Types Summer School
Gothenburg Sweden August 2005

Formalising Mathematics in Type Theory
Herman Geuvers
Radboud University Nijmegen, NL

Per Martin-Lof:

A type comes with

construction principles: how to build objects of that type? and
elimination principles: what can you do with an object of that
type?

This fits well with the Brouwerian view of mathematics:

“there exists an x" means
“we have a method of constructing x"

In short: a type is characterised by the construction principles
for its objects.

Dogma of Type Theory

e Everything has a type
M:A
e Types are a bit like sets, but: ...

— types give “syntactic information”

=

34 (7% 8)”:nat

—sets give “semantic information”

3e{n € N | Va,y,z > 0(z" +y" # 2")}

Examples

e A summer school is constructed from students, teachers, a
team of good organisers and good weather.

e A phrase is constructed from a noun and a verb or from two
phrases with the word “and” between them.
So any phrase has the shape
“noun verb and noun verb and ...and noun and verb”.

e A natural number is either 0 or the successor S applied to a
natural number.

So the natural numbers are the objects of the shape S(... S(0)...).

Note:

Checking whether an object belongs to an alleged type is
decidable!

But if type checking should be decidable, there is not much
information one can encode in a type (?)

is X a type?
The proper question is: what are the objects of X? (How does
one construct them?)

One constructs an object of the type X by giving an NV € IN
and a proof of the fact that Va, y, z > 0(zV 4y # 2V).

The type X consists of pairs (N, p), with
eNeNN
e p a proof of Va,y, z > 0(x™N + ¢V #£ 2N)
(N,p) : X is decidable (if proof-checking is decidable).

Judgement
'=M:U

e [is a context
e M is a term
o U is a type
Two readings
e M is an object (expression) of data type U (if U : Set)
e M is a proof (deduction) of proposition U (if U : Prop)

More technically.
(Especially related to the type theory of Coq, but more widely
applicable.)

e A data type (or set) is a term A : Set

e A formula is a term ¢ : Prop

e An object is a term ¢ : A for some A : Set
e A proof is a term p : ¢ for some ¢ : Prop.

e Set and Prop are both “universes” or “sorts”.

Slogan: (Curry-Howard isomorphism)

Propositions as Types
Proofs as Terms

I contains
e variable declarations z : T
—x : A with A : Set ~ ‘declaring x in A’
— 2 : ¢ with ¢ : Prop ~ ‘assuming ¢' (axiom)
o definitions x .= M : T
—x:=1: A with A:Set ~ 'defining x as the expression t’
—x :=p: @ with ¢ : Prop ~ 'defining x as the proof p of

P
(=~ declaring = as a “reference” to the lemma)

Type theory as a basis for theorem proving

e Interactive theorem proving = interactive term construction
Proving ¢ = (interactively) constructing a proof term p :

e Proof checking = Type checking
Type checking is decidable and hence proof checking is.

NB Proof terms are first class citizens.

De Bruijn criterion for theorem provers / proof checkers:
How to check the checker?

Interactive Theorem Prover:

Proof Engine, Proof Checker,
big, with lots small program,
ft >
USER : of automation, proot term user verifiable
generating l
(potential?) proofs OK (Checked!)

A TP satisfies the De Bruijn criterion if a small, ‘easily’ verifiable,
independent proof checker can be written.

Type theory as a basis for theorem proving

e Interactive theorem proving = interactive term construction
Proving ¢ = (interactively) constructing a proof term p :

e Proof checking = Type checking
Type checking is decidable and hence proof checking is.

Decidability problems:

['= M : A? Type Checking Problem TCP
['H M :7 Type Synthesis Problem TSP
['F?:A Type Inhabitation Problem TIP

TCP and TSP are decidable
TIP is undecidable

How proof terms occur (in Coq):

Lemma trivial : forall x:A, P x > P x.
intros x H.

exact H.

Qed.

e Using the tactic script a term of type
forall x:A, P x -> P x has been created.

e Using Qed, trivial is defined as this term and added to the
global context.

Computation
* (0):
(Az:AM)N —g M[N/x]
e (1): primitive recursion reduction rules (later)
e (0): definition unfolding: if x :=t: A €T, then
M(z) —5 M(t)
e Transitive, reflexive, symmetric closure: =3, 5

NB: Types that are equal modulo = 3,5 have the same inhabitants
(definitional equality):

[]\?:}_AM FIB— B:s y —45 B

This is also called the Poincaré principle:

“(computational) equalities do not require a proof”

(conversion)

12

Data types and executable programs in type theory
Data types:

Inductive nat : Set :=
0 : nat
| S : nat->nat.

This definition yields
e The constructors 0 and S

e Induction principle:

nat ind : VP:nat—Prop.(P0) — (Vn:nat.(Pn)—(P(Sn))) —

Vn:nat(Pn)

e Recursion scheme (primitive recursion over higher types)

The Poincaré principle says that if z : A(n) — B and y :
A(fm), then
xy: Biff fm=n.

But: type checking should be decidable, so fm = n should be
decidable.

So: the definable functions in our type theory must be restricted:
all computations should terminate.

Example of the recursion scheme (1 abbreviates (S 0) etc.)

Fixpoint nfib (n:nat) :nat :=
match n with

| O => 1

| S m => match m with
| O =>1
| Sp => nfib p + nfib m
end

end.

NB: Recursive calls should be ‘smaller’ (according to some rather
general syntactic measure)

e Coq includes a (small, functional) programming language in
which executable functions can be written.

Dependently typed data types: vectors of length n over A

Inductive vect (A:Set) : nat -> Set :=
| nnil : vect A O

| ccons : forall (n:nat)(a:A), vect An —-> vect A (S n).

Now define, for example,
e head : forall (A:Set)(n:nat), vect A (Sn) — A
e tail : forall (A:Set)(n:nat), vect A (S n) — vect An

Inductive types are also used to define the logical connectives:

(Notation: A\/B denotes or A B etc.)

Inductive or (A : Prop)(B : Prop) : Prop :=
or_introl : A — A\/B |
or_intror : B — A\/B.

Inductive and (A : Prop)(B : Prop) : Prop :=
conj : A— B — A/\B.

Inductive ex (A : Set)(P : A—Prop) : Prop :=
ex_intro : (x:A)(P x) — (Ex P).

Inductive True : Prop := 1| : True.

Inductive False : Prop := .

All (constructive) logical rules are now derivable.

Let the type checker do the work for you!

Implicit Syntax

If the type checker can infer some arguments, we can leave them
out:

Write f abin stead of f ST ab if
f IS, T:Set.S —T — T

Also: define /' := f __ and write F'ab.

Proof terms in intensional type theory

e The ‘subtype’ {t : A | (P t)} is defined as the type of pairs
(t,p) where t : Aand p: (P t).

e A partial function is a function on a subtype
Eg (=) 1 {zR|z#0} - R.

If z:R and p:x #0, then) ' R.

e Usually we only consider partial functions that are proof-

irrelevant, i.e.

ifp:t;ré()andq:t;«féO,then<t—1p> ﬁ

an

Use >-types for mathematical structures:
theory of groups: Given A : Type, a group over A is a tuple
consisting of

o: A—=A—A
e: A
inv : A—A

such that the following types are inhabited.
Va,y,z:A(xoy)oz = xo(yoz),
Vo:Aeox = x,
Va:A.(invz)ox = e.
Type of group-structures over A, Group-Str(A), is
(A—>A—A) x (A x (A—A))

21

We would like to use names for the projections:
Coq has labelled record types (type dependent)

e Record My_type : Set :=

{11 : type_l ;
1.2 : type_2 ;
1.3 : type_3 }.

If X : My_type, then (1_1 X) : type_1.

e Basically, My_type consists of labelled tuples:
[1_1:= value_1, 1_2:=value_2, 1_3:=value_3]

e Also with dependent types: 1_1 may occur in type_2.
If X : My_type, then

(1_2 X) : type_2 [(1_1 X)/1_1]

The type of groups over A, Group(A), is

Group(A) := Y 0:A—-A—AYe:AYinv:A—A.
(Va,y,z2A.(xoy)oz=mx0(yo2))A
(Vz:A.eox = 1)A
(Va:A.(invx) oz =e).

If ¢ : Group(A), we can extract the elements of the group struc-

ture by projections: 7t : A= A—A, m(mat) 1 A

If f: A—>A—A a: Aand h : A—A with p{,py and p3

proof-terms of the associated group-axioms, then

<f7 (a, <h7 <p17 <p2ap3>>>>> : Group(A).

29

e Record Group : Type :=

{ crr : Set;
op : Ccrr -> crr -> crr;
unit : crr;
inv : Ccrr -> crr;
assoc : (x,y,z:crr)

(op (op x y) z) = (op x (op y 2))

T

IfX : Group, then (op X) : (crr X) -> (crr X) -> (crr X).

The record types can be defined in Coq using inductive types.
Note: Group is in Type and not in Set

Let the checker infer even more for you! Coercions

e The user can tell the type checker to use specific terms as
coercions.
Coercion k : A >-> Bdeclaresthetermk : A -> B
as a coercion.

—If £ a can not be typed, the type checker will try to type
check (k £) aand £ (k a).

— If we declare a variable x: A and A is not a type, the type
checker will check if (k A) is a type.

Coercions can be composed.

Functions and Algorithms

e Set theory (and logic): a function f : A—B is a relation
R C A x B such that Vx:AJly:B.Rxy.
“functions as graphs”

e In Type theory, we have functions-as-graphs (R : A—B—Prop),
but also functions-as-algorithms: f : A—B.

Functions as algorithms also compute: 3 and ¢ rules:
(A AM)N — 5 M[N/z],
Recb fO —, b,
Recb f(Sxz) —, fx(Rech fx).
Terms of type A— B denote algorithms, whose operational se-

mantics is given by the reduction rules.
(Type theory as a small programming language)

27

Coercions and structures
Record CMonoid : Type :=
{ m_crr :> CSemi_grp;
m_proof : (Commutative m_crr (sg_op m_crr))

/\ (IsUnit m_crr (sg_unit m_crr) (sg_op m_crr))

T

e A monoid is now a tuple (((S,=g,7),qa, f,p),q)
IfM : Monoid, the carrier of Mis (crr(sg crr(m crr M)))
Nasty !!
= We want to use the structure M as synonym for the carrier
set (crr(sg_crr(m_crr M))).
= The maps crr, sg_crr, m_crr should be left implicit.

e The notation m_crr :> Semi_grp declares the coercion
mcrr : Monoid >-> Semi_grp.

9%

Intensionality versus Extensionality
The equality in the side condition in the (conversion) rule can
be intensional or extensional.

Extensional equality requires the following rules:
'-M,N:A—=B T'Fp:llz:A.(Mxz = Nx)
'FM=N:A—B

[FP:A THA=B:s
'HFP:B
e Intensional equality of functions = equality of algorithms
(the way the function is presented to us (syntax))

(ext)

(conv)

e Extensional equality of functions = equality of graphs
(the (set-theoretic) meaning of the function (semantics))

Adding the rule (ext) renders TCP undecidable:

Suppose H : (A—B)—Prop and x : (H f); then
x:(H g)iffthereisap:llzAfr=gux

So, to solve this TCP, we need to solve a TIP.

The interactive theorem prover Nuprl is based on extensional
type theory.

20

Two mathematical constructions: quotient and subset for se-
toids.

() is an equivalence relation over the setoid [A, = 4] if
e () : A—(A—Prop) is an equivalence relation,
o=, CQ, ieVr,yA(z=4y)—(Qxy).
The quotient setoid [A, =4]/Q is defined as
[4, Q)]
Easy exercise:
If the setoid function f : [A,=4] — [B,=p] respects @

(ie. Vo, y:A(Q z y)—((f 7) =p (f ¥)))

it induces a setoid function from [A,=4]|/Q to [B,=pg].

Setoids
How to represent the notion of set?

Note: A set is not just a type, because
M : Ais decidable whereas t € X is undecidable

A setoid is a pair [A, =] with

o A : Set,

e —: A—(A—Prop) an equivalence relation over A
Function space setoid (the setoid of setoid functions)

[A%B, =, s o] is defined by

ASB = YfA=B.(lz,y:A(x =2 y)—((f ©) =p (),

f= 4559 =Te,yA(r=2y)=(m f2)=p (11 9Y)

an

Given [A, = 4] and predicate P on A define the sub-setoid

(A=Al | P = [BeA(P x), = 4| P]
= A|P is =4 restricted to P: for ¢,r : Yx:A.(P x),

q(=alP)r = (m1q) =4 (m 1)
Proof-irrelevance is “embedded” in the subsetoid construction:

Setoid functions are proof-irrelevant.

