Types Summer School
Gothenburg Sweden August 2005

Lecture 5: FTA, the Fundamental Theorem of AlLgebra
C-CoRN, The Constructive Coq Repository @ Nijmegen

Herman Geuvers, Luis Cruz-Filipe, Freek Wiedijk, Milad Niqui,
Jan Zwanenburg,
Randy Pollack, Iris Loeb, Bas Spitters, Sebastien Hinderer,
Henk Barendregt, Dan Synek
Radboud University Nijmegen, NL

What? Content
e Algebraic Hierarchy: monoids, rings, (ordered) fields, ...
e Tactics, esp. for equational reasoning

e Real number structures: axiomatically as complete Archimedean
ordered fields.

e Model of R + proof that two real number structures are iso-
morphic + alternative axioms

o Generic results about R and R-valued functions
e (Original) FTA-library: definition of C and proof of FTA

e Real analysis following Bishop: Continuity, differentiability
and integrability, Rolle’s Theorem, Taylor's Theorem, FTC.
The exponential and trigonometric functions, logarithms and
inverse trigonometric functions.

2

What, Where, Why
e What: A coherent library of formalized mathematics

e Where: @ Nijmegen (NL), but possibly users and contributors
from all over the world.

e Why: formalize mathematics in a uniform way.

The sizes of the C-CoRN library:

Description Size (Kb)|% of total
Algebraic Hierarchy (incl. tactics)| 533 26.4
Real Numbers (incl. Models) 470 233
FTA (incl. Complex Numbers) 175 8.7
Real Analysis (incl. Transc. Fns.) | 842 41.6
Total 2020 100

Why? Aims

e Not one (isolated) big fancy theorem, but create a library:

“Mexican hat”

Sets and Basics 41 kb
Algebra (upto Ordered Fields) 165 kb
Reals 52 kb
Polynomials 113 kb

Real-valued functions / Basic Analysis 30 kb

Complex numbers 98 kb
FTA proof 70 kb
Construction of R (Niqui) 309 kb
Rational Tactic 49 kb

Aims ctd.

e Investigate the current limitations.

e Try to manage this project. Three sequential/parallel phases:

Mathematical proof

IATEX document (lots of details)

Theory development

Coq file (just defs and statements of lemmas)

Proof development

Coq file (proofs filled in)

Try to keep these phases consistent!

Aims ctd.

e Make interaction between different fields of mathematics pos-
sible.

o Reusable by others: take care of documentation, presentation,
notation, searching

e Constructive(?)
Finer analysis of mathematics, esp. analysis: reals are (poten-
tially) infinite objects; computational content.

e Formalizing math. on a computer is fun, but also has benefits:

— Correctness guaranteed.
— Exchange of ‘meaningful’ mathematics.
— Finding mathematical results.

Problems 7
e |diosyncrasies of ‘the’ Proof Assistant.
e Verbosity of formalized mathematics.

e Access to the formalized mathematics.

Methodology
Work in a systematic way (CVS):

e Documentation: what has been formalized: notations; defini-

tions; tactics.

e Structuring: Group Lemmas and Def’s according to mathe-
matical content; Name Lemmas and Def’s consistently.

e Axiomatic Approach: C-CoRN aims at generality.

e Automation: Develop tactics for specific fields of mathemat-

ICS

Setoids
How to represent the notion of set?
Note: A set is not just a type, because
M : A'is decidable whereas t € X is undecidable
A setoid is a pair [A, =] with
o A : Set,

e = : A—(A—Prop) an equivalence relation over A

A setoid function is an f:A— B such that
Va,y:A(x =4 y)—(f) =p (9).

A brief look into C-CoRN
o (Constructive) Setoids
e Algebraic Hierarchy
e Partial Functions
o R
e FTA proof

e Automation via Reflection

Here: Constructive Setoids
Apartness # as basic:
r=y < ~(z#y)
r#y — (T #2)V(y#2)
—(z # z)
rHYy - y#Ha

A constructive setoid function is an f:A— B such that

Vo, y: A(f ©) #p (9 y)—(z #4).

Strong extensionality

The algebraic hierarchy

e We deal with real numbers, complex numbers, polynomials,

e Many of the properties we use are generic and algebraic.

e To be able to reuse results and notation we have defined a
hierarchy of algebraic structures.

e Basic level: constructive setoids.

e Next level: semi-groups, (S,+), with S a setoid and + an
associative binary operation on S.

Inheritance via Coercions
We have the following coercions.

OrdField >-> Field >-> Ring >-> Group

Group >-> Monoid >-> Semi_grp >-> Setoid

o All properties of groups are inherited by rings, fields, etc.
e Also notation is inherited:
x[+]y
denotes the addition of x and y for x,y:G from any semi-
group (or monoid, group, ring,...) G.

e The coercions must form a tree, so there is no real multiple
inheritance:
E.g. it is not possible to define rings in such a way that it
inherits both from its additive group and its multiplicative
monoid.

Structures and Coercions
Record CMonoid : Type :=
{ m_crr :> CSemi_grp;
m_proof : (Commutative m_crr (sg_op m_crr))

/\ (IsUnit m_crr (sg_unit m_crr) (sg_op m_crr))

T

e A monoid is now a tuple (((S,=g,7),qa, f,p),q)
IfM : Monoid, the carrier of Mis (crr(sg crr(m crr M)))
Nasty !!
= We want to use the structure M as synonym for the carrier
set (crr(sg_crr(m_crr M))).
= The maps crr, sg_crr, m_crr should be left implicit.

e The notation m_crr :> Semi_grp declares the coercion
mcrr : Monoid >-> Semi_grp.

i

Partiality: Proof terms inside objects

e The ‘subtype’ {t : A | (P t)} is defined as the type of pairs
(t,p) where t : Aand p: (P t).
Notation: Yx:A.P x

e A partial function is a function on a subtype
Eg. (=) ':YaRaz#0—R.

. . 1 .
If z:R and p:x # 0, then <x7p>‘]R.

e A partialfunction must be proof-irrelevant, i.e.

ifp:t#()andq:t;«éo,then@—lmzﬁ.

e For practical (Coq) purposes we “Curry” partial functions and
take
(=)7L zR.(z #0) — R,

The Real Numbers in Coq:

e Axiomatic: a ‘Real Number Structure’ is a
Cauchy-complete Archimedean ordered field.

e Prove FTA ‘for all real numbers structures'.

e Construct a model to show that real number structures exist.
(Cauchy sequences over an Arch. ordered field, say Q)

e Prove that any two real number structures are isomorphic.

Consequences of the Axiomatic approach:
e We don't construct R out of Q, so we don’t have Q C R on
with = decidable on Q.
e We did not want to ‘define’ Q C R.
e Instead: modify the proof by introducing fuzziness:
Instead of having to decide
r<yVr=yVvVzr>y,
all we need to establish is whether (for given ¢ > 0)
r<y+eVrr>y—c¢
which we may write as
r<eyVax>cy
This is decidable, due to the cotransitivity of the order rela-
tion:
r<y=cr<zVz<y

10

Axioms for Real Numbers:
e Cauchy sequences over Field F"
g : nat — Fis Cauchy if
Ve:Fog.3N:NYm > N(|gm — gn| < €)

e All Cauchy sequences have a limit:

SeqLim : (Xg:nat— F.Cauchyg) — F

CauchyProp : Vg:nat— F.(Cauchy g) —
Ve:F~o.3N:NVm > N.(|gm — (SeqLim g)| < ¢)

e Axiom of Archimedes: (there are no non-standard elements)
Va:F.3n:N(n > x)

NB: The axiom of Archimedes proves that ‘c-Cauchy sequences’
and %—Cauchy sequences’ coincide (similar for limits)

1%

Intermezzo Program Extraction
The logic of Coq (and most type theories) is constructive. This
implies that
if - Vx:Ady:B.Rxy, then there is a term f such that
FVe:ARx (fx).
Application: From a proof term of Vz € nat.dy € nat.x+x <y
one can extract
e a term (Cog-program) f : nat—nat,
e a proof of Va:nat.x + & < fx (correctness of f)
Strengthening
if - Ve:APxV —-Pxand F V:A.Px — Jy:B.Rzy,
then there is a term f such that - Vz:A.Px — Ra (f x).
Example
Viclist. # nil—3dn:natn <l An el

an

Pros/Cons of the Axiomatic approach:
Pros:

e “Plug-in" arbitrary (your own pet) model to extract algo-
rithm.

e Work abstractly: reuse
Cons (7):

e Choice of axioms? Don't try to be minimal! E.g.maximum
function should be added.

e Can we get “good” algorithms when we work abstractly?

21

The constructive FTA proof

Define an algorithm

Given z € C, construct a sequence z, zq, 21, . . . going to the
root.

Problem: in the definition

g =¢f _—
ag

e & must be small enough to neglect O (z{f“)
e ¢ must be large enough to reach the root.
Solution (Kneser): write
flz)=ap+ akxk + other terms

and find k and z such that |az||z|" is big enough w.r.t. the
other terms and small enough compared to |ag.

22

FTA: The classical FTA proof

Suppose | f(z)| is minimal with | f(z)| # 0.

We construct a zg with |f(z0)| < |f(2)].

We may assume that the minimum is reached for z = 0.

fx) = ap + apz® + O
with ay, the first coefficient that's not 0.

Now take
a
2y = E{f/——o
ag

k+1
0

If € is small enough, the part O (z) will be negligible and

we get a 2z # 0 for which

£ (z0) = a0 + ay, (6’\‘/—72—9]{ = ag(1 — ") < |£(0)|

29

Automation via Computation
Poincaré Principle (Barendregt)

“An equality involving a computation does not require a
proof”

In type theory: if ¢ = ¢ by evaluation (computing an algorithm),
then this is a trivial equality, proved by reflexivity.
This is made precise by the conversion rule:
'-M:A
'-M:B
Can one actually use the programming power of Type Theory
when formalizing mathematics?

A =66 B

Yes. For automation: replacing a proof obligation by a compu-
tation

Reflection Suppose

e We have a class of problems with a syntactic encoding as a
data type, say via the type Problem.
Example: equalities between expressions over a group
Then the syntactic encoding is

Inductive E : Set :=

evar : nat -> E
| eone : E
| eop : E->E —>E
| einv : E -> E

e We have a decoding function [—] : Problem — Prop
e We have a decision function Dec : Problem — {0, 1}
e We can prove Ok : Vp:Problem((Dec(p) = 1) — [p])

RI3

Related Work:

e Mizar largest library of formalized math., MML (Trybulec)
e HOL-light (Harrisson)

e [sabelle (Fleuriot, non-standard reals)

e Nuprl (Howe, constructive & la Bishop)

e Classical Reals in Coq (Mayero)

e Minlog (Schwichtenberg)

e FOC (Hardin, Rioboo)

To verify P (from the class of problems):
e Find a p : Problem such that [p] = P.
e Then Dec(p) yields either 1 or 0
e If Dec(p) = 1, then we have a proof of P (using Ok)
e If Dec(p) = 0, we obtain no information about P (it ‘fails’)
Note: if Dec is complete:
Vp:Problem((Dec(p) = 1) < [p])

then Dec(p) = 0 yields a proof of = P.
This can be made into a tactic, e.g. Rational, that proves
equalities between rational expressions.

9%

Some Conclusions:

e Real mathematics, involving algebra and analysis can be for-
malised completely within a theorem prover (Coq).

e Setting up a basic library and some good proof automation
procedures is a large part of the work.

e Library can be reused: Luis Cruz-Filipe proved FTC (and
more).

e Extracting algorithms (e.g. for FTA) requires a further anal-
ysis of the proof (Luis Cruz-Filipe, Bas Spitters).

e In the end, the computational behaviour of algorithms should
depend mainly on the representation of the reals.

