisation using domain theory

Head-reduction

u > u U > U

uv>=u v fuus=fuu

We say that u is of head-redex form iff there exists v’ such that u = u’

Proof of normalisation using domain theory

Head-reduction and reduction

We let S C N be the set of strongly normalisable terms that reduce to a
simple term

SCNCA

We write u — u’ ordinary reduction and

— (u) ={u' | u— v}

42

Proof of normalisation using domain theory

Saturated set

X C A is saturated iff
(CRI)SCXCWN
(CR2) if t € X then — (t) C X

(CR3) if ¢ is of head-redex form and — (¢) C X thent € X

43

Proof of normalisation using domain theory

Saturated subsets

lemma: If I # () and X, saturated then N;c; X; are saturated

If X,Y C A then we define

X—-Y={teA|VueX. tueY}

lemma: If X andY are saturated then sois X — Y

44

Proof of normalisation using domain theory

Saturated subsets

If X1,..., Xt C A then ¢ X7 ... X} is the set of terms defined inductively
as follows

ift, € Xq,....t, € X thenctecec X
iftcSthentecc X

if ¢ is of head-redex form and — (¢) C ¢ X thent € ¢ X

45

Proof of normalisation using domain theory

Finite elements as saturated sets

We consider the new set of finite elements (types)

U =AW W,V w= ¢cW | WnW | W ->W |V

Each finite element W can be interpreted as a saturated set

Notice that if ¢ « € W then |ud| = ar(c)

46

Proof of normalisation using domain theory

Meet-semi lattice

VCUCA

cWi ... WeneW] ... W, =c(WiNnWJ]) ... (WinWj)

cWiy ... Wen(W —=V)=V cWp ... Wend W] ... W/ =V
(W SV)N(W = V) =W — (VAV)

WCW, VCVi=W->V)CW =V’

Proof of normalisation using domain theory

Meet-semi lattice

The filters over this lattice define a new domain E

As before we have an application

af={AU{W | FV.VepsAn(V—->W)ea}

Notice that a L =_ for all «

48

Proof of normalisation using domain theory

Strict semantics

We consider the new typing system with only judgements of the formI' ¢ : W

Lemma: If - ¢ : W then t belongs to the saturated set W

49

Proof of normalisation using domain theory

Typing rules

(x:W) el Cox:WEt:V 't W-—-V TlFu:W
I'Fax: W I'EXet: W —=V I'Etu:V
't: W I'=t:V
'Et:WnNV
't: W W cCcVvV
I'Et:V

50

Proof of normalisation using domain theory

Typing rules for constants

We suppose f T (¢ §) = u

W SV oV

51

Proof of normalisation using domain theory

Strict semantics

We define [t], € E to be the following filter: U € [t], iff
(1) U =A, or

(2) x1: W1, ..., x: W, Ft: U in the new system, with W; € p(x;)

52

Proof of normalisation using domain theory

Strict semantics

Theorem: We have

Ax.t], a = [t](pr=a) if @ #L

if [t]po=a = U]y y=a for all o #L then [Az.t|, = [A\y.u],

53

Proof of normalisation using domain theory

Strict semantics

Theorem: If [t] #.L then t is strongly normalisable

If [u], #L then
[(A\z.t) u]]p = [t(x = u)]]p

54

Proof of normalisation using domain theory

Application: Godel’s system T

Theorem: IfI' -t : 0 and Totr(p) then Tot,([t],)

The crucial case is the application: if ¢ : 0 — 7 and u : o then by induction
Tots_-([t]) and Tot.(|u]). Hence |[u] #1 and

[t u] = [t] [u]

Corollary: If-t: o0 thent is strongly normalisable

55

Proof of normalisation using domain theory

Interpretation of T

The special element T € D satisfies

TB=T

if 3 %1, but also
fOél OénT:T

ifap #1L, ..., a, #1

56

An idea coming from ...

higher-order substitution (Russell, Withehead, Church, Curry,
Henkin, ...)

A-calculus (Church, Curry, ...)

type theory (de Bruijn, Martin-Lof, Coquand, Huet, ...)
automated deduction (Plotkin, Peterson, Stickel, ...)
proof-checking (Boyer, Moore, ...)

the practice of mathematic (Appel, Haken, Hales, ...)

Proots are built with

Deduction rules, axioms

Proofs are built with

Deduction rules, axioms and computation rules

A simple expression of this idea

In predicate logic: deduction modulo

[. Deduction modulo

II. A uniform proof language

I. Deduction modulo
a. Deduction modulo
b. Proots and certificates
c. An example of theory in deduction modulo: Arithmetic

II. A uniform proof language

Assumed

1. Syntax of terms and formulae in predicate logic
2. Natural deduction rules (for constructive logic)

3. Many sorted predicate logic

Deduction modulo

Proof: sequence of deduction steps

Theory: set of axioms

Deduction modulo

Proof: sequence of deduction steps and computation steps

Theory: set of axioms and computation rules

A terminating and confluent system of computation rules

Computation rules apply to terms, e.qg.
O+y—uy
and to atomic formulae, e.q.

TXYyYy=0—ax=0Vy=20

An example: Arithmetic

Ve (v =2
Ve Yy (z =y = (z/2)
vay (S(z) = S(y) = = = y)
Ve =0 = S(x)
(0/2)A =Vz ((x/2)A = (S(z)/2)A) = Vn (n/2)A
VyO+y=y
VaVy S(z) +y = S(z +y)
VyOxy=20
VaVy S(z) x y =z Xy+y

An example: Arithmetic

Vo (x = x)
Ve Vy (x =y = (x/2)A = (y/2)A)
VaVy (S(x) = S(y) = = = y)
Vr =0 = S(x)

(0/2)A =Vz ((x/2)A = (S(z)/2)A) = Vn (n/2)A
O+y —y
S(x)+y — Sz +y)
0xy—0
S(x) Xy —axXy+y

Congruence

The computation rules define a congruence on formulae e.g.

(2x2=4)=(4=4)

Smallest relation that
e is an equivalence relation
e is a congruence (compatible with all the symbols)
e contains [= r for each computation rule [— r

The congruence = is decidable (thanks to termination and

confluence)

Deduction rules

Deduction rules parametrized by the congruence =, e.q.

'FA=B T'FA
I'-B

=-elim

'=C T'FA
I'FB

=-elim if C' = (A = B)

How to squeeze a proof on a single slide 7

Axiom

Vex=xFVrax==x
Vex=axF2x2=4
Vex=zxhFdy2xy=4

V-elim

J-intro

Business as usual (The equivalence lemma)
For each congruence =, there is a theory 7 such that
- A
iff
T THA
eg. T={V(P=Q)|P=0Q}

Nothing new from the provability point of view

Something new from the proof structure point of view

Proofs and certificates

A test: is 221 prime or composite 7

Prootfs and certificates

A test: is 221 prime or composite 7

Four answers: 221 composite
e as you can check yourself
e because 13 is a divisor

e because 221 =13 x 17

e because

RN
w ~

=
~N o1
=

N
N
[EEN

e (' defined by computation rules:

T-intro

C(221)
(as you can check yourself)

e | defined by computation rules C'(x) = 3dy y |

13 ‘ 991 T-intro

C(221)

J-intro

(because 13 is a divisor)

e X defined by computation rules C'(z) = Jydz x =y x 2

Vo (xr = x) axvlor?
221 = 13 x 17 ; 1,mt
3z (221 =13 x 2) — 0
J-intro

C(221)
(because 221 = 13 x 17)

e only axioms (each step of the computation)

221 = 13 x 17
32 (221 = 13 X 2)
C(221)

J-intro

J-intro

Purely computational theories

No axioms
Only computation rules and deduction rules

Examples: arithmetic, simple type theory, set theory

Peano fourth and fifth axioms

Peano fourth and fifth axioms

Vavy (S(z) = S(y) = ¢ =y)
Ve =0 = S(x)
Pred(S(x)) — x
No term rule for the fourth axiom: no one point model
Null(0) — T
Null(S(z)) — L

Exercise: prove the two axioms

Where are we ?

Vo (x = x)
Vo Vy (xz =y = (z/2)A = (y/2)A)

(0/2)A =Vz ((z/2)A = (S(x)/2)A) = Vn (n/2)A

Equality

Vo Vy (xz =y = (z/2)A = (y/2)A)

Example:

VeVy (x=y=>2<4=y<4)

A second sort for sets and the set {z | 2 < 4}: f, <4

ze{z]|z2<4} & 2<4

VeVy (t =y =VE (x € E=y € F))

Equality

Vo Vy (xz =y = (z/2)A = (y/2)A)

Example:

VeVy (x=y=>2<4=y<4)

A second sort for sets and the set {z | 2 < 4}: f, <4

ze{z]|z2<4} & 2<4

VeVy (t=y < VE (x € E=y € F))

Equality

Vo Vy (xz =y = (z/2)A = (y/2)A)

Example:

VeVy (x=y=>2<4=y<4)

A second sort for sets and the set {z | 2 < 4}: f, <4

ze{z]|2<4} — z2<4

r=y —VE (xr € FE=yeckF)

Induction

(0/2)A =Vz ((z/2)A = (S(z)/2)A) = Vn (n/2)A

Induction

VE(Oe E=Vr(re F=95()c F)=Vnnck)

Induction

VEOe EFE=Ve(re F=Sx)e F)=Vn (N(n)=neck)

Induction

Vn (N(n)=VE (0e E=Vx (r€e E=S(x)e F)=neFE))

Induction

Vn (N(n) ©VE(0e FE=Vx (r € F= S(x)e E)=necF))

Induction

N(n) —VE 0e E=Vx (x € E= S(x) e E)=nek)

S fx,yl,...,yn,P(yh e 7yn) — P

y=z—VE (ye E=2€F)
Pred(0) — 0 Pred(S(x)) — x
Null(0) — T Null(S(x)) — L
Nn) —VE (0e E=Vy (ye E=Sy) e F)=nekFE)
O+y —y
S(x) +y — Sz +y)
Oxy—10
Sx)xy —zXy+y

I. Deduction modulo
II. A uniform proof language
a. Al
b. Axioms, non logical deduction rules, computation rules

c. An example: polymorphism

Type theories

A language to express (among other things) proofs
Proofs in which theory 7

It depends: propositional logic (simply typed A-calculus),
predicate logic (AIl), arithmetic (T), second-order propositional
logic (F), predicative higher-order arithmetic (ITT), second-order
arithmetic (AF2), higher-order logic (CoC, Fw), full higher-order
arithmetic (CIC), ...

A uniform approach 7

Representing proofs

Proof trees (2-dimensional) are tedious to draw
Data bases, communication

A useful operation on proofs: from a proof of I') A - B and a proof
of I' = A build a proof of I' - B

e suppress hypothesis A in all sequents

e replace axiom rules using A by the proof of I' - A

A better notation for proofs

In Aq,..., A, F B, associate a variable &; to each hypothesis A;

A proof of A;,..., A, - B = a term containing the variables
&15 -6

i
To each rule: a function symbol (some are binders)

1 U
['HA '+ B
I'FAAB

A-1ntro

f(ﬂ-hWQ)

I''A+F B
I'FA= B

—-1ntro

g(§m)

The operation

1S substitution

9

9

(m2/&)m1

9

A notation for proofs

o= 'S

§om | (m m) app(my, 2)
(1, mo) | fst(m) | snd(r)

i(m) [j(m) [(0 m &umo &oms)

1

(0L)

r— | (mt)

(t,) | (03 m x&ms)

Brouwer-Heyting-Kolmogorov interpretation of proofs

A proof of A A B is an ordered pair formed with a proof of A and
a proof of B

A proof of A = B is an algorithmic function mapping a proof of A
to a proof of B

A proof of Vx A(z) is an algorithmic function mapping n to a

proof of A(n)

Explains the notation £ — 7w and (m; m2)

Curry-de Bruijn-Howard isomorphism

A proof of A = B is an algorithmic function mapping a proof of A
to a proof of B

If A is the type of the proofs of A then
P(A= B)=dA — PB

® isomorphism between formulae and types

Propositions play the role of types of their proofs

Dependent types

A proof of Vx (even(z) V odd(x)) is an algorithmic function
mapping n to a proof of even(n) V odd(n)

f(n) : even(n) V odd(n)

f:(x:nat) — (even(x) V odd(x))

f : Iz : nat (even(x) V odd(x))

A choice

Three languages:
S(S5(0)) terms
S5(S5(0)) = 0 formulae

x +— x proofs

One language:

S5(S5(0)), S(S(0)) =0 and = — z are all terms of the language

One language: AlI-calculus

A type T (e.g. nat) for the objects of the theory
1 : T'ype

One language: All-calculus

A type T (e.g. nat) for the objects of the theory

1 : T'ype

Translate each term as a term of type T

To each function symbol f f: 1T — ... =T — T

Translate each atomic formula P(¢,u) to a term of type Type

To each predicate symbol P P : T — ... = T — Type

One language: All-calculus

A type T (e.g. nat) for the objects of the theory

1 : T'ype

Translate each term as a term of type T

To each function symbol f f: 1T — ... =T — T

Translate each atomic formula P(¢,u) to a term of type Type
To each predicate symbol P P : T — ... = T — Type
Translate A= B to A — B

Translate Vax A(z) to [lx : T" A(x)

An example

Assume 7 is a proof of Va Vy (S(x) = S(y) = «
And 7’ of 1 =2

Find a proof of 0 =1

Theories

So far: predicate logic

Need to be extended to theories (e.g. arithmetic, simple type
theory, set theory, ...) ?

A first way to arithmetic

For each axiom: a constant

ps: Vo Yy (S(z) = S(y) = v =y)

py Vo (0= S5(x)= 1)

Recy : (0/2)A = Vo ((z/2)A = (S(x)/2)A) = Vn (n/z2)A

§:1=2F(p301&):0=1

§:1=2F(ps0(p301¢)): L
FE:1=2—(ps0(p301&):(1=2)= L

A second way

Replace axioms by non logical deduction rules

' (0/2)A T'FVz ((x/2)A= (S(x)/2)A)
I'FVn (n/2)A

Introduce a new construction in the proof language: Rec(mq,ms)
Almost the same but Rec a construction (like app), not a constant

A particular case, the folding and unfolding rules

re (AN B)
re€AVxeB

Axioms poison proof reduction

In predicate logic: a normal closed terms is an introduction

Consistency, disjunction, witness, finite failure of search of L, ...

With constants normal closed terms need not be introductions

e.g. with an axiom dx P(z)

No witness property, no finite failure of search of L, ...

Extra reduction rules

e.q.
Reca b0 — 0

Reca b S(x) — (bx (Recab x))

-reduction (inductive types)

Fach new axiom: a new constant and a new proof-reduction rule

Replacing axioms by computation rules: AIl modulo

Null(0) — T

Null(S(z)) — L

r € fyur — Null(x)

Vx —=(0 = S(z)) now has the proof

r:nat — a:(0=5(x)) — (@ fyw 1)

Not a constant

No need for extra reduction rules, the terms reduces for itself

Polymorphism

Simple type theory (higher-order logic)

VP (P = P)

(@=Q)=(Q=0Q)

Polymorphism

[IP : Type (P = P)

built on the same pattens as
[z : nat (x = x)
But the red part nat must be of type T'ype

Type : Type ? No way

Extra typing rules to form more products (polymorphism)

Polymorphism through rewriting

Express simple type theory as a first-order theory

VP (P = P)

Vp (e(p) = €(p))
substitute by ar(q, q)

e(ar(q,q)) = €(ar(q, q))

Polymorphism through rewriting

Express simple type theory as a first-order theory

VP (P = P)

Vp (e(p) = €(p))

substitute by ar(q, q)
e(ar(q,q)) = €(ar(q,q))

Need a rule

e(ar(z,y)) — e(x) = &(y)

Proots of simple type theory in AII modulo

A uniform proof language

ALl modulo
A simple extension of MII with a (parametric) congruence on types

Proofs of all axiom free theories in deduction modulo
Unifies many (more or less esoteric) type theories
Allows to design new type theories (for set theory, ...)

Uniformity allows uniform meta-theory (e.g. termination criteria)

Introduction to Coq

Yves Bertot

August 2005

Yves Bertot Introduction to Coq

Running Coq

» the plain command : coqtop

» use your favorite line-editor,
the compilation command : coqc
the interactive environment : coqide

with the Emacs environment : open a file with suffix “.v

Also Pcoq developed at Sophia

vV v v v Y

All commands terminate with a period at the end of a line.

Yves Bertot Introduction to Coq

The Check command

» Useful first step: load collections of known facts and functions.
Require Import Arith. Require Import ArithRing.
Require Import Omega.

» First know how to construct well-formed terms.
Check 3.
3 : nat
Check plus.
plus : nat—>nat—>nat
Check (nat->(nat->nat)).
nat—>nat—>nat : Set
Check (plus 3).
plus 3 : nat—>nat

Yves Bertot Introduction to Coq

Basic constructs

» abstractions, applications.
Check (fun x => plus x x).
fun x:nat => x + x : nat—>nat

» product types.
Check (fun (A:Set) (x:A)=>x).
fun (A:Set)(x:A) = x : forall A:Set, A—>A
» Common notations.
Check (3=4).
3=4: Prop
Check (fun (A:Set) (x:A)=>(3,x)).
fun (A:Set)(x:A)=>(3,x) : forall A:Set, A —>nat*A

Yves Bertot Introduction to Coq

Basic constructs (continued)

» Logical statements.
Check (forall x y, x <=y >y <=x > x = y).
forall x y:nat, x <=y —>y <<=x—>x=y: Prop
» proofs.
Check le_S.
le.S : forall n m:nat, n <= m —> n<=Sm
Check (le.S 3 3).
le$§33:3<=3-—>3<4
Check len.
le_n : forall n:nat, n <= n
Check (le_.S 3 3 (lenn 3))
leS33(len3): 3<=4

Yves Bertot Introduction to Coq

Logical notations

» conjunction, disjunction, negation.

Check (forall A B, A /\ (B \/ ~ A)).

forall A B:Prop, A /\ (B\/ ~A) : Prop
» Well-formed statements are not always true or provable.
» Existential quantification.

Check (exists x:nat, x = 3).

exists x:nat, x = 3 : Prop

Yves Bertot Introduction to Coq

Notations

» Know what function is hidden behind a notation:
Locate "_ + _".
Notation Scope
"x +y" :=sum x y : type_scope
"x + y" := plus x y : nat_scope
(default interpretation)

Yves Bertot Introduction to Coq

Computing

» Unlike Haskell, ML, or OCaml, values are not computed by
default
Check (plus 3 4).
3+4:nat

» A command to require computation.
Eval compute in ((3+4)%*5).
= 35: nat
» A proposition is not a boolean value.
Eval compute in ((3+4)x*5=61).
= 35=61:Prop

» Fast computation is not the main concern.

Yves Bertot Introduction to Coq

Definitions

» Define an object by providing a name and a value.
Definition exl := fun x => x + 3.
exl is defined

» Special notation for functions.
Definition ex2 (x:nat) := x + 3.
ex2 is defined

> See the value associated to definitions.
Print exl.
ex] = fun x : nat => x + 3 : nat —> nat
Argument scope is [nat_scope]
Print ex2.
ex2 = fun x : nat => x + 3 : nat —> nat
Argument scope is [nat_scope|

Yves Bertot Introduction to Coq

Sections

» Sections make it possible to have a local context.
Section sectA.
Variable A:Set.
A is assumed
Variables (x:A) (P:A->Prop) (R:A->A->Prop).
X is assumed

Hypothesis Hypl : forall xy, Rxy ->P y.

Check (Hypl x x).
Hypxx: Rxx—> Px

Yves Bertot Introduction to Coq

Sections (continued)

» Definitions can use local variables.
Definition ex3 (z:A) := Hypl z z.
Print ex3.
ex3 = fun zzA = Hypl zz : forall zZA, Rzz —> P z

» Defined values change at closing time.

End sectA.

ex3 is discharged.

Print ex3.

ex3 =

fun (A:Set)(P:A—> Prop)(R:A—>A—>Prop)
(HypI:forall x y:A,Rxy—>P y)(z :A)=Hypl z z
: forall(A:Set)(P:A—>Prop)(R:A—>A—>Prop),

(forall x y:A, R x y—>P y)—>forall zzA, Rz z—>P z

Yves Bertot Introduction to Coq

Parameters and Axioms

Declaring variables and Hypotheses outside sections.
Proofs will never be required for axioms.
Make it possible to extend the logic.

Make partial experiments easier.

vV v . v. v .Y

Beware of inconsistency!

Yves Bertot Introduction to Coq

Goal directed proof

» Finding inhabitants in types.
» Recursive technique:
> observe a type in a given context.
» find the shape of a term with holes with this type.
> restart recursively with the new holes in new contexts.
» The commands to fill holes are called tactics.
» arrow or forall types are function types and can be filled by an
abstraction: the context increases (tactic intro).
» For other types one may use existing functions or theorems
(tactics exact, apply).
» special tactics take care of classes of constructs (tactics elim,
split, exist, rewrite, omega, ring).

» When no hole remains, the proof needs to be saved.

Yves Bertot Introduction to Coq

Example proof

Theorem example2 : forall a b:Prop, a/\ b -> b /\ a.
1 subgoal

foralla b : Prop, a /\ b—> b /\ a
Proof.
intros a b H.
1 subgoal

a: Prop

Yves Bertot Introduction to Coq

Example proof (continued)

split.
2 subgoals

subgoal 2 is:
a

Yves Bertot Introduction to Coq

Example proof (continued)

elim H
H:a/\b
a—->b-—>b

Yves Bertot Introduction to Coq

Example proof (continued)

exact b
1 subgoal ...

intuition.
Proof completed.
Qed.

intros a b H.

intuition.
example2 is defined

Yves Bertot Introduction to Coq

Second example

Theorem square_1t : forall nm, n < m -> n*n < m*nm.
Proof.
intros n m H.
SearchPattern (_*_ <).
mult_S_lt_compat_I:

foralln mp:nat, m<p—->Sn*m<Sn*p
mult_It_compat_r:

foralln mp:nat, n<m->0<p->n*p<m*p
Check le_ 1t trans.
le_lt_trans : foralln mp:nat,t n<=m->m<p—-—>n<p

Yves Bertot Introduction to Coq

Second example (continued)

apply le_lt_trans with (n * m).

SearchPattern (_ * _ <= _ *x).
mult_le_.compat_I: foralln mp : nat, n<<=m —>p*n<p
mult_le_.compat_r: foralln mp: nat, n<<m->n*p<=m*p

Check 1lt_le_weak.
It_le_weak : foralln m : nat, n < m —>n<=m

Yves Bertot Introduction to Coq

Second example (continued)

apply mult_le_compat_1l; apply lt_le_weak; exact H.

2 subgoals

n<m
subgoal 2 is:
0<m
assumption.

Yves Bertot Introduction to Coq

Second example (continued)

omega.
Proof completed.
Qed.

Yves Bertot Introduction to Coq

Proofs : a synopsis

= v A \Y% =
Hypothesis | apply apply elim elim elim
goal intros intros split | left or | exists v
right
Hypothesis | elim rewrite
goal intro | reflexivity

» Automatic tactics: auto, auto with database, intuition,
omega, ring, fourier, field.

» Possibility to define your own tactics: Ltac.

Yves Bertot Introduction to Coq

Automatic tactics

» intuition Automatic proofs for 1st order intuitionnistic logic,
» omega Presburger arithmetic on types nat and Z,

» ring Polynomial equalities on types Z and nat (no
subtraction for the latter)

» fourier Inequations between linear formulas in R,

» field Equations between fractional expressions in R.

Yves Bertot Introduction to Coq

Forward reasoning

» apply only supports backward reasoning (it does not
implement V-elimination or -;-elimination),
» Problem “l have H: forall x, P x" howcanl add P a to
the context”
» assert (H2 : P a), prove this by apply H and proceed,
> alternatively generalize (H a); intros H2.
» Problem “l have H: A -> B" how can add B to the context
and have an extra goal to prove A.
» Use assert again,
» alternatively use “lapply H;[intros H2 — idtac]".

Yves Bertot Introduction to Coq

Inductive types

Inductive types

» Inductive types extend the recursive (algebraic) data-types of
Haskell, ML,
» An inductive type definition provides three kinds of elements:
> A type (or a family of types),
» Constructors,
» A computation process (case-analysis and recursion),
» A proof by induction principle.

Inductive bin : Set :=
L : bin
| N : bin -> bin -> bin.

Yves Bertot Introduction to Coq

Inductive types

Computation process

» Pattern-matching and structural recursion.

Fixpoint size (tl:bin): nat :=
match t1 with

L=>1
| N t1 t2 => 1 + size tl1 + size t2
end.

Fixpoint flatten_aux (t1 t2:bin) {struct t1} : bin

match tl1 with

L=>NL t2
| N t°1 t°2 =>

flatten_aux t’1 (flatten_aux t’2 t2)
end.

Yves Bertot Introduction to Coq

Inductive types

Recursive definition (continued)

Fixpoint flatten (t:bin) : bin :=
match t with

L=>1L
| N t1 t2 => flatten_aux t1 (flatten t2)
end.

Yves Bertot Introduction to Coq

Inductive types

Proof by induction principle

» Quantification over a predicate on the inductive type,
» Premises for all the cases represented by the constructors,

» Induction hypotheses for the subterms in the type.

Yves Bertot Introduction to Coq

Inductive types

Proof by induction principle

» Quantification over a predicate on the inductive type,
» Premises for all the cases represented by the constructors,
» Induction hypotheses for the subterms in the type.
Check bin_ind.
bin_ind : forall P:bin—> Prop,
PL—>
(forall b:bin, P b —> forall b0:bin, P b0 —> P (N b b0)) —>
forall b : bin, P b

Yves Bertot Introduction to Coq

Inductive types

Proof by induction principle

» Quantification over a predicate on the inductive type,
» Premises for all the cases represented by the constructors,
» Induction hypotheses for the subterms in the type.
Check bin_ind.
bin_ind : forall P:bin—> Prop,
PL—>
(forall b:bin, P b —> forall b0:bin, P b0 —> P (N b b0)) —>
forall b : bin, P b

» The tactic elim uses this theorem automatically.

Yves Bertot Introduction to Coq

Inductive types

Example proof by induction

Theorem forall aux size
forall t1 t,
size(flatten_aux t1 t) = size tl+size t+1.
Proof.
intros t1; elim t1.

forall t : bin, size (flatten_aux L t) = size L + size t + 1

subgoal 2 is:

size (flatten_aux (N b b0) t) = size (N b b0)+size t+1

Yves Bertot Introduction to Coq

Inductive types

Proof by induction (continued)

forall t : bin, S (S (size t)) = S (size t + 1)

intros; ring nat.

Yves Bertot Introduction to Coq

Inductive types

Proof by induction (continued)

forall t : bin, S (S (size t)) = S (size t + 1)

intros; ring nat.

» This goal is solved.

Yves Bertot Introduction to Coq

Inductive types

Proof by induction (continued)

forall b : bin,

(forall t : bin, size (flatten_aux b t) = size b+size t+1) —>
forall b0 : bin,

(forall t : bin, size (flatten_aux b0 t) = size bO+size t+1) —>
forall t : bin, size (flatten_aux (N b b0) t) =
size (N b b0)+size t+1
intros b Hrecb c Hrec t; simpl.

size(flatten_aux b (flatten_aux c t))=S(size b+size c+size t+1)

Yves Bertot Introduction to Coq

Inductive types

Proof by induction (continued)

Hrec : forall t : bin, size(flatten_aux c t) = size c+size t+1
t : bin

size(flatten_aux b (flatten_aux c t))=S(size b+size c+size t+1)
rewrite Hrecb.

size b+size(flatten_aux c t)+1 = S(size b+size c+size t+1)
rewrite Hrec; ring nat.
Qed.

Yves Bertot Introduction to Coq

Inductive types

Inductive type and equality

» For inductive types of type Set, Type,

» Constructors are distinguishable (strong elimination),
» Constructors are injective.
» Tactics: discriminate and injection.

» Not for inductive type of type Prop, bad interaction with
impredicativity.

Yves Bertot Introduction to Coq

Inductive types

Discriminate example

Theorem discriminate_example : forall t1 t2, L =N
tl t2 > 2 = 3.

intros t1 t2 H.

H:L=Ntlt2

2=3
discriminate H.
Proof completed.

» With no argument, discriminate finds an hypothesis that fits.

Yves Bertot Introduction to Coq

Inductive types

Injection example

Theorem injection_example
forall t1 t2 t3, N t1 t2 = N t3 t3 -> t1 = t2.

intros t1 t2 t3 H.
H:Ntlt2=Nt3t3

t2=t3—>tl =t3—>1tl =t2
intros H1 H2; rewrite H1l; auto.
Proof completed.

Yves Bertot Introduction to Coq

Usual inductive data-types in Coq

» Most number types are inductive types,
» Natural numbers a la Peano, the induction principle coincides
with mathematical induction, nat,
» Strictly positive integers as sequences of bits, positive,
> Integers, as a three-branch disjoint sum, Z,
» Strictly positive rational numbers can also be represented as an
inductive type.

» Data structures: lists, binary search trees, finite sets.

Yves Bertot Introduction to Coq

Inductive propositions

» Dependent inductive types of sort Prop,
» The types of the constructors are logical statements,
» The induction principle is a simplified,

» Easy to understand as a minimal property for which the
constructor hold.

Yves Bertot Introduction to Coq

Inductive proposition example

Inductive even : mnat -> Prop :=
even0 : even O
| evenS forall x:nat, even x -> even (S (S x)).

» even is a function that returns a type,
» When x varies, even x intuitively has one or zero element.

Yves Bertot Introduction to Coq

Simplified induction principle

Check even_ind.

even_ind : forall P : nat —> Prop,
PO—>
(forall x : nat, even x —> P x —> P (S (S x))) —>
forall n : nat, even n —> P n

» quantification over a predicate on the potential arguments of
the inductive type,

» No universal quantification over elements of the type, only
implication (proof irrelevance).

Yves Bertot Introduction to Coq

Example proof by induction on a proposition

Theorem evenmult : forall x, even x —> exists y, X
= 2x%y.
intros x H; elim H.

exists y - nat, 0 =2 *y
subgoal 2 is:
forall x0 : nat,
even x0 —> (exists y : nat, x0 =2 *y) —>
exists y : nat, S (§x0) =2 *y

Yves Bertot Introduction to Coq

Proof by induction on a proposition (continued)

exists O; ring mnat.
intros x0 HevenxO IHx.

IHx : exists y : nat, x0 =2 *y

exists y : nat, S (Sx0) =2*y
destruct IHx as [y Heql; rewrite Heq.
(*alternative to elim IHx; intros y Heq; rewrite Heq
*)
exists (S y); ringmnat.
Qed.

Yves Bertot Introduction to Coq

Inversion

» sometimes assumptions are false because no constructor
proves them,

» sometimes the hypothesis of a constructor have to be tree
because only this constructor could have been used.

Yves Bertot Introduction to Coq

Example inversion

not_even_l : “even 1.
intros evenl. ...
evenl : even 1

False
inversion evenl.
Qed.

Yves Bertot Introduction to Coq

Usual inductive propositions in Coq

» The order <= on natural numbers (type le).
» The logical connectives.

» The accessibility predicate with respect to a binary relation,

Yves Bertot Introduction to Coq

Logical connectives as inductive propositions

» Parallel with usual present of logic in sequent style,
» Right introduction rules are replaced by constructors,

» Left introduction is automatically given by the induction
principle.

Yves Bertot Introduction to Coq

Inductive view of False

» No right introduction rule: no constructor.

Inductive False : Prop := .
Check False_ind.
False_ind

: forall P : Prop, False —> P

Yves Bertot Introduction to Coq

Inductive view of and

» one constructor,
> two left introduction rules, but can be modeled as just one.

Print and.
Inductive and (A : Prop) (B : Prop) : Prop :=
conj: A—>B—>A/\ B
Check and_ind.
and_ind
: forall ABP : Prop, (A—>B—-—>P)—>A/\ B—>P

Yves Bertot Introduction to Coq

Inductive view of or

Print or.
Inductive or (A : Prop) (B : Prop) : Prop :=
or.introl : A —> A\/ B| or_intror : B—> A\/ B
Check or_ind.
or_ind : forall A B P : Prop, (A—>P)—>(B—>P)—>A\/ B—>P

Yves Bertot Introduction to Coq

Inductive view of exists

Print ex.
Inductive ex (A : Type) (P : A —> Prop) : Prop :=
ex_intro : forall x : A, P x —> ex P
Check ex_ind.
exind : forall (A : Type) (P : A —> Prop) (PO : Prop),
(forall x : A, P x —> P0) —> ex P —> PO

Yves Bertot Introduction to Coq

Inductive view of eq

Print eq.
Inductive eq (A : Type) (x : A) : A —> Prop :=
refl_equal : x = x
Check eq_ind.
eq_ind : forall (A : Type) (x : A) (P : A —> Prop),
Px—>forally : A, x=y—> Py

Yves Bertot Introduction to Coq

Dependently typed pattern-matching

v

Well-formed pattern-matching constructs where each branch
has a different type,

Still a constraint of being well-typed,
Determine the type of the whole expression,

Verify that each branch is well-typed,

vV v v Y

Dependence on the matched expression.

Yves Bertot Introduction to Coq

Syntax of dependently typed pattern-matching

» match e as x return T with

p1=>v1
| p2 => v
end

» The whole expression has type T[e/x],

» Each value vy must have type T[p1/x].

Yves Bertot Introduction to Coq

Example of dependently typed programming

Print nat.
Inductive nat : Set := O : nat | S : nat —> nat

Fixpoint nat_ind (P:nat->Prop) (vO:P 0)
(f:forall n, Pn -> P (S n))

(n:nat) {struct n} : Pn :=
match n return P n with
0 => vO

| Sp=>f p (nat_ind P vO £ p)
end.

» Dependently-typed programming for logical purposes

Yves Bertot Introduction to Coq

Dependent pattern-matching with dependent inductive
types

Fixpoint even_ind2 (P:nat->Prop) (vO:P 0)
(f:forall n, Pn -> P (S (S n)))
(n:nat) (h:even n) {struct h} : P n :=
match h in even x return P x with
even0 => vO
| evenS a h’ => f a (even_.ind2 P vO f a h’)

end.

Yves Bertot Introduction to Coq

Exercices in Coq

Yves Bertot

August 23, 2005

1. Define a function of type forall x:nat, {y:nat|2xy<=x<2*y+1},

2. Define a function twopower of type nat -> nat that computes 2" for
every natural number n, and then define a function of type

forall x:nat,
{y : nat | twopower y <= x < twopower (y+1)}+{x=0}

3. Define a sorting function for an abitrary binary relation on an arbitrary
type. You should define suitable predicates sorted and permutation, and
then provide a function with the following type:

forall A:Set, forall R:Set,
forall testR : forall x y,{R x y}{R y x},
forall 1 : list A,
{1> : list A | sorted A R 1’ /\ permutation A 1 1’}

I suggest using insertion sort, which is reasonably simple. As a first ex-
ercise, you may leave aside the notion of permutation and construct a
function that only has the following type:

forall A:Set, forall R:Set,
forall testR : forall x y,{R x y}{R y x},
forall 1 : list A, {1’ : list A | sorted AR 1’}

But because this specification is weak, you should refrain from cheating
(for instance by providing the constant function that returns the empty
list).

Coq tutorial
Program verification using Coq

Jean-Christophe Fillidtre
CNRS — Université Paris Sud

TYPES summer school — August 23th, 2005

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Introduction

This lecture: how to use Coq to verify purely functional programs

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Introduction

This lecture: how to use Coq to verify purely functional programs

Thursday's lecture: verification of imperative programs (using Coq
and other provers)

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The goal

To get a purely functional (ML) program which is proved correct

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

The goal

To get a purely functional (ML) program which is proved correct

There are mostly two ways:

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The goal

To get a purely functional (ML) program which is proved correct

There are mostly two ways:

1. define your ML function in Coq and prove it correct

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The goal

To get a purely functional (ML) program which is proved correct

There are mostly two ways:
1. define your ML function in Coq and prove it correct

2. give the Coq function a richer type (= the specification)
and get the ML function via program extraction

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Program extraction

Two sorts:
Prop : the sort of logic terms

Set : the sort of informative terms

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Program extraction

Two sorts:
Prop : the sort of logic terms

Set : the sort of informative terms

Program extraction turns the informative contents of a Coq term
into an ML program while removing the logical contents

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Outline

1. Direct method (ML function defined in Coq)
2. Use of Coq dependent types

3. Modules and functors

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Running example

Finite sets library implemented with balanced binary search trees

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Running example

Finite sets library implemented with balanced binary search trees

1. useful
2. complex

3. purely functional

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Running example

Finite sets library implemented with balanced binary search trees

1. useful
2. complex

3. purely functional

The Ocaml library Set was verified using Coq
One (balancing) bug was found (fixed in current release)

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Direct method

Most ML functions can be defined in Coq

f @ ="

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Direct method

Most ML functions can be defined in Coq

f @ ="

A specification is a relation S : 71 — ™ — Prop
f verifies S if
Vx 7. (S x (f x))

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Direct method

Most ML functions can be defined in Coq

f @ ="

A specification is a relation S : 71 — ™ — Prop
f verifies S if
Vx 7. (S x (f x))

The proof is conducted following the definition of f

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Binary search trees

The type of trees

Inductive tree : Set :=
| Empty
| Node : tree — Z — tree — tree.

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Binary search trees

The type of trees

Inductive tree : Set :=
| Empty
| Node : tree — Z — tree — tree.

The membership relation

Inductive In (x:Z) : tree — Prop :=
| In_left : Viry, Inx 1 — In x (Node 1 y 1)
| In_right : V1 ry, Inxr — In x (Node 1 y r)
| Is_root : V1 r, In x (Node 1 x).

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The function is_empty
ML

let is_empty = function Empty — true _ — false

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The function is_empty

ML

let is_empty = function Empty — true _ — false
Coq

Definition is_empty (s:tree) : bool := match s with

| Empty = true
| - = false end.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The function is_empty

ML
let is_empty = function Empty — true _ — false
Coq
Definition is_empty (s:tree) : bool := match s with
| Empty = true
| - = false end.
Correctness

Theorem is_empty_correct
Vs, (is_empty s)=true <« (Vx, =(In x s)).

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The function is_empty

ML
let is_empty = function Empty — true _ — false
Coq
Definition is_empty (s:tree) : bool := match s with
| Empty = true
| - = false end.
Correctness

Theorem is_empty_correct

Vs, (is_empty s)=true <« (Vx, =(In x s)).
Proof.

destruct s; simpl; intuition.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

__Introduction Direct method Use of dependent types Modules L
The function mem

ML

let rec mem x = function

| Empty —
false

| Node (1, y, r) —
let ¢ = compare x y in
if ¢ < 0 then mem x 1
else if ¢ = 0 then true
else mem x r

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

The function mem
Coq

Fixpoint mem (x:Z) (s:tree) {struct s} : bool :=
match s with
| Empty =
false
| Node 1 y r = match compare x y with
| Lt = mem x 1
| Eg = true
| Gt = mem x T
end
end.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The function mem
Coq

Fixpoint mem (x:Z) (s:tree) {struct s} : bool :=
match s with
| Empty =
false
| Node 1 y r = match compare x y with
| Lt = mem x 1
| Eg = true
| Gt = mem x T
end
end.

assuming

Inductive order : Set := Lt | Eq | Gt.
Hypothesis compare : Z — Z — order.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Correctness of the function mem

to be a binary search tree

Inductive bst : tree — Prop :=
| bst_empty :

bst Empty
| bst_node :

Vx 1lr,

bst 1 — bst r —

Vy, Inyl —y<x) —

(Vy, Inyr — x <y) — bst (Node 1 x r).

Jean-Christophe Filliatre

Coq tutorial Program verification using Coq

Correctness of the function mem

to be a binary search tree

Inductive bst : tree — Prop :=
| bst_empty :

bst Empty
| bst_node :

Vx 1lr,

bst 1 — bst r —

Vy, Inyl —y<x) —

(Vy, Inyr — x <y) — bst (Node 1 x r).

Theorem mem_correct :

Vx s, bst s — ((mem x s)=true < In x s).

Jean-Christophe Filliatre

Cogq tutorial Program verification using Coq

Correctness of the function mem

to be a binary search tree

Inductive bst : tree — Prop :=
| bst_empty :

bst Empty
| bst_node :

Vx 1lr,

bst 1 — bst r —

Vy, Inyl —y<x) —

(Vy, Inyr — x <y) — bst (Node 1 x r).

Theorem mem_correct :

Vx s, bst s — ((mem x s)=true < In x s).

specification S has the shape P x — Q x (f x)

Jean-Christophe Filliatre

Cogq tutorial Program verification using Coq

Modularity

To prove mem correct requires a property for compare

Jean-Christophe Fillia Coq tutorial Program verification using Coq

Modularity

To prove mem correct requires a property for compare

Hypothesis compare_spec
Vx y, match compare x y with
| Lt = x <y
| Eq = x =y
| Gt = x>y
end.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Modularity

To prove mem correct requires a property for compare

Hypothesis compare_spec
Vx y, match compare x y with
| Lt = x <y
| EQq = x =y
| Gt = x>y

end.

Theorem mem_correct

Vx s, bst s — ((mem x s)=true < In x s).
Proof.

induction s; simpl.

generalize (compare_spec x y); destruct (compare x y).

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Partial functions

If the function f is partial, it has the Coq type

f:Vx:m.(Px)—mn

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Partial functions

If the function f is partial, it has the Coq type

f:Vx:m.(Px)—mn

Example: min_elt returning the smallest element of a tree

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Partial functions

If the function f is partial, it has the Coq type

f:Vx:m.(Px)—mn

Example: min_elt returning the smallest element of a tree

min_elt : Vs : tree. 7s = Empty — Z

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Partial functions

If the function f is partial, it has the Coq type

f:Vx:m.(Px)—mn

Example: min_elt returning the smallest element of a tree

min_elt : Vs : tree. 7s = Empty — Z

specification

Vs. Vh: —s = Empty. bst s —
In (min-elt s h) s A Vx. In x s —minelt s h <x

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Even the definition of a partial function is not easy

Jean-Christophe Fillia Coq tutorial Program verification using Coq

Even the definition of a partial function is not easy

ML

let rec min_elt = function
| Empty — assert false
| Node (Empty, x,) — X
| Node (1, _, .) — min_elt 1

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Even the definition of a partial function is not easy

ML

let rec min_elt = function
| Empty — assert false
| Node (Empty, x,) — X
| Node (1, _, .) — min_elt 1

Coq
1. assert false = elimination on a proof of False

2. recursive call requires a proof that 1 is not empty

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

min_elt: a solution

Fixpoint min_elt (s:tree) (h:—s=Empty) { struct s } : Z :=
match s with
| Empty =

| Node 1 x _ =

match 1 with
| Empty = X

| - = min_elt 1

end

end

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

min_elt: a solution

Fixpoint min_elt (s:tree) (h:—s=Empty) { struct s } : Z :=
match s return —s=Empty — Z with
| Empty =
(fun (h:—Empty=Empty) =
False_rec _ (h (refl_equal Empty)))
| Node 1 x _ =
(fun h = match 1 as a return a=1 — Z with
| Empty = (fun - = x)
| - = (fun h = min_elt 1
(Node_not_empty _ _ _ _ h))
end (refl_equal 1))
end h.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Definition by proof

Idea: use the proof editor to build the whole definition

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Definition by proof

Idea: use the proof editor to build the whole definition

Definition min_elt : Vs, —s=Empty — Z.
Proof.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Definition by proof

Idea: use the proof editor to build the whole definition

Definition min_elt : Vs, —s=Empty — Z.
Proof.

induction s; intro h.

elim h; auto.

destruct sli.

exact z.

apply IHsl1; discriminate.
Defined.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Definition by proof

Idea: use the proof editor to build the whole definition

Definition min_elt : Vs, —s=Empty — Z.
Proof.

induction s; intro h.

elim h; auto.

destruct sli.

exact z.

apply IHsl1; discriminate.
Defined.

But did we define the right function?

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Definition by proof (cont'd)

We can check the extracted code:

Extraction min_elt.
(**x val min_elt : tree — z *x)

let rec min_elt = function
| Empty — assert false (* absurd case *)
| Node (tO0, z0, t1) —
(match t0 with
| Empty — =20
| Node (s1_1, z1, s1_2) — min_elt tO)

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

The refine tactic

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The refine tactic

Definition min_elt : Vs, —s=Empty — Z.
Proof.
refine

(fix min (s:tree) (h:—s=Empty) { struct s } : Z
match s return —s=Empty — Z with
| Empty =
(fun h =)
| Node 1 x _ =
(fun h = match 1 as a return a=1 — Z with
| Empty = (fun _ = x)
| .= (fun h = min 1)

end _)
end h).

Jean-Christophe Filliatre

Coq tutorial Program verification using Coq

A last solution

To make the function total

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

A last solution

To make the function total

Fixpoint min_elt (s:tree) : Z := match s with

| Empty = 0
| Node Empty z _ = z
| Node 1 _ _ = min_elt 1

end.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

A last solution

To make the function total

Fixpoint min_elt (s:tree) : Z := match s with
| Empty = O
| Node Empty z - = z
| Node 1 _ - = min_elt 1

end.

Correctness theorem almost unchanged:

Theorem min_elt_correct
Vs, —s=Empty — bst s —
In (min_elt s) s A
Vx, In x s — min_elt s <= x.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Functions that are not structurally recursive

One solution is to use a well-founded induction principle such as

well_founded_induction
: V(A : Set) (R : A — A — Prop),
well_founded R —
VP : A — Set,
(Vx : A, Wy : A, Ryx - Py) - Px) —
Va : A, P a

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Functions that are not structurally recursive

One solution is to use a well-founded induction principle such as

well_founded_induction
: V(A : Set) (R : A — A — Prop),
well_founded R —
VP : A — Set,
(Vx : A, Wy : A, Ryx - Py) - Px) —
Va : A, P a

Defining the function requires to build proof terms (of R y x)
similar to partial functions = similar solutions

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Example: the subset function

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Example: the subset function

let rec subset sl s2 = match (s1, s2) with
| Empty, - —
true
| _, Empty —
false
| Node (11, vi, r1), Node (12, v2, r2) —
let ¢ = compare vl v2 in
if ¢ = 0 then
subset 11 12 && subset rl r2
else if ¢ < O then
subset (Node (11, v1, Empty)) 12 && subset rl s2
else
subset (Node (Empty, vl, rl)) r2 && subset 11 s2

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Induction over two trees

Fixpoint cardinal_tree (s:tree) : nat := match s with
| Empty =
0

| Node 1 _ r =
(S (plus (cardinal_tree 1) (cardinal_tree r)))
end.

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Induction over two trees

Fixpoint cardinal_tree (s:tree) : nat := match s with
| Empty =
0

| Node 1 _ r =
(S (plus (cardinal_tree 1) (cardinal_tree r)))
end.

Lemma cardinal_rec?2 :

V (P:tree—tree—Set),

(V(x x’:tree),
(V(y y’:tree),

(1t (plus (cardinal_tree y) (cardinal_tree y’))
(plus (cardinal_tree x) (cardinal_tree x’))) —

— (P xx’)) —

V(x x’:tree), (P x x7).

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Defining the subset function

Definition subset : tree — tree — bool.
Proof.

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Defining the subset function

Definition subset : tree — tree — bool.
Proof.
intros sl s2; pattern sl1, s2; apply cardinal_rec2.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Defining the subset function

Definition subset : tree — tree — bool.

Proof.
intros sl s2; pattern sl1, s2; apply cardinal_rec2.
destruct x. ... destruct x’.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Defining the subset function

Definition subset : tree — tree — bool.

Proof.
intros sl s2; pattern sl1, s2; apply cardinal_rec2.
destruct x. ... destruct x’.
intros; case (compare z z0).

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Defining the subset function

Definition subset : tree — tree — bool.

Proof.
intros sl s2; pattern sl1, s2; apply cardinal_rec2.
destruct x. ... destruct x’.

intros; case (compare z z0).
(x z < z0 *)
refine (andb (H (Node x1 z Empty) x’2 _)
(H x2 (Node x’1 z0 x’2) _.)); simpl; omega.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Defining the subset function

Definition subset : tree — tree — bool.
Proof.
intros sl s2; pattern sl1, s2; apply cardinal_rec2.
destruct x. ... destruct x’.
intros; case (compare z z0).
(x z < z0 *)
refine (andb (H (Node x1 z Empty) x’2 _)
(H x2 (Node x’1 z0 x’2) _.)); simpl; omega.
(x z = z0 *)
refine (andb (H x1 x’1 _) (H x2 x’2 _)); simpl ; omega.
(x z > z0 *)
refine (andb (H (Node Empty z x2) x’2 .)
(H x1 (Node x’1 z0 x’2) _.)); simpl ; omega.
Defined.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Extraction

Extraction well_founded_induction.
let rec well_founded_induction x a =
x a (fun y - — well_founded_induction x y)

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Extraction

Extraction well_founded_induction.
let rec well_founded_induction x a =
x a (fun y - — well_founded_induction x y)

Extraction Inline cardinal_rec2
Extraction subset.

gives the expected ML code

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

To sum up, defining an ML function in Coq and prove it correct
seems the obvious way, but it can be rather complex when the
function

> is partial, and/or

» is not structurally recursive

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Use of dependent types

Instead of
1. defining a pure function, and
2. proving its correctness

let us do both at the same time

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Use of dependent types

Instead of
1. defining a pure function, and
2. proving its correctness

let us do both at the same time

We can give Coq functions richer types that are specifications

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Use of dependent types

Instead of
1. defining a pure function, and
2. proving its correctness

let us do both at the same time

We can give Coq functions richer types that are specifications
Example
f:{n:Z|n>0}—{p:Z|prine p}

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The type {x : A| P}

Jean-Christophe Filliatre Coq t ial Program verification using Coq

The type {x : A| P}

Notation for sig A (fun x = P) where

Inductive sig (A : Set) (P : A — Prop) : Set :=
exist : Vx:A, P x — sig P

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The type {x : A| P}

Notation for sig A (fun x = P) where

Inductive sig (A : Set) (P : A — Prop) : Set :=
exist : Vx:A, P x — sig P

In practice, we adopt the more general specification

f:Vx:1m, Px—{y:m| Qxy}

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Example: the min_elt function

Definition min_elt
Vs, —s=Empty — bst s —
{m:Z | Inms AVx, Inx s — m<=x }.

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Example: the min_elt function

Definition min_elt
Vs, —s=Empty — bst s —
{m:Z | Inms AVx, Inx s — m<=x }.

We usually adopt a definition-by-proof
(which is now a definition-and-proof)

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Example: the min_elt function

Definition min_elt
Vs, —s=Empty — bst s —
{m:Z | Inms AVx, Inx s — m<=x }.

We usually adopt a definition-by-proof
(which is now a definition-and-proof)

Still the same ML program

Coq < Extraction sig.
type ’a sig = ’a
(* singleton inductive, whose constructor was exist *)

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Specification of a boolean function: {A}+{B}

Notation for sumbool A B where

Inductive sumbool (A : Prop) (B : Prop) : Set :=
| left : A — sumbool A B
| right : B — sumbool A B

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Specification of a boolean function: {A}+{B}

Notation for sumbool A B where

Inductive sumbool (A : Prop) (B : Prop) : Set :=
| left : A — sumbool A B
| right : B — sumbool A B

this is an informative disjunction

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Specification of a boolean function: {A}+{B}

Notation for sumbool A B where

Inductive sumbool (A : Prop) (B : Prop) : Set :=
| left : A — sumbool A B
| right : B — sumbool A B

this is an informative disjunction

Example:

Definition is_empty : Vs, { s=Empty } + { — s=Empty }.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Specification of a boolean function: {A}+{B}

Notation for sumbool A B where

Inductive sumbool (A : Prop) (B : Prop) : Set :=
| left : A — sumbool A B
| right : B — sumbool A B

this is an informative disjunction

Example:

Definition is_empty : Vs, { s=Empty } + { — s=Empty }.

Extraction is a boolean

Coq < Extraction sumbool.
type sumbool = Left | Right

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Variant sumor A+{B}

Inductive sumor (A : Set) (B : Prop) : Set :=
| inleft : A — A + {B}
| inright : B — A + {B}

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Variant sumor A+{B}

Inductive sumor (A : Set) (B : Prop) : Set :=
| inleft : A — A + {B}
| inright : B — A + {B}

Extracts to an option type

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Variant sumor A+{B}

Inductive sumor (A : Set) (B : Prop) : Set :=
| inleft : A — A + {B}
| inright : B — A + {B}

Extracts to an option type

Example:

Definition min_elt
Vs, bst s —
{m:Z | Inms AVx, Inxs — m<=x } + { s=Empty }.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The mem function

Hypothesis compare : Vx y, {x<y} + {x=y} + {x>y}.

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

The mem function

Hypothesis compare : Vx y, {x<y} + {x=y} + {x>y}.

Definition mem : Vx s, bst s — { In x s }+{ = (In x s) }.
Proof.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The mem function

Hypothesis compare : Vx y, {x<y} + {x=y} + {x>y}.

Definition mem : Vx s, bst s — { In x s }+{ = (In x s) }.
Proof.
induction s; intros.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The mem function

Hypothesis compare : Vx y, {x<y} + {x=y} + {x>y}.

Definition mem : Vx s, bst s — { In x s }+{ = (In x s) }.
Proof.

induction s; intros.

(* s = Empty *)

right; intro h; inversion_clear h.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Use of dependent types

The mem function

Hypothesis compare : Vx y, {x<y} + {x=y} + {x>y}.

Definition mem : Vx s, bst s — { In x s }+{ = (In x s) }.
Proof.

induction s; intros.

(* s = Empty *)

right; intro h; inversion_clear h.
(* s = Node s1 z s2 *)

destruct (compare x z) as [[h1l | h2] | h3].

Defined.

Jean-Christophe Filliatre

Coq tutorial Program verification using Coq

Use of dependent types

To sum up, using dependent types
» we replace a definition and a proof by a single proof

» the ML function is still available using extraction

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Use of dependent types

To sum up, using dependent types
» we replace a definition and a proof by a single proof

» the ML function is still available using extraction

On the contrary, it is more difficult to prove several properties of
the same function

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Modules and functors

Coqg has a module system similar to Objective Caml’s one

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Modules and functors

Coqg has a module system similar to Objective Caml’s one

Coq modules can contain definitions but also proofs, notations,
hints for the auto tactic, etc.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Modules and functors

Coqg has a module system similar to Objective Caml’s one

Coq modules can contain definitions but also proofs, notations,
hints for the auto tactic, etc.

As Ocaml, Coq has functors i.e. functions from modules to
modules

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

ML modules

module type OrderedType = sig

type t
val compare: t — t — int
end

module Make(Ord: OrderedType) : sig
type t
val empty : t
val mem : Ord.t — t — bool

end

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Coq modules

Module Type OrderedType.
Parameter t : Set.
Parameter eq : t — t — Prop.
Parameter 1t : t — t — Prop.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Coq modules

Module Type OrderedType.
Parameter t : Set.
Parameter eq : t — t — Prop.
Parameter 1t : t — t — Prop.
Parameter compare : Vx y, {1t x y}+{eq x y}+{1t y x}.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Coq modules

Module Type OrderedType.
Parameter t : Set.
Parameter eq : t — t — Prop.
Parameter 1t : t — t — Prop.
Parameter compare : Vx y, {1t x y}+{eq x y}+{1t y x}.

Axiom
Axiom
Axiom
Axiom
Axiom

eq_refl : Vx, eq x X.

eq_sym : VX y, eq X y — eq y X.

eq_trans : Vxy z, eqxy — eqy z — eq X Z.
lt_trans : Vx y z, 1t xy — 1t y z — 1t x z.
lt_not_eq : Vx y, 1t x y — —(eq x y).

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Coq modules

Module Type OrderedType.
Parameter t : Set.

Parameter eq : t — t — Prop.
Parameter 1t : t — t — Prop.
Parameter compare : Vx y, {1t x y}+{eq x y}+{1t y x}.

Axiom
Axiom
Axiom
Axiom
Axiom

eq_refl : Vx, eq x X.

eq_sym : VX y, eq X y — eq y X.

eq_trans : Vxy z, eqxy — eqy z — eq X Z.
lt_trans : Vx y z, 1t xy — 1t y z — 1t x z.
lt_not_eq : Vx y, 1t x y — —(eq x y).

Hint Immediate eq_sym.
Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.
End OrderedType.

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

The Coq functor for binary search trees

Module BST (X: OrderedType) .
Inductive tree : Set :=
| Empty
| Node : tree — X.t — tree — tree.

Fixpoint mem (x:X.t) (s:tree) {struct s} : bool := ...

Inductive In (x:X.t) : tree — Prop := ...
Hint Constructors In.

Inductive bst : tree — Prop :=

| bst_empty : bst Empty

| bst_node : Vx 1 r, bst 1 — bst r —
Vy, Iny 1l — X.1t y x) —

Jean-Christophe Filliatre Cogq tutorial Program verification using Coq

Conclusion

Coq is a tool of choice for the verification of purely functional
programs, up to modules

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Conclusion

Coq is a tool of choice for the verification of purely functional
programs, up to modules

ML or Haskell code can be obtained via program extraction

Jean-Christophe Filliatre Coq tutorial Program verification using Coq

Agda

Catarina Coquand

August 16, 2005

— Typeset by FollTEX —

Agda Catarina Coquand [1]

Background

e Agda is an interactive system for developing proofs in a variant of Martin-Lof's
type theory

e |t is based on the idea of direct manipulation of proof-term and not on tactics.
The proof is a term, not a script.

e The language has ordinary programming constructs such as data-types and
case-expressions, signatures and records, let-expressions and modules.

e Has an emacs-interface and a graphical interface, Alfa

— Typeset by Foil TEX — 1

Agda Catarina Coquand [2]

System

Agda is an interactive system.

e |t consists of a type checker and a termination checker
e Implemented in Haskell

e You will use a simpler version of Agda (with a small library)

— Typeset by Foil TEX — 2

Agda Catarina Coquand [3]

A proof of A — A

e The proof of A — A is the term Ax : A.x
e In Agda

\x -> x
—— alternative: \(x::A) -> x

e The syntax of Agda is rather close to Haskell

— Typeset by Foil TEX — 3

Agda

Catarina Coquand [4]

e Function definition

id (A::Set)
id = \a -> a

e Application:
id O

id ’c’

— Typeset by Foil TEX —

The identity function

A > A

Agda Catarina Coquand [5]

Syntactic Sugar for Function Definitions

id (A::Set) :: A —> A
i1d a = a

— Typeset by Foil TEX — 5

Agda Catarina Coquand [6]

Inbuilt type: Pairs

e Pairs are written A X B
e A pair is written (a,b)

e Projection functions

— fst :: A X B->A
—snd :: AXB->B

e Corresponds to logical and

— Typeset by Foil TEX — 6

Agda Catarina Coquand [7]

Rule for And

curry (A,B,C::Set) :: (AXB ->C) -> A ->B ->C
curry £ a b = f (a,b)

— Typeset by Foil TEX — 7

Agda Catarina Coquand [8]

And-elimination

Stating the &-elimination rule:

A B
C A& B
C

uncurry(A,B,C::Set) :: (A ->B ->C) ->AXB ->C

— Typeset by Foil TEX — 8

Agda Catarina Coquand [9]

Swap

Bengt's proof of A&B — B&A. We use the &-elimination i.e. uncurry

swap (A,B::Set) :: (AXB) -> B Xx A
swap p = uncurry (\x y -> (y,x)) p

— Typeset by Foil TEX — 9

Agda

Catarina Coquand [10]

Inbuilt Type: Booleans

e [ype is Bool
e Constructed by True and False

e \We have the ordinary if_then_else construction

— Typeset by Foil TEX —

10

Agda Catarina Coquand [11]

Inbuilt Types: Lists

e [ypeisList A

e Constructed by Nil and :

e The list [] is syntactic sugar for Nil

e The list [1,2,5] is syntactic sugar for 1:[2,5]

e The list [1,2,5] is syntactic sugar for 1:2:5:Nil

— Typeset by Foil TEX — 11

Agda

Catarina Coquand [12]

More Inbuilt Types

e Integer: Infinite integers with usual operations except division
e Char: Characters with some standard operations

e String: Strings are lists of characters

— Typeset by Foil TEX —

12

Agda

Catarina Coquand [13]

ex ..

ex

Let-expressions

We can also use let-notation

Integer

= let {

big :: Integer;

big = 12324567891234566789;
neg :: Integer;

neg = negate 1000;

¥

in big*neg

— Typeset by Foil TEX —

13

Agda

Catarina Coquand [14]

Layout rule

ex :: Integer
ex = let big :: Integer
big = 12324567891234566789
neg :: Integer
neg = negate 1000
in big*neg

— Typeset by FoilTEX —

14

Agda

Catarina Coquand [15]

Equality Type

e We write equality as a ==
e |t is reflexive, symmetric, transitive, and substitutive

e Equivalent to Leibniz-equality

— Typeset by FoilTEX —

15

Agda Catarina Coquand [16]

Typechecking a proof of Reflexivity

We have refId x is of type x == x,

refld 6 :: 6 == 6 -—— also the inferred type
refld 6 :: 2 x 3 =4+ 2
This is so since 6 == 6 and 23 == 4+ 2 are convertible. (See Herman Geuver's

note on type checking)

— Typeset by Foil TEX — 16

Agda Catarina Coquand [17]

Stating a Quantified Theorem

State that == is symmetrical: Vz yz ==y — y ===

symmEq (A::Set):: (x,y::A) > x ==y ->y ==X
symmEq x y =

Equivalent to

symmEq (A::Set) :: (x::A) -> (y::A) -> x ==y -> y ==
symmkEq X y =

— Typeset by Foil TEX — 17

Agda Catarina Coquand [18]

Defining Type Synonyms

Pred :: Set -> Type
Pred X = X -> Set

Rel :: Set -> Type
Rel X = X -> X -> Set

Symmetrical (X::Set) :: (R::Rel X) -> Set
Symmetrical R = (x1,x2::X) |-> (x1 ‘R‘ x2 -> x2 ‘R‘ x1)

symmEq (A::Set) :: Symmetrical (==
symmEq x1 x2 = ...

— Typeset by Foil TEX — 18

Agda

Catarina Coquand [19]

Language Constructions : Data Types

We introduce a new type by data-type construction

data Bool = True | False
data List (A::Set) = Nil | (:) (a::A) (1::List A)

— Typeset by Foil TEX —

19

Agda Catarina Coquand [20]

Language Constructions :Case Expressions

We can introduce implicitly defined constants by case-expressions. (Should be
thought of as defining functions with pattern-equations.)

(++)(A::Set) :: List A -> List A -> List A
(++) xs ys = case xs of

(Nil) -> ys

(x : x8’) —> x:x8’++ys

Has to cover all possible cases. The term xs ++ ys is on normal form.

— Typeset by Foil TEX — 20

Agda Catarina Coquand [21]

Elimination Rule for Lists

elimList (A ::Set)
(C::List A -> Set) ->
c [] —>
((x::A) -> (xs::List A) > C xs —> C (x:xs8)) —->
(xs::List A) ->
C xs
elimlLList C c_nil c_con xs =
case xs of
(Nil) -> c_nil
(x : x8’) -> c_con x xs’ (elimList C c_nil c_con xs’)

— Typeset by Foil TEX — 21

Agda Catarina Coquand [22]

Logic

e Or: data Plus (X,Y::Set) = Inl (x::X) | Inr (y::Y)
e Exists: data Sigma (X::Set) (Y::X -> Set) = dep_pair (x::X)(y::Y x)
e Truth: data Unit :: Set = unit

e Absurdity: data Empty :: Set =

— Typeset by Foil TEX — 22

Agda Catarina Coquand [23]

Or- elimination

elimPlus (X,Y::Set)
(C::Plus X Y -> Set) —>
(c_1ft::(x::X) -> C (Inl x)) ->
(c_rgt::(y::Y) -> C (Inr y)) ->
(xy::Plus X Y) —>
C xy
elimPlus C c_1lft c_rgt xy = case xy of
(Inl x) -> c_1ft x
(Inr y) -> c_rgt y

whenPlus (X,Y,Z::Set) :: (f::X > Z2) -> (g::Y -=> Z) -> (Plus X Y -> Z)
whenPlus = elimPlus (\h -> Z)

— Typeset by Foil TEX — 23

Agda Catarina Coquand [24]

Absurdity

data Empty :: Set =

elimEmpty :: (C::Empty -> Set) -> (z::Empty) -> C z
elimEmpty C z = case z of { }

whenEmpty :: (X::Set) -> Empty —> X
whenEmpty X z = case z of { }

Not :: Set -> Set

Not X = X -> Empty

absurdElim (A::Set) :: A -> Not A -> (X::Set) —> X
absurdElim h h’ X = whenEmpty X (h’ h)

— Typeset by Foil TEX — 24

Agda

Catarina Coquand [25]

Inductive families

idata (==) (X::Set) :: X -> X -> Set where
refId (x::X) :: (==) x x

Use elimination rules and not case for inductive families.

— Typeset by Foil TEX —

25

Agda Catarina Coquand [26]

Language Constructions : Structures/Signature

PlusSig :: (A::Set) -> Set
PlusSig A = sig

zer :: A

plus :: A -> A -> A

IntPluSig :: PlusSig Integer
IntPluSig = struct

zer :: Integer

zer =0

plus :: Integer -> Integer -> Integer
plus = (+)

— Typeset by Foil TEX — 26

Agda

Catarina Coquand [27]

Another Instance

ListPluSig :: (A::Set) -> PlusSig (List A)
ListPluSig A = struct

zer :: List A
zer = []
plus :: List A -> List A -> List A

plus = (++)

— Typeset by Foil TEX —

27

Agda Catarina Coquand [28]

Using Struct/Sig

f Integer
f = IntPlusSig.plus IntPlusSig.zer (IntPlusSig.zer +1)
f :: Integer
f = let open IntPlusSig use plus, zer
in plus zer (zer + 1)

— Typeset by Foil TEX — 28

Agda

Catarina Coquand

[29]

Packages

Packages

package Natural where
open Prelude wuse Pred
open Boolean use Bool, False, True

data Nat Zero | Succ (n::Nat)

natrec (C::Pred Nat) (bc::C Zero)
(ic::(n::Nat) -> Cn -> C (Succ n))

(m: :Nat)
:: Cm =
isZero (a::Nat) :: Bool

— Typeset by Foil TEX —

29

Agda Catarina Coquand [30]
Examples : typechecking
F :: Set
F = Bool
f Bool -> F
f =\a -> a

Gives an equality constraint:
Bool = F

We must compute F to see that they are equal.

— Typeset by Foil TEX —

30

Agda

Catarina Coquand [31]

Example : Typechecking

F :: (A::Set) -> Set
F=\A->A

f :: (B::Set) -> B -> F B
f =\B ->\a -> a

Gives the equality constraint:

B=FB

— Typeset by Foil TEX —

31

Agda Catarina Coquand [32]

Meta-variables

e A meta-variable can only occur in one typing constraint.

e The result of typechecking is a set of typing constraints and equality constraints
instead of a yes and no answer when type-checking terms with meta-variables.

e Using higher-order unification will sometimes (often) solve the constraints.

— Typeset by Foil TEX — 32

Agda Catarina Coquand [33]

Meta-variables

(A::Set) -> (a::A) —> A

f
f = \(B::Set) -> \(b::B) > 7

Is type correct if
B:Set,b: BF 7:B

— Typeset by Foil TEX — 33

Agda Catarina Coquand [34]
Examples Meta Variables ctd

f :: (A::Set) -> (a::A) > A

f = \(B::Set) -> \(b::?) -> b

Is type correct if
B : Sett 7 type

and
A= 1(B=A)

— Typeset by Foil TEX —

34

Agda Catarina Coquand [35]

Hidden Arguments

We do not have polymorhism, but hidden arguments
id (A::Set) :: A -> A
id a = a

id ’c’

Is translated into id |? ’c’

— Typeset by Foil TEX — 35

Agda Catarina Coquand [36]

Hidden Arguments ctd

We can write more explicitly

id :: (A::Set) |-> A -> A
id = \(A::Set) |-> \a -> a

id |Char ’c’

— Typeset by Foil TEX — 36

Agda Catarina Coquand [37]

Emacs-symbols

(global-set-key (kbd "C-*") (lambda () (interactive) (insert "\327")))
;35 Cartesian product
(global-set-key (kbd "C-.") (lambda () (interactive) (insert "\260")))

;555 Ring

(global-set-key (kbd "C-!") (lambda () (interactive) (insert "\254")))
;555 not

(global-set-key [f9] (lambda () (interactive) (insert "\330")))

;555 Empty set

(global-set-key [f10] (lambda () (interactive) (insert "\267"))) ;;;; M

(global-set-key [f11] (lambda () (interactive) (insert "\367")))

— Typeset by Foil TEX — 37

Agda Commands

[Agda-documentation team at AIST CVS]
August 15, 2005

Abstract
Contents
A List of commands 2
Al Agdamenu 2
A2 Goal commands. 3

A List of commands

All Agda commands can be invoked by key operations, or by selecting items in
menus. The commands which are effective in the whole of the code are found
in Agda menu in the menu bar. On the other hand, the commands for goals
are found in the popup menu by right-clicking on a goal. Most of items in goal
menu depend on the context.

Commands are classified to four categories roughly.

Necessary commands you must know.
Important commands used very often.

Often commands which help you use Agda effectively. You can do without
them.

A.1 Agda menu

Restart
key: C-c C-x C-c
category: often
(Re-)initializes the type-checker.

Quit

key: C-c C-q
category: necessary
Quits and cleans up after agda. If you do not want Emacs to warn in quiting
Emacs, then you should invoke this command every time.

Goto error
key: C-c
category: important

Jumps to the line the first error occurs.

Load
key: C-c C-x C-b
category: often
Reads and type-checks the current buffer.
Chase-load
key: C-c C-x RET
category: necessary
Reads and type-checks the current buffer and included files.

[

Show constraints
key: C-c C-e
category: often
Shows all constraints in the code. A constraint is an equation of two goals
or of a goal and an expression.

Compute
key: C-c C-x >
category: often
Compute a closed top-level expression. Does not reduce under lambda.

Suggest
key: C-c C-x C-s
category: often
Suggests suitable expressions.

Show goals
key: C-c C-x C-a
category: often
Shows all goals in the current buffer.

Next goal
key: C-c C-f
category: often
Moves the cursor to the next goal, if any.

Previous goal
key: C-c C-b
category: often
Moves the cursor to the previous goal, if any.

Undo
key: C-c C-u
category: important
Cancels the last Agda command or typing.

Text state
key: C-c
category: necessary
Resets agda to the state that the current buffer is loaded.

Check termination
key: C-c C-x C-t
category: often
Runs termination check on the current buffer. You will need to retype-check
the buffer.

Submitting bug report
key:
category:
(not implemented)

A.2 Goal commands.

When a goal is replaced with a new expression by the commands below, we
know that it is type-correct.

Give
key: C-c C-g
category: often
Substitute a given expression in the goal.

Intro
key: C-c TAB
category: often

Introduces the canonical expression of the type the goal i.e. an abstraction,
a record, or a constructor if only one possible exists

Refine
key: C-c C-r
category: important
Given an expression, e, this command will apply the minimum number of
meta-variables needed for the expression e 7 7 ..7 to be type-checkable

Refine(exact)
key: C-c C-s
category: often
Given a expression with arity n it applies n meta-variables to the given
expression.

Refine(projection)

key: C-c C-p

category: often

Refines the goal with a expression in a given package. For example, a

function cat is defined in the package OpList. When a goal is filled with
“OpList cat”, the Refine (projection) command accepts it and refine the goal
but refine command fails. (In case a goal is filled with “OpList.cat”, refine
command works.)

Case
key: C-c C-c
category: often
Makes a template of a case expression with a given formal parameter.

Let
key: C-c C-1
category: often
Makes a template of a let expression with given formal parameters.

Abstraction
key: C-c C-a
category: often
Makes a template of a function expression with given formal parameters.

Goal type
key: C-c C-t
category: often
Shows the type of the goal.

Goal type(unfolded)
key: C-c C-x C-r
category: often
Shows the reduced type of the goal.

Context
key: C-c |
category: important
Shows context (names already defined) of the goal.

Infer type
key: C-c :
category: important
Prompts an expression and infers the type of it, under the current context.

Infer type(unfolded)
key: C-c C-x :
category: often
Prompts an expression and infers the reduced type of it, under the current
context.

References

[1] Programming Logic Team at Chalmers and AIST. Agda, 2000. http://
www.coverproject.org/AgdaPage/.

[2] Lena Magnusson and Bengt Nordstrm. The alf proof editor and its proof
engine. In TYPES ’93: Proceedings of the international workshop on Types
for proofs and programs, pages 213-237. Springer-Verlag New York, Inc.,
1994.

[3] Nordstrom, B., Petersson, K. and Smith, J.M., Programming in Martin-
Léf’s Type Theory, available at
http://www.cs.chalmers.se/Cs/Research/Logic/book/.

[4] Nordstrém, B., Petersson, K. and Smith, J.M., Martin-Lif’s Type Theory,
pp. 1 - 37 in Handbook of Logic in Computer Science, vol. 5 (2000), Oxford
Science Publication.

http://www.coverproject.org/AgdaPage/
http://www.coverproject.org/AgdaPage/

In the library /usr/local/share/summerschool/agda/SummerSchool05 (on

Exercises in Agda

Catarina Coquand

August 11, 2005

the Summer School’s computers) you will find a small library with some stan-
dard files. It is good to look around in the different files.

1.

In the file with Exercises/Logic.agda, there are many basic exercises
on the Curry-Howard correspondence between propositions and sets and
in the file Exercises/ListProps.agda there is some exercises on lists

Formulate and prove in type theory

(WVz:A)FJy:B)Rzxy)— 3f: A— B)Vz: A)Rz (f)

This is a possible formulation of the axiom of choice. It was stressed by
Bishop that this form of axiom of choice is constructively valid.

In the file Nat.agda you can find the definition of natural numbers, Nat.
Define the equality, eqNat, on Nat by double recursion and show that
this equality is substitutive (if eqNat = y and P x., then P y

. Define the set of well-founded trees (well-orderings), W: given a family

of sets B(xz) over a set A, the set W A B has one constructor sup, where
supx f: W ABifz:Aand f: B(x) — W A B. Write the corresponding
elimination rule in Agda. Prove that

W AB— =(Vx: AB x)

that is, the two propositions W A B and II A B are incompatible. Explain
intuitively why
W AB—3x: A~(B x)

should not be provable in type theory.
Define the type

FAn = A—...—A— A
—_—

n

i.e. a function F' that takes a set A, a natural number, n, and returns a
set.

Use this type to define a tautology function, i.e. a function that takes as
arguments a number 7, a boolean function with n arguments, and returns
True if and only if this boolean function is a tautology.

. Let A be a set with a well-founded relation, <, on it. Show that if f :
Nat — A then =((Vn : Nat) f (n+1) < f n), i.e. there is no infinite
decreasing sequence. Show that if < is decidable then we have (3n :
Nat)=(f (n+1) < fn)

. Let A be aset with a well-founded relation, <, on it (see WellOrder.agda).
Prove that if A is inhabited we have

(Ve : A)(PaV(fz<z)))— Bx: AP

Explain how this proof corresponds to a “for-loop” program.

Introduction to Co-Induction in Coq

Yves Bertot

August 2005

Yves Bertot Introduction to Co-Induction in Coq

Motivation

Motivation

» Reason about infinite data-structures,

» Reason about lazy computation strategies,

» Reason about infinite processes, abstracting away from dates.

» Finite state automata,
» Temporal logic,
» Computation on streams of data.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Inductive types as least fixpoint types

» Inductive types are fixpoints of “abstract functions”,
» If {ci}icqa,...jy are the constructors of / and ¢; a1 --- ax is
well-typed then ¢; a; --- ax €/
» Fixpoint property also gives pattern-matching: if
¢G:Tipx - Tix—1land fi: Tj; -+ Tjx — B, then there
exists a single function ¢ : | — B such that
o(ciay... ag)="fiay -+ ak.
» Initiality:
» if f; are functions with type f; : T;1[A/I] - Ti«[A/I] — A,
then there exists a single function ¢ : I — A such that
¢(cr a1 -+ ax) =1 ay -+ a,, where al, = ¢(ap) if Tpm=1
and a,, = a,, otherwise.
> Initiality gives structural recursion.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Colnductive types

» Consider a type C with the first two fixpoint properties,

» Images of constructors are in C (the co-inductive type),

» Functions on C can be defined by pattern-matching,

» Take a closer look at pattern-matching:

» With pattern matching you can define a function
0c:C—(Tiu* % Tye)+(Torx -+ % Tpg)+ - so that
o(t)=(a1,...ak) € (T *--- Ty,) when t =c¢; a1 - a

» Replace initiality with co-initiality, i.e.,

> If
fiA— (Tix oo Ty)[A/Cl+(Tarx -+ x Top,)[A/Cl+- -+,
then there exists a single ¢ : A — C such that
#(a) =ci ay --- a), when f(a) = (Tix - Ty,)[A/C] and
ai = ¢(a;) if Tj = C and a} = aj otherwise.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Practical reading of theory

» For both kinds of types,
» constructors and pattern-matching can be used in a similar
way,
» For inductive types,
» Recursion is only used to consume elements of the type,
» Arguments of recursive calls can only be sub-components of
constructors,
» For co-inductive types,

» Co-recursion is only used to produce elements of the type,
» Co-recursive calls can only produce sub-components of
constructors.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Theory on an example

» Consider the two definitions:
Inductive list (A:Set) : Set :=
nil : list A | cons : A -> list A -> list A.
CoInductive Llist (A:Set) : Set :=
Lnil : Llist A
| Lcons : A -> Llist A -> Llist A.
Implicit Arguments Lcons.

» given values and functions v:B and f:A->B->B, we can define
a function phi : 1list A -> B by the following
Fixpoint phi (1:list A) : B :=
match 1 with
nil => v | const a t => f a (phi t)
end.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Theory on an example (continued)

» The “natural result type” of pattern-matching on inductive
lists is: unit+(A*list A)

Definition sigmal(A:Set)(l:1ist A):unit+(A*list A):
match 1 with
nil => inl (B:=Axlist A) tt
| cons a t1 => inr (A:=unit) (a,tl)
end.

» The natural result type of pattern matching on co-inductive
lists (type L1list) is similar: unit+(A*Llist A)

» We can define a co-recursive function phi : B -> Llist A
if we are able to inhabit the type B —> unit+(A*B).

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Categorical terminology

» In the category Set, collections of constructors define a
functor F,

» for a given object A, F(A) corresponds to the natural result
type for pattern-matching as described in the previous slide,

» An F-algebra is an object with a morphism F(A) — A,

» F-algebras form a category, and the inductive type is an initial
object in this category,

» An F-coalgebra is an object with a morphism A — F(A),

» F-coalgebras form a category, and the coinductive type is a
final object in this category.

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Co-Inductive types in Coq

» Syntactic form of definitions is similar to inductive types
(given a few frames before),

» pattern-matching with the same syntax as for inductive types.

» Elements of the co-inductive type can be obtained by:

» Using the constructors,
» Using the pattern-matching construct,
» Using co-recursion.

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Constructing co-inductive elements

Definition 11123 :=
Lcons 1 (Lcons 2 (Lcons 3 (Lnil nat))).
Fixpoint list_to_1llist (A:Set) (1:list A)
{struct 1} : Llist A :=
match 1 with
nil => Lnil A
| a::tl => Lcons a (list_to_llist A tl1)
end.
Definition 11123’ := list_to_llist nat (1::2::3::nil).

» list_to_1list uses plain structural recursion on lists and
plain calls to constructors.

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Infinite elements

» list_to_1llist shows that 1ist A is isomorphic to a subset
of Llist A

» Lists in 1ist A are finite, recursive traversal on them
terminates,

» There are infinite elements:
CoFixpoint lones : Llist nat := Lcons 1 lones.

» lomnes is the value of the co-recursive function defined by the
finality statement for the following £:
Definition f : wunit -> unit+(nat*unit) :=

fun _ => inr unit (1,tt).

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Infinite elements (continued)

» Here is a definition of what is called the finality statement in
this lecture:
CoFixpoint Llist_finality
(A:Set) (B:Set) (f:B->unit+(A*B)) :B->Llist A:=
fun b:B => match f b with
inl tt => Lnil A
| inr (a,b2) => Lcons a (Llist_finality A B f b2)
end.

» The finality statement is never used in Coq.

» Instead syntactic check on recursive definitions
(guarded-by-constructors criterion).

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Streams

CoInductive stream (A:Set) : Set :=
Cons : A -> stream A -> stream A.
Implicit Arguments Cons.

» an example of type where no element could be built without
co-recursion.
CoFixpoint nums (n:nat) : stream nat :=
Cons n (nums (n+1)).

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Computing with co-recursive values

» Unleashed unfolding of co-recursive definitions would lead to
infinite reduction,

» A redex appears only when patern-matching is applied on a
co-recursive value.

» Unfolding is performed (only) as needed.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Proving properties of co-recursive values

Definition Llist _decompose (A:Set)(1:Llist A) : Llist
A :=

match 1 with Lnil => Lnil A | Lcons a tl => Lcons a
tl end.
Implicit Arguments Llist_decompose.

» Proofs by pattern-matching as in inductive types.

Theorem Llist_dec_thm :
forall (A:Set)(1l:Llist A), 1 = Llist _decompose 1.
Proof.
intros A 1; case 1; simpl; trivial.
Qed.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Unfolding techniques

» The theorem Llist_dec_thm is not just an example,
» A tool to force co-recursive functions to unfold.

» Create a redex that maybe reduced by unfolding recursion.

Theorem lones_dec : Lcons 1 lones = lones.
simpl.

Lcons 1 lones = lones
pattern lones at 2; rewrite (Llist_dec_thm nat lones);
simpl.

Lcons 1 lones = Lcons 1 lones

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Proving equality

» Usual equality is an “inductive concept” with no recursion,
» Co-recursion can only provide new values in co-recursive types,
» Need a co-recursive notion of equality.
»

Express that two terms are “equal” when then cannot be
distinguished by any amount of pattern-matching,

v

specific notion of equality for each co-inductive type.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Co-inductive equality

CoInductive bisimilar (A:Set) : Llist A -> Llist A
-> Prop :=
bisim0 : bisimilar A (Lnil A) (Lnil A)
| bisiml : forall x t1 t2, bisimilar A t1 t2 —>
bisimilar A (Lcons x t1) (Lcons x t2).

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Proofs by Co-induction

» Use a tactic cofix to introduce a co-recursive value,

» Adds a new hypothesis in the context with the same type as
the goal,

» The new hypothesis can only be used to fill a constructor’s
sub-component,

» Non-typed criterion, the correctness is checked using a
Guarded command.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Example material

CoFixpoint lmap (A B:Set)(f:A -> B)(1:Llist A)
Llist B :=
match 1 with
Lnil => Lnil B
| Lcons a tl => Lcons (f a) (Imap A B f tl)
end.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Example proof by co-induction

Theorem lmap bi’ : forall (A:Set)(1l:Llist A),
bisimilar A (lmap A A (fun x => x) 1) 1.

cofix.

1 subgoal

Imap_bi’ : forall (A : Set) (I : Llist A),
bisimilar A (Imap A A (funx : A= x) I) |

forall (A : Set) (I : Llist A),
bisimilar A (Imap A A (fun x : A=>x) 1) |

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Example proof by co-induction (continued)

intros A 1; rewrite
(Llist_dec_thm _ (lmap A A (fun x=>x) 1)); simpl.

bisimilar A

match
match | with
| Lcons a tl => Lcons a (Imap A A (fun x : A => x) tl)
| Lnil = Lnil A
end

with

| Lcons a tl => Lcons a tl

| Lnil = Lnil A

end |

Proof techniques

Example proof by co-induction (continued)

forall (a: A) (10 : Llist A),
bisimilar A (Lcons a (Imap A A (fun x : A => x) 10)) (Lcons a 10)

subgoal 2 is:
bisimilar A (Lnil A) (Lnil A)

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Example proof by co-induction (continued)

intros a k; apply bisiml.

Imap_bi’ : forall (A : Set) (I : Llist A),
bisimilar A (Imap A A (fun x : A= x) I) |

bisimilar A (Imap A A (fun x : A => x) k) k
» A constructor was used, the recursive hypothesis can be used.

apply lmap_bi’.
apply bisimO.
Qed.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Minimal real arithmetics

» Represent the real numbers in [0,1] as infinite sequences of
bits,

» add a third bit to make computation practical.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Redundant floating-point representations

» In usual represenation 1/2 is both 0.01111... and 0.1000. . .,

» Every number p/2" where p and n are integers has two
representations,

» Other numbers have only one,

» A number whose prefix is 0.1010... (but finite) is a number
that can be bigger or smaller than 1/3,

» When computing 1/3 + 1/6 we can never decide what should
be the first bit of the result.

» Problem solved by adding a third bit : Now L, C, or R.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Explaining redundancy

» A number of the form L. .. isin [0,1/2], (like a number of
the form 0.0...),
» A number of the form R. .. isin [1/2,1], (like a number of the
form 0.1...),
» A number of the form C... isin [1/4,3/4].
» Taking an infinite stream of bits and adding a L in front
divides by 2,
» Adding a R divides by 2 and adds 1/2,
» Adding a C divides by 2 and adds 1/4.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Coq encoding

Inductive idigit : Set :=L | C

CoInductive represents
Rdefinitions.R -> Prop :

reprlL : forall s r,
(0 <= r <=
represents

| reprR : forall s r,
(0 <=1 <=
represents

| reprC : forall s r,
(0 <= r <=
represents

stream
represents
1)%R ->
(Cons L s)
represents
DY%R ->
(Cons R s)
represents
1)%R ->
(Cons C s)

idigit ->
s r —->

(r/2)

s r —>

((r+1)/2)

s r —->

((2%r+1)/4).

Yves Bertot Introduction to Co-Induction in Coq

Example application

Encoding rational numbers

CoFixpoint rat_to_stream (a b:Z) : stream idigit :=
if Z_le_gt_dec (2*a) b then
Cons L (rat_to_stream (2*a) b)
else
Cons R (rat_to_stream (2*a-b) b).

Yves Bertot Introduction to Co-Induction in Coq

Example application

Affine combination of redundant digit streams

» compute the representation of

a b c

T T
where x and y are real numbers in [0,1] given by redundant
digit streams, and a--- ¢’ are positive integers (non-zero when
relevant).

» if 2c > ¢’ then the result has the form Rz where z is

2a 2b 2c — ¢

C/

Yves Bertot Introduction to Co-Induction in Coq

Example application

Computation of other digits

» Similar sufficient condition to decide on Cz and Lz, for
suitable values of z:

| 4

b 1
— —|— b —|— 5 produce L
c b
— Za d— + = b + — < 3/4 produce C
> if 5+ g is small enough, you can produce a digit,

» But sometimes necessary to observe x and y.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Consuming input

» if x and y are Lx” and Ly’, then

a b c
Ty T

is also
ix’ + i ’+ £
24’ 2b’y c

» Condition for outputting a digit may still not be ensured, but

a b 1l a b

27 tay =2zt)

» Similar for other possible forms of x and y.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Coq encoding

» Use a well-founded recursive function to consume from x and
y until the condition is ensured to produce a digit,

» Produce a digit and perform a co-recursive call,

» This style of decomposition between well-founded part and
co-recursive is quite powerful (not documented in Coq'Art,
though).

Yves Bertot Introduction to Co-Induction in Coq

Introduction to the Why tool

Jean-Christophe Fillidtre
CNRS - Université Paris Sud

TYPES summer school — August 25th, 2005

Jean-Christophe Fillidtre Introduction to the Why tool

Provers based on HOL are suitable tools to verify purely functional
programs (see Tuesday's lecture)

Jean-Christophe Fillidtre Introduction to the Why tool

Provers based on HOL are suitable tools to verify purely functional
programs (see Tuesday's lecture)

What if you want to verify an imperative program with your
favorite prover?

Jean-Christophe Fillidtre Introduction to the Why tool

L
Usual methods

» Floyd-Hoare logic
» Dijkstra’s weakest preconditions

Jean-Christophe Fillidtre Introduction to the Why tool

L
Usual methods

» Floyd-Hoare logic

» Dijkstra’s weakest preconditions

» could be formalized in the prover (deep embedding)

» could be applied by a tactic (shallow embedding)

Jean-Christophe Fillidtre Introduction to the Why tool

L
Usual methods

» Floyd-Hoare logic

» Dijkstra’s weakest preconditions

» could be formalized in the prover (deep embedding)

» could be applied by a tactic (shallow embedding)

= would be specific to this prover

Jean-Christophe Fillidtre Introduction to the Why tool

BN
Which programming language?

a realistic existing programming language such as C or Java?

Jean-Christophe Fillidtre Introduction to the Why tool

BN
Which programming language?

a realistic existing programming language such as C or Java?

» many constructs = many rules

Jean-Christophe Fillidtre Introduction to the Why tool

BN
Which programming language?

a realistic existing programming language such as C or Java?

» many constructs = many rules

» would be specific to this language

Jean-Christophe Fillidtre Introduction to the Why tool

BN
The Why tool

makes program verification

» prover-independent but prover-aware

Jean-Christophe Fillidtre Introduction to the Why tool

BN
The Why tool

makes program verification
» prover-independent but prover-aware

» language-independent

Jean-Christophe Fillidtre Introduction to the Why tool

BN
The Why tool

makes program verification
» prover-independent but prover-aware

» language-independent

so that we can use it to verify C, Java, etc. programs with HOL
provers but also with FO decision procedures

Jean-Christophe Fillidtre Introduction to the Why tool

I
An intermediate language

Java C
v v

Why

7 LSS

Coq PVS HOL Mizar Simplify haRVey CVC

verification conditions

Jean-Christophe Fillidtre Introduction to the Why tool

N
Outline

1. A language for program verification
> syntax

> typing
» semantics

Jean-Christophe Fillidtre Introduction to the Why tool

N
Outline

1. A language for program verification
> syntax

> typing
» semantics

2. Proof rules

Jean-Christophe Fillidtre Introduction to the Why tool

N
Outline

1. A language for program verification
> syntax
> typing
> semantics
2. Proof rules
3. The WHY tool
» Dijkstra's Dutch flag

Jean-Christophe Fillidtre Introduction to the Why tool

Outline
1. A language for program verification
> syntax
> typing

» semantics

2. Proof rules
3. The WHY tool
» Dijkstra's Dutch flag

N

. Verification of C programs

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification

Part |

A language for program verification

Jean-Christophe Fillidtre Introduction to the Why tool

The essence of Hoare logic assignment rule

{Plx—E]}x := E{P}

Jean-Christophe Fillidtre Introduction to the Why tool

The essence of Hoare logic assignment rule

{Plx—E]}x := E{P}

1. absence of aliasing

Jean-Christophe Fillidtre Introduction to the Why tool

The essence of Hoare logic assignment rule

{Plx—E]}x := E{P}

1. absence of aliasing

2. side-effects free E shared between program and logic

Jean-Christophe Fillidtre Introduction to the Why tool

Data types

Any purely applicative data type from the logic can be used in
programs

Jean-Christophe Fillia Introduction to the Why tool

Data types

Any purely applicative data type from the logic can be used in
programs

Example: a data type int for integers with constants 0, 1, etc.
and operations +, *, etc.
The pure expression 1+2 belongs to both programs and logic

Jean-Christophe Fillidtre Introduction to the Why tool

Data types

Any purely applicative data type from the logic can be used in
programs

Example: a data type int for integers with constants 0, 1, etc.
and operations +, *, etc.
The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable)
containing only pure values,

Jean-Christophe Fillidtre Introduction to the Why tool

Data types

Any purely applicative data type from the logic can be used in
programs

Example: a data type int for integers with constants 0, 1, etc.
and operations +, *, etc.
The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable)
containing only pure values, with no possible alias between two
different references

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
ML syntax

No distinction between expressions and statements
= less constructs
= less rules

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !'x

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !'x
assignment x :=e

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !'x
assignment x :=e
local variable let x =¢e; in e

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable
local reference

=¢ in &
ref e; in &

=
o O
o o
X X
no

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x =¢e; in e
local reference 1let x = ref e; in &
conditional if e; then e else e3

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x =¢e; in e
local reference 1let x = ref e; in &
conditional if e; then e else e3
loop while e; do e done

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x =¢e; in e
local reference 1let x = ref e; in &
conditional if e; then e else e3
loop while e; do e done

sequence e1; & = let _=¢ in &

Jean-Christophe Fillidtre Introduction to the Why tool

Annotations

» assert {p}; e
> e {p}

Jean-Christophe Fillidtre Introduction to the Why tool

Annotations

» assert {p}; e
> e {p}

Examples:
» assert {x > 0}; 1/x

Jean-Christophe Fillia Introduction to the Why tool

Annotations

» assert {p}; e
> e {p}

Examples:
» assert {x > 0}; 1/x
» x :=0 {!x=0}

Jean-Christophe Fillidtre Introduction to the Why tool

Annotations

» assert {p}; e
> e {p}

Examples:
» assert {x > 0}; 1/x
» x :=0 {!x=0}
» if !x > !y then !x else !y {result > 'x A result > !y}
> x :=Ix+1{!x>o0ld(!x)}

Jean-Christophe Fillidtre Introduction to the Why tool

Annotations (cont'd)

Loop invariant and variant

» while e; do {invariant p variant t} e, done

Jean-Christophe Fillidtre Introduction to the Why tool

Annotations (cont'd)

Loop invariant and variant

» while e; do {invariant p variant t} e, done

Example:

while !'x < N do
{ invariant !x < N variant N — !x }
x:=Ix+1

done

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
Functions

A function declaration introduces a precondition

» fun (x:7) — {p} e

Jean-Christophe Fillia Introduction to the Why tool

A language for program verification
Functions

A function declaration introduces a precondition
» fun (x:7) — {p} e
> rec f (x1:71)...(xp: 7p): 0 {variant t} = {p} e

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
Functions

A function declaration introduces a precondition
» fun (x:7) — {p} e
> rec f (x1:71)...(xp: 7p): 0 {variant t} = {p} e

Example:

fun (x :int ref) — {Ix >0} x :=!x—1 {!x >0}

Jean-Christophe Fillidtre Introduction to the Why tool

Modularity

A function declaration extends the ML function type with a
precondition, an effect and a postcondition

x:1 — {p} ™ readsxi,...,x, writesyi,...,ym{q}

Jean-Christophe Fillidtre Introduction to the Why tool

Modularity

A function declaration extends the ML function type with a
precondition, an effect and a postcondition

x:1 — {p} ™ readsxi,...,x, writesyi,...,ym{q}
Example:

swap : x:int ref — y :int ref —
{}unit writes x,y {!x =01d(!y) A !y =old('x)}

Jean-Christophe Fillidtre Introduction to the Why tool

Auxiliary variables

Used to denote the intermediate values of variables

Jean-Christophe Fillia Introduction to the Why tool

Auxiliary variables

Used to denote the intermediate values of variables

Example: ... {Ix=X} ... {Ix> X} ...

Jean-Christophe Fillidtre Introduction to the Why tool

Auxiliary variables

Used to denote the intermediate values of variables
Example: ... {Ix=X} ... {Ix> X} ...

We will use labels instead
» new construct L:e

> new annotation at(t, L)

Jean-Christophe Fillidtre Introduction to the Why tool

Auxiliary variables

Used to denote the intermediate values of variables
Example: ... {Ix=X} ... {Ix> X} ...

We will use labels instead
» new construct L:e

> new annotation at(t, L)

Example:

L :while ... do { invariant !x > at(!x,L) ... }
done

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
Exceptions

Finally, we introduce exceptions in our language

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
Exceptions

Finally, we introduce exceptions in our language
» a more realistic ML fragment

» to interpret abrupt statements like return, break or
continue

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification

Exceptions

Finally, we introduce exceptions in our language
» a more realistic ML fragment

» to interpret abrupt statements like return, break or
continue

new constructs

» raise (Ee): 7

> try e with E x — e end

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
Exceptions

The notion of postcondition is extended

if x < 0 then raise Negative else sqrt x
{ result > 0 | Negative = x < 0 }

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
Exceptions

The notion of postcondition is extended

if x < 0 then raise Negative else sqrt x
{ result > 0 | Negative = x < 0 }

So is the notion of effect

div:x:int — y :int — {...}int raises Negative{...}

Jean-Christophe Fillidtre Introduction to the Why tool

Loops and exceptions

We can replace the while loop by an infinite loop

» loop e {invariant p variant t}

Jean-Christophe Fillidtre Introduction to the Why tool

Loops and exceptions

We can replace the while loop by an infinite loop

» loop e {invariant p variant t}

and simulate the while loop using an exception

while e; do {invariant p variant t} e; done =
try
loop if e; then e else raise Exit
{invariant p variant t}
with Exit _ -> void end

Jean-Christophe Fillidtre Introduction to the Why tool

Loops and exceptions

We can replace the while loop by an infinite loop

» loop e {invariant p variant t}

and simulate the while loop using an exception

while e; do {invariant p variant t} e; done =
try
loop if e; then e else raise Exit
{invariant p variant t}
with Exit _ -> void end

simpler constructs = simpler typing and proof rules

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
Summary

Types
T = [|Bref|(x:7) >k
ko= {p}Tela)
g === pE=p.. E=p
€ == readsx,...,x writes x,...,xraises E,... E

Jean-Christophe Fillia

Introduction to the Why tool

A language for program verification
Summary

Types
T = [|Bref|(x:7) >k
ko= {p}Tela)
qg == pE=p;...; E=p
€ == readsx,...,x writes x,...,xraises E,... E

Annotations

t o= c|x|'x]|o(t,...,t) | old(t) | at(t, L)
p == True| False | P(t,...,t)
| p=plpAplpVp|—-p|V¥x:B.p|3x:pBp

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification

Programs

u
e

clx|'x|oCu,...,u)

u

X :i=e

let x=eine

let x=ref eine

if e then e else e

loop e {invariant p variant t}
L:e

raise (E e): 7

try e with E x — e end

assert {p}; e

e {q}

fun (x:7) — {p} e

rec x (x:7)...(x:7): 0 {variant t} = {p} e
ee

Jean-Christophe Fillidtre Introduction to the Why tool

Typing

A typing judgment
MN-e: (7€)

Rules given in the notes (page 24)

Jean-Christophe Fillidtre Introduction to the Why tool

Typing

A typing judgment
MN-e: (7€)

Rules given in the notes (page 24)

The main purpose is to exclude aliases
In particular, references can't escape their scopes

Jean-Christophe Fillidtre Introduction to the Why tool

A language for program verification
Semantics

Call-by-value semantics, with left to right evalutation

Big-step operational semantics given in the notes (page 26)

Jean-Christophe Fillidtre Introduction to the Why tool

Proof rules

Part [l

Proof rules

Jean-Christophe Fillidtre Introduction to the Why tool

Weakest preconditions

We define the predicate wp(e, q), called the weakest precondition
for program e and postcondition g

Jean-Christophe Fillidtre Introduction to the Why tool

Weakest preconditions

We define the predicate wp(e, q), called the weakest precondition
for program e and postcondition g

Property: If wp(e, q) holds, then e terminates and g holds at the
end of execution (and all inner annotations are verified)

Jean-Christophe Fillidtre Introduction to the Why tool

Weakest preconditions

We define the predicate wp(e, q), called the weakest precondition
for program e and postcondition g

Property: If wp(e, q) holds, then e terminates and g holds at the
end of execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions

Jean-Christophe Fillidtre Introduction to the Why tool

Weakest preconditions

We define the predicate wp(e, q), called the weakest precondition
for program e and postcondition g

Property: If wp(e, q) holds, then e terminates and g holds at the
end of execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions

The correctness of an annotated program e is thus wp(e, True)

Jean-Christophe Fillidtre Introduction to the Why tool

Definition of wp(e, q)

We actually define wp(e, g; r) where
» g is the “normal” postcondition

» r=E = q1;...; E, = g, is the set of “exceptional” post.

Jean-Christophe Fillidtre Introduction to the Why tool

Basic constructs

wp(u, q; r) = q[result — u]

Jean-Christophe Fillidtre Introduction to the Why tool

Basic constructs

wp(u, q; r) = q[result — u]

wp(x := e, q;r) = wp(e, q[result «— void; x « result]; r)

Jean-Christophe Fillidtre Introduction to the Why tool

Basic constructs

wp(u, q; r) = q[result — u]

wp(x := e, q;r) = wp(e, q[result «— void; x « result]; r)

wp(let x = e1 in e, q; r) = wp(er, wp(ez, q; r)[x < result]; r)

Jean-Christophe Fillidtre Introduction to the Why tool

Basic constructs

wp(u, q; r) = q[result — u]

wp(x := e, q;r) = wp(e, q[result «— void; x « result]; r)

wp(let x = e1 in e, q; r) = wp(er, wp(ez, q; r)[x < result]; r)

wp(let x =ref e; in ey, q; r) = wp(e1, wp(ez, q; r)[! x < result]; r)

Jean-Christophe Fillidtre Introduction to the Why tool

Basic constructs

wp(u, q; r) = q[result — u]

wp(x := e, q;r) = wp(e, q[result «— void; x « result]; r)

wp(let x = e1 in e, q; r) = wp(er, wp(ez, q; r)[x < result]; r)

wp(let x =ref e; in ey, q; r) = wp(e1, wp(ez, q; r)[! x < result]; r)

wp(if e; then e else e3,q;r) =
wp(er, if result then wp(ey, q;r) else wp(es, q;r);r)

Jean-Christophe Fillidtre Introduction to the Why tool

Basic constructs

wp(u, q; r) = q[result — u]

wp(x := e, q;r) = wp(e, q[result «— void; x « result]; r)

wp(let x = e1 in e, q; r) = wp(er, wp(ez, q; r)[x < result]; r)

wp(let x =ref e; in ey, q; r) = wp(e1, wp(ez, q; r)[! x < result]; r)

wp(if e; then e else e3,q;r) =
wp(er, if result then wp(ey, q;r) else wp(es, q;r);r)

wp(L:e,q; r) = wp(e, q; r)[at(x, L) — x]

Jean-Christophe Fillidtre Introduction to the Why tool

Traditional rules

Assignment of a side-effects free expression

wp(x = u,q) = q[x — u]

Jean-Christophe Fillidtre Introduction to the Why tool

Traditional rules

Assignment of a side-effects free expression

wp(x = u,q) = q[x — u]

Exception-free sequence

wp(er; e, q) = wp(er, wp(e2,q))

Jean-Christophe Fillidtre Introduction to the Why tool

Exceptions

wp(raise (E e):7,q;r) = wp(e, r(E);r)

Jean-Christophe Fillidtre Introduction to the Why tool

Exceptions

wp(raise (E e):7,q;r) = wp(e, r(E);r)

wp(try e; with E x — ey end, q;r) =
wp(e1, q; E = wp(ez, q; r)[x « result]; r)

Jean-Christophe Fillidtre Introduction to the Why tool

Annotations

wp(assert {p}; e,q;r) = pAwp(e, q;r)

Jean-Christophe Fillidtre Introduction to the Why tool

Annotations

wp(assert {p}; e,q;r) = pAwp(e, q;r)

wp(e {q;r'},qir) =wp(e,q' Agir' Ar)

Jean-Christophe Fillidtre Introduction to the Why tool

Loops

wp(loop e {invariant p variant t},q;r) =
p A Vw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Jean-Christophe Fillidtre Introduction to the Why tool

Loops

wp(loop e {invariant p variant t},q;r) =
p A Vw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Usual while loop

wp(while e; do {invariant p variant t} e; done,q;r)

Jean-Christophe Fillidtre Introduction to the Why tool

Loops

wp(loop e {invariant p variant t},q;r) =
p A Vw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e
Usual while loop
wp(while e; do {invariant p variant t} e; done,q;r)

=p A Yw. p=>
wp(L:if e; then e, else raise E,pAt < at(t,L),E = q;r)

Jean-Christophe Fillidtre Introduction to the Why tool

Loops

wp(loop e {invariant p variant t},q;r) =
p A Vw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Usual while loop

wp(while e; do {invariant p variant t} e; done,q;r)

=p A Yw. p=>

wp(L:if e; then e, else raise E,pAt < at(t,L),E = q;r)

=p A Yw.p=

wp(e1, if result then wp(ex, p At < at(t, L)) else q,r)[at(x, L) « x]

Jean-Christophe Fillidtre Introduction to the Why tool

Functions

wp(fun (x: 7) — {p} e,q;r) =q N VYx.Vp.p = wp(e, True)

Jean-Christophe Fillidtre Introduction to the Why tool

Functions

wp(fun (x: 7) — {p} e,q;r) =q N VYx.Vp.p = wp(e, True)

wp(rec f (xy :71)...(Xp: 7n) : 7 {variant t} = {p} e, q; r)
=q A Vx1....¥x,.Vp.p = wp(L:e, True)

when computing wp(L: e, True), f is assumed to have type

(x1:711) == (xn:mn) = {pAt<at(t,L)} 7 e{q}

Jean-Christophe Fillidtre Introduction to the Why tool

Function call

Simplified using

€1 & =1let x; =€ in let xop = & in x3 X

Jean-Christophe Fillidtre Introduction to the Why tool

Function call

Simplified using
e1 e =1let xy =€ in let xop = & in X1 Xo
Assuming
xi o (xim) = {7 e{d}
we define

wp(x1 x2, q) = p'[x < xao] A Vw.Vresult.(q'[x < x2] = q)[old(t) « t]

Jean-Christophe Fillidtre Introduction to the Why tool

The WHY tool

Part Il

The WHY tool

Jean-Christophe Fillidtre Introduction to the Why tool

Dijkstra’'s Dutch national flag

Goal: to sort an array where elements only have three different
values (blue, white and red)

Jean-Christophe Fillidtre Introduction to the Why tool

Dijkstra’'s Dutch national flag

Goal: to sort an array where elements only have three different
values (blue, white and red)

0 b i T n
] BLUE WHITE \...todo...\ RED

Jean-Christophe Fillidtre Introduction to the Why tool

A few lines of C code

typedef enum { BLUE, WHITE, RED } color;

void swap(int t[], int i, int j) {
color ¢ = t[il; t[i] = t[j]; t[j] = c;
}

void flag(int t[], int n) {
int b =0, i = 0, r = n;
while (i < r) {
switch (t[i]) {
case BLUE: swap(t, b++, i++); break;
case WHITE: i++; break;
case RED: swap(t, --r, i); break;
}
}
}

Jean-Christophe Fillidtre Introduction to the Why tool

Modelization

We are not verifying the C code, but rather the algorithm

Jean-Christophe Fillidtre Introduction to the Why tool

The WHY tool

Modelization

We are not verifying the C code, but rather the algorithm

We model
» colors with an abstract datetype

> arrays using references containing functional arrays

Jean-Christophe Fillidtre Introduction to the Why tool

An abstract type for colors

type color

logic blue : color

logic white : color

logic red : color

predicate is_color(c:color) = c=blue or c=white or c=red
parameter eq_color

cl:color — c2:color —
{} bool { if result then cl=c2 else cl#c2 }

Jean-Christophe Fillidtre Introduction to the Why tool

The WHY tool

Functional arrays

type color_array

logic acc : color_array, int — color
logic upd : color_array, int, color — color_array

axiom acc_upd_eq :
Va:color_array. Vi:int. Vc:color.
acc(upd(a,i,c),i) = c

axiom acc_upd_neq :

Va:color_array. Vi,j:int. Vc:color.
i # j — acc(upd(a,j,c),i) = acc(a,i)

Jean-Christophe Fillidtre Introduction to the Why tool

Array bounds

logic length : color_array — int
axiom length_update :

Va:color_array. Vi:int. Vc:color.
length(upd(a,i,c)) = length(a)

Jean-Christophe Fillidtre Introduction to the Why tool

Array bounds

logic length : color_array — int

axiom length_update :
Va:color_array. Vi:int. Vc:color.
length(upd(a,i,c)) = length(a)

parameter get
t:color_array ref — i:int —
{ 0<=i<length(t) } color reads t { result=acc(t,i) }

parameter set

t:color_array ref — i:int — c:color —
{ 0<=i<length(t) } unit writes t { t=upd(t@,i,c) }

Jean-Christophe Fillidtre Introduction to the Why tool

The WHY tool

The swap function

let swap (t:color_array ref) (i:int) (j:int) =
{ 0 <= i < length(t) and 0 <= j < length(t) }

let u=get t i in
set t 1 (get t j);
set t ju

upd (upd (t@,i,acc(t@,j)), j, acc(t@,i)) }

{t

Jean-Christophe Fillidtre Introduction to the Why tool

The WHY tool

The swap function

let swap (t:color_array ref) (i:int) (j:int) =
{ 0 <= i < length(t) and 0 <= j < length(t) }

let u=get t i in

set t 1 (get t j);

set t ju

{ t = upd(upd(t@,i,acc(t@,j)), j, acc(t@,i)) }

5 proofs obligations
» 3 automatically discharged by WHY
» 2 left to the user (and automatically discharged by Simplify)

Jean-Christophe Fillidtre Introduction to the Why tool

Function code

let dutch_flag (t:color_array ref) (m:int) =
let b = ref 0 in
let i = ref 0 in
let r = ref n in
while !i < !r do
if eq_color (get t !'i) blue then begin
swap t !'b !i;

b :=1!b + 1;
i=11+1
end else if eq_color (get t !i) white then
i=11+1
else begin
r := !r - 1;

swap t !r !i
end
done

Jean-Christophe Fillidtre Introduction to the Why tool

Function specification

predicate monochrome(t:color_array,i:int,j:int,c:color) =
Vk:int. i<=k<j — acc(t,k)=c

Jean-Christophe Fillidtre Introduction to the Why tool

Function specification

predicate monochrome(t:color_array,i:int,j:int,c:color) =
Vk:int. i<=k<j — acc(t,k)=c

let dutch_flag (t:color_array ref) (n:int) =
{ 0 <= n and length(t) = n and
Vk:int. 0 <= k < n — is_color(acc(t,k)) }

{ db:int. Jr:int.
monochrome (t,0,b,blue) and
monochrome (t,b,r,white) and
monochrome(t,r,n,red) }

Jean-Christophe Fillidtre Introduction to the Why tool

The WHY tool

Loop invariant

while !i < !r do
{ invariant 0 <= b <= i and i <= r <= n and
monochrome (t,0,b,blue) and
monochrome(t,b,i,white) and
monochrome(t,r,n,red) and
length(t) = n and

Vk:int. 0 <= k < n — is_color(acc(t,k))
variant r - i }

done

Jean-Christophe Fillidtre Introduction to the Why tool

The WHY tool

Proof obligations

11 proof obligations
loop invariant holds initially

loop invariant is preserved and variant decreases (3 cases)

>

>

» swap precondition (twice)

> array access within bounds (twice)
>

postcondition holds at the end of function execution

Jean-Christophe Fillidtre Introduction to the Why tool

The WHY tool

Proof obligations

11 proof obligations
loop invariant holds initially

loop invariant is preserved and variant decreases (3 cases)

>

>

» swap precondition (twice)

> array access within bounds (twice)
>

postcondition holds at the end of function execution

All automatically discharged by Simplify!

Jean-Christophe Fillidtre Introduction to the Why tool

The WHY tool

Proof obligations

11 proof obligations
loop invariant holds initially

loop invariant is preserved and variant decreases (3 cases)

>

>

» swap precondition (twice)

> array access within bounds (twice)
>

postcondition holds at the end of function execution

All automatically discharged by Simplify!

Note: to be exhaustive, one has to show that the set of elements
was not changed

Jean-Christophe Fillidtre Introduction to the Why tool

Verification of C programs

Part IV

Verification of C programs

Jean-Christophe Fillidtre Introduction to the Why tool

Verification of C programs

Overview

Annotated C program

l

Caduceus

l

Background theory Why program

e I

Coq PVS Simplify haRVey

Jean-Christophe Fillidtre Introduction to the Why tool

Verification of C programs

Example: character queue as circular array

length — 1
1

struct queue {
char contents[];
int length;
int first, last;
unsigned int empty, full :1;

JCH

Jean-Christophe Fillidtre Introduction to the Why tool

Verification of C programs

Example: character queue as circular array

length — 1
1

struct queue {
char contents[];
int length;
int first, last;
unsigned int empty, full :1;
}oas
/*Q@ invariant q_invariant :
@ \valid_range(q.contents, 0, g.length-1) &&
@ 0 <= q.first < q.length &&
@ O <= g.last < g.length
Q*/

Jean-Christophe Fillidtre Introduction to the Why tool

Example continued: specifying functions

/*Q@ requires !q.full
@ assigns q.empty, q.full, gq.last, q.contents[q.last]
@ ensures !q.empty && q.contents[\old(q.last)] ==
Qx/

void push(char c);

/*@ requires !q.empty
@ assigns q.empty, q.full, q.first
@ ensures !q.full && \result == g.contents[\old(q.first)]
@x/

char popQ);

Jean-Christophe Fillidtre Introduction to the Why tool

Example continued: body for push function

/*@ requires !q.full
@ assigns q.empty, q.full, gq.last, q.contents[q.last]
@ ensures !q.empty && q.contents[\old(q.last)] == c

Qx*/
void push(char c) {
q.contents[q.last++] = c; // insert ’c’ in the queue
if (q.last == q.length)
q.last = 0; // wrap if needed
q.empty = 0; // queue is not empty

q.full = (q.first == q.last); // queue is full if
// ’last’ reaches ’first’

Jean-Christophe Fillidtre Introduction to the Why tool

Modeling C memory heap

» Burstall-Bornat model: memory partition according to
structure fields

Jean-Christophe Fillidtre Introduction to the Why tool

Verification of C programs

Modeling C memory heap

» Burstall-Bornat model: memory partition according to
structure fields

» We extend this idea to handle C arrays and pointer arithmetic:
a memory block is

P p +i=shift(p,i)
«——offset(p) — | 1
base_addr (p) | | | | | ‘

«——Dblock_length(alloc,p) ———

Jean-Christophe Fillidtre Introduction to the Why tool

Verification of C programs

Modeling C memory heap

» Burstall-Bornat model: memory partition according to
structure fields

» We extend this idea to handle C arrays and pointer arithmetic:
a memory block is

P p +i=shift(p,i)
«——offset(p) — | 1
base_addr (p) | | | | | ‘

«——Dblock_length(alloc,p) ———

» Each structure field is a map from addresses to memory blocks

Jean-Christophe Fillidtre Introduction to the Why tool

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int
last contents intP
q -
q.contents[q.last++] = ¢

Jean-Christophe Fillidtre Introduction to the Why tool

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int
last contents intP
q -
q.contents[q.last++] = ¢

g.last <- 4 + 1

Jean-Christophe Fillidtre Introduction to the Why tool

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int
last contents intP
q -
q.contents[q.last++] = ¢

g.last <- 4 + 1

Jean-Christophe Fillidtre Introduction to the Why tool

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int
last contents intP
q -
q.contents[q.last++] = ¢

g.last <- 4 + 1
*(q.contents+4) <- ¢

Jean-Christophe Fillidtre Introduction to the Why tool

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int
last contents intP
q -
q.contents[q.last++] = ¢

g.last <- 4 + 1
*(q.contents+4) <- ¢

Jean-Christophe Fillidtre Introduction to the Why tool

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int

last contents intP

q.contents[q.last++] = ¢
g.last <- 4 + 1
*(q.contents+4) <- ¢

Jean-Christophe Fillidtre Introduction to the Why tool

Burstall-Bornat model: example of character queue

addresses structure fields arrays of int
last contents intP
q -
a [[[l T[]
q.contents[q.last++] = ¢

g.last <- 4 + 1
*(q.contents+4) <- ¢

Jean-Christophe Fillidtre Introduction to the Why tool

General structure of C memory heap

alloc fi S fi intP intPP

a; | n.a.

a | 5 | T[] | [[] | T[] | [[]
as 1

a; | n.a. T T I T

sl 3 L TT] LT 1] LT

Jean-Christophe Fillidtre Introduction to the Why tool

Verification of C programs

Translation of C statements into Why

The C statement
q.contents[q.last++] = ¢
becomes in Why:

assert { valid(!alloc,q) }; // proof obligation
let tmpl = acc(!last,q) in // tmpl <- q.last
last := upd('last,q,tmpl+1); // g.last <- tmpl+l
let tmp2 = shift(acc(!contents,q),tmpl) in
// tmp2 <- g.contents + tmpl
assert { valid(!alloc,tmp2) };// proof obligation
intP := upd(!intP,tmp2,c) // *tmp2 <- c

Jean-Christophe Fillidtre Introduction to the Why tool

Verification of C programs

Axiomatization

» The abstract Why functions acc, upd, shift, etc. are
specified by axioms: the background theory

» Excerpt from this theory:

acc(upd(t,i,v),i) = v

i <> j => acc(upd(t,i,v),j) = acc(t,j)
shift(p,0) = p

shift(shift(p,i),j) = shift(p,i+j)

» An important part of this theory is dedicated to assigns clauses

Jean-Christophe Fillidtre Introduction to the Why tool

Example continued: certification of push function

Caduceus produces 3 verification conditions expressing that

» the code of push contains no unallocated pointer dereference
(e.g. assignment of q.contents[q.last++] is valid)

» the postcondition and the assigns clause of push are
established

» the invariant g_invariant is preserved by push

Jean-Christophe Fillidtre Introduction to the Why tool

Example continued: certification of push function

Caduceus produces 3 verification conditions expressing that

» the code of push contains no unallocated pointer dereference
(e.g. assignment of q.contents[q.last++] is valid)

» the postcondition and the assigns clause of push are
established

» the invariant g_invariant is preserved by push
Proofs of these obligations

> with Simplify (100%) and CVC Lite (67%)
» with Coq (100%), very easy (6 lines of tactics)

Jean-Christophe Fillidtre Introduction to the Why tool

Example: in-place list reversal

1%
typedef struct struct_list {
int hd;
struct struct_list *tl;
} #list;
list reverse(list p) {
list r = NULL; reverse (p)
while (p != NULL) { NN
list q = p ;
p = p~>tl;
q—>tl = r;
r =gq;
¥
r

return r;
}

Jean-Christophe Fillidtre Introduction to the Why tool

Introduction of new logical types and functions

» New predicates and functions can be introduced

// logical finite list of pointers
//@ logic plist nil()
//@ logic plist cons(list p, plist 1)

// concatenation and reversal
//@ logic plist app(plist 11, plist 12)
//@ logic plist rev(plist pl)

Jean-Christophe Fillidtre Introduction to the Why tool

Introduction of new logical types and functions

» New predicates and functions can be introduced

// logical finite list of pointers
//@ logic plist nil()
//@ logic plist cons(list p, plist 1)

// concatenation and reversal
//@ logic plist app(plist 11, plist 12)
//@ logic plist rev(plist pl)

» Axioms may be given, e.g.

//@ axiom appnil : \forall plist 1; app(nil(),l) == 1

Jean-Christophe Fillidtre Introduction to the Why tool

Specification of list reversal

/* 11list(p,1l) specifies that 1 is the list of pointers
from p to NULL following tl fields */
//@ predicate 1list(list p, plist 1) reads p->tl

Jean-Christophe Fillidtre Introduction to the Why tool

Specification of list reversal

/* 11list(p,1l) specifies that 1 is the list of pointers
from p to NULL following tl fields */
//@ predicate 1list(list p, plist 1) reads p->tl

// is_list(p) specifies that p is finite
//@ predicate is_list(list p) { \exists plist 1 ; 1list(p,l) }

Jean-Christophe Fillidtre Introduction to the Why tool

Specification of list reversal

/* 11list(p,1l) specifies that 1 is the list of pointers
from p to NULL following tl fields */
//@ predicate 1list(list p, plist 1) reads p->tl

// is_list(p) specifies that p is finite
//@ predicate is_list(list p) { \exists plist 1 ; 1list(p,l) }

/*@ requires is_list(p)

@ ensures \forall plist 1;

Gl \old(1list(p, 1)) => 1list(\result, rev(l)) =/
list reverse(list p);

Jean-Christophe Fillidtre Introduction to the Why tool

Verification of C programs

Annotating the code of list reversal

list reverse(list p) {
list r = NULL;
/*@ invariant
\exists plist 1lp; \exists plist lr;
1list(p, 1p) && 1list(r, 1r) && r
disjoint(lp, lr) &&
\forall plist 1; \old(1list(p, 1)) =>
app(rev(lp), 1lr) == rev(l)
@ variant length(p) for length_order */
while (p != NULL) {

p

list q = p;

p =p>tl; g>tl =1r; r = q;
}
return r;

}

Jean-Christophe Fillidtre Introduction to the Why tool

Certification of list reversal

» 7 verification conditions
» With Simplify: 71%
» With Coq: 100%, with 661 lines of tactics

Jean-Christophe Fillidtre Introduction to the Why tool

Example: Schorr-Waite algorithm

» Graph marking algorithm

» Considered as a benchmark for the verification of pointer
programs (Bornat, 1999, Jape system) (Nipkow-Mehta, 2003,
Isabelle/HOL)

Jean-Christophe Fillidtre Introduction to the Why tool

Example: Schorr-Waite algorithm

v

Graph marking algorithm

Considered as a benchmark for the verification of pointer
programs (Bornat, 1999, Jape system) (Nipkow-Mehta, 2003,
Isabelle/HOL)

12 verification conditions
With Simplify: 33%
With Coq: 100%, with 2362 lines of tactics

v

v

v

v

Jean-Christophe Fillidtre Introduction to the Why tool

Conclusion

Part V

Conclusion

Jean-Christophe Fillidtre Introduction to the Why tool

Conclusion

» We are able to certify non trivial programs

» We support a large subset of ANSI C and Java/JML
» Tools freely available

» http://why.lri.fr/

» http://caduceus.lri.fr/

» http://krakatoa.lri.fr/

Jean-Christophe Fillidtre Introduction to the Why tool

http://why.lri.fr/
http://caduceus.lri.fr/
http://krakatoa.lri.fr/

Conclusion

Conclusion

» We are able to certify non trivial programs

» We support a large subset of ANSI C and Java/JML
» Tools freely available

» http://why.lri.fr/
» http://caduceus.lri.fr/
» http://krakatoa.lri.fr/

But scaling up issues show up on large programs:

» Generated proof obligations can get large
» Clear need for assistance to write specifications

» Need for more automation of proofs, cooperation of provers

Jean-Christophe Fillidtre Introduction to the Why tool

http://why.lri.fr/
http://caduceus.lri.fr/
http://krakatoa.lri.fr/

Current limitations / work in progress

Limitations of the tools
> (mutually) recursive functions
» arithmetic overflow

> floating point arithmetic

Jean-Christophe Fillidtre Introduction to the Why tool

Current limitations / work in progress

Limitations of the tools
> (mutually) recursive functions
» arithmetic overflow

> floating point arithmetic

Limitations of the C model
» pointer cast
> unions

» non ANSI (i.e. compiler dependent) features

Jean-Christophe Fillidtre Introduction to the Why tool

Next challenge

Jean-Christophe Fillidtre Introduction to the Why tool

Next challenge

Verification of ML programs (with side-effects)

Jean-Christophe Fillidtre Introduction to the Why tool

Decision Procedures
1: Survey of decision procedures

John Harrison
Intel Corporation

TYPES summer school 2005, Goteborg

Fri 19th August 2005 (09:00 — 09:45)

Summary

e Interesting and uninteresting proofs
e Theory and practice

e Beyond our scope

e Logic and theories

e Pure logic

e Decidable theories

Interesting and uninteresting proofs

Much of this summer school emphasizes how interesting and useful
proofs themselves are. But they aren’t always!

We'd like to concentrate on interesting parts, automating parts with
e No interesting computational content

e No intellectual interest in the proof method

Theory and practice

We may ask what problems are decidable
e In principle
e In a feasible time bound
e On real problems of interest
Not always the same! Consider propositional logic.
e Trivial
e Infeasible

e Very useful

What we’ll cover

We’'ll consider only theories in classical first-order logic.
e Key decidability results for first order theories

e Focus on pure logic and arithmetical theories

What we won’t cover

We miss out several key related areas:
e Decision procedures for constructive/intuitionistic theories
e Decision procedures for fragments of higher-order logic
e Decision procedures for modal or other nonclassical logics.
For example:

e First-order validity semidecidable, but higher-order validity
subsumes arithmetic truth, so not even semidecidable

e Example: first order theories of real and algebraically closed
fields are decidable classically (Tarski 1930) but not
intuitionistically (Gabbay 1973).

First-order logic

English Standard | Other

false 1 0, F

true T 1, T

not p —p Py =D, ~ D

pand q pPAq pq, p&q, p - q
porg pVq p+q,plg porg
p implies ¢ p=q P<¢p—qpDq
piff g p<q P=¢P=¢Dp~q
For all =, p V. p (x)p, Axp

Exists x s.t. p | dx. p (Jz.)p, Exp

Semantics

Key semantic notion is A = p: in any model where all formulas in A
hold, then p holds.

Crucial distinction between
e Logical validity — holds whatever the interpretation of symbols
e T[ruth in a particular theory

For example, x + y = y + x holds in most arithmetical models, but not
for any interpretation of ‘+’, so fcx +y =y + .

Theories

A theory is a set of formulas 7' closed under logical validity, i.e.
TE=piffpeT. Atheory T is:

e Consistentif we never have p € T and (—p) € T.
e Complete if for closed p we have p € T or (—p) € T.

e Decidable if there’s an algorithm to tell us whether a given closed
pisinT

Note that a complete theory generated by an r.e. axiom set is also
decidable.

Pure first-order logic

Not decidable but at least semidecidable: there is a complete proof
search procedure to decide if = p for any given p.

e Can search for proofs in any of the standard calculi
e Tends to be easier using ‘cut-free’ systems like sequent calculus
e More convenient, though not necessary, to Skolemize first.

e Exploit unification to instantiate intelligently

A significant distinction

A significant characteristic is whether unifiers are global, applying
everywhere, or just local:

e Top-down, global methods (tableaux, model elimination)
e Bottom-up, local methods (resolution, inverse method)

These proof methods tend to have corresponding characteristics.

10

Decidable problems

Although first order validity is undecidable, there are special cases
where it is decidable, e.g.

e AE formulas: no function symbols, universal quantifiers before
existentials in prenex form (so finite Herbrand base).

e Monadic formulas: no function symbols, only unary predicates

These are not particularly useful in practice, though they can be
used to automate syllogistic reasoning.

If all M are P, and all S are M, then all S are P

can be expressed as the monadic formula:

(V. M(x) = P(x)) A (Vx. S(x) = M(z)) = (Vx. S(z) = P(z))

11

The theory of equality

A simple but useful decidable theory is the universal theory of
equality with function symbols, e.g.

V. f(f(f(@) =2 A FFF(f(f(2))) =2 = flz) =2

after negating and Skolemizing we need to test a ground formula for
satisfiability:

FUe) = en fU(e))) = en=(fle) =c¢)

Two well-known algorithms:

e Put the formula in DNF and test each disjunct using one of the
classic ‘congruence closure’ algorithms.

e Reduce to SAT by introducing a propositional variable for each
equation between subterms and adding constraints.

12

Decidable theories

More useful in practical applications are cases not of pure validity,
but validity in special (classes of) models, or consequence from
useful axioms, e.g.

e Does a formula hold over all rings (Boolean rings, non-nilpotent
rings, integral domains, fields, algebraically closed fields, ...)

e Does a formula hold in the natural numbers or the integers?
e Does a formula hold over the real numbers?
e Does a formula hold in all real-closed fields?

Because arithmetic comes up in practice all the time, there’s
particular interest in theories of arithmetic.

13

Quantifier elimination

Often, a quantified formula is T-equivalent to a quantifier-free one:
e CEHr.2°+1=0)&T
e R (Fz.az?+br+c = 0) & a # 0Ab? > dacVa = OA(b # O0Ve = 0)
e QF (Vr.x<a=xz<b)=a<b
e ZE=(Fkzry ar=0Bk+2)y+1) < —(a=0)

We say a theory T' admits quantifier elimination if every formula has
this property.

Assuming we can decide variable-free formulas, quantifier
elimination implies completeness.

And then an algorithm for quantifier elimination gives a decision
method.

14

Important arithmetical examples

e Presburger arithmetic: arithmetic equations and inequalities with
addition but not multiplication, interpreted over Z or N.

e Tarski arithmetic: arithmetic equations and inequalities with
addition and multiplication, interpreted over R (or any real-closed

field)

e General algebra: arithmetic equations with addition and
multiplication interpreted over C (or other algebraically closed
field).

However, arithmetic with multiplication over Z is not even
semidecidable, by Godel’s theorem.

Nor is arithmetic over QQ (Julia Robinson), nor just solvability of
equations over Z (Matiyasevich). Equations over Q unknown.

15

Pick 'n mix

There are some known cases of quantifier elimination for combined
theories

e BAPA — Boolean algebra of finite sets plus Presburger
arithmetic (Feferman/Vaught, Kuncac/Nguyen/Rinard)

e Mixed real-integer linear arithmetic with floor function
(Weispfenning)

In lecture 3 we’ll examine more systemtic and modular ways of
combining theories.

16

Summary

We'd like to be able to automate boring routine proofs
Well-established repertoire of decidable theories
Theory/practice distinction can make a dramatic difference

Many decision methods are based on more general quantifier
elimination

It is possible, but not routine, to find decidable mixtures.

17

Decision Procedures
2: Real quantifier elimination

John Harrison
Intel Corporation

TYPES summer school 2005, Goteborg

Fri 19th August 2005 (09:55 — 10:40)

Summary

e What we’'ll prove
e History

e Sign matrices

e The key recursion
e Parametrization

e Real-closed fields

What we’ll prove

Take a first-order language:
e All rational constants p/q
e Operators of negation, addition, subtraction and multiplication
e Relations ‘=’, ‘<’, ‘<, '>7 >

We’'ll prove that every formula in the language has a quantifier-free
equivalent, and will give a systematic algorithm for finding it.

Applications

In principle, this method can be used to solve many non-trivial
problems.

Kissing problem: how many disjoint n-dimensional spheres
can be packed into space so that they touch a given unit
sphere?

Pretty much any geometrical assertion can be expressed in this
theory.

If theorem holds for complex values of the coordinates, and then
simpler methods are available (Grobner bases, Wu-Ritt
triangulation. . .).

History

e 1930: Tarski discovers quantifier elimination procedure for this
theory.

e 1948: Tarski’s algorithm published by RAND
e 1954: Seidenberg publishes simpler algorithm

e 1975: Collins develops and implements cylindrical algebraic
decomposition (CAD) algorithm

e 1983: Hormander publishes very simple algorithm based on
ideas by Cohen.

e 1990: Vorobjov improves complexity bound to doubly exponential
In number of quantifier alternations.

We'll present the Cohen-Hormander algorithm.

Current implementations

There are quite a few simple versions of real quantifier elimination,
even in computer algebra systems like Mathematica.

Among the more heavyweight implementations are:

e gepcad —
http://www.cs.usna.edu/ gepcad/B/QEPCAD.html

e REDLOG — http://www.fmi.uni—-passau.de/ redlog/

One quantifier at a time

For a general quantifier elimination procedure, we just need one for a
formula

dz. Play, ..., Gy,]

where Plaq,...,a,,z] involves no other quantifiers but may involve
other variables.

Then we can apply the procedure successively inside to outside,
dealing with universal quantifiers via (Vz. P|z]) < (—3x. - P|x]).

Forget parametrization for now

First we’ll ignore the fact that the polynomials contain variables other
than the one being eliminated.

This keeps the technicalities a bit simpler and shows the main ideas
clearly.

The generalization to the parametrized case will then be very easy:
e Replace polynomial division by pseudo-division

e Perform case-splits to determine signs of coefficients

Sign matrices

Take a set of univariate polynomials p,(z), ..., pn(x).

A sign matrix for those polynomials is a division of the real line into
alternating points and intervals:

(—o0, 1), 21, (T1,T2), %2, -+ -y, Tin—1, (Tin—1, Tm), Ty (T, +00)
and a matrix giving the sign of each polynomial on each interval:
e Positive (+)
e Negative (—)

e Zero (0)

Sign matrix example

The polynomials p;(x) = 2% — 3x + 2 and pa(z) = 2z — 3 have the
following sign matrix:

Point/Interval p1 po

(—o0,x1) + —

1 0 —
(z1,22) - =
T2 — 0
(x2,23) - +
T3 0 —
(z3, +00) + +

Using the sign matrix

Using the sign matrix for all polynomials appearing in P[x| we can
answer any quantifier elimination problem: Jx. P|x]

e Look to see if any row of the matrix satisfies the formula (hence
dealing with existential)

e For each row, just see if the corresponding set of signs satisfies
the formula.

We have replaced the quantifier elimination problem with sign matrix
determination

10

Finding the sign matrix

For constant polynomials, the sign matrix is trivial (2 has sign ‘+’ etc.)

To find a sign matrix for p, p1, ..., p, it suffices to find one for
PPl PryT0,T1, - - - T, Where

e po = p’ is the derivative of p
o 1, =rem(p,p;)
(Remaindering means we have some ¢; SOp = q; - p; + 7;.)

Taking p to be the polynomial of highest degree we get a simple
recursive algorithm for sign matrix determination.

11

Details of recursive step

So, suppose we have a sign matrix for p’, p1,....pn, 70,71, ..., Tp.

We need to construct a sign matrix for p, p1,..., p,.
e May need to add more points and hence intervals for roots of p

e Need to determine signs of pq, ..., p, at the new points and
Intervals

e Need the sign of p itself everywhere.

12

Step 1

Split the given sign matrix into two parts, but keep all the points for
NOw:

¢ Mforp/7p17' ++yPn
o M’ forrg,ry,..., 7,

We can infer the sign of p at all the ‘significant’ points of M as
follows:

P = q;p; + 7Ty
and for each of our points, one of the p, is zero, so p = r; there and
we can read off p’s sign from r;’s.

13

Step 2

Now we’re done with M’ and we can throw it away.

We also ‘condense’ M by eliminating points that are not roots of one
of the p’, p1, ..., pn.

Note that the sign of any of these polynomials is stable on the
condensed intervals, since they have no roots there.

e We know the sign of p at all the points of this matrix.

e However, p itself may have additional roots, and we don’t know
anything about the intervals yet.

14

Step 3

There can be at most one root of p in each of the existing intervals,
because otherwise p’ would have a root there.

We can tell whether there is a root by checking the signs of p
(determined in Step 1) at the two endpoints of the interval.

Insert a new point precisely if p has strictly opposite signs at the two
endpoints (simple variant for the two end intervals).

None of the other polynomials change sign over the original interval,
SO just copy the values to the point and subintervals.

Throw away p’ and we’re done!

15

Multivariate generalization

In the multivariate context, we can’t simply divide polynomials.
Instead of

P=Dpi Qi + T

we get

a*p = pi-qi+ 7

where « is the leading coefficient of p;.

The same logic works, but we need case splits to fix the sign of a.

16

Real-closed fields

With more effort, all the ‘analytical’ facts can be deduced from the
axioms for real-closed fields.

e Usual ordered field axioms
o Existence of square roots: Vz. z > 0 = Jy. v = y?

e Solvability of odd-degree equations:
Vag,...,apn. an # 0= 32. apz" +ap_12" 1+ - +a1x+ayg=0

Examples include computable reals and algebraic reals. So this
already gives a complete theory, without a stronger completeness

axiom.

17

Summary

e Real quantifier elimination one of the most significant logical
decidability results known.

e Original result due to Tarski, for general real closed fields.

e A half-century of research has resulted in simpler and more
efficient algorithms (not always at the same time).

e The Cohen-Hormander algorithm is remarkably simple (relatively
speaking).

e The complexity, both theoretical and practical, is still bad, so
there’s limited success on non-trivial problems.

18

Decision Procedures
3: Combination and certification of decision

procedures

John Harrison
Intel Corporation

TYPES summer school 2005, Goteborg

Sat 20th August 2005 (12:05 — 12:50)

Summary

e Need to combine multiple decision procedures
e Basics of Nelson-Oppen method

e Proof-producing decision procedures

e Separate certification

o LCF-style implementation and reflection

Need for combinations

In applications we often need to combine decision methods from
different domains.

r—1<nA-(r<n)= alz] =aln]
An arithmetic decision procedure could easily prove
r—l<nA-(r<n)=z=n

but could not make the additional final step, even though it looks
trivial.

Most combinations are undecidable

Adding almost any additions, especially uninterpreted, to the usual
decidable arithmetic theories destroys decidability.

Some exceptions like BAPA (‘Boolean algebra + Presburger
arithmetic’).

This formula over the reals constrains P to define the integers:
(Vn.Pm+1) < Pm)A(WVn.0<nAn<1l= (P(n)<n=0))
and this one in Presburger arithmetic defines squaring:

(Vn. f(=n) = f(n)) A (f(0) = 0)A

(Vn.0<n= f(n+1)=f(n)+n+n+1)

and so we can define multiplication.

Quantifier-free theories

However, if we stick to so-called ‘quantifier-free’ theories, i.e.
deciding universal formulas, things are better.

Two well-known methods for combining such decision procedures:
e Nelson-Oppen
e Shostak

Nelson-Oppen is more general and conceptually simpler.

Shostak seems more efficient where it does work, and only recently
has it really been understood.

Nelson-Oppen basics

Key idea is to combine theories 11, ..., T, with disjoint signatures.
For instance

e 17 : numerical constants, arithmetic operations
e T5: list operations like cons, head and tail.
e 13: other uninterpreted function symbols.

The only common function or relation symbol is ‘=",

This means that we only need to share formulas built from equations

among the component decision procedure, thanks to the Craig
interpolation theorem.

The interpolation theorem

Several slightly different forms; we’ll use this one (by compactness,
generalizes to theories):

If = ¢1 A @2 = L then there is an ‘interpolant’ 1), whose only
free variables and function and predicate symbols are those
occurring in both ¢, and ¢, such that = ¢; = « and

= ¢2 = .

This is used to assure us that the Nelson-Oppen method is complete,
though we don’t need to produce general interpolants in the method.

In fact, interpolants can be found quite easily from proofs, including
Herbrand-type proofs produced by resolution etc.

Nelson-Oppen |

Proof by example: refute the following formula in a mixture of
Presburger arithmetic and uninterpreted functions:

flo=1)—1=v+1Af(u)+1=u—1Au+1=v

First step is to homogenize, i.e. get rid of atomic formulas involving a
mix of signatures:

u—|—1:U/\’U1—|—1:’LL—1/\U2—1:U+1/\v2:f<?}3)/\vl:
fu) Nvg =v—1

so now we can split the conjuncts according to signature:

(u+l=vAvy+1l=u—1ANves—-1=v+1Avyg=v—1)A
(v2 = flv3) Avr = f(u))

Nelson-Oppen I

If the entire formula is contradictory, then there’s an interpolant v
such that in Presburger arithmetic:

ZEu+tl=vAn+1l=u—1ANvy—-1=v+1Avz=v—1=1
and in pure logic:
= vy = f(us) ANvy = flu) Np = L

We can assume it only involves variables and equality, by the
interpolant property and disjointness of signatures.

Subject to a technical condition about finite models, the pure equality
theory admits quantifier elimination.

So we can assume ¢ is a propositional combination of equations
between variables.

Nelson-Oppen Il

In our running example, u = vs A =(v; = v2) iS One suitable
interpolant, so

ZEut+tl=vAnu+1l=u—1ANv—-1=v+1Avs=v—1=u=

U3 A\ _'(Ul = UQ)
In Presburger arithmetic, and in pure logic:
=ovo = f(us) ANvr = fu) =u=v3A-(vy =v2) = L

The component decision procedures can deal with those, and the
result is proved.

Nelson-Oppen IV

Could enumerate all significanctly different potential interpolants.

Better: case-split the original problem over all possible equivalence
relations between the variables (5 in our example).

Ty,.... T Eo1 N~ Nopp Nar(P) = L
So by interpolation there’s a C' with

Ty = ¢1 Nar(P) = C
To,.... T E 2N+ Np Nar(P) = -C

Since ar(P) = C or ar(P) = —C, we must have one theory with
T |:¢Z/\CLT(P):>J_

10

Nelson-Oppen V

Still, there are quite a lot of possible equivalence relations
(bell(5) = 52), leading to large case-splits.

An alternative formulation is to repeatedly let each theory deduce
new disjunctions of equations, and case-split over them.

Tz‘ ‘:¢i:>$1:y1\/'”\/$n:yn

This allows two imporant optimizations:

e |f theories are convex, need only consider pure equations, no
disjunctions.

e Component procedures can actually produce equational
consequences rather than waiting passively for formulas to test.

11

Shostak’s method

Can be seen as an optimization of Nelson-Oppen method for
common special cases. Instead of just a decision method each
component theory has a

e Canonizer — puts a term in a T-canonical form
e Solver — solves systems of equations

Shostak’s original procedure worked well, but the theory was flawed
on many levels. In general his procedure was incomplete and
potentially nonterminating.

It's only recently that a full understanding has (apparently) been
reached.

See ICS (http://www.icansolve.com) for one implementation.

12

Certification of decision procedures

We might want a decision procedure to produce a ‘proof’ or
‘certificate’

e Doubts over the correctness of the core decision method
e Desire to use the proof in other contexis

This arises in at least two real cases:
e Fully expansive (e.g. ‘LCF-style’) theorem proving.

e Proof-carrying code

13

Certifiable and non-certifiable

The most desirable situation is that a decision procedure should
produce a short certificate that can be checked easily.

Factorization and primality is a good example:

e Certificate that a number is not prime: the factors! (Others are
also possible.)

e Certificate that a number is prime: Pratt, Pocklington,
Pomerance, ...

This means that primality checking is in NP N co-NP (we now know
it's in P).

14

Certifying universal formulas over C

Use the (weak) Hilbert Nullstellensatz.

The polynomial equations p1(z1,...,2,) =0, ..., pr(21,...,2,) =0
In an algebraically closed field have no common solution iff there are
polynomials ¢ (z1,...,2n), .-, qx(x1, ..., x,) such that the following
polynomial identity holds:

Q1(x17'"7$n)°p1(x17'"7$n)+'°'+QI€('CU17'"7$n)°p/€(x17'°'7$n) =1

All we need to certify the result is the cofactors ¢;(x1, ..., x,), which
we can find by an instrumented Grobner basis algorithm.

The checking process involves just algebraic normalization (maybe
still not totally trivial. . .)

15

Certifying universal formulas over R

There is a similar but more complicated Nullstellensatz (and
Positivstellensatz) over R.

The general form is similar, but it's more complicated because of all
the different orderings.

It inherently involves sums of squares (SOS), and the certificates can
be found efficiently using semidefinite programming (Parillo .. .)

Example: easy to check
Vabecx.ax? +bxr+c=0=b°>—4ac>0
via the following SOS certificate:

b — dac = (2ax + b)* — 4a(az® + bx + c)

16

Less favourable cases

Unfortunately not all decision procedures seem to admit a nice
separation of proof from checking.

Then if a proof is required, there seems no significantly easier way
than generating proofs along each step of the algorithm.

Example: Cohen-Hormander algorithm implemented in HOL Light by
McLaughlin (CADE 2005).

Works well, useful for small problems, but about 1000 x slowdown
relative to non-proof-producing implementation.

17

Summary

e There is a need for combinations of decision methods
e For general quantifier prefixes, relatively few useful results.

e Nelson-Oppen and Shostak give useful methods for universal
formulas.

e We sometimes also want decision procedures to produce proofs

e Some procedures admit efficient separation of search and
checking, others do not.

e Interesting research topic: new ways of compactly certifying
decision methods.

18

KRAKATOA

Reasoning on Java Programs

Christine Paulin-Mohring (with Claude Marché)
INRIA Futurs & Université Paris Sud, Orsay, France

Proofs of Programs and Formalisation of Mathematics
TYPES Summer School 2005

Warning

o KRAKATOA is based on the WHY tool and uses a model in
CoQq.

e WHY and CoqQ will be presented next week ...

These lectures mainly focus on (an example of) applying type

theory to programming language modeling and program verification

’)/7")

Outline

Introduction

Modeling JAva
o KRAKATOA

Conclusion

Demo on Saturday

3/72

Lecture 1

Introduction

Motivations

Tools & methods which improve the quality of software

development

Programs are :
e manipulated (compiled, executed) by a computer
e written and read by a human

We need :
e Less runtime errors

e Explicit link between documentation and code

5/72

Possible solutions

e Type-checking at compile time detects a certain class of errors
and reduce the number of dynamic checks

e Many common errors are undecidable :
— non-termination, division by zero ...

Abstract interpretation can help detecting certain errors

e Many more properties can be interesting for the programmer

— an array is sorted, a linked structure does not contain cycles

Logical assertions to be proved.

6/72

How to prove programs 7

e Proving programs requires to analyse a mathematical model of
the program and its specification.

e Find an apropriate model (many different semantics)
— Denotational: mathematical functions on domains
— Operational: execution steps

— Axiomatic: relation between programs and properties of
states

— Monads: pure functional terms on complex data

e Proofs can be informal on paper or formal on computer

7/72

Formal proofs on computers

Language for specifications

— Understandable by both computers and humans

A formal mathematical model for the specification language

A formal correctness relation between programs and

specifications

Support for building the mathematical model of both program
and specification and checking correctness

Which programming and specification language 7

e Most programming languages have complex syntax and

semantics

e Semantics is not always abstractly defined but can be compiler

dependent (requires a low level model of execution)

e Specification languages should be used during development and

consequentely well accepted by the programmer

9/72

What about Type Theory ?

Type theory is definitely one solution:

e Programs are purely functional terms, with a natural
mathematical model (strong termination)

e Dependent types are a natural specification language

(can express directly properties of objects and programs)

e Curry-Howard : correctness is type-checking
(of course with additional proof information)

More on this during Summer School !
The world is not yet ready to use Type Theory for programming!

10/72

What about JAVA ?

A high-level language designed for secure applications

(mobile code executed on different platforms)
e garbage collection
e strong typing at compile time
e static checking of byte-code

e dynamic checking

— security policies (sandbox, firewall)

11/72

JAVACARD

e A subset of JAVA designed for smartcards

(sequential, no dynamic loading ...)

e Additional features for smartcards :
(atomic transactions, persistent data, API ...)
e JAavACARD is a good target for verification
— simple applets ...
— evidence of security required (Common Criteria)

— many smartcards based on JAVACARD or similar

technologies

Lecture 1

Modeling JAVA (JAVACARD)

e More on strong typing
e Different approaches (deep versus shallow embedding)

e Our model of Java

14/72

Modeling JAvA

Strong typing

About strong typing

Type soundness :
ML a terminating program of type list evaluates to nil or cons

JAVA access to a field or a method of a non-null object always

succeeds
Other dynamic errors may occur :

e access to fields or methods of a null object

(raises NullPointerException)

e incorrect instantiation of arrays (raises ArrayStoreException)

Instantiation of arrays : static view

Typing rule for arrays : B < A implies B[] < Al

class A { int a; }

class B extends A { int b; }

public static void main (String args|]) {
A arrA[] ; B arrB|[| = new B[1];
arrB[0]|=new B();
arrA=arrB;
arrA [0]=new A();
System.out. println (arrB[0].b);

17/72

Instantiation of arrays : dynamic view

BrolR{@H e wmB(3 [tdises ArrayStoreException

arrB a=20
e Bl ~b=0
arrA 7 nulr/
i A
a=20

18/72

Modeling JAvA

Different approaches

Studying the JAVA or JAVACARD platforms

Type theory is a good framework to formally study the underlying
definitions, algorithms and properties.

e Type soundness
e Operational and axiomatic semantics

o JAvA & JAvACARD virtual machines

Byte-code verifiers

Sandbox or Firewall mechanisms

References

Models of plaform components using proof assistants:

e Bali Project (T. Nipkow, Munich) using Isabelle/HOL
http://isabelle.in.tum.de/Bali/

e Formavie project (Trusted Logic, Axalto) using COQ
- certification at level EAL7

- non-interference properties

e Certicartes (G. Barthe, Sophia-Antipolis) using COQ
http://www-sop.inria.fr/lemme/verificard/

Functional definition of semantics (JAKARTA)

21/72

Applications

e Better understanding of semantics

e Useful for program verification
— correct model of programs
— identify properties valid from type-checking and properties

which need logical verification

e Compilers, verifiers are programs that are likely to be written

in a functional way

22 /72

Proving a specific JAVA program

e Deep embedding : formalisation of the programming language

(can reuse the work on platforms)
— Abstract syntax tree formalised in the proof assistant
— Translation from syntax to semantics done by an internal
function
e Shallow embedding : direct representation of the program as a
logical object
— Programs constructions interpreted as notations

— Translation from syntax to semantics done at the meta-level

23/72

Example

‘ Concrete Syntax‘

expr :=var | cte | expr.field | expr op expr

Semantics

Values are integers, null object or references in the heap

Example : deep embedding

Abstract syntax trees

type expr = Var of var | Cte of int |
Acc of expr * field |
Bin of expr * op * expr

Values
type value = Int of int | Null | Ref of addr
Stack and heap

type env = var — value
type store = addr — (field — value)

25/72

Relational semantics

sem(s:env,h:store,e;expr,v:value) inductively defined

sem(s, h,Var(v),s(v)) sem(s,h,Cte(n),Int(n))

sem(s, ha ¢, Ref (a))
sem(s, h,Acc(e, f), h(a, f))

sem(s, h,el, Int(nl)) sem(s,h,e2, Int(n2))
sem(s, h,Bin(el, op, €2), Int(semop(nl,n2)))

26 /72

Functional semantics

sem(s:env,h:store,eiexpr) value option recursively defined

sem(s,h,Var(v)) = Some(s(v))
sem(s,h,Cte(n)) Some (Int(n))
sem(s,h,Acc(e,f)) = match sem(s,h,e) with

None = None

| Some(Null) = None

| Some(Ref(a)) = Some(h(a,f))

| Some(Int(n)) = None %Should not happen

sem(s,h,Bin(el,op,e2)) =
match sem(s,h,el),sem(s,h,e2) with
Some (Int(n1)),Some(Int(n2)) = Some(Int(semop(ni,n2)))
[= None

27/72

Shallow embedding

Can use static analysis for a more direct functional interpretation

e Expressions of static type integer are interpreted as logical
integers
e Objects are interpreted as reference values

type value = Null | Ref of addr

e Stack and heap are splitted in two parts

type envo = var — value

type envi = var — int

type store = addr — (field—value) * (field—int)

Functional interpretation Remarks

[€lii,s0,n = 10t option e[0, 1 value option e Shallow embedding takes advantage of static analyses;
it avoids syntactic encodings
[n]:isi so,h — Some (n)
R . . . e Dependent types allows to attach static types to expression
[61 op 62].191' so,h — match ([el]éi so,h>? [62]?91' s0 h) with . P . . .
(Some(,n ’) Some(nz)) = S;mé(semop,(n’ n2)) | - = None and avoid the value disjoint union in deep embedding
1), 2 1,702 -

[V]E; oo p = Some(si(v)) [V]%i s0,n = Some(so(v))

[e-f]ii,sa,h = match ([e]g; ,) with e A shallow embedding of JAavA in PVS has been done in the
Some(Ref(a)) = let (-, hi) = h(a) in hi(f) | - = None Loop project (B. Jacobs, Nijmegen)

http://www.sos.cs.ru.nl/research/loop/

29/72 30/72

Basic model : types and values

Classes classId, Object:classId

Modeling JAvA simple inheritance : super:classId —classId option

Types primitive types : int, bool, float ...

o reference types : arrays indexed by types, classes.
Formalising JAVA programs
Primitive values represented by logical values of type boolean,

integer, reals ...

Reference values represented by an address (type addr) in the

heap or the null value (type value)

State

An implicit set of locations containing values :
Stack Local variables, parameters
Global variables corresponding to static fields

Heap One cell for an address of an object and a field, or for the

address of an array and an index

Each allocated address is associated to a tag which gives dynamic
type information: object (class) or array (size, type of elements).
A table of allocations (type store) contains a finite set of allocated

addresses with corresponding tags.

33/72

Computation

e reads and writes state, returns a value

e possible exceptional behavior
(still returns the exceptional value and a state)
exceptions are also useful to model control flow
(break, continue ...)

Idea

JAVA programs can be translated in a (CAML-like) language with

functional values, references and exceptions.

This is what WHY provides and what is used in KRAKATOA.

34/72

Logical functions

Corresponding to primitive JAVA operations

e arraylength : value —int
get information from the tag in the allocation table,
0 as a default value

e instanceof : value —javaType —bool
assume super does not generate infinite chains, uses the
allocation table to look at the dynamic type of value

e new_ref : value
allocate : value —tag —unit
update the store

35,72

Examples with exceptions

exception JavaExc of value
try{ .. .raise (JavaExc (Exci ())) ...}

try{ ...throw new Exci () ...} with JavaExc e —

catch(Excl e){ ...}

catch(Exc2 e){ ...} if instanceof e Excl then ...

else if instanceof e Exc2 then ...
else raise (JavaExc e)

try while test
while (test) {...break; ...} do ...raise Break ...done
code with Break —();
code

More on the state

Functional interpretation of modifiable variables = : «
r=a|ANz:a)—a
Proving P(xz) holds after executing program p

Vx.P(p(x))

37/72

Alias problem

With different variables :

(2,9) = (@,0) | Mz : @)(y : B) = (a,D)

Correct when different variables correspond to different locations.
Proving = # y after (z,vy) := (0,1) is not just 0 # 1

| Possible solution |

A(s : state) = s{z := a[s(£) /€],y := b[s(€) /€]}

Reasoning on a variable z requires analysing s{&; := ¢;}(z)

38/72

Memory model in JAVA

e Different left-values (z, e.f, e[i]) can refer to the same location
e Variables are separate locations (call by value)

e No possible conversion between basic types and references

Different fields correspond to different locations a.f # b.g

a.f only expression for the location corresponding to a field f

a.f interpreted as f[a]

with £ a new global state variable for each field f.
Following Burstall (see also Bornat, Nipkow. ..)

Example

39/72

Standard JAvA memory model

I

array(3,int)
class A = { int f; A g } 0
x=1 0
int x = 1;
— 0

y =
int = int [3];
int y[] = new int[3] L cass(A)
A z = new A; f—0
stack

g=null

heap

Example: KRAKATOA memory model

The heap is structured in separate maps indexed by addresses,

containing primitive values or references or arrays.

Lecture 2

1 0 | 1 | | f : addr~>int
€1 null | 1 | . | g : addr—>value
0 1 arrayint : addr— (int—int) KR,AKATOA
0
x =1 e
Y= 1 1 | 1 | | arrayobj : addr—>(intr>value)
27 N array(3,int) class(A) | NA | | alloc : addr+— tag
stack
41/72
Outline
How to do proofs of JAvA programs ? KRAKATOA

e JML presentation
o KRAKATOA architecture based on WHY

e Interpreting JAva/JML programs in WHY

e Solving proof obligations

4372

JML presentation

JML : JAVA Modeling Language

http://www. jmlspecs.org

e Strongly related to the programming language:
includes JAvVA boolean expression without side effects

e Integrated to the source code : special comments, ignored by
the JAvA compiler

e Different classes of specifications:
pre and post conditions, class invariants, frame conditions,

ghost variables . ..

e Special additional operators (\forall, \old, \result ...)

A5/72

JML example : an electronic purse

class Purse {

int balance;

public void credit(int s) {

balance += s;

}

46/79

Exceptional behavior

public void withdraw(int s) throws NoCreditException {
if (balance >= s) { balance -= s; }
else { throw new NoCreditException(); }

47/72

Loops

public static int sqrt(int x) {

int count = 0, sum = 1;

while (sum <= x) {
count++;
sum = sum + 2*%count+1;

}

return count;

Tools using JML

Reference: An overview of JML tools and applications
Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. (STTT, 2005).

e Documentation (jmldoc), test (jmlunit)

e Dynamic checking (defensive code) (jmlc, jass)

e Partial automatic verification (ESC/Java(2), Chase)

e Total interactive verification (Loop, JIVE, Jack, Krakatoa)

Also JML specification of JavaACArD API (E. Poll, Nijmegen)

49/72

KRAKATOA

Architecture based on WHY

The WHY tool

A generic language for proving annotated programs
J.-C. Fillidtre, http://why.lri.fr

e Specification : multi-sorted predicate logic

e Body of programs : functions, references, exceptions, labels,

assertions ...

e Signature of programs : extended with pre & post-conditions,

+ effects (read & written variables, exceptions)

WHY advantages

51/72

e A modular view of programs and specifications
e Generates sufficient proof obligations (pre, post, assertions)

e Proof obligations generated for interactive or automatic
theorem provers : PVS, Coq, HOL, Mizar, Simplify, haRVey. ..

KRAKATOA approach

Model the JAvA program (see before)
Model the JMIL specification

Translate Java/JML programs into WHY annotated programs

(preserving semantics)

Proof that the program meets its specification by generating

proof obligations in WHY

53/72

KRAKATOA general architecture

|Generic Model of JAvA in PROVERl |source Java+JML

Instanciation KRAKATOA

ProOVER Model

WHy Specs WHhY code

WHY

| Proof Obligations |

Interactive/Automatic proof with PROVER

54/72

KRAKATOA

WHY model of programs

WHY parametric theory

parameter alloc : store ref

(c:classId) — { 7
value reads alloc writes alloc

{ result# Null and fresh(alloc@, result)

and typeof(alloc, result, ClassType(c))

parameter alloc_new_obj

and store_extends(alloc@,alloc)}

external logic fresh : store, value — prop

external logic store_extends : store, store — prop

external logic Null : — value

external logic ClassType : classId — javaType

Body of programs

external parameter new_ref : store — value
external parameter allocate : store — value — tag — store
external parameter Obj : classId — tag

let alloc_new_obj = fun (c:classId) — { }
let this = new_ref !alloc in
begin alloc := allocate !alloc this (Obj c); this end
{ result# Null
and fresh(alloc@, result)
and typeof(alloc, result, ClassType(c))
and store_extends(alloc@,alloc)

57/72

Translation of expressions

Conditions to protect access and avoid runtime exceptions

e.f {e#Null} (acc !f)

ef=v | {e#Null} f:=(update !f e v)

eli {e#Null A 0<i<(arraylength alloc)}
(array_acc larrayint e i)

elil=v | {e#Null A 0<i<(arraylength alloc e)

A instanceof alloc v (arrayelemtype alloc e)}

arrayobj:=(array_update larrayobj e i v)

Handling methods

e Find a Wny specification for each JAvA method

— Computes which variables are read or written

(field variables, array variables, alloc ...)

— Transforms the JML specification into pre/post conditions
e Keep a local and modular approach

e Handle partial correctness of recursive methods

59/72

WHY specification for methods

parameter Purse_credit_parameter :
this:value — s:int —
{ s >0 A this # Null
A instanceof (alloc,this,ClassType(Purse))
A Purse_invariant (Purse_balance,this)}
unit reads Purse_balance,alloc writes Purse_balance
{ acc(Purse_balance,this)=acc(Purse_balance@,this)+s
A Purse_invariant (Purse_balance,this)
A modifiable(alloc@,Purse_balance@,Purse_balance,
value_loc(this))}

KRAKATOA

Solving proof obligations

The corresponding CoQ theory

Inductive tag:Set := Obj: classId— tag | Arr: N— kind— tag.
Definition store := (fmap.t tag).

Definition alive (h:store) (v:value) :=
match v with Null => True | Ref a => find h a # None end.

Definition store_extends (h h’:store) :=
V v:value, alive h v — tag_of h v = tag_of h’> v.

Lemma typeof_extends_stable
V (h h’:store) (t:javaType) (v:value),
typeof h v t — store_extends h h’ — typeof h’ v t.

62 /72

Frame condition modeling

Variable A : Set

Definition memory := map.t value A.
Definition mod_loc := value — Prop.
Definition unchanged (ml:mod_loc) (v:value) := ml v.

Definition modifiable (h:store) (m m’:memory) (ml:mod_loc)

Vv:value,alive h v — unchanged ml v — acc m v = acc m’ v.

Definition value_loc (v: value)
Lemma value_loc_intro

Vvl v:value, vl # v -> unchanged (value_loc vl) v.

: mod_loc := fun w = v # w.

63/72

CoQ theory generated for a particular program

Inductive classId : Set :=

Object : classId | Math : classId | Purse : classId ...

Definition super (i:classId) : option classId :=
match i with

| Object => None | Math => Some Object

| Purse => Some Object |

end

Definition Purse_invariant (Purse_balance:memory Z) (this:value)

:= (acc Purse_balance this) >= 0.

Automatic proofs

e Extract an axiomatic first-order theory from the COQ model

e Use an automatic prover (mainly SIMPLIFY) in order to

validate proof obligations

Good results on small programs (sorting, sets, purse . ..)

65/72

Lecture 2

Conlusion

Related work

Remarks on KRAKATOA

Tools with similar goals

e ESC/Java (Compaq) : only partial correctness, errors

KeY (Chalmers, Karlsruhe) : UML specification, dynamic logic

LOOP (Nijmegen) : shallow embedding in PVS

JIVE (Hagen): ad-hoc axiomatic semantics, global memory,

interface

Jack (Gemplus, INRIA) : obligations originally for the B

prover, nice interface

67/72

A good combination of known techniques
e A rigorous approach
e Specification and proofs are integrated in real programs
e Proofs are partly automated
e Experimented on two JAVACARD applets
A very preliminary tool under development
e Many important features of JAvA are not (yet) covered

e The interface is not really user-friendly

Choice of architecture

e An open-source system
e Each step of translation is readable

e WHY language (functions, references and exceptions) is a

powerful language for representing operational semantics

e The same architecture can be used for other input
programming languages:
Capucgeus for C, J.-C. Fillidtre & C. Marché

e The best of each theorem provers can be used (even combined)

69/72

More on specifications

Writing apropriate specifications can be as hard as writting

programs and proofs ...

The tool should help you in this process

70/72

How convenient are JML specifications ?

e Some relations are not easily defined by pure JAvA programs
but would be naturally specified inductively.
Example:A linked structure does not contains loops

e Global security properties :

— Security automata : control the correct sequences of method
calls

— Non interference properties : we cannot infer secret

information from looking at public variables

Can be checked using JAva/JML technology
(Everest project, Sophia-Antipolis)

71/72

That is the end ...

See the demo on Saturday!

Formal Proofs
for
Computer Arithmetics

Laurent Théry
Marelle Project INRIA Sophia-Antipolis

Computer arithmetics

Numbers are everywhere:
£ Billing system
gﬁ Weather forecast
L Computer vision
Cryptography

Computer Arithmetics — p.2

Computer arithmetics

booa
Lﬁ «

Different flavours:
Integer Arithmetic: a € N
Rational Arithmetic: a € Q
Floating-Point Arithmetic: a € F
Interval Arithmetic: (o, 0] € F x F
Exact Arithmetic: o € R

Formal Proofs

Therac-25:

Arithmetic overflows could cause the software to bypass safety checks.

Patriot Missile:

The calculation of the time since boot was inacurate.

@

~ Pentium FDIV

Some division operations were wrong by a very small amount.

Ariane b:

A conversion 64 bit floating-point number to 16 bit signed integer failed.

netics — p.4

Outline

* A simple example that illustrates various
aspects of formal verification.

» An overview of the formalisation of
floating-point arithmetic.

An Example

Take a program that given a parameter n
returns the list of the first n prime
_ humbers

Prove it correct

Knuth: The Art of Computer Programming

Natural Numbers

Inductive N: Set :=

Addition

0:N Fixpoint + [a,b:N] : N :=
| S : N—N. match a with
0=>190
0, S(0), s(s(0)), ... | S a => 8@ + b)
end.
P(0)
A = Vn, P(n)
Vn, P(n) = P(3(n))
@inriA Computer Arithmetics — p.7 @inriA Computer Arithmetics — p.8
Multiplication Divisibility
Fixpoint * [a,b:N] : N := Definition alb := de, b = ¢ * a.
match a with
0=>0
| Sa =>0b+ (d * D)
end.
BinriA Computer Arithmetics — p.9 HinriA Computer Arithmetics — p.10
Primality Program Correctness

Definition prime(p) :=
Vn, nlp=n=1Vn=p
A
p#1

@inriA Computer Arithmetics — p.11

Verification Condition Generator

Krakatoa: Java — Coq

@ivrin Computer Arit

Program Correctness

{ Pre-conditions }
P

{ Post-conditions }
Example

{ odd(x) }
X =X + 2;

{ 0dd(x) }
Generated condition:

Vz, odd(z) = odd(x + 2)
inrin

Program Correctness

Loop:
while (C) {

{ invariant [
variant V
}

P

Binria

Computer Arithmetics — p.14

Program Correctness

Example:

while (0 < i—-) {
{ invariant odd(z)
variant i
}
X =X+ 2

3

Generated conditions:

Vz. odd(x) = odd(x + 2)
Vi.0<i—-1<1
Finkia

Computer Arithmetics — p.15

Knuth Algorithm

int[] firstPrimes(int n) {
int[] res = new int[n];

Vk. 0 < k < n = prime(res[k])

A
VE,j. 0 <k <j<n= res[k] < res[j]
A
0<k<resn—1] 0<j<n
Vk. A = 3. :
prime(k) res[j] =k
}
return res;
Hinkin

Computer Arithmetics — p.16

Knuth Algorithm

int[] firstPrimes(int n) {

int[] res = new int[n];
int number = 2;

boolean isPrime;

23A5K78H1011
for (int i = 0; i < nj; i++) {
while (true) {
isPrime = true;
for (int j = 2; j < number; j++) {
if (number % j == 0) {

isPrime = false;
break;
¥

if (isPrime) break; Vp, prime(p) = 2 <p

number++;
}
res[i] = number; Vn, 3p, n < p A prime(p)
number++;

ieturn res: VYmn, mInAn#0=m<n

Binria

Computer Arithmetics — p.17

Knuth Algorithm

int[] firstPrimes(int n) {

int[] res = new int[n];
int number = 2;
boolean isPrime; 23x5x7xxm11
for (int i = 0; i < n; i++) {
while (true) {
isPrime = true;
for (int j = 0; j < i; j++) {
if (number % res[j] == 0) {
isPrime = false;

break;
}
if (isPrime) break;
number++; Vn, 2 <n =
} (Vp, prime(p) Ap < n = —(pln)) =
res[i] = number; o
number++; prime(n)
s

return res;

Bivria

Computer Arithmetics — p.18

Knuth Algorithm

Knuth Algorithm

int[] firstPrimes(int n) {

reaton gy " O
i ber = 3;
llagzlzﬁ :zprime; 3 5 7X 11

for (int i = 1; i < n; i++) {
while (true) {
isPrime = true;
for (int j = 1; j < i; j++) {
if (number % res[jl == 0) {
isPrime = false;

break;
¥
¥
if (isPrime) break; .
number += 2; prime(2)
res[i] = number;
N number += 2; Vp, prime(p) = p =2V odd(p)
return res;
¥
@inriA Computer Arithmetics — p.19

int[] firstPrimes(int n) {
int[] res = new int[n];

[0] = 2;
i:: number = 3, snum;
bool isPrime;
for Gmv - a<m i< 3D7911

while (true) {
isPrime = true;
snum = (int) Math.sqrt(number) ;
for (int j = 1; j < i && res[j] <= snum; j++) {
if (number % res[j] == 0) {
isPrime = false;
break;
}

¥

if (isPrime) break;

number += 2;

Vnpg,n=pxqg=p</nVqg<n
res[i] = number;
number += 2;

¥

return res;

@ inriA Computer Arithmetics — p.20

Knuth Algorithm

Bertrand Postulate

int[] firstPrimes(int n) {
int[] res = new int[n];

res[0]=2; res[i] res[i]?
int number=3, snum; e —
boolean isPrime; n 2 2
for (int i=1; i<n; i++) { (A |

while (true) {
isPrime=true;
snum = (int)Math.sqrt(number) ;
for(int j=0; res[jl<= snum; j++) {
if (numberfres[jl==0) {
isPrime=false;

break;
bs
s
if (isPrime) break;
number+=2;
’ Vn,2<n=
res[i]=number; Jp, prime(p) An<p<2x*n
number+=2;
return res;
Binria Computer Arithmetics — p.21

For n greater than 2, there is always at least
one prime number strictly between n and 2n.
Proof by Contradiction (Erdos)
Upper Bound: (2,?) < (2n)V2n/2-1420/3

Lower Bound: 4" < 271(2,?)

Necessary Condition: 4"/3 < (2)V2'/2

Binria

Computer Arithmetics — p.22

Example of properties

Necessary Condition

Upper Bound on the Product of Prime Numbers

]TI P < 4"

p<n

By Strong Induction on n

2 <42

If nisodd, [I,c,i1p = l,c,p < 4" < 4™

If niseven, [L<omir P = Ul<mi?) Tniicp<omr P)
Hpg2m+1p < 4mtt (Hm+1<p§2m+1p)

mt+12m+ 1

Hpg2m+1p< 4 H(m-ﬁ-l)
Hp§2m+1p < 4m+14m

2m—+1
Hpgzme <4 Binkia

Computer Arithmetics — p.23

413 < (2n)V2/?

Logarithmic Scale

%177/(4) < %nln(Qn)

Simplification:

V8nin(2) —3in(2n) <0

& ivriA Computer Arithmetics — p.24

Function Analysis Remaining cases

Inequality: /8nin(2) —3n(2n) <0 The theorem is true for n < 27

Function: f(z) = /8 In(2) — 3in(2x) Computing inside Cog:

Evaluation: f(27) = 2°In(2) — 3.2%In(2) > 0 Write a program that checks the property
7 In(2) — ° Prove it correct

Derivative: ['(z) = \/Z'Z’f’f) &

, . Run it

Conclusion: For n > 27, ok.

@inria C er Arith 5 inriA

Little Problem

Sort the numbers from 1 fo 2n in pairs (a;, b;)
such that each q; + b; is prime ?

712345

20, \i6

19 7

18 8

17 9

16 < —10

1514 13 12 11
BinriA Computer Arithmetics —p.27 k WINRIA %rnp lllll Arithmetics — p.28
Floating-Point Arithmetic Floating-Point Numbers

Floating-Point Numbers:
L R mantissa

Normal (e > 0): (=1)*8° 51+ X0, fi87)
Correct Rounding (IEEE 754):
Subnormal (e = 0): (—1)*g' B0 £,
a®b=o(a+Db)
roy=0<=z=y

Floating-Point Numbers

Number as pair:
Definition F := Z x Z.

Projections:

Definition m(p) let (z,_) = p in .

Floating-Point Numbers

Value:
Definition v(p) := m(p) *389(”),

Equivalence:

Definition p~q := v(p) = v(q).

Definition e(p) := let (_,y) = p in y.
@inriA Computer Arithmetics — p.31 @ inriA Computer Arithmetics — p.32
Bound Bound
Bound as pair: Bounded number:
Definition B := N x N. Definition By(p):= |m(p)| < M(b) A —E(b) < e(p).
Projections: R
Definition M(b) := let (z,.) =b in . [o T F
Definition E(b) := let (_,y) = b in y.
BinriA Computer Arithmetics — p.33 HinriA Computer Arithmetics — p.34
Rounding Rounding: Min Max
Rounded Mode: Elements on the left and on the right:
Toward +oo, Toward -co, Toward O, Closest. Definition isMin(r,p) :=
By(p) Ap <7 AVgq, By(g) Ng <1 =q<p.
Rounded as a Predicate:
Definition isMax(r,p) :=
R:R —F — Prop By(p) A\r < pAVq, By(g) Ar < qg=p<q.
Rounding chooses one of those:
Definition MinOrMax(R) :=
Vpr, R(r,p) = isMin(r,p) V isMax(r,p).
@ inriA Computer Arithmetics — p.36

@inriA Computer Arithmetics — p.35

Rounding: Monotone

Rounding is non decreasing:

Definition Monotone(R) :=
Vp1pari e, R(r1,p1) AR(re,p2) A1y < 19 = p1 < pa.

Example: Malcolm Test

float malcolmTest() { x = (X,0)
float x = 1; x = (EEE, 1)
float y = 1;
while (((x + 1) - x) == 1) {

X = 2 * x;

}

Rounding is total: while (((x +y) - x) !=y) {

Definition Total(R) := Vr, Ip, R(r,p). A L
' 1=(1,0) B=(1,1)

Rounding is compaTibIe:) return y; (m+1,e) & (m,e) =(1,e)

s . L (m,e) @ (l,e) ~ (m+1,e)
Definition Compatible(R) := (m1,€) © (ma, e) = (my — ma, e)
Vpipar, R(r,p1) A By(p2) A p1 =~ p2 = R(r, pa).

@inriA Computer Arithmetics — p.37 @ inriA Computer Arithmetics — p.38
Example: Expansion Example: Expansion
q1 q2 cee qn

Ordered list of non-overlapping floats: P

11011000111000000000011111110000010 » ™

e — 2
(11011,29); (11100,21); (11111, 9); (11000, 4); (10000, -3)

T2
Addition:
q
p pDq
pTﬂ
A=p+q—(pDq)
BinriA Computer Arithmetics — p.39 HinriA

Computer Arithmetics — p.40

Pencil and Paper Proof

J. Demmel and Y. Hida,

Accurate floating point summation

19 page proof

Binria

Computer Arithmetics — p.41

Pencil and Paper Proof

Bivria

Computer Arithmetics — p.42

Pencil and Paper Proof

Pencil and Paper Proof

Computer Arithmetics —

p.d4

Benefits

Finding bugs in proof

typos

missing cases

missing side-conditions

large versus strict inequalities

— Effective?

tics — p.45

Benefits

Library of validated facts
statements as general as possible
explicit side-conditions

Example (Sterbenz)
ifly<az<2ythenzoy=z-y

Benefits

Improved Results

Example (Fast Two Sum)

bo ((a®b)oa)=(a+b)— (a®Db)
if |a| < 0]
if e, < e, where a = m,2% and b = m;2%
if e, < e, where a = m,2% and b = m;2°

Benefits

Alternative Proofs

Different metric

Completly new proofs

Challenges

Pencil and Paper Proof

Pencil and Paper Proof + Formal Proof
Single Program ~ Library

Proof Checking ~~ Computer Aided Proof

B iINRIA

Proof +

CYP tool: text — Coq

@inriA Computer Arithmetics — p.50

Colouring Proof

Related Works

Theorem Sterbenz: Let p and g such that bounded(p) and bounded(q), if
q/2<p<2x q then bounded(p — q).

The proof proceeds like this. First of all, we restrict ourselves to the case

q<p<2 = q because of the symmetry of the problem. For the exponent, by
definition of the substraction, e(p — ¢) = min(e(p),e(q)), so e(p — q)> — E(bound)
since both p and q are bounded. For the mantissa, we do a case analysis on the value
of min(e(p), e(q)). If min(e(p).e(q)) = e(q), the initial equation can be rewritten as
0<p — g<q and since e(p — q) = e(q), we obtain 0<m(p — q)<m(q). As bounded(q),
we have 0<m(p — q) < M (bound). Similarly if min(e(p).e(q)) = e(p), we can
rewrite the initial equation as 0<p — ¢<q<p and since e(p — q) = e(p) we have
0<m(p — q)<m(p). In both cases we have 0<m(p — q) < M (bound). The mantissa
and the exponent are then bounded, so we have bounded(p — q).

Binria

Computer Arithmetics — p.51

Floating point arithmetic

Barrett (Z), Miner (Pvs), Russinoff (Acl2), Harrison
(Hol), Boldo & al (Coq)

Interval arithmetic

Melquiond (Coq)

Multiprecision arithmetic
Bertot & al (Coq), Bondyfalat (Coq)
Exact arithmetic

Ciaffaglione & al (Coq), Lester & al (Pvs), Niqui (Coq)
BinriA

Computer Arithmetics — p.52

Little problem

Sort the numbers from 1 to 2n in pairs (a;, b;)
such that each a; + b; is prime ?

0 _p-2n 2n p__dn
F T T 1

p is prime
p — 2n is odd
p—2n —1is even

BinriA Computer Arithmetics — p.53

Dependently Typed Programming

in Cayenne

or

Lennart Augustsson
lennart@augustsson.net

www.dependent-types.org

An example

We want to write a small program that does bracket abstraction for
\-calculus.

data Exp = App Exp Exp
| Lam Sym EXp
| Var Sym
type Sym = String

The function we want will remove all A-expressions and replace them with
the S, K, and | combinators. We could give it this type:

abstractvVars :: Exp -> Exp

This does not reflect that all Lam constructors are gone.

Bracket abstraction

Remove all A-expressions by using combinators.
Ix = x
Kxy =X
Sfgx=(fx) (g x)
Every lambda term is replaced by its bracket abstraction:
A x.e = [x]e
[xX]x =1
[x]ly = Ky

[x](f e) = S ([xIf) ([x]e)

Use a different result type.

An example

abstractVars :: Exp -> LamFreeExp

Use a "subtype"

type LamFreeExp =
sig exp :: Exp
1f :: LamFree exp

An example, a little logic

data Absurd =

absurd :: (a :: #) |-> Absurd -> a
absurd i = case 1 of { }

data Truth = truth

data (/\) a b = (&) a b

An example

Describe what it means to be LamFree:

LamFree
LamFree
LamFree
LamFree

Exp
(App £

(Lam __

)

(Var

- >
a)
_)

LamFree f /\ LamFree a
Absurd
Truth

An example

We are all set, just proceed as usual:

abstractVars :: Exp -> LamFreeExp
abstractVars e@(Var _) = struct { exp = e; 1f = truth }
abstractVars (App f a) =
let £f' = abstractVars £
a' = abstractVars a
in struct exp = App f'.exp a'.exp
1f = f'.1f & a'.1lf

abstractvars (Lam x e) =
let e' = abstractVars e
in abstractVar x e'.exp e'.lf

An example

abstractVar :: Sym -> (e :: Exp) -> LamFree e -> LamFreeExp
abstractvVar s (App f a) (1f & la) =
let £f' = abstractvVar s £ 1f
a' = abstractVar s a la
in struct exp = App (App S f'.exp) a'.exp
1f = (truth & £'.1f) & a'.1lf
abstractvVar s (Lam _) 1 = absurd 1
abstractVar s e@(Var x) 1 =
if (s == x)
(struct {exp = I; 1f :: LamFree exp = truth})
(struct {exp = App K e; 1f :: LamFree exp = truth & 1})

S = var "g"
= Var "K"
I = Var "Iv

Cayenne design goals

A programming language with dependent types.
"First class" types.

Few basic concepts.

No top level.

"Pure", i.e., the B-rule is valid.

Uniform way to define and name things.

Staged execution, i.e., compiled.

All used variables must be explicitly bound.

Cayenne design goals

Lesser goals:

® No silly case restrictions on names.

® Compiled with same efficiency as Haskell.
® Proofs possible.

® Haskell like.

No top level

Many languages have a top level that is different. E.g., C only allows
function definitions on the top level, Haskell only allows type definitions on
the top level.

| want to take any program fragment and move it to where it belongs.

Example:
data BT a = Leaf | Node (BT a) a (BT a)
sortBy :: (a -> a -> Ordering) -> List a -> List a

sortBy cmp Xs =

If the binary tree type is only used in sortBy it should be like this.

sortBy :: (a -> a -> Ordering) -> List a -> List a
sortBy cmp xs =

let data BT a = Leaf | Node (BT a) a (BT a)

in

Staged execution

| want a phase distinction; execution has two phases:
® Compile time: type checking and maybe more.
@ Run time: actual program execution.

Any (closed) expression should be possible to compile.

The type of an expression, A, should be the only thing needed to compile an
expression, B, that is using A.

The function type

The function type is easy, we only need some syntax for dependent
functions. Most of the syntax comes from Haskell.

\ (x :: t) -> e o (x :: t) -> s

Application looks as usual.

If the function is not actually dependent on x we can use the usual Haskell
syntax.

\ (x :: t) -> e ! t -> s

We can also usually leave out the type in the term.

The function type, hidden arguments

Cayenne has the ability to "hide" arguments. This means that they need not
be given when a function is applied, if the type checker can deduce them.

The sum type

We need sum types. Can we take Haskell's data type definitions?

NO

data T = A | B | C

Haskell's data type definition forces the type to have a name.

Naming things should be uniform, so if a type has a name it should be given
in the same way as for anything else, possibly no name at all.

#

T :
T = data A | B | C

The sum type, constructors

Constructors are written in a peculiar way:

cet ' t

Example:

True@ (data False | True)

Contructors do not have any scope (just like record labels), they are only
meaningful with an e.

The sum type, weird stuff

What's the type of this expression?

let T = data A | B | C
in A@T

You could give a type in terms of T, but it's not in scope. | find that bizarre.

The Cayenne answer to the question is:

let T = data A | B | C
in A@T 8 g data A | B | C

Structural equivalence

Types are compared with structural equivalence rather than name
equivalence (unlike, e.g., Haskell).

Rationale: (A) Types do not have to have names. (B) Name equivalence
does not work with the B-rule.

Example:

List a = data Nil | Cons a (List a)

Unfold List

List a = data Nil | Cons a (data Nil | Cons a (List a))

According to the B-rule principle these must be considered equal.

Btw, this is also equivalent:

List a = Fix (\ 1 -> data Nil | Cons a 1)

The sum type, case

The case construct looks mostly familiar:

case xs of
(N11) ->

(x : xs) ->

Contructor patterns must have parenthesis around them. This is to
distinguish them from variable patterns. (There is no case distinction like in
Haskell.)

The dependent type system shows up in that the case arms can have
different types.

case b of case b of
(False) -> 1 »" (False) -> Int
(True) -> "Hello" (True) -> String

The sum type, with plenty of sugar

To make life simpler, Cayenne allows

data T = Cl | C2

which is equivalent to

T = data Cl1 | C2
Cl Cl@T
C2 C2@T

Furthermore, function definitions can be written with pattern matching (like
in Haskell) instead of A and case.

The type of types

The type of types is named # (because * is used for multiplication).

. #1 :: #2

This isn't the whole story...

The record type

Records with named fields are very, very useful in programming. Their
omission from the original Haskell definition is something of a mystery.

struct sig
xl = el . x1l :: t1l
Xn = en Xxn :: tn
Record selection uses the ordinary ".” notation.

The record type

Should the record type be dependent in some way?

Consider the type theory type:

Hx g A. P(x)

which has elements of the form:

(e, P(e))

We need this in Cayenne records too.

sig
X
D

A
P(x)

Generalize: Let all labels be in scope in all types.

The record type

Since the labels have to be bound in the sig it's natural to have it the same
way in a struct,

Example:

struct
x =5
y = X + 2 -- 1.e., y = 17

This interacts well with types too.

struct
Coord = sgig { x :: Int; y :: Int }
origin = struct { x = 0; yv = 0 }

e.g., Haskell.

let expressions

The struct expression is similar to the definition part of 1let expressions in,

Cayenne defines let in terms of struct. (The label r should be fresh.)

let

in

x1

(struct
x1l = el
= el
o Xn = en
= en
r = e
). T

open expressions

A very convenient feature of Pascal (and other languages) is to "open" a
record and bring its labels into scope. Cayenne defines syntactic sugar for
this too. (The variable r should be fresh.)

let r = e
x1l = r.x1
open e use X1, ... xXn in e' =
Xn = r.Xn
in e

Example:

open coord use X, Y, Z
in sgrt (xA2 + yA2 + zA2)

Modules

In Cayenne the record type has all the power of modules in most languages.
The sig is used for module signatures, and struct for module
implementation. Furthermore, ordinary functions can be used instead of
(ML) functors.

STACK = sig
Stack # -> #
empty (a :: #) |-> Stack a
push :: (a #) |-> a -> Stack a -> Stack a
pop (a :: #) |-> Stack a -> Stack a
top (a #) | -> Stack a -> a
isEmpty (a #) |-> Stack a -> Bool

BUT, this doesn't always work as intended...

Modules, abstract and concrete

Consider the following module for booleans.

struct
Bool
not

data False | True

This module would have the signature

sig

Bool
not

-> Bool

That's not right. Where are the constructors?

Modules, abstract and concrete

We can export values for them.

struct
Bool = data False | True
False = False@Bool
True = True@Bool
not =

This module would have the signature

sig
Bool :: #
False :: Bool
True :: Bool
not :: Bool -> Bool

That's still not right. Pattern matching would not work since there is no
indication that Bool is actually a data type.

Modules, abstract and concrete

We need something more, we need the signature to actually tell us the
definition of Bool.

Enter concrete and abstract !

struct
concrete Bool = data False | True
abstract not =

This module would have the signature

sig
Bool :: # = data False | True
not :: Bool -> Bool

The concrete and abstract qualifiers can be applied to any kind of fields
in a record. Sensible defaults are used if they are not given.

Modules, public and private

When making modules you often need auxilliary definitions that should not
be part of the visible interface of the module.

So we extend the record syntax even more, with public and private.

struct
private x = 12
public yv = x * 2

This module would have the signature

sig
v :: Integer

As usual, sensible defaults are provided.

Modules

Recall
STACK = sig
Stack # -> #
empty (a #) |-> Stack a
push (a #) |-> a -> Stack a -> Stack a
pop (a #) |-> Stack a -> Stack a
top (a #) |-> Stack a -> a
isEmpty (a #) |-> Stack a -> Bool

We can now

give an implementation

ListStack
ListStack

empty
push =
pop =
top =

abstract Stack =

head
isEmpty =

STACK
= struct
List
= Nil
(:)
tail

null

A sighature for queues

Modules, functors

QUEUE

Queue

= sig
empty
engqueue

degueue

H H H H

first

Queue a

a -> Queue a -> Queue a

Queue a -> Queue a

Queue a -> a

A "functor" to turn stacks

into queues (very badly).

SQ STACK -> QUEUE
SQ s struct
open s use Stack,

empty, push,

abstract Queue =

empty empty

enqueue x XS

dequeue xs

first xs

private

app

app xs y =

if (isEmpty xs)

(push y empty)
(push (top xs)

Stack

app xXs X
pop Xs
top xs

(a #) |-> stack a

(app (pop

==

pop, top, isEmpty

a -> Stack

xs) vy))

Modules

A signature for stacks more in the style of, e.g., Oberon

Stack
T

(a

empty
push
pop

top
isEmpty

sig

> T
o> T
-> a
-> Bool

-> T

H 3 3 9 3 #F —

mkListStack
mkListStack
T
empty

List a
Ni
= ()
tail
head
isEmpty

push

pop
top

#)
struct

(a

| a

1

null

| -> Stack a

Modules in the world

To make modules reusable they need to have a name that is actually
mapped to some external storage so they can be accessed by different
programs.

Cayenne is similar to Java in how this is done.

module ag$global$identifier = e

This defines a "module" in the global name space, named
a$global$identifier .

Cayenne programs may contain free module identifiers. (They are checked
at compile time, of course.)

System$Integer. (+) 30 12

A named module is a compilation unit. In fact, any kind of expression can
be named, not just a struct.

A very simple evaluator

Consider a tiny language of typed expressions:

EBool Bool | EInt Int
EAdd Expr Expr | EAnd Expr Expr | ELE Expr Expr
TBool | TInt

data Expr

data Type

It has the usual typing rules:

x:Int y:Int x:Int y:Int x:Bool y:Bool
i:Int b:Bool x+y:int x<=y:Bool x&y :Bool

A very simple evaluator

In Haskell (without GADTs) we would have to write an evaluator like this:

data Value = VBool Bool | VInt Int

eval :: Expr -> Value

eval (EBool b) = VBool b

eval (EInt i) = VInt i

eval (EAdd x y) =
case (eval x, eval y) of
(VInt x', VInt y') -> VInt (x' + y')
__ -> error "eval"

The wrapping and unwrapping of the values is inefficient. We would like to
write the following, but it's not well typed.

eval (EBool b) = b
eval (EInt i) = 1
eval (EAdd x y) = (eval x) + (eval vy)

So we

A very simple evaluator

can try something better in Cayenne. How about?

eval (e Expr)

eval (EBool b) = b

eval (EInt i) = 1

eval (EAdd x y) = (eval x)

-> TypeOf e

+

(eval vy)

HasType

Absurd

Well, this doesn't work, because not all expressions are well typed. So we
need to express the when an expression is well typed.

HasType Expr -> Type -> #

HasType (EBool _) (TBool) = Truth

HasType (EInt _) (TInt) = Truth

HasType (EAdd el e2) (TInt) = HasType el TInt /\ HasType e2 TInt
HasType (EAnd el e2) (TBool) = HasType el TBool /\ HasType e2 TBool
HasType (ELE el e2) (TBool) = HasType el TInt /\ HasType e2 TInt

A very simple evaluator

Now we can write an evaluator, given a proof that the term is well typed.

eval :: (e :: Expr) -> (t :: Type) -> HasType e t -> Decode t

eval (EBool b) (TBool) p = b

eval (EInt i) (TInt) o) = i

eval (EAdd el e2) (TInt) (pl & p2) = eval el TInt pl + eval e2 TInt p2
eval (EAnd el e2) (TBool) (pl & p2) = eval el TBool pl && eval e2 TBool p2
eval (ELE el e2) (TBool) (pl & p2) = eval el TInt pl <= eval e2 TInt p2
eval _ _ D = absurd p

Decode :: Type -> #

Decode (TBool) = Bool

Decode (TInt) = Int

Where do we get the proof? Well, from a type checker, of course.

This can be extended to deal with variables.

A small equality proof

Cayenne has special syntax for equality proofs.

(++) (a #) |

(++) (Nil) ys = ys

(++) (x Xs) ys = X

appendNilP (a #)
Xs ++ Nil ===

appendNilP (Nil) =
Nil ++ Nil
Nil

appendNilP (x xXs) =
(x:xs) ++ Nil
X: (xs ++ Nil)
X : XS

Nil ++ (x:xs)

-> List a

-> List a
(xs ++ ys)

(xs List a) -

| ->
XS

-> List a

>

DEF }=

DEF }=
appendNilP xs
DEF }=

}

An example with no proofs

In C there is a very useful function, printf, which takes a varying number of
arguments of varying types. | want it!

-- Haskell version WRONG
printf fmt = pr fmt "" where
pr "" res = res
pr ('%$':'d':s) res = \1 -> pr s (res ++ show 1)
pr ('$':'s':s) res = \s -> pr s (res ++ s)
pr ('%': ¢ :s8) res = pr s (res ++ [c])
pr (c :8) res = pr s (res ++ [c])
Using it:
printf "%d(%d)" :: Int -> Int -> String

printf "hello %s!" :: String -> String

An example with no proofs
PrintfType String -> #
PrintfType "" = String
PrintfType ('%':'d':cs) = Int -> PrintfType cs
PrintfType ('%':'s':cs) = String -> PrintfType cs
PrintfType ('%': _ :cs) = PrintfType cs
PrintfType (:Cs) = PrintfType cs
printf :: (fmt::String) -> PrintfType fmt
printf fmt = pr fmt ""
pr :: (fmt::String) -> String -> PrintfType fmt
pr "*" res = res
pr ('%':'d':cs) res = \ 1 -> pr cs (res ++ show 1)
pr ('%':'s':cs) res = \ s -> pr cs (res ++ s)
pr ('%' Cc :c8) res = pr cs (res ++ (c Nil))
pr (c:cs) res = pr c¢cs (res ++ (c Nil))

Conclusions

® Cayenne was reasonable successful design (in my opinion).
® It needs more work to become a useful programming language.
® Things | would do differently next time:

® The language should have Agda's idata.

@ Stratified universes are just a pain for programming, use #:: #. (And
use global data flow analysis to get rid of types and proofs.)

® Type error messages need to be much better.

® | want to see more examples that are totally proof free, but uses
dependent types in an essential way (like printf). There are many

examples of dependent vector sizes, but they usually require a
complicated constraint solver.

Try it!
Cayenne can be found at
www .dependent-types.org

All you need is GHC to compile and run programs.

Types Summer School
Gothenburg Sweden August 2005

Dependently Typed Programming
Benjamin Grégoire
INRIA Sophia Antipolis, France

Lecture 1:
Conversion Rule

How to do formal proofs:
e A nice theory (Type Theory)

e A nice implementation:
— A proof checker (type checker)

— A proof assistant
e A nice user
Subject: Conversion rule

1. User point of view:
Why we need it and how we can use it?

2. Implementor point of view:
e Type inference Algorithm with conversion rule

e How to get an efficient conversion test

Why we need it?

Because we do not want to do large and boring proofs
2+ 2 =4 in a deduction style:

eqTrans 14+42=5(042) eqgS 042=2

SO0+2)=3=1+2=3 S(0+2)=3
eqTrans 24+2=S(1+4+2) egS 1+42=3
S(1+2)=4=2+2=4 S(1+2)=4

2+4+2=4

eqsS L x =y = Sx =Sy
eqlrans e =y=y=z=>x ==z

How to prove 2 +4+2 =4

Computational style: Replace the axioms on addition by
rewriting rules:

O4+m — m

Sn+m — Sn4+m)
24+2—5(142) — SS(04+2) — SS(2)
Reason modulo rewriting rules:

4 =4 24224
24+2=14

Conversion rule in PTS

A simple set of rewriting rules: reduction rules on terms
(functional programs)

(\z:T. M) N 25 M[z == N]

With inductive definitions: reduction rule for pattern matching
and fixpoint

~ .= reflexive, symmetric and transitive closure of the
reduction rules (G, ¢, ...)

1
\ e P
N
Mo M,

FT=M: A B :s A
r'~M: B

M
e
A

~ B[Conv]

Encoding rewriting rule of addition

O+m — m

Sn+m — S(n+m)

Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.

Fixpoint plus (n m : nat) {struct n} : nat :=
match n with

| 0 =>m
| S nl =>S (plus nl m)
end.

plusOmLm

*

plus (S n) m — S(plus n m)

2+ 2 =4 again!

- refl eq:Vax:inat. x =x I 4 nat
Frefleq4:4=4 4 =4=24+2=4
Frefleqd4:2+4+2=4

[Conv]
e [he reduction steps do not appear in the proof
= T he proof is small : refl eq 4

e Reduction steps appear in the type checking
= Cost remains in proof checking (in the conversion test)

If we reduce this cost, we get:
e Small proofs

e Quickly type checked

Reflexivity

e A predicate P : T — Prop
e A decision procedure f : T — bool
e A correctness lemma C :Vz:T. f xt =true — P x

Assume f a reduce to true, a proof of P a is C a (refl_eq true)

I refl eq true : true = true true = true = f a = true

FCa:fa=true—Pa I refl eq true : f a = true
FC a (refl_eq true) : P a

Example: primality proof

Pocklington criteria:
Let n be a positive integer, if

e n—1=gq.p1...pt Where p; are prime numbers
a1 = 1(mod n)

e there exits a such that n—1
gcd(a ?i —1,n)=1fori=1...¢

® P1.p2...Dt = /1
then n is prime

Formal proof by Martin Oostdijk and Olga Caprotti
Using deduction style the proof of

20988936657440586486151264256610222593863921
take 18509 lines.

Can we use reflexivity?

18th Mersenne number: 23217 _ 1

259117086013202627776246767922441530941818887553125
427303974923161874019266586362086201209516800483406
550695241733194177441689509238807017410377709597512
042313066624082916353517952311186154862265604547691
127595848775610568757931191017711408826252153849035
8304011850721164247474618230314713983402292838074545
677907941037288235820705892351068433882986888616658
650280927692080339605869308790500409503709875902119
018371991620994002568935113136548829739112656797303
241986517250116412703509705427773477972349821676443
446668383119322540099648994051790241624056519054433
690809616061625743042361721863339415852426431208737
2665919620617535357488928945996291951830826213860853
400937932839420261866586142503251450773096274235376
822938649407127700846077124211823080804139298087057
504713825264571448379371125032081826126566649084251
699453951887789613650248405739378594599444335231188
2801236604062624686092121503499375847382292237144339
62885848593821573882123239368704616067 7362909315071

A 969 digits number
The proof is 8461 chars!

Others examples

Proof automation (useful for the user):

e Ring or field equalities

e Presburger arithmetic

e Decide polynomial inequalities in R (CAD)
Exotic theorems:

e 4-colors theorem (Gonthier, Werner)

e Kepler conjecture (Hales)

11

Conversion rule is very useful and convenient

How to implement a type checker with the conversion rule?

12

Calculus of Constructions

Terms: T
Contexts: I

s|x|Ve:T.T | Xe:T. T |T T
x1:17,x0:T>, ..., 20 1In

One reduction rule:

(Az:T. M) N -2 M[z := N]

Type judgment:
"M :T

Type inference: T - M ~ T such that '+ M : T

13

Typing rules

WF(Ir) TFT:s

WF(0) WF(, z:T)
WFE(IM) WF() (z:T)el
[Set : Type Fax: T
FrFA:s1 Mx:AFB:sy (s1,s2,53) € Rules

[FVz:A. B:s3

-Vx:A. B:s [,x:A+-M B

Fr=Xx:A. M :Vx:A. B

Fr-M:Vx:A. B ITHFN:A

M N : Bz := NJ

r-M:A TTHFB:s A=xB

'=M:B

14

Definitions on reduction

Using only B-rule:

(\z:T. M) N 25 M[z == N]
The term ((Az:T. M) N) P does not reduce
B

t — ¢t/

c) -2 o)

Context rule:

Weak reduction Strong reduction
C = [N|MI C o= [N|MI
| Ax:[]. M |Vz:[]. B | Ax:[]. M |Vz:[]. B
| Ax:T. [] | Vz:A. []
NF: Normal form using strong reduction
WNF: Normal form using weak reduction

WHNF: Normal form using C ::=[] N

15

Meta-theory of CC

Subject reduction: TEM T =M P M/ =T+ M :T

Strong Normalization: T+ M : T = M € SN
Uniqueness of typing: TH-FM Ty =T +FM:1T> =1T1 =15
Correctness of type:

'=M:T = T =TypeVI FT:s

Corollary: TEM : T =TF M : WHNF(T)

FrEM:T TEHWHNE(T):s T~ WHNF(T)
MM : WHNF(T)

16

Inference Algorithm

Type inference: T M ~ T such that WF(I') =TT+ M : T

(z:T) el
[- Set ~ Type [z~ T

FrFA~Ti WHNF(TY) =s1 [Mz:AFB~T, WHNF(T:) = s»

T Vx: A B~ s3

FrEA~T; WHNF(T1)=s1 [lNaz:AF M~ B B # Type
XA M ~Vx:A. B

FrEM~Ti WHNF(TY) =V2:A. B THFN~T, Thom A
M N~ B[z := N]

17

Soundness

Soundness: WF(IMN) =TT+ M~T=TFM:T
Proof: by induction on M

FrEM~T, WHNF(TY) =Vz:A. B TFN~T, Tha A
F-M N~ Bz := N]

Fr-=N:T5 TTHFA:s Torx~A
Fr=N:A
M N : Bz := NJ

MM :Vx:A. B

Completeness

Completeness: T'=-M : Ty =T M~ 15
Proof. by inductionon ' M : 1}

Fr-M:Vx:A. B ITHFN:A
=M N : Bz := N]

FEM~Ty WHNF(Ty) =Vz:A. B TFN~Ty Ty~ A
M N~ B[z := N]J

(Geuvers): T=Vz:A. B = JA', B, WHNF(T) =Vz:A'. B
(Generation lemma):

[FA:syANT,x:AF B s

[FVx:A. B:T = 381,82,33,{
T%33

19

So

We want a proof assistant

= We develop a proof language

But it is also a nice functional programing language

e \We have type checker

e \We should now develop compiler

20

Types Summer School
Gothenburg Sweden August 2005

Dependently Typed Programming
Benjamin Grégoire
INRIA Sophia Antipolis, France

Lecture 2:
Conversion test, compilation

Summary of the problem

Proof / type checkers based on dependent types work up to
conversion:
r-mM:A A=xB
r—-M:B

It is very convenient: allows small proofs and automation (using
reflexive proofs)

If we have a algorithm for testing convertibility, we get a type
checker

Testing convertibility require strong B-reduction (under A
abstractions)

For most proofs, the amount of reduction is small (simple
interpreter suffice)

But proofs based on reflection require large amounts of

reductions. The speed of the reducer becomes the limiting
factor

Convertibility is decidable

Testing convertibility of two terms is decidable if the reduction
rules are

e Confluents = Church-Rosser, unigueness of normal forms

e Strongly normalizing

A-calculus

terms t
values(WNF) wv

x| Ax.t|tt
Ar.t|x vy...vpn

Conversion algorithm:

t1 = 1o WNF(t1) ~ WNF(t5)

t1 ~ to t1 = to
V1 — U2 r=1vY vV~ W
V1 = Vo X UV]L...Un Y WL...Wn

WNF(A\z.M z) ~ WNF(\y.M' z) =z fresh

.M ~ \y. M’

Computing the WNF

type term = Var of var | Abs of var*term | App of term*term

let rec wnf t =
match t with
| Var | Abs _ -> t

| App(tl, t2) ->
let vl = wnf t1 in
let v2 = wnf t2 in
match vl with
| Abs(x,u) -> wnf (subst u x v2)
| _ => App(vl,v2)

WNF by compilation

WNF : execution of ML-like program

Compilation Execution

A-term Abs. Machine Value

bytecode

bytecode : sequence of instructions

Problem: usual compilation techniques work only for
closed terms

WNF (Ax.M 2)

ZINC abstract machine

ZINC : a stack based abstract machine in call by value
Instructions : Acc, Closure, Grab, Pushra, Apply, Return
Representation of values v (closures): [c, €]

Environment e : [vy;...;vn]

Components of the machine:
c code pointer
e environment (values associate to variables)
s stack (arguments + intermediate results 4+ return address)

n number of available arguments on the top of s

Compilation and execution of variables

Compilation scheme: [tk ~ ¢

The resulting code ¢ compute the value corresponding to ¢,
push it on top of the stack, then restart the execution of k

Tx]lk = Acc(q); k

where 1 = deBruijn index of x

Code Env Stack F#args
Acc(i); k e s n

k e e(i).s n

Compilation and execution of applications

f ay ... a;]k = Pushra(k);
[a:]l ... [a1l [T Apply(3)

Code Env Stack #args
Pushra(k);c e s n
c e (k,e,n).s n
Apply(7) e [c,e'lvy ... v;.(k,e,n).s n
c e/ vy ...v;.{k,e,n).s i

Compilation and execution of functions

TAz1.... Azn t]lk Closure(c); k

c = Grab;...; Grab; [t]Return
n t??nes

Code Env Stack #args
Closure(c); k e s n

k e [c,e]l.s n

Grab; k e v.s n+1

k v.e S n

Return e v.(k,e/,n).s 0

~

k e V.S N

Under or over application

Under application:

Code Env Stack #-args
Grab;c e (k,e',n).s 0
k e/ [(Grab;c),e].s n

Over application:

Code Env Stack #args

Return e [c,e].s n >0

C 6/ S n

11

Compilation with free variables

Code Env Stack #args
Acc(i); k e S n

k e e(i).s n

Free variables have no associated value in the environment
= add values for free variables

What should be the value associated to a free variables?

What happens when this value is applied?

12

What is the computational behavior of a free variable?

Symbolic calculus:

Terms ¢
Values v

x|tt|v
Ax.t | [7]

Reduction rules:

(Az.t) v — tlx =]
[Z] v — [z]

13

Computational behavior of a free variable

Symbolic calculus:

Terms t = x|tt|v
Values v = Ax.t| K]
Accumulators k = I |k v

Reduction rules:
(Az.t) v — tlx =]
k] v — [k v]

The value associate to a free variable is a function that
accumulate its arguments

14

Encoding accumulator

Code Env Stack #args
Apply(n) _ [c,e].v1...vn(c,e,n/).s _
c e v1...vp.{c, €, n).s n/

The top value can now be a accumulator, encoding of
accumulator should be compatible with the one of closure

[Accumulate, k]

where k is the machine-level encoding of k: k= [Z;v1;...; vn]
T his suffices to trick function application:
Code Env Stack #args
Apply(n) e [Accumulate, k].v1 ... vn.(c, €, n/).s _
Accumulate k v1...vn.{c, e, n).s n
c e/ [Accumulate, (k.v1 ...vn)].s n’/

The move from [Accumulate, k] to [Accumulate, (k.vq...vp)]
implements exactly the symbolic reduction
k] vi ... vn — [k v1 ... vn]

15

Distinguishing feature of this encoding

The representation of [k] looks like a function

= NoO need to test at application time whether the function is a
closure or an accumulator

= NoO overhead on evaluation of closed terms

Similarly, we arrange that the representation of [k] looks like the
representation of inductive constructors

= NoO overhead for (-reduction

16

Experimental results

4-colors theorem

Perimeter Coq | Cog-vm OCaml | OCaml
bytecode natif

11 | 56.7s 1.68s 1.18s 0.30s
12 | 259s 6.50s 6.18s 1.92s
13 | 680s 14.8s 15.5s 4.11s

Prime numbers

Size time

1234567891 (10)
Deductive 3099 13.26 s
Reflexive ; 58 0.59 s
20988936657440586486151264256610222593863921 (44)
Deductive : 18509 1862.52 s

Reflexive : 95 21.30 s

17

Conclusion

Conversion is very convenient: allows small proofs and
automation (using reflexive proofs)

The use of a compiler and an abstract machine for testing
convertibility leads to an efficient algorithm

So reflexive proofs can be efficiently type checked

18

A formally verified proof of the
prime number theorem

(draft)

Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff
August 19, 2005

Abstract

The prime number theorem, established by Hadamard and de la Vallée
Poussin independently in 1896, asserts that the density of primes in the
positive integers is asymptotic to 1/Ilnxz. Whereas their proofs made
serious use of the methods of complex analysis, elementary proofs were
provided by Selberg and Erdos in 1948. We describe a formally verified
version of Selberg’s proof, obtained using the Isabelle proof assistant.

1 Introduction

For each positive integer x, let 7(z) denote the number of primes less than or
equal to z. The prime number theorem asserts that the density of primes m(z)/x
in the positive integers is asymptotic to 1/In z, i.e. that lim,_, o, 7(z) Inz/2x = 1.
This was conjectured by Gauss and Legendre around the turn of the nineteenth
century, and posed a challenge to the mathematical community for almost a
hundred years, until Hadamard and de la Vallée Poussin proved it independently
in 1896.

On September 6, 2004, the first author of this article verified the following
statement, using the Isabelle proof assistant:

(Ax. pi x * 1In (real x) / (real x)) ----> 1

The system thereby confirmed that the prime number theorem is a consequence
of the axioms of higher-order logic, together with an axiom asserting the exis-
tence of an infinite set.

One reason the formalization is interesting is simply that it is a landmark,
showing that today’s proof assistants have achieved a level of usability that
makes it possible to formalize substantial theorems of mathematics. Similar
achievements in the past year include George Gonthier’s verification of the four
color theorem using Coq, and Thomas Hales’s verification of the Jordan curve
theorem using HOL-light (see the introduction to [19]). As contemporary math-
ematical proofs become increasingly complex, the need for formal verification
becomes pressing. Formal verification can also help guarantee correctness when,
as is becoming increasingly common, proofs rely on computations that are too
long to check by hand. Hales’s ambitious Flyspeck project [10], which aims for

a fully verified form of his proof of the Kepler conjecture, is a response to both
of these concerns. Here, we will provide some information as to the time and
effort that went into our formalization, which should help gauge the feasibility
of such verification efforts.

More interesting, of course, are the lessons that can be learned. This, how-
ever, puts us on less certain terrain. Our efforts certainly provide some indica-
tions as to how to improve libraries and systems for verifying mathematics, but
we believe that right now the work is best viewed as raw data. Here, therefore,
we simply offer some initial thoughts and observations.

The outline of this paper is as follows. In Section 2, we provide some back-
ground on the prime number theorem and the Isabelle proof assistant. In Sec-
tion 3, we provide an overview of Selberg’s proof, our formalization, and the
effort involved. Finally, in Section 4, we discuss some interesting aspects of
the formalization: the use of asymptotic reasoning; calculations with real num-
bers; casts between natural numbers, integers, and real numbers; combinatorial
reasoning in number theory; and the use of elementary methods.

Our formalization of the prime number theorem was a collaborative effort on
the part of Avigad, Donnelly, Gray, and Raff, building, of course, on the efforts
of the entire Isabelle development team. This article was, however, written by
Avigad, so opinions and speculation contained herein should be attributed to
him.

2 Background

2.1 The prime number theorem

The statement of the prime number theorem was conjectured by both Gauss
and Legendre, on the basis of computation, around the turn of the nineteenth
century. In a pair of papers published in 1851 and 1852, Chebyshev made
significant advances towards proving it. Note that we can write

m(z)=> 1,

p<z

where p ranges over the prime numbers. Contrary to our notation above, x
is usually treated as a real variable, making 7 a step function on the reals.
Chebyshev defined, in addition, the functions

O(z) = Z Inp

p<z

d(x) =Y Inp=Y_ An),

a<x n<x

and

where

[Inp ifn=p® for somea>1
A(n) = { 0 otherwise.

The functions 6 and i are more sensitive to the presence of primes less than z,
and have nicer analytic properties. Chebyshev showed that the prime number

theorem is equivalent to the assertion lim, ., 0(x)/z = 1, as well as to the
assertion lim, . ¥ (z)/x = 1. He also provided bounds

B <m(x)lnz/x < 6B/5
for sufficiently large x, where
B=In2/2+1n3/3+1n5/5—1n30/30 > 0.92

and 6B/5 < 1.11. So, as x approaches infinity, 7(x)Inz/z, at worst, oscillates
between these two values.

In a landmark work of 1859, Riemann introduced the complex-valued func-
tion ¢ into the study of number theory. It was not until 1894, however, that
von Mangoldt provided an expression for v that reduced the prime number the-
orem, essentially, to showing that ¢ has no roots with real part equal to 1. This
last step was achieved by Hadamard and de la Vallée Poussin, independently, in
1896. The resulting proofs make strong use of the theory of complex functions.
In 1921, Hardy expressed strong doubts as to whether a proof of the theorem
was possible which did not depend, fundamentally, on these ideas. In 1948,
however, Selberg and Erdos found elementary proofs based on a “symmetry
formula” due to Selberg. (The nature of the interactions between Selberg and
Erdos at the time and the influence of ideas is a subtle one, and was the source
of tensions between the two for years to come.) Since the libraries we had to
work with had only a minimal theory of the complex numbers and a limited real
analysis library, we chose to formalize the Selberg proof.

There are a number of good introductions to analytic number theory (for
example, [1, 12]). Edwards’s Riemann’s zeta function [9] is an excellent source of
both historical and mathematical information. A number of textbooks present
the Selberg’s proof in particular, including those by Nathanson [14], Shapiro
[16], and Hardy and Wright [11]. We followed Shapiro’s excellent presentation
quite closely, though we made good use of Nathanson’s book as well.

We also had help from another source. Cornaros and Dimitricopoulis [§]
have shown that the prime number theorem is provable in a weak fragment of
arithmetic, by showing how to formalize Selberg’s proof (based on Shapiro’s
presentation) in that fragment.! Their concerns were different from ours: by
relying on a formalization of higher-order logic, we were allowing ourselves a
logically stronger theory; on the other hand, Cornaros and Dimitricopoulis were
concerned solely with axiomatic provability and not ease of formalization. Their
work was, however, quite helpful in stripping the proof down to its bare essen-
tials. Also, since, our libraries did not have a good theory of integration, we
had to take some care to avoid the mild uses of analysis in the textbook pre-
sentations. Cornaros and Dimtricopoulis’s work was again often helpful in that
respect.

2.2 Isabelle

Isabelle [20] is a generic proof assistant developed under the direction of Larry
Paulson at Cambridge University and Tobias Nipkow at TU Munich. The HOL

1For issues relating to the formalization of mathematics, and number theory in particular,
in weak theories of arithmetic, see [3].

instantiation [15] provides a formal framework that is a conservative extension
of Church’s simple type theory with an infinite type (from which the natural
numbers are constructed), extensionality, and the axiom of choice. Specifically,
HOL extends ordinary type theory with set types, and a schema for polymorphic
axiomatic type classes designed by Nipkow and implemented by Marcus Wenzel
[17]. Tt also includes a definite description operator (“THE”), and an indefinite
description operator (“SOME”).2

Isabelle offers good automated support, including a term simplifier, an au-
tomated reasoner (which combines tableau search with rewriting), and decision
procedures for linear and Presburger arithmetic. It is an LCF-style theorem
prover, which is to say, correctness is guaranteed by the use of a small number
of constructors, in an underlying typed programming language, to build proofs.
Using the Proof General interface [21], one can construct proofs interactively
by repeatedly applying “tactics” that reduce a current subgoal to simpler ones.
But Isabelle also allows one to take advantage of a higher-level proof language,
called Isar, implemented by Wenzel [18]. These two styles of interaction can, fur-
thermore, be combined within a proof. We found Isar to be extremely helpful in
structuring complex proofs, whereas we typically resorted to tactic-application
for filling in low-level inferences. Occasionally, we also made mild use of Is-
abelle’s support for locales [7]. For more information on Isabelle, one should
consult the tutorial [15] and other online documentation [20].

Our formalization made use of the basic HOL library, as well as those parts
of the HOL-Complex library, developed primarily by Jacques Fleuriot, that deal
with the real numbers. Some of our earlier definitions, lemmas, and theorems
made their way into the 2004 release of Isabelle, in which the formalization
described here took place. Some additional theorems in our basic libraries will
be part of the 2005 release.

3 Overview

3.1 The Selberg proof

The prime number theorem describes the asymptotic behavior of a function
from the natural numbers to the reals. Analytic number theory works by ex-
tending the domain of such functions to the real numbers, and then providing
a toolbox for reasoning about such functions. One is typically concerned with
rough characterizations of a function’s rate of growth; thus f = O(g) expresses
the fact that for some constant C, |f(x)| < C|g(z)| for every x. (Sometimes,
when writing f = O(g), one really means that the inequality holds except for
some initial values of x, where g is 0 or one of the functions is undefined; or
that the inequality holds when x is large enough.)

2The extension by set types is mild, since they are easily interpretable in terms of predicate
types 0 — bool. Similarly, the definite description operator can be eliminated, at least in
principle, using Russell’s well-known interpretation. It is the indefinite description operator,
essentially a version of Hilbert’s epsilon operator, that gives rise to the axiom of choice.
Though we occasionally used the indefinite description operator for convenience, these uses
could easily be replaced by the definition description operator, and it is likely that uses of the
axiom of choice can be dispensed with in the libraries as well. In any event, it is a folklore
result that Godel’s methods transfer to higher-order logic to show that the axiom of choice is
a conservative extension for a fragment the includes the prime number theorem.

For example, all of the following identities can be obtained using elementary
calculus:

In(1+1/n) = 1/n+ O(1/n?)
Z 1/n=Inz+ O(1)

n<z
Z Inn=xlnz -2+ O(lnx)
n<z

Z Inn/n =In®z/2 4+ O(1)

n<lx

In all of these, n ranges over positive integers. The last three inequalities hold
whether one takes = to be an integer or a real number greater than or equal to
1. The second identity reflects the fact that the integral of 1/x is Inx, and the
third reflects the fact that the integral of Inx is xInx — . A list of identities
like these form one part of the requisite background to the Selberg proof.
Some of Chebyshev’s results form another. Rate-of-growth comparisons be-
tween 0, ¥, and 7 sufficient to show the equivalence of the various statements
of the prime number theorem can be obtained by fairly direct calculations. Ob-
taining any of the upper bounds equivalent to ¥ (z) = O(x) requires more work.
A nice way of doing this, using binomial coefficients, can be found in [14].
Number theory depends crucially on having different ways of counting things,
and rudimentary combinatorial methods form a third prerequisite to the Selberg
proof. For example, consider the set of (positive) divisors d of a positive natural
number n. Since the function d — n/d is a permutation of that set, we have

the following identity:
Yo @) =" f(n/d).
d|n d|n

For a more complicated example, suppose n is a positive integer, and consider
the set of pairs d,d’ of positive integers such that dd’ < n. There are two ways
to enumerate these pairs: for each value of d between 1 and n, we can enumerate
all the values d’ such that d’ < n/d; or for each product c less than n, we can
enumerate all pairs d, ¢/d whose product is ¢. Thus we have

d. D fdd)=) fd.d)

d<nd’'<n/d dd'<n

=> Y f(d,c/d).

c<n d|c

A similar argument yields

o> fldd)y=> fdd)

dln d’'|(n/d) dd’|n

=> > f(d,¢/d).

cn dlc

(2)

Yet another important combinatorial identity is given by the partial summation
formula, which, in one formulation, is as follows: if a < b, F(n) = >, f(4),

and G is any function, then

b

> fn+1)Gn+1)=Fb+1)G(b+1) - F(a)G(a+1)-

n=a

b—1

> Fn+1)(G(n+2) - G(n+1)).
This can be viewed as a discrete analogue of integration by parts, and can be
verified by induction.

An important use of (2) occurs in the proof of the Mobius inversion formula,
which we now describe. A positive natural number n is said to be square free
if no prime in its factorization occurs with multiplicity greater than 1; in other
words, n = pipa---ps where the p;’s are distinct primes (and s may be 0).
Euler’s function p is defined by

(n) = (=1)* if n is squarefree and s is as above
=9 0 otherwise.

A remarkably useful fact regarding p is that for n > 0,
1 ifn=1
Z pld { 0 otherwise. (3)

To see this, define the radical of a number n, denoted rad(n), to be the greatest
squarefree number dividing n. It is not hard to see that if n has prime fac-
torization pJ'p? - - pls, then rad(n) is given by pips - --ps. Then D H(d) =
> djrad(n) 1(d), since divisors of n that are not divisors of rad(n) are not square-
free and hence contribute 0 to the sum. If n = 1, equation (3) is clear. Other-

wise, write rad(n) = pips - - - ps, write

Sould = D> wd+ D),

d|rad(n) d|rad(n),p1|d d|rad(n),p1td

and note that each term in the first sum is canceled by a corresponding one in
the second.

Now, suppose ¢ is any function from N to R, and define f by f(n) =
>_ajn 9(d). The Mobius inversion formula provides a way of “inverting” the
definition to obtain an expression for ¢ in terms of f. Using (2) for the third
equality below and (3) for the last, we have, somewhat miraculously,

> uld)f(nfd) = Zu(d) Y. 9ln/d)/d)

d|n d'|(n/d)

= Z > uld)g((n/d)/d)

dln d'|(n/d)

SN

c|n dlc

= > gn/c) Zu

cln

= g(n),

since the inner sum on the second-to-last line is 0 except when c is equal to 1.
All the pieces just described come together to yield additional identities
involving sums, In, and u, as well as Mertens’s theorem:

Z A(n)/n=Inz+ O(1).

n<x

These, in turn, are used to derive Selberg’s elegant “symmetry formula,” which
is the central component in the proof. One formulation of the symmetry formula
is as follows:

> AMm)Inn+) > A(d)A(n/d) = 2xInz + O(x).

n<z n<z d|n

There are, however, many variants of this identity, involving A, ¥, and 8. These
crop up in profusion because one can always unpack definitions of the various
functions, apply the types of combinatorial manipulations described above, and
use identities and approximations to simplify expressions.

What makes the Selberg symmetry formula so powerful is that there are two
terms in the sum on the left, each sensitive to the presence of primes in different
ways. The formula above implies there have to be some primes — to make
left-hand side nonzero — but there can’t be too many. Selberg’s proof involves
cleverly balancing the two terms off each other, to show that in the long run,
the density of the primes has the appropriate asymptotic behavior.

Specifically, let R(z) = ¥ (x) — « denote the “error term,” and note that by
Chebyshev’s equivalences the prime number theorem amounts to the assertion
lim, o R(x)/z = 0. With some delicate calculation, one can use the symmetry
formula to obtain a bound on |R(x)]:

|R(z)|In*2 < 2 Z |R(z/n)|Inn+ O(x1nz). (4)

n<x

Now, suppose we have a bound |R(z)| < az for sufficiently large x. Substituting
this into the right side of (4) and using an approximation for Y. _ Inn/n we
get

n<z

|R(z)| < ax+ O(z/Inx),

which is not an improvement on the original bound. Selberg’s method involves
showing that in fact there are always sufficiently many intervals on which one
can obtain a stronger bound on R(z), so that for some positive constant k,
assuming we have a bound |R(z)| < az that valid for > ¢;, we can obtain
a co and a better bound |R(x)| < (a — ka®), valid for x > cp. The constant k
depends on a, but the same constant also works for any a’ < a.

By Chebyshev’s theorem, we know that there is a constant a; such that
|R(z)| < ayz for every x. Choosing k appropriate for a; and then setting
an+1 = an — ka3, we have that for every n, there is a ¢ large enough so that
|R(x)|/z < a, for every > ¢. But it is not hard to verify that the sequence
ai, az, ... approaches 0, which implies that R(x)/x approaches 0 as z approaches
infinity, as required.

3.2 Our formalization

All told, our number theory session, including the proof of the prime num-
ber theorem and supporting libraries, constitutes 673 pages of proof scripts, or
roughly 30,000 lines. This count includes about 65 pages of elementary number
theory that we had at the outset, developed by Larry Paulson and others; also
about 50 pages devoted to a proof of the law of quadratic reciprocity and prop-
erties of Euler’s ¢ function, neither of which are used in the proof of the prime
number theorem. The page count does not include the basic HOL library, or
properties of the real numbers that we obtained from the HOL-Complex library.

The overview provided in the last section should provide a general sense of
the components that are needed for the formalization. To start with, one needs
good supporting libraries:

e a theory of the natural numbers and integers, including properties of
primes and divisibility, and the fundamental theorem of arithmetic

e a library for reasoning about finite sets, sums, and products
e a library for the real numbers, including properties of In

The basic Isabelle libraries provided a good starting point, though we had to
augment these considerably as we went along. More specific supporting libraries
include:

e properties of the p function, combinatorial identities, and the Mobius
inversion formula

e a library for asymptotic “big O” calculations
e a number of basic identities involving sums and In
e Chebyshev’s theorems

Finally, the specific components of the Selberg proof are:
e the Selberg symmetry formula
e the inequality involving R(n)
e a long calculation to show R(n) approaches 0

This general outline is clearly discernible in the list of theory files, which can
be viewed online [2]. Keep in mind that the files described here have not been
modified since the original proof was completed, and many of the proofs were
written while various participants in the project were still learning how to use
Isabelle. Since then, some of the basic libraries have been revised and incor-
porated into Isabelle, but Avigad intends to revise the number theory libraries
substantially before cleaning up the rest of the proof.

There are three reasons that it would not be interesting to give a play-
by-play description of the formalization. The first is that our formal proof
follows Shapiro’s presentation quite closely, though for some parts we followed
Nathanson instead. A detailed description of our proof would therefore be
little more than a step-by-step narrative of (one of the various paths through)

Selberg’s proof, with page correspondences in texts we followed. For example,
one of our formulations of the Mobius inversion is as follows:

lemma mu_inversion_natla: "ALL n. (0 < n —>
fn=() d/ ddvd n. gl divd)) = 0 < (a::nat) =
gn = (Z d | d dvd n. of_int(mu(int(d))) * £ (n div d))"

This appears on page 64 of Shapiro’s book, and on page 218 of Nathanson’s
book. We formalized a version of the fourth identity listed in Section 3.2 as
follows:

lemma identity_four_real_b: "(Ax.)Y i=1..natfloor(abs x).
1n (real i) / (real i)) =o
(Mx. 1n(abs x + 1)°2 / 2) +o 0(Ax. 1)"

In fact, stronger assertions can be found on page 93 of Shapiro’s book, and on
page 209 of Nathanson’s book. Here is one of our formulations of the Selberg
symmetry principle:

lemma Selberg3: "(Ax. >.,n = 1..natfloor (abs x) + 1.
Lambda n * 1n (real n)) + (Ax. Y n=1..natfloor (abs x) + 1.
(>> u | udvd n. Lambda u * Lambda (n div u)))
=0 (Ax. 2 * (abs x + 1) * In (abs x + 1)) +o 0(Ax. abs x + 1)"

This is given on page 419 of Shapiro’s book, and on page 293 of Nathanson’s
book. The error estimate given in the previous section, taken from 431 of
Shapiro’s book, takes the following form:

lemma error7: "(MAx. abs (R (abs x + 1)) * 1In (abs x + 1) ~ 2) <o
(MAx. 2 # (> n = 1..natfloor (abs x) + 1.
abs (R ((abs x + 1) / real n)) * 1n (real n))) =o
O0(Mx. (abs x + 1) * (1 + 1n (abs x + 1)))"

We will have more to say, below, about handling of asymptotic notation, the
type casts, and the various occurrences of abs and +1 that make the formal
presentation differ from ordinary mathematical notation. But aside from calling
attention to differences like these, a detailed outline of the formal proof would be,
in large part, nothing more than a detailed outline of the ordinary mathematical
one.

The second reason that it does not pay to focus too much attention on the
proof scripts is that they are not particularly nice. Our efforts were designed to
get us to the prime number theorem as quickly as possible rather than as cleanly
as possible, and, in retrospect, there are many ways in which we could make the
proofs more readable. For example, long after deriving some of the basic identi-
ties involving In, we realized that we needed either stronger or slightly different
versions, so we later incorporated a number of ad-hoc reworkings and fixes. A
couple of months after completing the formalization, Avigad was dismayed to
discover that his definition of the constant 7 really described the megation of
the constant, defined by Euler, that goes under the same name. This results
in infelicitous differences between the statements of a few of our theorems and
the ordinary mathematical versions. Our proofs also make use of two different
summation operators that were in the libraries that we used, which will, fortu-
nately, be subsumed by the more general one in future releases of the Isabelle
libraries. Even the presentation of the theorems displayed above could easily be
improved using Isabelle’s various translation and output facilities.

This points to a final reason for not delving into too much detail: we know
that our formalization is not optimal. It hardly makes sense for us to describe
exactly how we went about proving the Mobius inversion formula until we are
convinced that we have done it right; that is, until we are convinced the we have
made the supporting libraries as generally useful as possible, and configured the
automated tools in such a way to make the formalization as smooth as possible.
We therefore intend to invest more time in improving the various parts of the
formalization and report on these when it is clear what we have learned from
the efforts.

In the meanwhile, we will devote the rest of this report to conveying two types
of information. First, to help gauge the usability of the current technology, we
will try to provide a sense of the amount of time required to seeing the project
through to its completion. Second, we will provide some initial reflections on the
project, and on the strengths and weaknesses of contemporary proof assistants.
In particular, we will discuss what we take to be some of the novel aspects of the
formalization, and indicate where we believe better automated support would
have been especially helpful.

3.3 The effort involved

As we have noted in the introduction, one of the most interesting features of our
formalization of the prime number theorem is simply its existence, which shows
that current technology makes it possible to treat a proof of this complexity.
The question naturally arises as to how long the formalization took.

This is a question that it hard to answer with any precision. Avigad first
decided to undertake the project in March of 2003, having learned how to use
Isabelle and proved Gauss’s law of quadratic reciprocity with Gray and Adam
Kramer the preceding summer and fall. But this was a side project for everyone
involved, and time associated it includes time spent learning to use Isabelle,
time spent learning the requisite number theory, and so on. Gray developed
a substantial part of the number theory library, including basic facts about
primes and multiplicity, the g function, and the identity (2), working a few
hours per week in the summer of 2003, before his thesis work in ethics took
over. Donnelly and Avigad developed the library to support big O calculations
[6] while Donnelly worked half-time during the summer of 2003, just after he
completed his junior year at Carnegie Mellon. During that summer, and working
part time the following year, Donnelly also derived some of the basic identities
involving In. Raff started working on the project in the 2003-2004 academic year,
but most of his contributions came working roughly half-time in the summer
of 2004, just after he obtained his undergraduate degree. During that time, he
proved Chebyshev’s theorem to the effect that (x) = O(z), and also did most
of the work needed to prove the equivalence of statements of the prime number
theorem in terms of the functions m, 6, and . Though Avigad’s involvement
was more constant, he rarely put in more than a few hours per week before the
summer of 2004, and set the project aside for long stretches of time. The bulk
of his proof scripts were written during the summer of 2004, when he worked
roughly half-time on the project from the middle of June to the end of August.

Some specific benchmarks may be more informative. Proving most of the
inversion theorems we needed, starting from (2) and the relevant properties
of u, took Avigad about a day. (For a “day” read eight hours of dedicated

10

formalization. Though he could put in work-days like that for small stretches,
in some of the estimates below, the work was spread out over longer periods
of time.) Proving the first version of the Selberg symmetry formula using the
requisite identities took another day. Along the way, he was often sidetracked
by the need to prove elementary facts about things like primes and divisibility,
or the floor function on the real numbers. This process stabilized, however, and
towards the end he found that he could formalize about a page of Shapiro’s text
per day. Thus, the derivation of the error estimate described above, taken from
pages 428431 in Shapiro’s book, took about three-and-a-half days to formalize;
and the remainder of the proof, corresponding to 432-437 in Shapiro’s book,
took about five days.

In many cases, the increase in length is dramatic: the three-and-a-half pages
of text associated with the proof of the error estimate translate to about than
1,600 lines, or 37 pages, of proof scripts, and the five pages of text associated
with the final part of the proof translate to about 4,000 lines, or 89 pages, of
proof scripts. These ratios are abnormally high, however, for reasons discussed
in Section 4.2. The five-line derivation of the Mobius inversion formula in Sec-
tion 3.1 translates to about 40 lines, and the proof of the form of the Selberg
symmetry formula discussed there, carried out in about two-and-a-half pages in
Shapiro’s book, takes up about 600 lines, or 13 pages. These ratios are more
typical.

We suspect that over the coming years both the time it takes to carry out
such formalizations, as well as the lengths of the formal proof scripts, will drop
significantly. Much of the effort involved in the project was spent on the follow-
ing:

Defining fundamental concepts and gathering basic libraries of easy facts.

e Proving trivial lemmas and spelling out “straightforward” inferences.

Finding the right lemmas and theorems to apply.

Entering long formulas and expressions correctly, and adapting ordinary
mathematical notation to the formal notation in Isabelle.

Gradually, all these requirements will be ameliorated, as better libraries, auto-
mated tools, and interfaces are developed. On a personal note, we are entirely
convinced that, although there is a long road ahead, formal verification of math-
ematics will inevitably become commonplace. Getting to that point will require
both theoretical and practical ingenuity, but we do not see any conceptual hur-
dles.?

4 Reflection

In this section, we will discuss features of the formalization that we feel are wor-
thy of discussion, either because they represent novel and successful solutions to
general problems, or (more commonly) because they indicate aspects of formal
mathematical verification where better support is possible.

3For further speculation along these lines, see the preliminary notes [4].

11

4.1 Asymptotics

One of our earliest tasks in the formalization was to develop a library to support
the requisite calculations with big O expressions. To that end, we gave the
expression f = O(g) the strict reading 3C Vz (|f(x)| < Clg(x)]|), and followed
the common practice of taking O(g) to be the set of all functions with the
requisite rate of growth, i.e.

O(g) ={f [3C vz (|f(2)| < Clg(x)])}-

We then read the “equality” in f = O(g) as the element-of relation, €.

Note that these expressions make sense for any function type for which the
codomain is an ordered ring. Isabelle’s axiomatic type classes made it possible
to develop the library fully generally. We could lift operations like addition
and multiplication to such types, defining f + g to denote the pointwise sum,
Az.(f(z) + g(x)). Similarly, given a set B of elements of a type that supports
addition, we could define

a+,B={c|IeB(c=a+b)}.

We also defined a =, B to be alternative input syntax for a € B. This gave
expressions like f =, g +, O(h) the intended meaning. In mathematical texts,
convention dictates that in an expression like 22 4+ 3z = 22 + O(x), the terms
are to be interpreted as functions of x; in Isabelle we he had to use lambda
notation to make this explicit. Thus, the expression above would be entered

(MAx. x72 + 3 * x) =0 (Ax. x2) +o 0(Ax. x)

This should help the reader make sense of sense of the formalizations presented
in Section 3.2.

An early version of our big O library is described in detail in [5]. That
version is nonetheless fairly close to the version used in the proof of the prime
number theorem described here, as well as a version that is scheduled for the
2005 release of Isabelle. The main differences between the latter and the version
described in [5] are as follows:

1. In the version described in [5], we support reasoning about O applied
to sets, O(S), as well as to functions, O(f). It now seems that uses of
the former can easily be eliminated in terms of uses of the latter, and
having both led to annoying type ambiguities. The most recent library
only defines O(f).

2. In [5], we advocated using f + O(g) as output syntax for f +, O(g). We
no longer think this is a good idea: the greater clarity in keeping the “o0”
outweighs the slight divergence from ordinary mathematical notation.

3. The more recent libraries have theorems to handle composition of func-
tions in big O equations.

4. The more recent libraries have better and more general theorems for sum-
mations. (In the most recent library, the function “sumr” is entirely elim-
inated in favor of Isabelle’s “setsum.”)

12

5. The more recent libraries support reasoning about asymptotic inequalities,
f < g+ O(h). This is entered as f <o g =o 0 (h), which is a hack, but
an effective one.

There is one feature of our library that seems to be less than optimal, and
resulted in a good deal of tedium. With our definition, a statement like A\z. = +
1 = O(Az. 2?) is false when the variables range over the natural numbers, since
22 is equal to 0 when z is 0. Often one wants to restrict one’s attention to
strictly positive natural numbers, or nonnegative real numbers. There are four

ways one can do this:

e Define new types for the strictly positive natural numbers, or nonnegative
real numbers, and state the identities for those types.

e Formalize the notion “f = O(g) on S.”
e Formalize the notion “f = O(g) eventually.”

e Replace x by z 4+ 1 in the first case, and by |z| in the second case, to
make the identities correct. For example, “f(|z|) = O(|z|®)” expresses
that f(z) = O(2®) on the nonnegative reals. Various similar tinkerings
are effective; for example, the relationship intended in the example above
is probably best expressed as Az. x + 1 = O(Az. 2% + 1).

These various options are discussed in [5], and all come at a cost. For example,
the first requires annoying casts, say, between positive natural numbers, and
natural numbers. The second requires carrying around a set S in every formula,
and both the second and third require additional work when composing expres-
sions or reasoning about sums (roughly, one has to make sure that the range of
a function lies in the domain where an asymptotic estimate is valid).

In our formalization, we chose the fourth route, which explains the numerous
occurrences of +1 and abs in the statements in Section 3.2. This often made
some of the more complex calculations painfully tedious, forcing us, for example,
the following “helper” lemma in Selberg:

lemma aux: "1 <= z — natfloor(abs(z - 1)) + 1 = natfloor z"

We still do not know, however, whether following any of the alternative options
would have made much of a difference.

Donnelly and Avigad have designed a decision procedure for entailments
between linear big O equations, and have obtained a prototype implementation
(though we have not incorporated it into the Isabelle framework). This would
eliminate the need for helper lemmas like the following:

lemma aux5: "f + g =o h +o 0(k::’a=>(’b::ordered_ring)) —
g+1=0oh+o 0(k) = f =0 1 +o 0(k)"

We believe calculations going beyond the linear fragment would also benefit
from a better handling of monotonicity, just as is needed to support ordinary
calculations with inequalities, as described in the next section.

4.2 Calculations with real numbers

One salient feature of the Selberg proof is the amount of calculation involved.
The dramatic increase in the length of the formalization of the final part of the

13

proof (5 pages in Shapiro, compared to 89 or so in the formal version) is directly
attributable to the need to spell out calculations involving field operations, log-
arithms and exponentiation, the greatest and least integer functions (“ceiling”
and “floor”), and so on. The textbook calculations themselves were complex;
but then each textbook inference had to be expanded, by hand, to what was
often a long sequence of entirely straightforward inferences.

Of course, Isabelle does provide some automated support. For example,
the simplifier employs a form of ordered rewriting for operations, like addition
and multiplication, that are associative and commutative. This puts terms
involving these operations into canonical normal forms, thereby making it easy
to verify equality of terms that differ up to such rewriting. More complex
equalities can similarly be obtained by simplifying with appropriate rewrite
rules, such as various forms of distributivity in a ring or identities for logarithms
and exponents.

Much of the work in the final stages of the proof, however, involved verifying
inequalities between expressions. Isabelle’s linear arithmetic package is complete
for reasoning about inequalities between linear expressions in the integers and
reals, i.e. validities that depend only on the linear fragment of these theories.
But, many of the calculations went just beyond that, at which point we were
stuck manipulating expressions by hand and applying low-level inferences.

As a simple example, part of one of the long proofs in PrimeNumberTheorem
required verifying that

(1—|—3 c) - real(n) < Kz

(C*+3)
using the following hypotheses:

real(n) < (K/2)x
o< cCr
0<exl1

The conclusion is easily obtained by noting that 1+ ﬁ is strictly less than
2, and so the product with real(n) is strictly less than 2(K/2)x = Kz. But
spelling out the details requires, for one thing, invoking the relevant monotonic-
ity rules for addition, multiplication, and division. The last two, in turn, require
verifying that the relevant terms are positive. Furthermore, getting the calcula-
tion to go through can require explicitly specifying terms like 2(K/2)z (which
can be simplified to Kz), or, in other contexts, using rules like associativity or
commutativity to manipulate terms into the the forms required by the rules.
The file PrimeNumberTheorem consists of a litany of such calculations. This
required us to have names like “mult-left-mono” “add-pos-nonneg,” “order-
le-less-trans,” “exp-less-cancel-iff,” “pos-divide-le-eq” at our fingertips, or to
search for them when they were needed. Furthermore, sign calculations had
a way of coming back to haunt us. For example, verifying an inequality like
1/(1+ st) < 1/(1 + su) might require showing that the denominators are pos-
itive, which, in turns, might require verifying that s, ¢, and u are nonnegative;
but then showing st > su may again require verifying that s is positive. Since s
can be carried along in a chain of inequalities, such queries for sign information
can keep coming back. Isar made it easy to break out such facts, name them,
and reuse them as needed. But since we were usually working in a context where

14

obtaining the sign information was entirely straightforward, these concerns al-
ways felt like an annoying distraction from the interesting and truly difficult
parts of the calculations.

In short, inferences like the ones we have just described are commonly treated
as “obvious” in ordinary mathematical texts, and it would be nice if mechanized
proof assistants could recognize them as such. Decision procedures that are
stronger than linear arithmetic are available; for example, a proof-producing
decision procedure for real-closed fields has recently been implemented in HOL-
light [13]. But for calculations like the one above, computing sequences of partial
derivatives, as decision procedures for the real closed fields are required to do, is
arguably unnecessary and inefficient. Furthermore, decision procedures for real
closed fields cannot be extended, say, to handle exponentiation and logarithms;
and adding a generic monotone function, or trigonometric functions, or the floor
function, renders the full theory undecidable.

Thus, in contexts similar to ours, we expect that principled heuristic pro-
cedures will be most effective. Roughly, one simply needs to chain backwards
through the obvious rules in a sensible way. There are stumbling blocks, how-
ever. For one thing, excessive case splits can lead to exponential blowup; e.g. one
can show st > 0 by showing that s and t are either both strictly positive or
strictly negative. Other inferences are similarly nondeterministic: one can show
r+ s+t > 0 by showing that two of the terms are nonnegative and the third is
strictly positive, and one can show r+ s < t +u+ v+ w, say, by showing r < u,
s<t+wv,and 0 < w.

As far as case splits are concerned, we suspect that they are rarely needed
to establishing “obvious” facts; for example, in straightforward calculations, the
necessary sign information is typically available. As far as the second sort of
nondeterminism is concerned, notice that the procedures for linear arithmetic
are effective in drawing the requisite conclusions from available hypotheses; this
is a reflection that of the fact that the theory of the real numbers with addition
(and, say, multiplication by rational constants) is decidable.

The analogous theory of the reals with multiplication is also decidable. To see
this, observe that the structure consisting of the strictly positive real numbers
with multiplication is isomorphic to the structure of the real numbers with
addition, and so the usual procedures for linear arithmetic carry over. More
generally, by introducing case splits on the signs of the basic terms, one can
reduce the multiplicative fragment of the reals to the previous case.

In short, when the signs of the relevant terms are known, there are straight-
forward and effective methods of deriving inequalities in the additive and mul-
tiplicative fragments. This suggests that what is really needed is a principled
method of amalgamating such “local” procedures, together with, say, proce-
dures that make use of monotonicity and sign properties of logarithms and
exponentiation. The well-known Nelson-Oppen procedure provides a method
of amalgamating decision procedures for disjoint theories that share only the
equality symbol in their common language; but these methods fail for theories
that share an inequality symbol when one adds, say, rational constants to the
language, which is necessary to render such combinations nontrivial. We be-
lieve that there are principled ways, however, of extending the Nelson-Oppen
framework to obtain useful heuristic procedures. This possibility is explored by
Avigad and Harvey Friedman in [6].

15

4.3 Casting between domains

In our formalization, we found that the most natural way to establish basic
properties of the functions 8, ¥, and m, as well as Chebyshev’s theorems, was
to treat them as functions from the natural numbers to the reals, rather them
as functions from the reals to the reals. Either way, however, it is clear that the
relevant proofs have to use the embedding of the natural numbers into the reals
in an essential way. Since the p function takes positive and negative values, we
were also forced to deal with integers as soon as p came into play. In short,
our proof of the prime number theorem inevitably involved combining reasoning
about the natural numbers, integers, and real numbers effectively; and this, in
turn, involved frequent casting between the various domains.

We tended to address such needs as they arose, in an ad-hoc way. For
example, the version of the fundamental theorem of arithmetic that we inherited
from prior Isabelle distributions asserts that every positive natural number can
be written uniquely as the product of an increasing list of primes. Developing
properties of the radical function required being able to express the unique
factorization theorem in the more natural form that every positive number is
the product of the primes that divide it, raised to the appropriate multiplicity;
i.e. the fact that for every n > 0,

n = Hpmultp(n)7

pln

where mult,(n) denotes the multiplicity of p in n. We also needed, at our
disposal, things like the fact that n divides m if and only if for every prime
number p, the multiplicity of p in n is less than or equal to the multiplicity of p in
m. Thus, early on, we faced the dual tasks of translating the unique factorization
theorem from a statement about positive natural numbers to positive integers,
and developing a good theory of multiplicity in that setting. Later, when proving
Chebyshev’s theorems, we found that we needed to recast some of the facts about
multiplicity to statements about natural numbers.

We faced similar headaches when we began serious calculations involving
natural numbers and the reals. In particular, as we proceeded we were forced
to develop a substantial theory of the floor and ceiling functions, including a
theory of their behavior vis-a-vis the various field operations. In calculations,
expressions sometimes involved objects of all three types, and we often had to
explicitly transport operations in or out of casts in order to apply a relevant
lemma.

When one extends a domain like the natural numbers to the integers, or
the integers to the real numbers, some operations are simply extended. For
example, properties of addition and multiplication of natural numbers carry all
the way through to the reals. On the other hand, one has new operations, like
subtraction on the integers and division in the real numbers, that are mirrored
imperfectly in the smaller domains. For example, subtraction on the integers
extends truncated subtraction x = y on the natural numbers only when z > y,
and division in the reals extends the function x div y on the integers or natural
numbers only when y divides z. Finally, there are facts the depend on the choice
of a left inverse to the embedding: for example, if n is an integer, = is a real
number, real is the embedding of the integers into the reals, and || denotes the

16

floor function from the reals to the integers, we have
(n < |z]) = (real(n) < x).

This is an example of what mathematicians call a Galois correspondence, and
category theorists call an adjunction, between the integers and the real numbers
with the ordering relation.

Our formalization of the prime number theorem involved a good deal of ma-
nipulation of expressions, by hand, using the three types of facts just described.
Many of these inferences should be handled automatically. After all, such issues
are transparent in mathematical texts; we carry out the necessary inferences
smoothly and unconsciously whenever we read an ordinary proof. The guiding
principle should be that anything that is transparent to us can be made trans-
parent to a mechanized proof assistant: we simply need to reflect on why we are
effectively able to combine domains in ordinary mathematical reasoning, and
codify that knowledge appropriately.

4.4 Combinatorial reasoning with sums

As described in Section 3.2, formalizing the prime number theorem involved a
good deal of combinatorial reasoning with sums and products. Thus, we had
to develop some basic theorems to support such reasoning, many of which have
since been moved into Isabelle’s HOL library. These include, for example,

lemma setsum_cartesian_product:
"(> x€A. (O y€B. f xy)) = (> z€A <*> B. f (fst z) (snd z))"

which allows one to view a double summation as a sum over a cartesian product;
as well as

lemma setsum_reindex:
"inj_on f B = (Y x€f‘B. h x) = ()} x€B. (h o £)(x))"

which expresses that if f is an injective function on a set B, then summing h
over the image of B under f is the same as summing ho f over B. In particular,
if f is a bijection from B to A, the second identity implies that summing h
over A is the same as summing h o f over B. This type of “reindexing” is often
so transparent in mathematical arguments that when we first came across an
instance where we needed it (long ago, when proving quadratic reciprocity), it
took some thought to identify the relevant principle. It is needed, for example,

to show
> “h(n) = h(n/d),
d|n

d|n

using the fact that f(d) = n/d is a bijection from the set of divisors of n to
itself; or, for example, to show

> h(d,d) = h(d,c/d),
d|c

dd'=c

using the fact that f(d) = (d, ¢/d) is a bijection from the set of divisors of ¢ to
{{d,d") | dd' = c}.

In Isabelle, if o is any type, one also has the type of all subsets of o. The
predicate “finite” is defined inductively for these subset types. Isabelle’s sum-
mation operator takes a subset A of ¢ and a function f from o to any type with

17

an appropriate notion of addition, and returns) _, f(x). This summation
operator really only makes sense when A is a finite subset, so many identities
have to be restricted accordingly. (An alternative would be to define a type of
finite subsets of o, with appropriate closure operations; but then work would be
required to translate properties of arbitrary subsets to properties of finite sub-
sets, or to mediate relationships between finite subsets and arbitrary subsets.)
This has the net effect that applying an identity involving a sum or product
often requires one to verify that the relevant sets are finite. This difficulty is
ameliorated by defining) , f(x) to be 0 when A is infinite, since it then turns
out that a number of identities hold in the unrestricted form. But this fix is not
universal, and so finiteness issues tend to pop up repeatedly when one carries
out a long calculation.

In short, at present, carrying out combinatorial calculations often requires
a number of straightforward verifications involving reindexing and finiteness.
Once again, these are inferences that are nearly transparent in ordinary math-
ematical texts, and so, by our general principle, we should expect mechanized
proof assistants to take care of them. As before, there are stumbling blocks;
for example, when reindexing is needed, the appropriate injection f has to be
pulled from the air. We expect, however, that in the types of inferences that
are commonly viewed as obvious, there are natural candidates for f. So this
is yet another domain where reflection and empirical work should allow us to
make proof assistants more usable.

4.5 Devising elementary proofs

Anyone who has undertaken serious work in formal mathematical verification
has faced the task of adapting an ordinary mathematical proof so that it can
be carried out using the libraries and resources available. When a proof uses
mathematical “machinery” that is unavailable, one is faced with the choice of
expanding the background libraries to the point where one can take the orig-
inal proof at face value, or finding workarounds, say, by replacing the original
arguments with ones that are more elementary. The need to rewrite proofs in
such a way can be frustrating, but the task can also be oddly enjoyable: it poses
interesting puzzles, and enables one to better understand the relationship of the
advanced mathematical methods to the elementary substitutes. As more power-
ful mathematical libraries are developed, the need for elementary workarounds
will gradually fade, and with it, alas, one good reason for investing time in such
exercises.

Our decision to use Selberg’s proof rather than a complex-analytic one is an
instance of this phenomenon. To this day, we do not have a sense of how long it
would have taken to build up a complex-analysis library sufficient to formalize
one of the more common proofs of the prime number theorem, nor how much
easier a formal verification of the prime number theorem would have been in
the presence of such a library.

But similar issues arose even with respect to the mild uses of analysis re-
quired by the Selberg proof. Isabelle’s real library gave us a good theory of
limits, series, derivatives, and the basic transcendental functions, but it had
almost no theory of integration to speak of. Rather than develop such a theory,
we found that we were able to work around the mild uses of integration needed

18

in the Selberg proof.* Often, we also had to search for quick patches to other
gaps in the underlying library. For the reader’s edification and entertainment,
we describe a few such workarounds here.

Recall that one of the fundamental identities we needed asserts

In(1+41/n) = 1/n+ O(1/n?).

This follows from the fact that In(1 + z) is well approximated by x when x
is small, which, in turn, can be seen from the Maclaurin series for In(1 + z),
or even the fact that the derivative of In(1 + x) is equal to 1 at 0. But these
were among the few elementary properties of transcendental functions that were
missing from the real library. How could we work around this?

To be more specific: Fleuriot’s real library defined e® by the power series
e’ = ZZOZO 2™ /n!, and showed that e® is strictly increasing, €® = 1, e*7¥ = e%¢e¥
for every x and y, and the range of e® is exactly the set of positive reals. The
library then defines In to be a left inverse to e*. The puzzle was to use these
facts to show that |In(1 + 2) — x| < 2% when z is positive and small enough.

Here is the solution we hit upon. First, note that when z > 0, e* > 1 + =z,
and so, x > In(1 + z). Replacing z by 22, we also have

e > 1+ 22 (5)
On the other hand, the definition of e” can be used to show
e” <14 x4 2? (6)
when 0 < z < 1/2. From (5) and (6) we have
2 2
<(1+z+2)/(1+27)
<1+uzx,

where the last inequality is easily obtained by multiplying through. Taking
logarithms of both sides, we have

:U—x2§1n(1+m)§x

when 0 < 2 < 1/2, as required. In fact, a similar calculation yields bounds on
In(1 + z) when x is negative and close to 0. This can be used to show that the
derivative of Inx is 1/x; the details are left to the reader.

For another example, consider the problem of showing that » 2, 1/n?
converges. This follows immediately from the integral test: fo:l 1/n? <
floo 1/2? = 1. How can it be obtained otherwise? Answer: simply write

M M
Zl/n2 < 1—|—Zl/n(n—1)
n=1 n=2

M
1+ (1/(n—1)—1/n)

1+1-1/M
< 2

4Since the project began, Sebastian Skalberg managed to import the more extensive anal-
ysis library from the HOL theorem prover to Isabelle. By the time that happened though, we
had already worked around most of the applications of analysis needed for the proof.

19

where the second equality relies on the fact that the preceding expression in-
volves a telescoping sum. Having to stop frequently to work out puzzles like
these helped us appreciate the immense power of the Newton-Leibniz calculus,
which provides uniform and mechanical methods for solving such problems. The
reader may wish to consider what can be done to show that the sum Y 2 1/2%
is convergent for general values of a > 1, or even for the special case a = 3/2.
Fortunately, we did not need these facts.
Now consider the identity

Z 1/n=Inz+ O(1).

n<x

To obtain this, note that when x is positive integer we can write Inx as a
telescoping sum,

Inz = Z (In(n+1) —1nn)

n<zr—1

= Y In(1+1/n)

n<zx—1

> 1n+0(0)] 1/n?)

n<zr—1 n<z

> 1/n+0(1).

n<x

We learned this trick from [8]. In fact, a slight refinement of the argument shows

Z 1/n=lnz+C+0O(1/x)

n<z

for some constant, C. This constant is commonly known as Euler’s constant,
denoted by ~.

One last puzzle: how can one show that In /2 approaches 0, for any a > 07?
Here is our solution. First, note that we have Inxz < In(1 + z) < x for every
positive z. Thus we have

alnz =Inzx® < z%,

for every positive 2 and a. Replacing a by a/2 and dividing both sides by az®/2,
we obtain Inx/x® < 2/(ax®?). Tt is then easy to show that the right-hand-side
approaches 0 as x approaches infinity.

References

[1] Tom M. Apostol. Introduction to analytic number theory. Springer-Verlag,
New York, 1976.

[2] Jeremy Avigad. Mathematics in Isabelle.
http://www.andrew.cmu.edu/user/avigad /isabelle/.

[3] Jeremy Avigad. Number theory and elementary arithmetic. Philosophia
Mathematica, 11:257-284, 2003.

20

[4]

[5]

[11]

[12]

[13]

[18]

Jeremy Avigad. Notes on a formalization of the prime number theorem.
Technical Report CMU-PHIL-163, Carnegie Mellon University, 2004.

Jeremy Avigad and Kevin Donnelly. Formalizing O notation in Is-
abelle/HOL. In David Basin and Michaél Rusinowitch, editors, Automated
Reasoning: second international joint conference, IJCAR 2004. Springer-
Verlag, 2005.

Jeremy Avigad and Harvey Friedman. Combining decision procedures for
theories of the real numbers with inequality. In preparation.

Clemens Ballarin. Locales and locale expressions in Isabelle/Isar.
http://www.cl.cam.ac.uk/Research/HVG /Isabelle/dist /packages/Isabelle
/doc/locales.pdf.

C. Cornaros and C. Dimitracopoulos. The prime number theorem and
fragments of PA. Arch. Math. Logic, 33:265-281, 1994.

Harold M. Edwards. Riemann’s zeta function. Dover Publications Inc.,
Mineola, NY, 2001. Reprint of the 1974 original [Academic Press, New
York].

Thomas Hales. The flyspeck project fact sheet.
http://www.math.pitt.edu/~thales/flyspeck/.

G. H. Hardy and E. M. Wright. An introduction to the theory of numbers.
Oxford, fifth edition, 1979.

G. J. O. Jameson. The prime number theorem. Cambridge University Press,
Cambridge, 2003.

Sean McLaughlin and John Harrison. A proof producing decision procedure
for real arithmetic. In Robert Nieuwenhuis, editor, Automated deduction —
CADE-20. 20th international conference on automated deduction, Springer-
Verlag, 2005.

Melvyn B. Nathanson. Elementary methods in number theory. Springer-
Verlag, New York, 2000.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL.
A proof assistant for higher-order logic. Springer-Verlag, Berlin, 2002.

Harold N. Shapiro. Introduction to the theory of numbers. John Wiley &
Sons Inc., New York, 1983.

Markus Wenzel. Type classes and overloading in higher-order logic. In
E. Gunter and A. Felty, editors, Proceedings of the 10th international con-
ference on theorem proving in higher order logics (TPHOLs’97), pages 307—
322, Murray Hill, New Jersey, 1997.

Markus Wenzel. Isabelle/Isar — a wversatile environment for human-
readable formal proof documents. PhD thesis, Institut fiir Informatik, Tech-
nische Universitdat Miinchen, 2002.

21

[19] Freek Wiedijk. The seventeen provers of the world. Springer-Verlag, to
appear.

[20] The Isabelle theorem proving environment. Developed by Larry Paul-
son at Cambridge University and Tobias Nipkow at TU Munich.
http://www.cl.cam.ac.uk/Research/HVG /Isabelle/index.html.

[21] Proof general. http://proofgeneral.inf.ed.ac.uk/.

22

A formally verified proof of
the prime number theorem

Jeremy Avigad
Department of Philosophy
Carnegie Mellon University

http://www.andrew.cmu.edu/~avigad

The prime number theorem

Let 7 (x) denote the number of primes less than or equal to x.

The prime number theorem: 77 (x)/x 1s asymptotic to 1/In x, 1.e.

Im 7w(x)Inx/x = 1.
X—>00

Conjectured by Gauss and Legendre, on the basis of computation, around
1800; proved by Hadamard and de la Vallée Poussin in 1896.

Kevin Donnelly, David Gray, Paul Raff, and I used Isabelle to verify:
(Ax. pix x In (real x) / (real x)) ————> 1

—p. 2/50

Outline

¢ Historical background
® Overview of the Selberg proof
¢ QOverview of the formalization

® Interesting aspects of the formalization
° Asymptotic reasoning
o (Calculations with reals
o (Casts between natural numbers, integers, and reals
© Combinatorial reasoning with sums
o Elementary workarounds

® Heuristic procedures for the reals

—p. 3/50

Chebyshev’s advances (~1850)

p=x
W (x) = Z Inp = ZA(n) where
pafx n<x

Inp ifn = p%, forsomea > 1
A(n) = .
0 otherwise.

® The prime number 1s equivalent to the statements
limy 5 0(x)/x =1 and limy oo Y (x)/x = 1.

® For x large enough,

0.92 < w(x)Inx/x < L.11.

—p. 4/50

More history

In 1859, Riemann introduces the complex-valued function, ¢.

In 1894, von Mangoldt reduced the PNT to showing that ¢ has no roots
with real part equal to 1.

This was done by Hadamard and de la Vallée Poussin, independently, in
1896.

In 1921, Hardy expressed doubts that there 1s a proof that does not
essentially use these ideas.

In 1948, Selberg and Erdos found elementary proofs based on Selberg’s
“symmetry formula.”

—p. 5/50

Outline

¢ Historical background
Overview of the Selberg proof
¢ QOverview of the formalization

® Interesting aspects of the formalization
° Asymptotic reasoning
o (Calculations with reals
o (Casts between natural numbers, integers, and reals
© Combinatorial reasoning with sums
o Elementary workarounds

® Heuristic procedures for the reals

—p. 6/50

Asymptotic reasoning

View 7 (x) as a step function from R to RR.

Analytic number theory provides a toolbox for characterizing growth
rates.

For example, f = O(g) means: there 1s a constant, C, such that for every
X,

| f ()] < Clg(x)].

Sometimes, one really means “for all but a few exceptional cases of x,” or
“for large enough x.”

—p. 7/50

Examples

Here are some identities involving In:

In(1 + 1/n) = 1/n+ O(1/n?
Y 1/n=Inx+ O(1)

n<x
Zlnn =xInx —x 4+ O(Inx)
n<x

Y ‘Inn/n=1In*x/2+ O(1)

n<x

These, and a few others, form a starting point for the Selberg proof.

—p. 8/50

Chebyshev’s results

Fairly direct calculations yield 6(x)/x — 1 and 7 (x) Inx/x — 1 from

v(x)/x — 1.

This allows us to prove the prime number theorem in the form

v(x)/x — 1.
Along the way, we need ¥ (x) = O(x).

There 1s a nice way to do this, using binomial coefficients.

—p. 9/50

Combinatorial tricks

Since d — n/d permutes the set of divisors of n,

Y fd)=)Y f@n/d).

dln d|n

Enumerating pairs d, d’ such that dd" < n in two different ways yields

Y. Y f@dy=) fd.dy=Y) fdc/d.

d<nd'<n/d dd’'<n c=n d|c

A similar argument yields

NN r@ady=Y f@ddy=3"Y" fd, c/d.

dln d'|(n/d) dd’|n cln dic

—p. 10/50

Combinatorial tricks

The following 1s a version of the “partial summation formula”: if a < b,
F(n)=>__, f(i), and G is any function, then

b
N f@+ DG +1)=Fb+1DGOh+1) — F(a)Ga+ 1)—
) b—1
Y Fn+1D(G(n+2)—Gn+1).

This 1s a discrete analogue of integration by parts.

It 1s easily verified by induction.

—p. 11/50

Euler’s function u

A positive natural number 7 1s square free it n = pyp> - - - ps with p;’s
distinct.

(—1)* if n is squarefree and s is as above
pu(n) = .
0 otherwise.

A remarkably useful fact regarding w 1s that for n > 0,

1 iftn=1
d) =
Z w(d) { 0 otherwise.

This 1s clear forn = 1.

—p. 12/50

Euler’s function u

If n = p{l péz ... pl*, define the radical of n to be p1ps - - ps.

Then

Dopd=) pu@

d|n d|rad(n)
=). ud+ D w@,
d|rad(n),p|d d|rad(n), p11d

and the two terms cancel.

—p. 13/50

Maobius inversion

Suppose f(n) =) _;, &(d). Then

Y uw@dfn/d)y = Y ud) Y g(n/d)/d)

din dln d'|(n/d)

=)) udg(n/d)/d)

dln d'|(n/d)

expresses g in terms of f.

—p. 14/50

Selberg’s formula

All these pieces come together in the proof of Selberg’s symmetry
formula:

Y Amnn+)) AdA@/d) =xInx + O(x).

n<x n=x d|n

There are many variants of this identity.

The reason 1t 1s useful 1s that there are two terms in the sum on the left,
each sensitive to the presence of primes in different ways.

Selberg’s proof involves cleverly balancing the two terms off each other,
to show that in the long run, the density of the primes has the appropriate
asymptotic behavior.

—p. 15/50

The error term

Let R(x) = ¥(x) — x denote the “error term.”

By Chebyshev’s equivalences the prime number theorem amounts to the
assertion lim, .~ R(x)/x = 0.

With some delicate calculation, the symmetry formula yields:

[R(x)[In*x <2) |R(x/n)|Inn + O(xInx). (1)

n<x

Selberg used this to show that, given a bound |R(x)| < ax for sufficiently
large x, one can get a better bound, |R(x)| < a’x, for sufficiently large x.

These bounds approach O.

—p. 16/50

Outline

¢ Historical background
® Overview of the Selberg proof
Overview of the formalization

® Interesting aspects of the formalization
° Asymptotic reasoning
o (Calculations with reals
o (Casts between natural numbers, integers, and reals
© Combinatorial reasoning with sums
o Elementary workarounds

® Heuristic procedures for the reals

—p. 17/50

Overview of the formalization

To start with, we needed good supporing libraries:

® atheory of the natural numbers and integers, including properties of
primes and divisibility, and the fundamental theorem of arithmetic

® a library for reasoning about finite sets, sums, and products

® a library for the real numbers, including properties of In

More specific supporting libraries include:

¢ properties of the u function, combinatorial identities, and variants of
the Mobius inversion formula

® a library for asymptotic “big O calculations
® a number of basic identities involving sums and In

® Chebyshev’s theorems

—p. 18/50

Overview of the formalization

Specific components of the Selberg proof are:
¢ the Selberg symmetry formula
® the inequality involving R(n)

® along calculation to show R(n) approaches O

This outline 1s clearly discernible in the list of theory files, online at

http://www.andrew.cmu.edu/user/avigad/isabelle

—p. 19/50

Overview of the formalization

Here 1s a formulation of MoObius 1inversion:

ALLn. (0 <n—>
fn=(>_ d]|ddvdn. g(ndivd))) = 0 < (n::nat) —
gn=()_ d|dadvdn. of-int(mu(int(d))) = f (n div d))

Here 1s one of the identities given above:

(Ax. Y i=1..natfloor(abs x).
In (real i) / (real i)) =0
(Ax.In(absx + 1)2 / 2) +0 O(Ax. 1)

— p. 20/50

Overview of the formalization

Here 1s a version of Selberg’s symmetry formula:

(Ax. > n= 1..natfloor (abs x) + 1.
Lambda n * In (real n)) + (Ax. Y n="1..natfloor (abs x) + 1.
(> u| udvdn. Lambda u * Lambda (n div u)))
—o0(Ax. 2% (absx+ 1) x In(absx + 1)) +0 O(Ax. abs x + 1)

Finally, here 1s the error estimate provided above:

(Ax.abs (R(absx+ 1)) xIn(absx+ 1) "2) <o
(Ax. 2% (D) _ n= 1..natfloor (abs x) + 1.
abs (R ((abs x + 1) / real n)) % In (real n))) =o
O(Ax.(absx+ 1) x (14 In(absx + 1)))

—p. 21/50

Overview of the formalization

There are at least three reasons not to provide too much detail:

® Qur proof followed textbook presentations (due to Shapiro,
Nathanson) closely.

® The proof scripts have not been polished, and so are not particularly
nice.

® Much of it 1s not optimal; we know it 1s possible to do better.

Instead I will focus on:
® Details that diverge from the mathematical presentation.
® Novel features of the formalization.

® Areas where better support should be possible.

—p. 22/50

Overview of the formalization

Some statistics regarding length, and time, are given in the associated
paper.

A lot of time and effort was spent:
® Building basic libraries of easy facts.
¢ Spelling out “straightforward” inferences.
® Finding the right lemmas and theorems to apply.
® Entering long formulas and expressions formally and correctly.

We suspect that these requirements will continue to diminish.

On a personal note, I am entirely convinced that formal verification of
mathematics will eventually become commonplace.

— p. 23/50

Outline

¢ Historical background
® Overview of the Selberg proof
¢ QOverview of the formalization

Interesting aspects of the formalization
° Asymptotic reasoning
o (Calculations with reals
o (Casts between natural numbers, integers, and reals
© Combinatorial reasoning with sums
o Elementary workarounds

® Heuristic procedures for the reals

—p. 24/50

Asymptotic reasoning

Define O(g) = {f | 3C Vx (| f(x)| = Clg(x)D}.
Then take “equals™ to be “element of” in f = O(g).

The expression makes sense for any function type for which the codomain
1s an ordered ring.

We used Isabelle’s axiomatic type classes to develop the theory in full
generality.

—p. 25/50

Asymptotic reasoning

Define

ftHg=rx.(f(x)+gx))
a+,B={c|dbeB(c=a+0b)}

a=,B=a€¢B
This gives f =, g +, O (h) the intended meaning.

Note that x* + 3x = x% + O(x) really means

(AX. X2+ 3% x) =0 (Ax. x2) +0 O(Ax. x)

— p. 26/50

Asymptotic reasoning

Rewrite rules for addition of elements and sets:

set-plus-rearrange (a+,C)+b+,D) = (a+b)+,(C+ D)
set-plus-rearrange?2 a+,b+,C)=(@+b)+,C
set-plus-rearrange3 (a+,C)+D=a+,(C+ D)
set-plus-rearrange4 C+(@a+,D)=a+ (C+ D)

These put terms in the form (a + b+ ...) +, (C + D + . ..).

—p. 27/50

Asymptotic reasoning

Some monotonicity and arithmetic rules:

set-plus-intro

set-plus-intro2

set-plus-mono

set-plus-mono2

set-plus-mono3

set-plus-mono4

lae C,be D||=a+beC+ D

beC=a+bea+C

CCD=a+CZa+D

ICSCD,ECF|]=C+ECD+F

aeC=a+DCC+D

aceC=a+DCD+C

— p. 28/50

Asymptotic reasoning

Some properties of O sets:

bigo-elt-subset feo(@ = O(f) C0(g)

bigo-refl fe o)

bigo-plus-idemp O(f)+0(f)=0(f)
bigo-plus-subset O(f+8) S O(f)+ 0(g)

bigo-mult4 fek+00(h) = g-f € g-k+00(g-h)
bigo-composel f e 0(g) = (x. fkx)) €

O(Ax. g(k(x)))

— p. 29/50

Asymptotic reasoning

An annoyance: how do you indicate that X3+ 3x24+1=x3+ 0x?) for
x >1?

Options:
1. Define a type of positive reals (or integers).

2. Formalize “f = O(g) on §”
3. Formalize “f = O(g) eventually”

4, Write Ax.x> +3x2+1) =, Ox.x3) 4+, OOAx.x2+ 1)

We chose the last. This accounts for the endless instances of “+1"° and abs
in our proofs.

The other options have drawbacks, too.

—p. 30/50

Calculations with real numbers

The very last part of the proof has, by far, the worst length ratio: a difficult
5 page calculation became 89 pages of formal text.

Reason: the need to carry out straightforward calculations by hand,
especially involving inequalities.

Isabelle has:
¢ A term simplifier with ordered rewriting

® Decision procedures of linear and Presburger arithmetic

But lots of easy calculations go just beyond that.

—-p. 31/50

Calculations with real numbers

15
(1+ 3C 1 3)) -real(n) < Kx

follows from:
real(n) < (K /2)x
0<C*

D<e<l1

® Need monotonicity rules for arithmetic operations.

® Need to determine signs.

29 ¢¢

¢ Need to remember names like “mult-left-mono.” “add-pos-nonneg,”
“order-le-less-trans,” “exp-less-cancel-iff,” “pos-divide-le-eq.”

29 ¢¢

¢ Often need to type in long expressions, or cut and paste, or use
explicit rules to manipulate terms

—p. 32/50

Calculations with the real numbers

Sign calculations keep coming back. Consider, for example,

1/(14+st) < 1/(1 + su).

These inferences are covered by decision procedures for real closed fields,
but

® They are slow.

®* Worse: they do not extend to straightforward inferences with
monotone functions, trigonometric functions, exponentiation and
logarithm, etc.

Considerx <y = 1/(1+¢”) <1/(1 +¢").

Conclusion: we need principled heuristic procedures. (I will come back to
this.)

—p. 33/50

Casting between domains

One can think of 6, ¥, and v as functions from N to R or from R to R.
® Proofs use arithmetic properties of N.

¢ Ultimately need to cast them to reals.

Recall that u takes values {—1, 0, 1}, so we need to deal with integers too.

Casting was an endless source of headaches.
® We had parallel theories of primes and divisibility for ints and nats.
* We had to develop properties of floor and ceiling functions.

® We had to do annoying manipulations of mixed expressions,
e.g. moving +1’s in and out of casts, etc.

—p. 34/50

Casting between domains

When extending a domain (e.g. nats to ints, or ints to reals):
® some operations are extended, like addition and multiplication

® some new operations are mirrored imperfectly in the smaller domain
(e.g. x — y requires x > y, x div y requires y|x).

® some properties depend on the choice of a left inverse, e.g.

(n < |x]) = (real(n) < x).

The guiding motto should be: anything that is transparent to us should be
transparent to a mechanized proof assistant.

— p. 35/50

Outline

¢ Historical background
® Overview of the Selberg proof
¢ QOverview of the formalization

® Interesting aspects of the formalization
° Asymptotic reasoning
o (Calculations with reals
o (Casts between natural numbers, integers, and reals
Combinatorial reasoning with sums
o Elementary workarounds

® Heuristic procedures for the reals

—p. 36/50

Combinatorial reasoning with sums

Some of our theorems are now in Isabelle’s HOL library. For example:

inj-on fB=—> (>_xefB. hx) = ()_x€B. (ho f)(x))

“reindexes’ a sum.

It 1s needed, for example, to show

D hm) =) h(n/d),

d|n d|n

using f(d) =n/d, and

Y h(d,d)=) h(d,c/d).

dd'=c d|c

using f(d) = (d, c/d).

—p. 37/50

Combinatorial reasoning with sums

In the Isabelle formalization,) ., f(x) is notation for setsum A f.

This really only makes sense when A 1s finite, so finiteness verifications
keep popping up in calculations.

(Defining setsum A f to be O when A 1s infinite helps.)

According to our motto, there should be better support for finiteness and
reindexing.

—p. 38/50

Elementary workarounds

We relied on the Selberg proof because Isabelle didn’t (and still doesn’t)
have a complex analysis library.

We still don’t have a sense of how long it would take to:
® develop a sufficient complex analysis library

¢ formalize the complex-analytic proof

Of course, the task of finding elementary workarounds is part of the
business. It can be oddly enjoyable.

Alas, the need to do this will diminish as formal libraries improve.

- p. 39/50

Elementary workarounds

Question: how to prove In(1 4+ x) = x when x 1s small?

The Isabelle library did not compute the derivative of In.

It had:
* By definition, ¢* =Y 2 x"/n!
® ¢* strictly increasing
o V=1, =¥
® ¢* is surjective on the positive reals

® By definition, In x is a left inverse to e*

Puzzle: show | In(1 + x) — x| < x? when x is positive and small enough.

— p. 40/50

Elementary workarounds

Our solution: x > 0 implies ¢* > 1 + x, sox > In(1 + x). Replacing x by

2
x2, we also have ¢~ > 1 + x2.

On the other hand, the definition of ¢* can be used to show
eF <14+x+x2
when 0 < x < 1/2. From these we get
x—x2 x ; x2 2 2
e =e /e <(U+x+x7)/1+x°) <1+ x.

Taking logarithms of both sides, we have

x—xzfln(l—l—x)fx

when 0 < x < 1/2, as required.

—p. 41/50

Elementary workarounds

Another puzzle: show

Y 1/n=Inx+ 0()

n<x
without integration. When x 1s positive, write

Inx = Z (In(n + 1) — Inn)

n<x—1

=) In(l+1/n)

n<x—1

Z 1/n+ O(1).

n<x

—p. 42/50

Outline

¢ Historical background
® Overview of the Selberg proof
¢ QOverview of the formalization

® Interesting aspects of the formalization
° Asymptotic reasoning
o (Calculations with reals
o (Casts between natural numbers, integers, and reals
© Combinatorial reasoning with sums
o Elementary workarounds

Heuristic procedures for the reals

— p. 43/50

Heuristic procedures for the reals

Remember the example: verify

€
T 3(C* + 3)

(1) - real(n) < Kx

using the following hypotheses:

real(n) < (K /2)x
0<C*

D<e<l1

Idea: work backwards, applying obvious monotonicity rules.

—p. 44/50

Heuristic procedures for the reals

Problems:
1. Casesplits:e.g. st >0=(s>0Ar>0) V(s <O0OATt <O0).

2. Nondeterminism: e€.g. many ways to show s +¢ < u + v + w.

Observations:
1. “Straightforward” inferences usually don’t need case splits.
2. In practice, Fourier-Motzkin 1s efficient for linear inequalities.

3. Modulo cases over signs, the same thing works for the multiplicative
fragment of the reals.

—p. 45/50

Heuristic procedures for the reals

Let T be the theory of (R, 0, 4+, <). T7 1s decidable.
Let T be the theory of (R, 1, x, <). T; 1s decidable.

Let T = T1 U T>. By Nelson-Oppen methods, the universal fragment of T
1s decidable.

Problem: T 1s too weak; it doesn’t prove 2 x 2 = 4.

— p. 46/50

Heuristic procedures for the reals

A better version: let f,(x) = ax for rational constants a.
Let 71[Q] be the theory of (R, 0, 1,4+, —, <, ..., fa4,...).
Let 75[Q] be the theory of (R, 0, 1, x, =, I/-, <, ..., fa,...).

Let T[Q] = T1[Q] U T2[Q].

Both of these are decidable, but Nelson-Oppen methods fail when there 1s
a nontrivial overlap.

The situation here 1s much more complex!

—p. 47/50

Heuristic procedures for the reals

This 1s joint work with Harvey Friedman.

Here are some things we (think we) know:
* T[Q] has good normal forms.
® Valid equations are independent of the ordering.
e 7'[Q] is undecidable.
® In fact, the VVV3...d fragment is complete r.e.

® Assuming that the solvability of Diophantine equations in the
rationals 1s undecidable, then so is the existential fragment of 7[Q].

® The universal fragment of T[QQ] is decidable.

We have similar results, for example, with the real algebraic numbers A in
place of Q.

—p. 48/50

Heuristic procedures for the reals

Our decidability results are not practical. But the proofs provide ideas and
guidelines.

General strategy for amalgamation:
® Maintain a database of facts in the common language.

¢ [teratively use each of 77 and 7> to add new facts.

Issues:
¢ Heuristically, how to decide which facts to focus on?
® When to split on cases?
® How to look for disjunctions?
¢ How to incorporate distributivity?

®* How to amalgamate other local decision or heuristic procedures?

— p. 49/50

Conclusions

Formally verified mathematics 1s becoming increasingly important:
® Proofs are getting very complex.

® Proofs rely on extensive computations.

Fortunately, we are entering “the golden age of metamathematics”
(Shankar).

Continued progress will require
¢ thoughtful reflection
® good theory

® solid engineering

This makes the field an auspicious combination of theory and practice.

— p. 50/50

Bishop’s set theory!

Erik Palmgren
Uppsala Universitet
www.math.uu.se/~palmgren

TYPES summer school
Goteborg
August 2005

1Errett Bishop (1928-1983) constructivist mathematician.

Introduction - What is a set?

The iterative notion of set (G. Cantor 1890, E. Zermelo 1930)

- sets built up by collecting objects, or other sets, according to some selec-
tion criterion Q(x)

{x])}

Frege’s “naive” set theory Iis inconsistent (Russell's paradox). Remedy: in-
troduce size limitations, use explicit set constructions as power sets, products
or function sets, start from given sets X

xeX|0x)}

Encoding of mathematical objects as iterative sets

All mathematical objects are built from the empty set (E. Zermelo 1930)

Natural numbers are for example usually encoded as
0=0 1=0U{0}={0} 2=1U{1}={0 {0}}

Pairs of elements can be encoded as (a,b) = {{a},{a,b}}. Functions are
certain sets of pairs objects ... etc.

Quotient structures are constructed by the method of equivalence classes
— only one notion of equality is necessary.

(J.Myhill and P.Aczel (1970s): constructive versions of ZF set theory.)

What is a set? A more basic view

“A set is not an entity which has an ideal existence: a set exists only when
it has been defined. To define a set we prescribe, at least implicitly, what we
(the constructing intelligence) must do in order to construct an element of the
set, and what we must do to show that two elements are equal” (Errett Bishop,
Foundations of Constructive Analysis, 1967.)

Martin-Lof type theory conforms to this principle of defining sets.

Abstraction levels

One may disregard the particular representations of set-theoretic construc-
tions, and describe their properties abstractly (in the spirit of Bourbaki).

For instance, the cartesian product of two sets A and B may be described
as a set A x B together with two projection functions

T :AXB—A T,:AXB— B,

such that for each a € A and each b € B there exists a unique elementc € A X B

with ;(c) = a and my(c) = b. Thus m; picks out the kth component of the
abstract pair.

Reference to the particular encoding of pairs is avoided. This is a good
principle in mathematics as well as in program construction.

Some references using Bishop’s set theory

E. Bishop and D.S. Bridges (1985). Constructive Analysis. Springer-Verlag.

D.S. Bridges and F. Richman (1987). Varieties of Constructive Mathematics.
London Mathematical Society Lecture Notes, Vol. 97. Cambridge University
Press.

R. Mines, F. Richman and W. Ruitenburg (1988). A Course in Constructive
Algebra. Springer.

Among constructivists, one often says that constructive mathematics is
mathematics based on intuitionistic logic.

Plan of lectures

(Based on Ch. 3 and 4 of Type-theoretic foundation of constructive mathematics
by T. Coquand, P. Dybjer, E. Palmgren and A. Setzer, version August 5, 2005.)

1. Introduction

2. Terminology for type theory

3. Intuitionistic logic

4. Sets and equivalence relations

5. Choice sets and axiom of choice

6. Relations and subsets

7. Finite sets and relatives

8. Quotients

9. Universes and restricted power sets
10. Categories

11. Relation to categorical logic

Exercises: see lecture notes.

2. Terminology for type theory

later Martin-Lof lect. notes Bishop early M.-L. other

type sort category kind

set type preset type

extensional set set set setoid, E-set

function operation operation function

extensional function function function setoid map, E-function

(Thanks for the table, Peter!)

The application of an operation f : A — B to an element a : A is denoted

fa

Recall: A proposition may be regarded as a type according to the following

translation scheme

(Vx:A)P x
(Ix:A)Px
PAQ

PVQ

P=0Q

T

1

-P (=P=1)

The judgement
A is true

means that there is some p so that p : A.

(Ix:A)P x
(Zx:A)Px
PxQ
P+0
P—Q

10

Relations and predicates on types

A predicate P on a type X is a family of propositions P x (x : X).

A relation R between types X and Y is a family of propositions R x y (x:
X,y:Y). lf X =Y, we say that R is a binary relation on X.

A binary relation R on X is an equivalence relation if there are functions ref,
sym and tra with

refa:Raa (a:X),
symabp:Rba (a:X,b:X,p:Rab),

traabcpg:Rac (a,b,c:X,p:Rab,q:Rbc).

11

We may suppress the proof objects and simply write, for instance in the last line
Ra c true (a,b,c:X,Rabtrue,Rbctrue),
which is equivalent to

(Va:X)(Vb:X)(Ve:X)(RabARbc= Rac)true.

12

3. Intuitionistic logic

The logic governing the judgements of the form
A true

Is intuitionistic logic. It is best described by considering the derivation rules for
natural deduction and then remove the Reductio Ad Absurdum rule (principle of
indirect proof):

Derivation rules:

5 ANE AED) # (AE2)

13

% (VIT)

A— B A
L (~E)
Zhl l_3h2
AVB C C (VE. . o)
C s 114182
(Vx)A

14

15

4. Sets and equivalence relations

Definition A set X is a type X together with an equivalence relation =x on
X. Write this as

X =(X,=x).

We shall also write x € X for x : X.

Remark

In Bishop (1967) X is called a preset, rather than a type.

In the type theory community X = (X, =x) is often known as a setoid.

16

Examples Let N be the type of natural numbers. Define equivalence relations

x =y iff Tr (eqy xy)

(Here eqy : N — N — Bool is the equality tester for N and Tr tt = T and
Trff =1)

x =, y iff x —y is divisble by n

Then

e N = (N,=y) is the set of natural numbers

e 7,= (N,=,) is the set of integers modulo n.

17

Functions vs operations

What is usually called functions in type theory, we call here operations.

Definition. A function f from the set X to the set Y is a pair (f,ext ;) where
f : X — Y is an operation so that

(extrabp):fa=y fb (a,b:X,p:a=xDb).

To conform with usual mathematical notation, function application will be written

f(a) =dt fa

Two functions f,g: X — Y are extensionally equal, f =x_.y] g, if there is e with

ea: f(a)=ygla) (a€X).

18

Set constructions

The product of sets A and B is a set P = (P,=p) where P = A X B (cartesian
product as types) and the equality is defined by

(x,y) =p (u,v) iff x=4 uand y =p v.

Standard notation for this P is A x B. Projection function are 7;(x,y) =x and
nt1(x,y) = y. This construction can be verified to satisfy the abstract property
(page 5). (It can as well be expressed by the categorical universal property for
products.)

The disjoint union AUB (or A + B) is definied by considering the correspond-
ing type construction.

19

The functions from A to B form a set BA defined to be the type
(Ef:A—B)(Vx,y:A)x=ay — fx =5 [y,
together with the equivalence relation

(f,p) =pa (8,9) <aet (Vx:A) fx=p gx.

The evaluation function ev, : B* x A — B is given by

evas((f,p),a) = fa

Proposition. Let A, B and X be sets. For every function 4 : X X A — B there is

a unique function & : X — B* with

eVA,B(il(x)vy) — h(x7y) (x cX,ye A)

20

A set X is called discrete, if for all x,y € X
(x=xy) V 7 (x=xy).

In classical set theory all sets are discrete. This is not so constructively, but we
have

Proposition. The unit set 1 and the set of natural numbers N are both discrete.
If X and Y are discrete sets, then X XY and X + Y are discrete too.

However, the assumption that NV is discrete implies a nonconstructive prin-
ciple (WLPO):
(VneN)f(n)=0V =(VneN)f(n)=0

21

Coarser and finer equivalences

An equivalence relation ~ is finer than another equivalence relation ~ on a
type Aifforall x,y: A
X~y =—X~Y.

It is easy to prove by induction that =y is the finest equivalence relation on N.

If there is a finest equivalence relation =4 on a type A, the set A = (A, =)
has the substitutivity property

x=py=—= (Px< Py)

for any predicate P on the type A.

22

Sets are rarely substitutive, and the notion is not preseved by isomorphisms.
2., as constructed above is not substitutive; an isomorphic construction yields
substitutivity.

Theorem. To any type A, the identity type construction Id assigns a finest
equivalence Id A. The resulting set, also denoted A, is substitutive.

Remark. Substitutive sets are however very convenient for direct formalisation
in e.g. Agda, as extensionality proofs can be avoided.

23

5. Choice sets and axiom of choice

A set S is a choice set, if for any surjective function f : X — S, there is right
inverse g: S — X, i.e.

f(gls))=s (s€S).
Theorem. Every substitutive set is a choice set.

(Zermelo’s) Axiom of Choice may be phrased thus:
Every set is a choice set.

Theorem. Zermelo’s AC implies the law of excluded middle.

24

Though Zermelo’s AC is incompatible with constructivism, there is related
axiom (theorem of type theory) freely used in Bishop constructivism.

Theorem. For any set A there is a choice set A and surjective function p: A —
A. (In categorical logic often referred to as “existence of enough projectives”.)

As a consequence, Dependent Choice is valid (see notes, p. 76).

Theorem. If A and B are choice sets, then so are A x B and A + B.

25

6. Relations and subsets

Definition A (extensional) property P of the set X is a family of propositions P x
(x € X) with
x=xy,Px=— Py.

We also say that P is a predicate on X.

A relation R between sets X and Y is a family of propositions R x y (x €
X,y €Y) such that

x=xx,y=yy,Rxy=—Rx'Y.

The relation is univalent if y =y ¥, whenever Rxyand Rx y'.

Write P(x), R(x,y) etc. in the extensional situation.

26

Restatement of choice principles for relations.

The following is the theorem of unique choice.

Thm. Let R be a univalent relation between the sets X and Y. It is total if, and
only if, there exists a function f : X — Y, called a selection function, such that

R(x, f(x)) (x€X).
(This function is necessarily unique if it exists.)

An alternative characterisation of choice sets is

Thm. A set X is a choice set iff for every set Y, each total relation R between X
and Y has a selection function g : X — Y so that

R(x,g(x)) (x € X).

27

Dependent choice

Dependent choice. Let A be a set which is the surjective image of a choice
set. Let R be a binary relation on A such that

(Vx € A)(dy € A)R(x,y).
Then for each a € A, there exists a function f: N — A with f(0) = a and

R(f(n),f(n+1)) (neN).

Proof. Let p : P — A be surjective, where P is a choice set. By surjectivity, we
have
(Vu € P)(Iv e P)R(p(u), p(v)).

28

Since P is a choice set we find i : P — P with R(p(u), p(h(u))) for all u € P.
For a € A, there is by € P with a = p(by).

Define by recursion g(0) = by and g(n+ 1) = h(g(n)), and let f(n) =
p(g(n)). Thus R(p(g(n)),p(g(n+1))), so fis indeed the desired choice func-
tion. [

Remark Thus we have proved the general dependent choice theorem in type
theory with identity types. We also get another proof of countable choice, with-
out requiring a particular subsititutive construction of natural numbers.

29

Subsets as injective functions

Let X be a set. A subset of X is a pair S = (dS,15) where dS is a set and
15 : dS — X is an injective function.

An element a € X is a member of S (written a €x S) if there exists d € dS
with a =x lS(d).

Inclusion Cx and equality =x of subsets of X can be defined in the usual
logical way.

Prop. For subsets A and B of X, the inclusion A Cx B holds iff there is a function
f:0A — dB with 130 f =14. (Such f are unique and injective.)

The subsets are equal iff f is a bijection.

30

Separation of subsets

For a property P on a set X, the subset

(xeX|P(x)) = ({x cX: P(x)},l)
is defined by the data:

{xeX :P(x)} =qet (Ex € X)P(x)

and
<xap> —{xeX: P(x)} <)’> Q> < def X =X Y
and 1((x, p)) =det X

(Note the pedantic syntactic distinction of “:” and “

")

31

Note that

acx{xeX|Px)} & (Ade{xeX : Px)})a=1(d)
& (IxeX)(dp:Px)a=1({x,p))
< Pa
& Pla)

The usual set-theoretic operations N, U, () can now be defined “logically”
for subsets.

A subset S of X is decidable, or detachable, if for alla € X

acex SV _'(Cl cx S)

32

Union of subsets: logical definition.

Let A = (dA,14) and B = (dB,15) be subsets of X.

Their union is the following subset of X

AUB:{ZEX‘ZéxAOI’ZEXB}.

Taking U = AUB apart as U = (dU,1y) we see that dU is

(Xz:X)(zexAorzexB) = (Xz2:X)((ze€xA)+(z€x B)).

whereas 1y(z, p) = z.

33

Complement

The complement of the subset A of X is defined as
A={zeX|—zexA}.
For A = (dC,1¢) we have

oC = (Xz: X)((zexA) — L).

That A is a decidable subset of X can be expressed as AUA = X.

The decidable subsets form a boolean algebra.

34

Partial functions

A partial function f from A to B consists of a subset (D f,d¢) of A, its domain
of definition (denoted dom f) and a function m,: D — B. We write this with a
special arrow symbol as f : A — B.

Such f : A — B is total if its domain of definition equals A as a subset, or
equivalently, if d s is an isomorphism.

Another partial function g : A — B extends f, writing f C g : A — B, if for
each s € Dy there exists t € D, with d/(s) = d,(¢) and m¢(s) = m,(¢). If both
f Cgandg C f, we define f and g to be equal as partial functions.

35

Example. Let F = (F,-,+,0, 1) be a field, and let
U={xeF|(IyeF)x-y=1}

be the subset of invertible elements. Define a function m, : dU — F to be
m,(x) =y, where y is unique such that x-y = 1. Thus the reciprocal is a partial
function r = (-)"': F — F.

In fact, for any univalent relation R between sets X and Y there is partial
function fr = (D,d,m) given by

oD = {ue X xY : R(m (u),m(u))}

d=molpand m = T, olp.

36

Example For any pair of subsets A and B of X that are disjoint ANB = 0, we
may define a partial characteristic function

XXﬁ{O,l}

satisfying
x(z) =0iff z €x A,
x(z) =1iff z €x B,

by considering the univalent relation R(z,n):

(zexAAn=0)V(zexBAn=1).

37

Partial functions are composed in the following manner: if f : A — B and
g : B— C, define the composition h=go f: A — C by

Dy ={(s,t) € Dy x Dy :mys(s) =d,(r)}

The function d;, : D, — A given by composing the projection to D ¢ with dg is in-
jective. The function my, : D;, — C is defined by the composition of the projection
to D, and d,.

38

7. Finite sets and relatives

The canonical n-element set is

N,={keN:k<n}—N.

Any set X isomorphic to such a set is called finite. It may be written

{XO, “e ,xn_l}

where k — x; : N,, — X is the isomorphism.

Since x; = x; iff j =k, we can always decide whether two elements of a
finite set are equal by comparison of indices.

39

A related notion is more liberal:

A set X is called subfinite, or finitely enumerable, if there is, for some n € N,
a surjection x : N,, — X.

Here we are only required to enumerate the elements, not tell them apart.

We can always tell whether a subfinite set is empty by checking if n = 0.

Remark. A subset of a finite set need not be finite, or even subfinite. Consider
{0 e Ny : P}

where P is some undecided proposition.

40

Some basic properties

Let X and Y be sets. Then:

(i) X finite <= X subfinite and discrete

(i) X subfinite, f : X — Y surjective = Y subfinite
(iii) Y discrete, f : X — Y injective =— X discrete
(iv) Y discrete, X — Y = X discrete

(v) Y finite, X — Y decidable => X finite.

41

8. Quotients

Let X = (X,=x) be a set and let ~ be a relation on this set. Then by the
extensionality of the relation

X=xy=—X~). (1)
Thus if ~ is an equivalence relation on X
X/N — ()—(7 N)

is a set,and g : X — X/~ defined by g(x) = x is a surjective function.

42

We have the following extension property. If f : X — Y is a function with

x~y= f(x) =y f(y), (2)

then there is a unique function f : X/~ —Y (up to extensional equality) with

fix) =y f(x) (xeX).
We have constructed the quotient of X with respectto~: q:X — X/~

Remark. Every set is a quotient of a choice set. Namely, X is the quotient of X
w.r.t. =yx.

Proposition. A set is subfinite iff it is the quotient of a finite set.

43

9. Universes and restricted powersets

A general problem with (or feature of) predicative theories like Martin-Lof
type theory is their inability to define a set of all subsets of a given set. It is,
though, often sufficient to consider certain restricted classes of subsets in a
certain situation.

A set-indexed family ¥ = (F,I) of subsets of a given set X consists of an
index set I = (I,=;) and a subset F; of X for each i : I, which are such that if
| = j then F; and F;; are equal as subsets of X.

A subset S of X belongs to the family F , written S € # , if S = F; (as subsets
of X) for some i € I.

44

Consider any family of types « = (T,U), where T'i is a type foreachi: U.
It represents a collection of sets, the U -sets, as follows.

First, a U -representation of a set is a pair r = (ig,e) where iy : [and e :
T 1y x T iy — U is an operation so that

a=,b<qsT(eab)
defines an equivalence relation on the type T iy. Then this is a set
F=(Tip,=).
A set X is U-representable, or simply a U -set, if it is in bijection with 7 for

some U -representation r. The U -sets defines, in fact, a full subcategory of the
category of sets, equivalent to a small category.

Example For U = N and T'n = N, the (N,N_))-sets are the finite sets.

45

Restricted power sets

For any set X and any family of types ¢, define the family %, (X) of subsets
of X as follows.

e Its index set I consists of triples (r,m,p) where r is a U-representation,
m : ¥ — X is a function and p is a proof that m is injective.

e Two such triples (r,m, p) and (s,n,q) are equivalent, if (#,m) and (§,n) are
equal as subsets.

A

e Forindex (r,m, p) € I, the corresponsing subset of X is F,.,, , = (#,m).
Proposition A subset S = (95, 15) of X belongs to R, (X) iff dS is a u-set.

46

Unless @ has some closure properties, R (X) will not be closed under
usual set-theoretic operations. We review some common such properties below.
Suppose that U is a type-theoretic universe.

e If U is closed under ¥, then R, (X) is closed under binary N, and ;g
indexed by U -sets 1.

e If ¢ is closed under IT, then R4, (X) is closed under [,c; indexed by U -sets
I, and the binary set operation

(A=B)={xeX:x€A=xeB}.

e If U is closed under +, then R4, (X) is closed under binary U.

e If U contains an empty type, then % (X) contains 0.

47

Standard Martin-Lof type universes U (see Martin-Lof 1984) satisfies indeed
the conditions above. Recall from Dybjer’s lecture how such universes are de-
fined:

N : U TN = N

No : U TN, = N

N, : U TN, = N,
(+) U—U-—U T (atb) = Ta+Th

$. (a:U)—=(Ta—U)—U T&ab) = X(Ta) (T (bx))
I (a:U)—= (Ta—U)—U T({lab) = TI(Ta) (M.T (bx))

48

10. Categories

We use a definition of category where no equality relation between objects
IS assumed, as introduced in type theory by P. Aczel 1993, P. Dybjer and V.
Gaspes 1993. Such categories are adequate for developing large parts of ele-
mentary category theory inside type theory (Huet and Saibi 2000).

A small E-category C consists of a type Ob of objects (no equivalence rela-
tion between objects is assumed) and for all A, B : Ob there is a set Hom(A, B)
of morphisms from A to B. There is a identity morphism id4, € Hom(A,A) for
each A : Ob. There is a composition function o : Hom(B,C) x Hom(A,B) —
Hom(A,C). These data satisfy the equations ido f = f, goid = g and

fo(goh)=(fog)oh.

For a locally small E-category we allow Ob to be a sort.

49

Example. The category of sets, Sets, has as objects sets. The set of functions
from A to B is denoted Hom (A, B). The category Sets is locally small, but not
small.

Example. The discrete category given by a set A = (A,=,). The objects of
the category are the elements of A. Define Hom(a,b) as the type (of proofs
of) a =4 b. Any two elements of this type are considered equal. (The proofs
of reflexivity and transitivity provide id and o respectively. Also the proof of
symmetry, gives that two objects a and b are isomorphic if, and only if, a =4 b.)
Denote the discrete category by A*. This is a small category.

50

Families of sets

Families of sets have more structure than in set theory.

A family F of sets indexed by a set I is a functor F : I — Sets.
Explication:

For each element a of I, F(a) is a set.

For any proof object p : a =; b, F(p) is function from F(a) to F(b), a so-
called transporter function.

Moreover, since any two morphisms p and g from a to b in I are identi-
fied, we have F(p) = F(q). The functoriality conditions thus degenerate to the
following:

51

(@) F(p) =idp() forany p:a=;a.
(b) F(q)oF(p)=F(r)forallp:a=;b,q:b=;c,r:a=c.

Note that each F(p) is indeed an isomorphism, and that F'(g) is the inverse of
F(p)assoonasp:a=;bandq:b=;a.

Remark. If each set in the family F is a subset of a fixed set X, i.e. i, : F(a) — X
and so that i, o F(r) =i for r : a =; b, then (F(a),i,) = (F(b),i,) as subsets
of X, ifa—=, b.

Remark. Families of sets are treated in essentially this way in (Bishop and
Bridges 1985, Exercise 3.2).

52

Example. Let B : B — I be any function. Define for each a € I a set
B'(a) ={ueB:B(u)=a},
the fiber of B over a. Then B! extends to a functor I* — Sets.

This example indicates another way of describing a families of sets indexed
by I: as the fibers of a function B : B — I. These are in turn precisely the objects
of the slice category Sets/I. We have the following equivalence of categories

Thm. ,
Sets’ = Sets/I.

53

Constructions:

Given B : B — I. Construct functor B~! : I* — Sets. Define forr:a =; b a
function B~1(r) : B~ (a) — B~1(b) by

B~ (r) (u, p) = (u,kp(uyan(r, D).

Here k, . is the proof object for b =;c —a=;b — a = c,

For F € Sets’ , define B = (i € I)F (i), where (a,x) = (b,y) iff a = b and
F(r)(x) =pp)yyandr:a=;b. Let Br : B — I be the first projection.

54

11. Relation to categorical logic

Category theory provides an abstract way of defining the essential mathe-
matical proporties of sets, in terms of universal constructions.

An elementary topos is a category with properties similar to the sets, though
neither classical logic (discreteness of sets), or axioms of choice are assumed
among these properties.

C. MclLarty: Elementary Categories, Elementary Toposes. Oxford University
Press 1992.

J. Lambek and P.J. Scott: Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press 1986.

55

Also predicative versions of toposes have been developed

|. Moerdijk and E. Palmgren: Type Theories, Toposes and Constructive Set
Theory, Annals of Pure and Applied Logic 114(2002).

The syntactical category of a type theory

Given is any type theory T including the constructions X, II and + and
constants Ny, N;. (This can be precised using a logical framework.)

Build a category S of closed terms for sets and functions of 7. In this
category the standard (Heyting-) algebraic method of interpreting logic can be
used.

We associate to any first order formula ¢ with free variables among x; :
Xi,...,X, : X, a subobject [[@]x,..x, of X1 X - x X, in S7.

56

Completeness Theorem. For any first-order formulas ¢ and v whose types
are in Sr:

(05,00 < [W]sy,... v, I S i

I_T (Vxl ZXI) v (Vxn Xn) ((P —> \|I)

57

formalization of mathematics

Freek Wiedijk
Radboud University Nijmegen

TYPES Summer School 2005
Goteborg, Sweden
2005 08 23, 11:10

intro

the best of two worlds

formalization of mathematics is like:
e computer programming
concrete, explicit
a formalization is much like a computer program
e doing mathematics

abstract, non-trivial

a formalization is much like a mathematical textbook

you will like it only if you like both programming and mathematics

but in that case you will like it very very much!

table of contents: the two parts of this talk

first hour: an overview of

the current state of the art in formalization of mathematics

In the reader: QED manifesto

second hour: an overview of
Mizar, the most ‘mathematical’ proof assistant

In the reader: Mizar tutorial

first hour:
state of the art in formalization of mathematics

mathematics in the computer

four ways to do mathematics in the computer

e numerical mathematics, experimentation, visualisation

numbers: computer — human

e computer algebra

formulas: computer — human

e automated theorem provers

proofs: computer — human

e proof assistants

proofs: human — computer

numerical mathematics: Merten's conjecture

Mobius function:

0 when n has duplicate prime factors

p(n) =< 1 when n has an even number of different prime factors

—1 when n has an odd number of different prime factors

mn
Mertens, 1897: ‘Z,u(n)! <+n 7
k=1
uin)
1 o S e e
D .5 |
B T e &6 (17 §d [Joo”
0.5
_l. = Li L

Merten's conjecture (continued)

Odlyzko & te Riele, 1985: Mertens conjecture is false!

50 uur computer time

first n where it fails has tens of digits
indirect proof!

2000 zeroes of the Riemann zeta function to 100 decimals precision

14.1347251417346937904572519835624702707842571156992431756855674601499634298092567649490103931715610127. . .
21.0220396387715549926284795938969027773343405249027817546295204035875985860688907997136585141801514195. . .
25.0108575801456887632137909925628218186595496725579966724965420067450920984416442778402382245580624407. . .
30.4248761258595132103118975305840913201815600237154401809621460369933293893332779202905842939020891106. . .
32.9350615877391896906623689640749034888127156035170390092800034407848156086305510059388484961353487245. . .
37.5861781588256712572177634807053328214055973508307932183330011136221490896185372647303291049458238034. . .
40.9187190121474951873981269146332543957261659627772795361613036672532805287200712829960037198895468755. . .
43.3270732809149995194961221654068057826456683718368714468788936855210883223050536264563493710631909335. . .
48.0051508811671597279424727494275160416868440011444251177753125198140902164163082813303353723054009977. . .
49.7738324776723021819167846785637240577231782996766621007819557504335116115157392787327075074009313300. . .
52.9703214777144606441472966088809900638250178888212247799007481403175649503041880541375878270943992988. . .
56.4462476970633948043677594767061275527822644717166318454509698439584752802745056669030113142748523874. . .
59.3470440026023530796536486749922190310987728064666696981224517547468001526996298118381024870746335484. . .
60.8317785246098098442599018245240038029100904512191782571013488248084936672949205384308416703943433565. . .
65.1125440480816066608750542531837050293481492951667224059665010866753432326686853844167747844386594714. ..
67.0798105294941737144788288965222167701071449517455588741966695516949012189561969835302939750858330343. . .
69.5464017111739792529268575265547384430124742096025101573245399996633876722749104195333449331783403563. . .
72.0671576744819075825221079698261683904809066214566970866833061514884073723996083483635253304121745329. ..

_(oc—l)2
computer algebra: symbolic integration of / e Vv*= dx

> int(exp(-(x-t)~2)/sqrt(x), ..infinity);
(#2) Ky (2
3(t2 47T222€2K§ = .2
| t (. 7" 2 +(t2)%ﬂ%2%e?[(£(§)>
2 T3
> subs(t=1,%)
16_1<—37T%2%6%K3(l)—|—7T%2%6%K7(i))
- 42 12
2 T3
> evalf (%) ;
0.4118623312
> evalf (int (exp(-(x-1)~2)/sqrt(x), ..infinity));

1.973732150

automated theorem proving: Robbins’ conjecture

computers
can in the near future play chess better than a human
can in the near future do mathematics better than a human?

Robbins, 1933: is every Robbins algebra a Boolean algebra?

EQP, 1996: yes!
eight days of computer time

one of the very few proofs that has first been found by a computer
not very conceptual: just searches through very many possibilities

interesting research, but currently not relevant for mathematics

the QED manifesto

let’'s formalize all of mathematics!

QED manifesto, 1994:

QED is the very tentative title of a project to build a computer
system that effectively represents all important mathematical
knowledge and techniques.

pamphlet by anonymous group, led by Bob Boyer

utopian vision

proposed many times
never got very far (yet)

the two kinds of computer proof

e correctness of computer software and hardware

(serious branch of computer science: ‘formal methods')

statements: big
proofs: shallow
computer does the main part of the proof

e correctness of mathematical theorems
(slow and thorough style of doing mathematics, still in its infancy)
statements: small

proofs: deep
human does the main part of the proof

10

a brief overview of proof assistants for mathematics

four prehistorical systems

1968

1971

1972

1973

Automath
Netherlands, de Bruijn

nqthm
US, Boyer & Moore

LCF
UK, Milner

Mizar

Poland, Trybulec

11

seven current systems for mathematics

ILIZAE - e eeeemeem e ettt most mathematical
\
HOL — Isabelle -~ most pure
Cq most logical
NuPRL
PVS e most popular
ACLD - most computational

12

a 'top 100" of mathematical theorems

. The lrrationality of the Square Root of 2 <« all systems

Fundamental Theorem of Algebra <« Mizar, HOL, Coq

The Denumerability of the Rational Numbers <+« Mizar, HOL, Isabelle
Pythagorean Theorem <« Mizar, HOL, Coq

Prime Number Theorem <« lIsabelle

Godel's Incompleteness Theorem <« HOL, Coq, ngthm

Law of Quadratic Reciprocity <« Isabelle, ngthm

The Impossibility of Trisecting the Angle and Doubling the Cube <« HOL
The Area of a Circle

10. Euler's Generalization of Fermat’s Little Theorem <« Mizar, HOL, Isabelle

© 0 NS o kR =

63% formalized
http://www.cs.ru.nl/"freek/100/

13

(advertisement) the seventeen provers of the world

LNCS 3600

one theorem
seventeen formalisations 4+ explanations about the systems

HOL, Mizar, PVS, Coq, Otter, Isabelle, Agda, ACL2, PhoX, IMPS,

Metamath, Theorema, Lego, NuPRL, {2mega, B method, Minlog

http://www.cs.ru.nl/"freek/comparison/

14

state of the art: recent big formalizations

Prime Number Theorem

Bob Solovay's challenge:

| suspect that fully formalizing the usual proof of the prime
number theorem |[...] is beyond the current capacities of the

[formalization] community. Say within the next ten years.

Jeremy Avigad e.a.:

"pi(x) == real(card(y. y<=x & y:prime))"
"(%x. pi x * 1n (real x) / (real x)) ----> 1"

1 megabyte = 30,000 lines = 42 files of Isabelle/HOL
the elementary proof by Selberg from 1948

15

Four Color Theorem

Georges Gonthier:

(m : map) (simple_map m) -> (map_colorable (4) m)

2.5 megabytes = 60,000 lines = 132 files of Coq 7.3.1
streamlined proof by Robertson, Sanders, Seymour & Thomas from 1996

e contains interesting mathematics as well
‘planar hypermaps’

e very interesting ‘own’ proof language on top of Coq

Move=> x’ p’; Elim: p’ x’ => [|ly’ p’ Hrec] x’ //=; Rewrite: “Hrec.
By Congr andb; Congr orb; Rewrite: /eqdf (monic2F_eqd (f_finv (Inode g’))).

e heavily relies on reflection
‘this formalization really needs Coq'

16

Jordan Curve Theorem

Tom Hales:

“1C. simple_closed_curve top2 C ==>
(?7A B. top2 A /\ top2 B /\
connected top2 A /\ connected top2 B /\
~“(A = EMPTY) /\ (B = EMPTY) /\
(A INTER B = EMPTY) /\ (A INTER C = EMPTY) /\
(B INTER C = EMPTY) /\
(A UNION B UNION C = euclid 2))°

2.1 megabytes = 75,000 lines = 15 files of HOL Light
proof through the Kuratowski characterization of planarity

e ‘warming up exercise’ for the Flyspeck project
e beat the Mizar project at formalizing this first

e also uses an ‘own’ proof style

17

state of the art: current big projects

the continuous lattices formalization

formalize a complete ‘advanced’ mathematics textbook

A Compendium of Continuous Lattices
by Gierz, Hofmann, Keimel, Lawson, Mislove & Scott

[...] Forif not, then V C | J{L \ |lv:v €V}, and by
quasicompactness and the fact that the L \ |v form a
directed family, there would be a v € V with V C L\ v,

notably v & V', which is impossible. [...]

project led by Grzegorz Bancerek

about 70% formalized
4.4 megabytes = 127,000 lines = 58 files of Mizar

18

the Flyspeck project

Kepler in strena sue de nive sexangula, 1661:

Is the way one customarily stacks oranges the
most efficient way to stack spheres?

Tom Hales, 1998: yes!

proof: depends on computer checking

3 gigabytes programs & data, couple of months of computer time

referees say to be 99% certain that everything is correct

FlysPecK project
‘Formal Proof of Kepler’

19

so why did the ged project not take off?

reason one: differences between systems

foundations differ very much

set theory «— type theory «— higher order logic «+—— PRA
classical «—— constructive
extensional «—— intensional
impredicative «—— predicative
choice «+—— only countable choice +— no choice

two utopias simultaneously?
e formalization of mathematics

e doing mathematics in weak logics

20

(advertisement) a questionnaire about intuitionism

http://www.intuitionism.org/

ten questions about intuitionism
currently: seventeen sets of answers by various people

3. Do you agree that there are only three infinite cardinalities?

7. Do you agree that for any two statements the first implies the
second or the second implies the first?

21

putting systems together

OMDoc

XML standard for encoding of mathematical documents
developed by Michael Kohlhase

can be used both for natural language documents and for formalizations

modularized language architecture
supports both OpenMath and Content MathML encoding of formulas

does not really address semantical differences between systems

22

Logosphere

converting between the foundations of various systems

project led by Carsten Schirmann

formalize foundations of each system in the Twelf logical framework
translate all formalizations into Twelf
use Twelf to relate those formalizations

systems that are currently supported:
e first order resolution provers
e HOL
e NuPRL
e PVS

23

reason two: why mathematicians are not interested (yet)

the cost is too high. ..

size of formalization

de Bruijn factor = —
size of normal text

question: is this a constant?

experimental: around 4

time to formalize

de Bruijn factor in time = —
time to understand

much larger than 4

formalizing one textbook page ~ 1 man-week = 40 man-hours

24

and the gain is too little

I"art pour I'art

Paul Libbrecht in Saarbrucken: ‘mental masturbation’

it's not impossibly expensive
formalizing all of undergraduate mathematics =~ 140 man-years

the price of about one Hollywood movie

but: after formalization we just have a big incomprehensible file
we don't have a good argument yet for spending that money

certainty that it’s fully correct?

Is that important enough to pay for 140 man-years?

25

and it does not look like mathematics

most systems: ‘proof’ = list of tactics = unreadable computer code

even in Mizar and lIsar: still looks like code

even formulas: too much ‘decoding’ needed to understand what it says

Variable J : interval. Hypothesis pJ : proper J.
Variable F, G : PartIR. Hypothesis derG : Derivative J pJ G F.
Let G_inc := Derivative_imp_inc _ _ _ _ derG.

Theorem Barrow : forall a b (H : Continuous_I (Min_leEq_Max a b) F) Ha Hb,
let Ha’ := G_inc a Ha in let Hb’ := G_inc b Hb in
Integral H [=] G b Hb’[-]G a Ha’.

b
G'=F = / F(z)dr = G(b) — G(a)

26

so what is needed most to promote formalization of mathematics?

e decision procedures
very important, main strength of PVS

e in particular: computer algebra
Macsyma, Maple, Mathematica
(really: computer calculus)

high school mathematics should be trivial!

r=i/n, n=m+1 F nl-x=1i-ml

Koo v n_k—l':E
n n n
1 T
n>2, xr= - <1
n+1 l—=x

27

second hour:
a tour of Mizar, a proof assistant for mathematics

28

why is Mizar interesting?

e a system for mathematicians

e the proof language

only other system with similar language: Isabelle/lsar

e many other interesting ideas

— type system

soft typing

‘attributes’

multiple inheritance between structure types
— expression syntax

type directed overloading
bracket-like operators
arbitrary ASCII strings for operators

29

example formalizations

example: Coq version

Definition ge (n m : nat) : Prop :=
exists x : nat, n = m + X.

Infix ">=" := ge : nat_scope.

Lemma ge_trans

forall nmp : nat, n >>m ->m > p -> n >= p.

Proof.

unfold ge. intros n m p H HO.

elim H. clear H. intros x H1.

elim HO. clear HO. intros x0 HZ2.

exists (x0 + x).

rewrite plus_assoc. rewrite <- H2. auto.
Qed.

30

example: Mizar version

reserve n,m,p,X,x0 for natural number;

definition let n,m;
pred n >= m means :ge: ex X st n = m + X;

end;

theorem ge_trans: n >>m & m >= p implies n >= p
proof

assume that H: n >= m and HO: m >= p;

consider x such that Hl: n = m + x by H,ge;
consider x0 such that H2: m = p + xO by HO,ge;
n =p+ (x + x0) by H1,H2;

hence n >= p by ge;

end;

31

procedural versus declarative

=

| o0

e procedural
EESENESSSWWWSEEE
HOL, Isabelle, Coq, NuPRL, PVS

e declarative

(0,0) (1,0) (2,0) (3,0) (3,1) (2,1) (1,1) (0,1) (0,2) (0,3) (0,4) (1,4) (1,3) (2.3) (2:4) (3.4) (4.4)

Mizar, Isabelle

32

another small example

If every poor person has a rich father,

then there is a rich person with a rich grandfather.

assume that
Al: for x st x is poor holds father(x) is rich and
A2: not ex x st x is rich & father(father(x)) is rich;
consider p being person;
now let x;
x is poor or father(father(x)) is poor by A2;
hence father(x) is rich by A1l;
end;
then father(p) is rich & father(father(father(p))) is rich;

hence contradiction by AZ2;

33

demo example

Theorem. There are irrational numbers x and vy such that xV is rational.
Proof. We have the following calculation

V2
vz =2 o vzt =

which is rational. Furthermore Pythagoras showed that /2 is irrational.
Now there are two cases:

e Either \@ﬁ is rational. Then take © =y = V2.

e Or ﬂﬁ Is irrational. In that case take x = \/5\/§ and y = V2.
And by the above calculation then Y = 2, which is rational. L]

34

lemmas used in the proof

AXTIOMS:22
INT_2:44
IRRAT_1:1
POWER: 38
SQUARE_1:def 3
SQUARE_1:def 4
SQUARE_1:384
POWER:53

r<yNy<z=x<z
2 Is prime

pisprime = /p € Q
a>0= (a®)" = a’*
i =x-x
0<a= (r=vVas 0<zAzx*=a)

1 <2

‘a to_power 2 = a”2

35

reserve X,y for real number;

theorem ex x,y st x is irrational & y is irrational &
X to_power y is rational

proof
set r = sqrt 2;

C: r > 0 by SQUARE_1:84,AXI0MS:22;

Bl: r is irrational by INT_2:44,IRRAT_1:1;

B2: (r to_power r) to_power r

r to_power (r * r) by C,POWER:38

r to_power r~2 by SQUARE_1l:def 3

r to_power 2 by SQUARE_1:def 4

r~2 by POWER:53

2 by SQUARE_1:def 4;

per cases;

suppose
Al: r to_power r is rational;
take x = r, y = r;
thus thesis by A1,B1;
end;
suppose
A2: r to_power r is irrational;
take x = r to_power r, y = r;
thus thesis by A2,B1,B2;
end;
end;

35

example of how Mizar is like English

Hardy & Wright, An Introduction to the Theory of Numbers

Theorem 43 (Pythagoras’ theorem). /2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows. If
V2 is rational, then the equation

a® = 2b° (4.3.1)

2 is even, and

is soluble in integers a, b with (a,b) = 1. Hence a
therefore a is even. If a = 2¢, then 4¢? = 2b%, 2¢2 = b% and b is

also even, contrary to the hypothesis that (a,b) = 1. []

36

Mizar language approximation of this text

theorem Th43: sqrt 2 is irrational
proof
assume sqrt 2 is rational;
consider a, b such that
4.3.1: a"2 =2xb"2 and
a,b are_relative_prime;
a"2 is even;
a IS even;
consider c such that a = 2xc;
4xc"2 =2%xb"2;
2%xc"2 =Db"2;
b is even;
thus contradiction;
end;

37

full Mizar

theorem Th43: sqrt 2 is irrational
proof
assume sqrt 2 is rational;
then consider a, b such that
Al: b <> 0 and
A2: sqrt 2 = a/b and
A3: a, b are_relative_prime by Defl;
A4: b"2 <> 0 by Al, SQUARE.1:73;
2 = (a/b)"2 by A2, sQuARE.1:def 4
.= a"2/b"2 by sQUARE.1:69;
then
4.31: a2 =2%xb"2 by A4, REAL_1:43;
a"2 is even by 4_3_1, ABIAN:def 1;
then
Ab5: a is even by PYTHTRIP:2;
.. continue in next column

then consider c such that
A6: a = 2xc by ABIAN:def 1;
A7: 4%xc™2 =(2%2)*c"2
.= 2"2%c"2 by sQUARE_1:def 3
.=2xb"2 by A6,4_3_1, SQUARE._1:68;
2% (2%c"2) = (2% 2)*c"2 by Axioms:16
= 2xb"2 by A7;
then 2xc”2 = b"2 by REAL.1:9;
then b"2 is even by ABIAN:def 1;
then b is even by PYTHTRIP:2;
then 2 divides a & 2 divides b by A5, Def2;
then
A8: 2 divides a gcd b by INT_2:33;
agecd b =1 by A3, INT_2:def 4;
hence contradiction by A8, INT_2:17;
end;

38

some explanations about Mizar

the proof language

forward reasoning

(statement) by (references)
(statement) proof (steps) end

natural deduction

thus (statement) closes the proof

assume (statement) —-introduction
let (variable)

thus (statement)

consider (variable) such that (statement)
take (term)

per cases; suppose (statement); ...

V-introduction
A-introduction
J-elimination

J-introduction

L

V-elimination

39

‘semantics’ ?

Mizar is just first order predicate logic + set theory
Mizar proofs are just Fitch-style natural deduction

but:

e Mizar variables have types. ..
and these types are quite powerful!

e Mizar has ‘second-order theorems’ called schemes

e Mizar defines function symbols using something like Church's

¢ operator (‘unique choice')

40

Tarski-Grothendieck set theory

TARSKI:def XCY & Vr.zeX =>xz€Y)

TARSKI:def (x,y) = {{z,y}, {z}}

TARSKI:def X~Y & A2 Ve.xe X.= y.yeY ANlx,y) € Z) A

Vy.yeY.=3Jz.x € X Ax,y) € Z) A

(VaVyVzVu. (z,y) € ZN(z,u) € Z = (=2 & y=u))

TARSKI:def re{y =y

TARSKI:def re{y,zt & rx=yVar=z

TARSKI :def relJX &Y zeY ANY X

TARSKI:2 Ve.ze X&sxeY)= X=Y

TARSKI:7 reX = WV YeXA-Tr.zeXANzeY

TARSKI:sch (Ve VyVz. Plx,y|\ Plz,z| = y=2) =

(IX.Ve.z € X & dy.y € A N Ply,x])
TARSKI:9 AM.Ne MANVXY.XeMANY CX=YeM)A

VX.XEM=32.ZE MAVY.Y CX =Y € Z)A
(VX.XCM=X~MVXEeM)
41

types!

Mizar is based on set theory but it is a typed system

Mizar types are soft types:
M:N(tl,...,tn)
should really be read as a predicate

N(ti, ... tn, M)

This means that:
e one Mizar term can have many different types at the same time

e a Mizar typing can be used as a logical formula!

let x be Real; — assume not x is Nat;

42

types! (continued)

think of Mizar types as predicates that the system keeps track of for you

Mizar types are used for three things:

e type based overloading

X

MooH S b b
+ + 4+ + + +

b

+

y

Ho< O 5 < 9

sum of two numbers

adding the elements of two sets
mixing these two things

sum of two elements of a vector space
sum of two ideals in a ring

‘join” of two elements of a lattice
adding an offset to a pointer

¢ inferring implicit arguments

e automatic inference of propositions

43

types! (continued)

e Mizar has dependent types
(much like in all the other dependent type systems)

e Mizar has a subtype relation
every type except the type ‘set’ has a supertype

e Mizar has ‘type modifiers’ called attributes
a type can be prefixed with one or more adjectives
an adjective is either an attribute or the negation of an attribute

(behaves like intersection types)

non empty | |finite || |Subset of NAT

44

notation

any ASCII string can be used for a Mizar operator

func].a,b.] -> Subset of REAL means
:: MEASURES:def 3
for x being R_eal holds
x in it iff (a <’ x & x <=’ b & x in REAL);

pred a,b are_convergent<=1_wrt R means
:: REWRITEl:def 9

ex ¢ being set st ([a,c] in R or a = ¢) & ([b,c] in R or b = c);

45

Mizar in the world

Mizar Mathematical Library

the biggest library of formalized mathematics

49,588
1,820,879
64

165
912

lemmas
lines of ‘code’

megabytes

‘authors’

‘articles’

46

Mizar, the program

e implemented in Delphi Pascal /Free Pascal

e source not freely available, but

write Mizar ‘article’

l

become member of Association of Mizar Users

l

get source

e no small proof checking ‘kernel’
correctness of Mizar check depends on correctness of whole program

e users can not automate proofs inside the system

47

publishing formalizations: MML and FM

Mizar Mathematical Library

theorem :: RUSUB_2:35
for V being RealUnitarySpace, W being Subspace of V,
L being Linear_Compl of W holds
V is_the_direct_sum_of L,W & V is_the_direct_sum_of W,L;

Formalized Mathematics

(35) Let V be a real unitary space, W be a subspace of V,
and L be a linear complement of W. Then V is the direct
sum of L and W and the direct sum of W and L.

48

Mizar versus lIsar

some reasons to prefer Mizar over Isar

e the set theory of Mizar is much more powerful and expressive than
the HOL logic of Isabelle/HOL

e Mizar is much more able to talk about abstract mathematics, and in

particular about algebraic structures, with nice notation
e dependent types are way cool
some reasons to prefer Isar over Mizar
e Isabelle gives you an interactive system
e Isabelle allows you to mix declarative and procedural proof
e Isabelle has much more possibilities of automation

e Isabelle allows you to define binders

49

is Mizar a difficult system?

no, not difficult at alll

Mizar is about as complex as the Pascal programming language
(proof assistants tend to resemble their implementation language)

reasons that people sometimes think Mizar is a complex language
e lack of proper documentation

e natural language-like syntax

50

extro

gazing into the crystal ball

Henk's futuristic QED questions

e will proof assistants ever become common among mathematicians?

e if so: when will this happen?

— the most optimistic answer: it already is here!

— the experienced user’s answer: fifty years

but what do you expect?

51

