
Types Summer School
Gothenburg Sweden August 2005

Lecture 5: FTA, the Fundamental Theorem of ALgebra
C-CoRN, The Constructive Coq Repository @ Nijmegen

Herman Geuvers, Luis Cruz-Filipe, Freek Wiedijk, Milad Niqui,
Jan Zwanenburg,

Randy Pollack, Iris Loeb, Bas Spitters, Sebastien Hinderer,
Henk Barendregt, Dan Synek

Radboud University Nijmegen, NL

1

What, Where, Why

• What: A coherent library of formalized mathematics

• Where: @ Nijmegen (NL), but possibly users and contributors
from all over the world.

• Why: formalize mathematics in a uniform way.

2

What? Content

• Algebraic Hierarchy: monoids, rings, (ordered) fields, . . .

• Tactics, esp. for equational reasoning

• Real number structures: axiomatically as complete Archimedean
ordered fields.

• Model of R + proof that two real number structures are iso-
morphic + alternative axioms

• Generic results about R and R-valued functions

• (Original) FTA-library: definition of C and proof of FTA

• Real analysis following Bishop: Continuity, differentiability
and integrability, Rolle’s Theorem, Taylor’s Theorem, FTC.
The exponential and trigonometric functions, logarithms and
inverse trigonometric functions.

3

The sizes of the C-CoRN library:

Description Size (Kb) % of total
Algebraic Hierarchy (incl. tactics) 533 26.4
Real Numbers (incl. Models) 470 23.3
FTA (incl. Complex Numbers) 175 8.7
Real Analysis (incl. Transc. Fns.) 842 41.6
Total 2020 100

4

Why? Aims

• Not one (isolated) big fancy theorem, but create a library:
“Mexican hat”
Sets and Basics 41 kb
Algebra (upto Ordered Fields) 165 kb
Reals 52 kb
Polynomials 113 kb
Real-valued functions / Basic Analysis 30 kb
Complex numbers 98 kb
FTA proof 70 kb
Construction of R (Niqui) 309 kb
Rational Tactic 49 kb

5

Aims ctd.

• Make interaction between different fields of mathematics pos-
sible.

• Reusable by others: take care of documentation, presentation,
notation, searching

• Constructive(?)
Finer analysis of mathematics, esp. analysis: reals are (poten-
tially) infinite objects; computational content.

• Formalizing math. on a computer is fun, but also has benefits:

– Correctness guaranteed.

– Exchange of ‘meaningful’ mathematics.

– Finding mathematical results.

6

Aims ctd.

• Investigate the current limitations.

• Try to manage this project. Three sequential/parallel phases:

Mathematical proof LATEX document (lots of details)

Theory development Coq file (just defs and statements of lemmas)

Proof development Coq file (proofs filled in)

Try to keep these phases consistent!

7

Problems ?

• Idiosyncrasies of ‘the’ Proof Assistant.

• Verbosity of formalized mathematics.

• Access to the formalized mathematics.

8

Methodology
Work in a systematic way (CVS):

• Documentation: what has been formalized; notations; defini-
tions; tactics.

• Structuring: Group Lemmas and Def’s according to mathe-
matical content; Name Lemmas and Def’s consistently.

• Axiomatic Approach: C-CoRN aims at generality.

• Automation: Develop tactics for specific fields of mathemat-
ics

9

A brief look into C-CoRN

• (Constructive) Setoids

• Algebraic Hierarchy

• Partial Functions

• R

• FTA proof

• Automation via Reflection

10

Setoids
How to represent the notion of set?
Note: A set is not just a type, because
M : A is decidable whereas t ∈ X is undecidable
A setoid is a pair [A, =] with

• A : Set,

• = : A→(A→Prop) an equivalence relation over A

A setoid function is an f :A→B such that

∀x, y:A.(x =A y)→(f x) =B (g y).

11

Here: Constructive Setoids
Apartness # as basic:

x = y ↔ ¬(x # y)

x # y → (x # z) ∨ (y # z)

¬(x # x)

x # y → y # x

A constructive setoid function is an f :A→B such that

∀x, y:A.(f x) #B (g y)→(x #A y).

Strong extensionality

12

The algebraic hierarchy

• We deal with real numbers, complex numbers, polynomials,
. . .

• Many of the properties we use are generic and algebraic.

• To be able to reuse results and notation we have defined a
hierarchy of algebraic structures.

• Basic level: constructive setoids.

• Next level: semi-groups, 〈S, +〉, with S a setoid and + an
associative binary operation on S.

13

Structures and Coercions

Record CMonoid : Type :=

{ m_crr :> CSemi_grp;

m_proof : (Commutative m_crr (sg_op m_crr))

/\ (IsUnit m_crr (sg_unit m_crr) (sg_op m_crr))

}.

• A monoid is now a tuple 〈〈〈S, =S, r〉, a, f, p〉, q〉

If M : Monoid, the carrier of M is (crr(sg crr(m crr M)))

Nasty !!
⇒ We want to use the structure M as synonym for the carrier
set (crr(sg_crr(m_crr M))).
⇒ The maps crr, sg_crr, m_crr should be left implicit.

• The notation m_crr :> Semi_grp declares the coercion
m crr : Monoid >-> Semi grp.

14

Inheritance via Coercions
We have the following coercions.

OrdField >-> Field >-> Ring >-> Group

Group >-> Monoid >-> Semi_grp >-> Setoid

• All properties of groups are inherited by rings, fields, etc.

• Also notation is inherited:

x[+]y

denotes the addition of x and y for x,y:G from any semi-
group (or monoid, group, ring,...) G.

• The coercions must form a tree, so there is no real multiple
inheritance:
E.g. it is not possible to define rings in such a way that it
inherits both from its additive group and its multiplicative
monoid.

15

Partiality: Proof terms inside objects

• The ‘subtype’ {t : A | (P t)} is defined as the type of pairs
〈t, p〉 where t : A and p : (P t).
Notation: Σx:A.P x

• A partial function is a function on a subtype
E.g. (−)−1 : Σx:R.x 6= 0 → R.
If x : R and p : x 6= 0, then 1

〈x,p〉
: R.

• A partialfunction must be proof-irrelevant, i.e.
if p : t 6= 0 and q : t 6= 0, then 1

〈t,p〉
= 1

〈t,q〉
.

• For practical (Coq) purposes we “Curry” partial functions and
take
(−)−1 : Πx:R.(x 6= 0) → R.

16

The Real Numbers in Coq:

• Axiomatic: a ‘Real Number Structure’ is a
Cauchy-complete Archimedean ordered field.

• Prove FTA ‘for all real numbers structures’.

• Construct a model to show that real number structures exist.
(Cauchy sequences over an Arch. ordered field, say Q)

• Prove that any two real number structures are isomorphic.

17

Axioms for Real Numbers:

• Cauchy sequences over Field F :
g : nat → F is Cauchy if

∀ε:F>0.∃N :N.∀m ≥ N (|gm − gN | < ε)

• All Cauchy sequences have a limit:

SeqLim : (Σg:nat→F.Cauchy g) → F

CauchyProp : ∀g:nat→F.(Cauchy g) →

∀ε:F>0.∃N :N.∀m ≥ N.(|gm − (SeqLim g)| < ε)

• Axiom of Archimedes: (there are no non-standard elements)

∀x:F.∃n:N(n > x)

NB: The axiom of Archimedes proves that ‘ε-Cauchy sequences’
and ‘1

k
-Cauchy sequences’ coincide (similar for limits)

18

Consequences of the Axiomatic approach:

• We don’t construct R out of Q, so we don’t have Q ⊂ R on
with = decidable on Q.

• We did not want to ‘define’ Q ⊂ R.

• Instead: modify the proof by introducing fuzziness:
Instead of having to decide

x < y ∨ x = y ∨ x > y,

all we need to establish is whether (for given ε > 0)

x < y + ε ∨ x > y − ε

which we may write as

x ≤ε y ∨ x ≥ε y

This is decidable, due to the cotransitivity of the order rela-
tion:

x < y ⇒ x < z ∨ z < y

19

Intermezzo Program Extraction
The logic of Coq (and most type theories) is constructive. This
implies that

if ` ∀x:A∃y:B.R x y, then there is a term f such that
` ∀x:A.R x (f x).

Application: From a proof term of ∀x ∈ nat.∃y ∈ nat.x+x ≤ y

one can extract

• a term (Coq-program) f : nat→nat,

• a proof of ∀x:nat.x + x ≤ f x (correctness of f)

Strengthening

if ` ∀x:A.P x ∨ ¬P x and ` ∀x:A.P x → ∃y:B.R x y,
then there is a term f such that ` ∀x:A.P x → R x (f x).

Example

∀l:list.l 6= nil→∃n:nat.n ≤ l ∧ n ∈ l

20

Pros/Cons of the Axiomatic approach:
Pros:

• “Plug-in” arbitrary (your own pet) model to extract algo-
rithm.

• Work abstractly: reuse

Cons (?):

• Choice of axioms? Don’t try to be minimal! E.g.maximum
function should be added.

• Can we get “good” algorithms when we work abstractly?

21

FTA: The classical FTA proof
Suppose |f (z)| is minimal with |f (z)| 6= 0.
We construct a z0 with |f (z0)| < |f (z)|.
We may assume that the minimum is reached for z = 0.

f (x) = a0 + akx
k + O(xk+1)

with ak the first coefficient that’s not 0.
Now take

z0 := ε k

√

−
a0

ak

with ε ∈ R>0.

If ε is small enough, the part O
(

zk+1
0

)

will be negligible and

we get a z0 6= 0 for which

|f (z0)| = a0 + ak

(

ε k

√

−
a0

ak

)k

= a0(1 − εk) < |f (0)|

22

The constructive FTA proof
Define an algorithm
Given z ∈ C, construct a sequence z, z0, z1, . . . going to the
root.
Problem: in the definition

z0 := ε k

√

−
a0

ak

• ε must be small enough to neglect O
(

zk+1
0

)

• ε must be large enough to reach the root.

Solution (Kneser): write

f (x) = a0 + akx
k + other terms

and find k and z0 such that |ak||z0|
k is big enough w.r.t. the

other terms and small enough compared to |a0|.

23

Automation via Computation
Poincaré Principle (Barendregt)

“An equality involving a computation does not require a
proof”

In type theory: if t = q by evaluation (computing an algorithm),
then this is a trivial equality, proved by reflexivity.
This is made precise by the conversion rule:

Γ ` M : A

Γ ` M : B
A =βιδ B

Can one actually use the programming power of Type Theory
when formalizing mathematics?

Yes. For automation: replacing a proof obligation by a compu-
tation

24

Reflection Suppose

• We have a class of problems with a syntactic encoding as a
data type, say via the type Problem.
Example: equalities between expressions over a group
Then the syntactic encoding is

Inductive E : Set :=

evar : nat -> E

| eone : E

| eop : E -> E -> E

| einv : E -> E

• We have a decoding function [[−]] : Problem → Prop

• We have a decision function Dec : Problem → {0, 1}

• We can prove Ok : ∀p:Problem((Dec(p) = 1) → [[p]])

25

To verify P (from the class of problems):

• Find a p : Problem such that [[p]] = P .

• Then Dec(p) yields either 1 or 0

• If Dec(p) = 1, then we have a proof of P (using Ok)

• If Dec(p) = 0, we obtain no information about P (it ‘fails’)

Note: if Dec is complete:

∀p:Problem((Dec(p) = 1) ↔ [[p]])

then Dec(p) = 0 yields a proof of ¬P .
This can be made into a tactic, e.g. Rational, that proves
equalities between rational expressions.

26

Related Work:

• Mizar largest library of formalized math., MML (Trybulec)

• HOL-light (Harrisson)

• Isabelle (Fleuriot, non-standard reals)

• Nuprl (Howe, constructive á la Bishop)

• Classical Reals in Coq (Mayero)

• Minlog (Schwichtenberg)

• FOC (Hardin, Rioboo)

27

Some Conclusions:

• Real mathematics, involving algebra and analysis can be for-
malised completely within a theorem prover (Coq).

• Setting up a basic library and some good proof automation
procedures is a large part of the work.

• Library can be reused: Luis Cruz-Filipe proved FTC (and
more).

• Extracting algorithms (e.g. for FTA) requires a further anal-
ysis of the proof (Luis Cruz-Filipe, Bas Spitters).

• In the end, the computational behaviour of algorithms should
depend mainly on the representation of the reals.

28

