
Types Summer School
Gothenburg Sweden August 2005

Formalising Mathematics in Type Theory
Herman Geuvers

Radboud University Nijmegen, NL

1

Dogma ofType Theory

• Everything has a type
M :A

• Types are a bit like sets, but: . . .

– types give “syntactic information”

3 + (7 ∗ 8)5:nat

– sets give “semantic information”

3∈{n ∈ IN | ∀x, y, z > 0(xn + yn 6= zn)}

2

Per Martin-Löf:
A type comes with
construction principles: how to build objects of that type? and
elimination principles: what can you do with an object of that
type?

This fits well with the Brouwerian view of mathematics:

“there exists an x” means
“we have a method of constructing x”

In short: a type is characterised by the construction principles
for its objects.

3

Examples

• A summer school is constructed from students, teachers, a
team of good organisers and good weather.

• A phrase is constructed from a noun and a verb or from two
phrases with the word “and” between them.
So any phrase has the shape
“noun verb and noun verb and . . . and noun and verb”.

• A natural number is either 0 or the successor S applied to a
natural number.
So the natural numbers are the objects of the shape S(. . . S(0) . . .).

Note:

Checking whether an object belongs to an alleged type is
decidable!

4

But if type checking should be decidable, there is not much
information one can encode in a type (?)

X := {n ∈ IN | ∀x, y, z > 0(xn + yn 6= zn)}

is X a type?
The proper question is: what are the objects of X? (How does
one construct them?)

One constructs an object of the type X by giving an N ∈ IN
and a proof of the fact that ∀x, y, z > 0(xN + yN 6= zN).

The type X consists of pairs 〈N, p〉, with

• N ∈ IN

• p a proof of ∀x, y, z > 0(xN + yN 6= zN)

〈N, p〉 : X is decidable (if proof-checking is decidable).

5

More technically.
(Especially related to the type theory of Coq, but more widely
applicable.)

• A data type (or set) is a term A : Set

• A formula is a term ϕ : Prop

• An object is a term t : A for some A : Set

• A proof is a term p : ϕ for some ϕ : Prop.

• Set and Prop are both “universes” or “sorts”.

Slogan: (Curry-Howard isomorphism)

Propositions as Types

Proofs as Terms

6

Judgement
Γ `M : U

• Γ is a context

•M is a term

• U is a type

Two readings

•M is an object (expression) of data type U (if U : Set)

•M is a proof (deduction) of proposition U (if U : Prop)

7

Γ contains

• variable declarations x : T

– x : A with A : Set ; ‘declaring x in A’

– x : ϕ with ϕ : Prop ; ‘assuming ϕ’ (axiom)

• definitions x := M : T

– x := t : A with A : Set ; ‘defining x as the expression t’

– x := p : ϕ with ϕ : Prop ; ‘defining x as the proof p of
ϕ’
(' declaring x as a “reference” to the lemma ϕ)

8

Type theory as a basis for theorem proving

• Interactive theorem proving = interactive term construction
Proving ϕ = (interactively) constructing a proof term p : ϕ

• Proof checking = Type checking
Type checking is decidable and hence proof checking is.

NB Proof terms are first class citizens.

9

Type theory as a basis for theorem proving

• Interactive theorem proving = interactive term construction
Proving ϕ = (interactively) constructing a proof term p : ϕ

• Proof checking = Type checking
Type checking is decidable and hence proof checking is.

Decidability problems:

Γ `M : A? Type Checking Problem TCP
Γ `M : ? Type Synthesis Problem TSP
Γ `? : A Type Inhabitation Problem TIP

TCP and TSP are decidable
TIP is undecidable

10

De Bruijn criterion for theorem provers / proof checkers:
How to check the checker?

Interactive Theorem Prover:

USER
→
←

Proof Engine,
big, with lots

of automation,
generating

(potential?) proofs

proof term
−→

Proof Checker,
small program,
user verifiable

↓
OK (Checked!)

A TP satisfies the De Bruijn criterion if a small, ‘easily’ verifiable,
independent proof checker can be written.

11

How proof terms occur (in Coq):

Lemma trivial : forall x:A, P x -> P x.

intros x H.

exact H.

Qed.

• Using the tactic script a term of type
forall x:A, P x -> P x has been created.

• Using Qed, trivial is defined as this term and added to the
global context.

· · ·

12

Computation

• (β):
(λx:A.M)N →β M [N/x]

• (ι): primitive recursion reduction rules (later)

• (δ): definition unfolding: if x := t : A ∈ Γ, then

M (x)→δ M (t)

• Transitive, reflexive, symmetric closure: =βιδ

NB: Types that are equal modulo =βιδ have the same inhabitants
(definitional equality):

(conversion)
Γ `M : A Γ ` B : s A =βιδ B

Γ `M : B
This is also called the Poincaré principle:
“(computational) equalities do not require a proof”

13

The Poincaré principle says that if x : A(n) → B and y :
A(f m), then

x y : B iff f m = n.

But: type checking should be decidable, so f m = n should be
decidable.

So: the definable functions in our type theory must be restricted:
all computations should terminate.

14

Data types and executable programs in type theory
Data types:

Inductive nat : Set :=

0 : nat

| S : nat->nat.

This definition yields

• The constructors 0 and S

• Induction principle:
nat ind : ∀P :nat→Prop.(P 0)→ (∀n:nat.(P n)→(P (S n)))→
∀n:nat(P n)

• Recursion scheme (primitive recursion over higher types)

15

Example of the recursion scheme (1 abbreviates (S 0) etc.)

Fixpoint nfib (n:nat) :nat :=

match n with

| 0 => 1

| S m => match m with

| 0 => 1

| S p => nfib p + nfib m

end

end.

NB: Recursive calls should be ‘smaller’ (according to some rather
general syntactic measure)

• Coq includes a (small, functional) programming language in
which executable functions can be written.

· · ·

16

Dependently typed data types: vectors of length n over A

Inductive vect (A:Set) : nat -> Set :=

| nnil : vect A 0

| ccons : forall (n:nat)(a:A), vect A n -> vect A (S n).

Now define, for example,

• head : forall (A:Set)(n:nat), vect A (S n) → A

• tail : forall (A:Set)(n:nat), vect A (S n) → vect A n

· · ·

17

Let the type checker do the work for you!
Implicit Syntax
If the type checker can infer some arguments, we can leave them
out:

Write f a b in stead of f S T a b if
f : ΠS, T :Set.S → T → T

Also: define F := f and write F a b.
· · ·

18

Inductive types are also used to define the logical connectives:
(Notation: A\/B denotes or A B etc.)
Inductive or (A : Prop)(B : Prop) : Prop :=

or_introl : A → A\/B |
or_intror : B → A\/B.

Inductive and (A : Prop)(B : Prop) : Prop :=
conj : A → B → A/\B.

Inductive ex (A : Set)(P : A→Prop) : Prop :=
ex_intro : (x:A)(P x) → (Ex P).

Inductive True : Prop := I : True.
Inductive False : Prop := .
All (constructive) logical rules are now derivable.
· · ·

19

Proof terms in intensional type theory

• The ‘subtype’ {t : A | (P t)} is defined as the type of pairs
〈t, p〉 where t : A and p : (P t).

• A partial function is a function on a subtype
E.g. (−)−1 : {x:R | x 6= 0} → R.
If x : R and p : x 6= 0, then 1

〈x,p〉
: R.

• Usually we only consider partial functions that are proof-
irrelevant, i.e.
if p : t 6= 0 and q : t 6= 0, then 1

〈t,p〉
= 1
〈t,q〉

.

20

Use Σ-types for mathematical structures:
theory of groups: Given A : Type, a group over A is a tuple
consisting of

◦ : A→A→A

e : A

inv : A→A

such that the following types are inhabited.

∀x, y, z:A.(x ◦ y) ◦ z = x ◦ (y ◦ z),

∀x:A.e ◦ x = x,

∀x:A.(inv x) ◦ x = e.

Type of group-structures over A, Group-Str(A), is

(A→A→A)× (A× (A→A))

21

The type of groups over A, Group(A), is

Group(A) := Σ ◦ :A→A→A.Σe:A.Σinv:A→A.
(∀x, y, z:A.(x ◦ y) ◦ z = x ◦ (y ◦ z))∧
(∀x:A.e ◦ x = x)∧
(∀x:A.(inv x) ◦ x = e).

If t : Group(A), we can extract the elements of the group struc-
ture by projections: π1t : A→A→A, π1(π2t) : A
If f : A→A→A, a : A and h : A→A with p1, p2 and p3
proof-terms of the associated group-axioms, then

〈f, 〈a, 〈h, 〈p1, 〈p2, p3〉〉〉〉〉 : Group(A).

22

We would like to use names for the projections:
Coq has labelled record types (type dependent)

• Record My_type : Set :=

{ l_1 : type_1 ;

l_2 : type_2 ;

l_3 : type_3 }.

If X : My_type, then (l_1 X) : type_1.

• Basically, My_type consists of labelled tuples:
[l_1:= value_1, l_2:=value_2, l_3:=value_3]

• Also with dependent types: l_1 may occur in type_2.
If X : My_type, then

(l_2 X) : type_2 [(l_1 X)/l_1]

23

• Record Group : Type :=

{ crr : Set;

op : crr -> crr -> crr;

unit : crr;

inv : crr -> crr;

assoc : (x,y,z:crr)

(op (op x y) z) = (op x (op y z))

... ...

}.

If X : Group, then (op X) : (crr X) -> (crr X) -> (crr X).

The record types can be defined in Coq using inductive types.
Note: Group is in Type and not in Set

24

Let the checker infer even more for you! Coercions

• The user can tell the type checker to use specific terms as
coercions.
Coercion k : A >-> B declares the term k : A -> B

as a coercion.

– If f a can not be typed, the type checker will try to type
check (k f) a and f (k a).

– If we declare a variable x:A and A is not a type, the type
checker will check if (k A) is a type.

Coercions can be composed.

25

Coercions and structures

Record CMonoid : Type :=

{ m_crr :> CSemi_grp;

m_proof : (Commutative m_crr (sg_op m_crr))

/\ (IsUnit m_crr (sg_unit m_crr) (sg_op m_crr))

}.

• A monoid is now a tuple 〈〈〈S, =S, r〉, a, f, p〉, q〉

If M : Monoid, the carrier of M is (crr(sg crr(m crr M)))

Nasty !!
⇒ We want to use the structure M as synonym for the carrier
set (crr(sg_crr(m_crr M))).
⇒ The maps crr, sg_crr, m_crr should be left implicit.

• The notation m_crr :> Semi_grp declares the coercion
m crr : Monoid >-> Semi grp.

26

Functions and Algorithms

• Set theory (and logic): a function f : A→B is a relation
R ⊂ A×B such that ∀x:A.∃!y:B.R x y.
“functions as graphs”

• In Type theory, we have functions-as-graphs (R : A→B→Prop),
but also functions-as-algorithms: f : A→B.

Functions as algorithms also compute: β and ι rules:

(λx:A.M)N −→β M [N/x],

Rec b f 0 −→ι b,

Rec b f (S x) −→ι f x (Rec b f x).

Terms of type A→B denote algorithms, whose operational se-
mantics is given by the reduction rules.
(Type theory as a small programming language)

27

Intensionality versus Extensionality
The equality in the side condition in the (conversion) rule can
be intensional or extensional.

Extensional equality requires the following rules:

(ext) Γ `M,N : A→B Γ ` p : Πx:A.(Mx = Nx)
Γ `M = N : A→B

(conv) Γ ` P : A Γ ` A = B : s
Γ ` P : B

• Intensional equality of functions = equality of algorithms
(the way the function is presented to us (syntax))

• Extensional equality of functions = equality of graphs
(the (set-theoretic) meaning of the function (semantics))

28

Adding the rule (ext) renders TCP undecidable:

Suppose H : (A→B)→Prop and x : (H f); then

x : (H g) iff there is a p : Πx:A.f x = g x

So, to solve this TCP, we need to solve a TIP.

The interactive theorem prover Nuprl is based on extensional
type theory.

29

Setoids
How to represent the notion of set?
Note: A set is not just a type, because
M : A is decidable whereas t ∈ X is undecidable

A setoid is a pair [A, =] with

• A : Set,

• = : A→(A→Prop) an equivalence relation over A

Function space setoid (the setoid of setoid functions)

[A
s
→B, =

A
s
→B

] is defined by

A
s
→B := Σf :A→B.(Πx, y:A.(x =A y)→((f x) =B (f y))),

f =
A

s
→B

g := Πx, y:A.(x =A y)→(π1 f x) =B (π1 g y).

30

Two mathematical constructions: quotient and subset for se-
toids.

Q is an equivalence relation over the setoid [A, =A] if

• Q : A→(A→Prop) is an equivalence relation,

• =A ⊂ Q, i.e. ∀x, y:A.(x =A y)→(Q x y).

The quotient setoid [A, =A]/Q is defined as

[A,Q]

Easy exercise:
If the setoid function f : [A, =A]→ [B, =B] respects Q
(i.e. ∀x, y:A.(Q x y)→((f x) =B (f y)))
it induces a setoid function from [A, =A]/Q to [B, =B].

31

Given [A, =A] and predicate P on A define the sub-setoid

[A, =A] | P := [Σx:A.(P x), =A|P]

=A|P is =A restricted to P : for q, r : Σx:A.(P x),

q (=A|P) r := (π1 q) =A (π1 r)

Proof-irrelevance is “embedded” in the subsetoid construction:

Setoid functions are proof-irrelevant.

32

