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Summary of the problem

Proof / type checkers based on dependent types work up to
conversion:

Γ ` M : A A ≈ B

Γ ` M : B

It is very convenient: allows small proofs and automation (using
reflexive proofs)

If we have a algorithm for testing convertibility, we get a type
checker

Testing convertibility require strong β-reduction (under λ

abstractions)

For most proofs, the amount of reduction is small (simple
interpreter suffice)

But proofs based on reflection require large amounts of
reductions. The speed of the reducer becomes the limiting
factor
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Convertibility is decidable

Testing convertibility of two terms is decidable if the reduction

rules are

• Confluents ⇒ Church-Rosser, uniqueness of normal forms

• Strongly normalizing
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λ-calculus

terms t ::= x | λx.t | t t
values(WNF) v ::= λx.t | x v1 . . . vn

Conversion algorithm:

t1 = t2

t1 ≈ t2

WNF(t1) ≈ WNF(t2)

t1 ≈ t2

v1 = v2

v1 ≈ v2

x = y vi ≈ wi

x v1 . . . vn ≈ y w1 . . . wn

WNF(λx.M z) ≈ WNF(λy.M ′ z) z fresh

λx.M ≈ λy.M ′
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Computing the WNF

type term = Var of var | Abs of var*term | App of term*term

let rec wnf t =
match t with
| Var _ | Abs _ -> t

| App(t1, t2) ->
let v1 = wnf t1 in
let v2 = wnf t2 in
match v1 with
| Abs(x,u) -> wnf (subst u x v2)
| _ -> App(v1,v2)
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WNF by compilation

WNF : execution of ML-like program

λ-term
Compilation

// bytecode Execution
Abs. Machine

// value

bytecode : sequence of instructions

Problem: usual compilation techniques work only for

closed terms

WNF(λx.Mz)
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ZINC abstract machine

ZINC : a stack based abstract machine in call by value

Instructions : Acc, Closure, Grab, Pushra, Apply, Return

Representation of values v (closures): [c, e]

Environment e : [v1; . . . ; vn]

Components of the machine:

c code pointer

e environment (values associate to variables)

s stack (arguments + intermediate results + return address)

n number of available arguments on the top of s
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Compilation and execution of variables

Compilation scheme: [[t]]k ; c

The resulting code c compute the value corresponding to t,

push it on top of the stack, then restart the execution of k

[[x]]k = Acc(i); k

where i = deBruijn index of x

Code Env Stack #args
Acc(i); k e s n
k e e(i).s n
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Compilation and execution of applications

[[f a1 . . . ai]]k = Pushra(k);
[[ai]] . . . [[a1]] [[f ]] Apply(i)

Code Env Stack #args
Pushra(k); c e s n
c e 〈k, e, n〉.s n
Apply(i) e [c, e′].v1 . . . vi.〈k, e, n〉.s n
c e′ v1 . . . vi.〈k, e, n〉.s i
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Compilation and execution of functions

[[λx1.. . . λxn.t]]k = Closure(c); k
c = Grab; . . . ;Grab︸ ︷︷ ︸

n times

; [[t]]Return

Code Env Stack #args
Closure(c); k e s n
k e [c, e].s n
Grab; k e v.s n + 1
k v.e s n
Return e v.〈k, e′, n〉.s 0
k e′ v.s n
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Under or over application

Under application:

Code Env Stack #args
Grab; c e 〈k, e′, n〉.s 0
k e′ [(Grab; c), e].s n

Over application:

Code Env Stack #args
Return e [c, e′].s n > 0
c e′ s n
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Compilation with free variables

Code Env Stack #args
Acc(i); k e s n
k e e(i).s n

Free variables have no associated value in the environment

⇒ add values for free variables

What should be the value associated to a free variables?

What happens when this value is applied?
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What is the computational behavior of a free variable?

Symbolic calculus:

Terms t ::= x | t t | v
Values v ::= λx.t | [x̃]

Reduction rules:

(λx.t) v −→ t[x := v]
[x̃] v −→ [x̃ v]
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Computational behavior of a free variable

Symbolic calculus:

Terms t ::= x | t t | v
Values v ::= λx.t | [k]
Accumulators k ::= x̃ | k v

Reduction rules:

(λx.t) v −→ t[x := v]
[k] v −→ [k v]

The value associate to a free variable is a function that

accumulate its arguments
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Encoding accumulator

Code Env Stack #args
Apply(n) [c, e].v1 . . . vn.〈c′, e′, n′〉.s
c e v1 . . . vn.〈c′, e′, n′〉.s n′

The top value can now be a accumulator, encoding of
accumulator should be compatible with the one of closure

[Accumulate, k̂]

where k̂ is the machine-level encoding of k: k̂ = [x̃; v1; . . . ; vn]

This suffices to trick function application:

Code Env Stack #args
Apply(n) e [Accumulate, k̂].v1 . . . vn.〈c′, e′, n′〉.s
Accumulate k̂ v1 . . . vn.〈c′, e′, n′〉.s n
c′ e′ [Accumulate, (k̂.v1 . . . vn)].s n′

The move from [Accumulate, k̂] to [Accumulate, (k̂.v1 . . . vn)]
implements exactly the symbolic reduction
[k] v1 . . . vn −→ [k v1 . . . vn]
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Distinguishing feature of this encoding

The representation of [k] looks like a function

⇒ No need to test at application time whether the function is a

closure or an accumulator

⇒ No overhead on evaluation of closed terms

Similarly, we arrange that the representation of [k] looks like the

representation of inductive constructors

⇒ No overhead for ι-reduction
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Experimental results

4-colors theorem

Perimeter Coq Coq-vm OCaml OCaml
bytecode natif

11 56.7s 1.68s 1.18s 0.30s
12 259s 6.50s 6.18s 1.92s
13 680s 14.8s 15.5s 4.11s

Prime numbers

Size time
1234567891 (10)

Deductive : 3099 13.26 s
Reflexive : 58 0.59 s
20988936657440586486151264256610222593863921 (44)
Deductive : 18509 1862.52 s
Reflexive : 95 21.30 s
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Conclusion

Conversion is very convenient: allows small proofs and

automation (using reflexive proofs)

The use of a compiler and an abstract machine for testing

convertibility leads to an efficient algorithm

So reflexive proofs can be efficiently type checked
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