Types Summer School
Gothenburg Sweden August 2005

Type Systems
Herman Geuvers
Radboud University Nijmegen, NL

Lecture 1: Simple and Polymorphic Type Theory

Examples:

el \yTw o o—T—0
AP AT N y(22) ¢ (a—B)—(B—7)—a—y
Az My BI==e 08) - a—((B—a)—a)—a
For every type there is a term of that type:
20
Not for every type there is a closed term of that type:

(a—a)—a is not inhabited

Simplest system: \— just arrow types

Typ := TVar | (Typ—Typ)
e BExamples: (a—f)—a, (a—F)=((f—7)—(a—7))
o Brackets associate to the right and outside brackets are omit-
ted:
(a=B)=(B—7)—a—y
e Types are denoted by o, 7,. . ..
Terms:
e typed variables {,xJ, ..., countably many for every o.
e application: if M : c—7 and N : o, then (MN) : 7

e abstraction: if P : 7, then (Az?.P) : 0—7

Formulation with contexts to declare the free variables:
7;1 . 0'17:1}2 . (727 . 71’” . O—n

is a context, usually denoted by I'.

Derivation rules of A—:

zoel T'EFM:o-71I'EN:o xokHEP: T
'-xz:0 I'EMN T 'k Av:io.P:o—t

[' =y, M : o if there is a derivation using these rules with
conclusion I' = M : o

Typical problems one would like to have an algorithm for:

I'= M : o7 Type Checking Problem TCP
['= M :7 Type Synthesis Problem TSP
F7: o Type Inhabitation Problem (by a closed term) TIP

Formulas-as-Types (Curry, Howard):
There are two readings of a judgement M : o
1. term as algorithm /program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o

Typical problems one would like to have an algorithm for:

['H M : o7 Type Checking Problem TCP
['F M :7 Type Synthesis Problem TSP
7o Type Inhabitation Problem (by a closed term) TIP

For A—, all these problems are decidable.
Remarks:

e TCP and TSP are (usually) equivalent:
To solve M N : o, one has to solve N :7 (and if this gives
answer 7, solve M : 7—0).

e TIP is undecidable for most extensions of A\—, as it corre-
sponds to provability in some logic.

Formulas-as-Types (Curry, Howard):
There are two readings of a judgement M : o

1. term as algorithm/program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o

e There is a one-to-one correspondence between
— typable terms in A—
— derivations in minimal proposition logic
e The judgement
T1 T2 :T9 ..., Zn TnHM:0o
can be read as

M is a proof of o from the assumptions 71,79, ..., Tp.

]

Example

la—=B8—1]% [0 [a—0)? [a]!

Q—VYL 1 : ~ Az:a— =y \ya— B za.xz(yz)
o (amf-)—la—)—a—ry
(a—=B)—a—y

(a—=f—7)—=(a—p)—a—y

Computation:
e (J-reduction: (Az:o.M)P — 5 M[P/x]
e 7)-reduction: A\x:o. Mz —p M if x ¢ FV(M)

Cut-elimination in minimal logic = 3-reduction in A—.

[o]! Dy
Dy Lo
T 1 Dy Dy
o—T o -
T
PO |
[.1:1.)0] D,
1 P:o

]\/f/ i T 1 Dy ~ Dy
Av:o. M o—T P:o M[P/a]: T

(Az:o.M)P : T

Example

[a—=B8—1] 0! [a—p) [a]!

= Y q < ~ Ar:a— =y \ya— B za.xz(yz)
o=y 9 : (a—>ﬂ—>7)—>(a—>ﬁ)—>a_>7
(a—=fB)—a—y

(a—=p—7)=(a—p)—a—y

[2:a—=8—P [z:a]' [y:a—B? [z:a]!

rz: B—y yz: B

rz(yz) 1y 1
Naxz(yz) t a—y
Mpa— B \zaxz(yz) : (a—0)—a—y
Az:a— =y \y:a—F A zaxz(yz) - (a—F—y)—(a—F)—a—y

n

Properties of A—.

e Uniqueness of types
fI'EM:ocand '+ M : 7, then 0 = 7.

e Subject Reduction
IfFI—M:UandM—WUN,thenFI—N:U.

e Strong Normalization
If ' = M : o, then all Bn-reductions from M terminate.

Properties of A—.

e Uniqueness of types
fFI'FM:ocand ' M : 7, then o0 = 7.

e Subject Reduction
IfFI—M:UandM—>ﬁnN,thenF|—N:0.

e Strong Normalization
If '+ M : o, then all Bn-reductions from M terminate.

e Substitution property

flz:7,AF-M:o, I'FP:7, then A+ M[P/z]: 0.
e Thinning

FI'FM:ocand'CA, then A+ M : 0.

e Strengthening
fl,z:7FM:0and x ¢ FV(M), then 't M : 0.

12

Strong Normalization of 3 for A— a la Curry is proved by con-
structing a model of A—.
Definition

e [] := SN (the set of strongly normalizing \-terms).

o [c—7]:={M |VN € [o](MN € [])}.
Lemma (both by induction on o)

e [0c] CSN

o If M[N/x]P € [7], N € [o], then (\z.M)NP € [].
Proposition

e e Mo N € [0

Proof By induction on the derivation of ' = M : 0.
Corollary A— is SN
Proof By taking N; := x; in the Proposition.

Strong Normalization of § for A—.
Note:

e Terms may get larger under reduction
(A Az f(fx)P — g Ax.P(Pz)

e Redexes may get multiplied under reduction.

A Az f(f2)(Ay-M)Q) — 5 Az (Ay-M)Q)((Ay-M)Q))

e New redexes may be created under reduction.
(Af Az f(f2))(Ay.N) — g Az.(Ay.N)((Ay.N)x)

Polymorphic A-calculus
Why Polymorphic \-calculus?
e Simple type theory A— is not very expressive

e In simple type theory, we can not ‘reuse’ a function.
Eg. \r:a.x:a—a and \x:G.x : f—0.

We want to define functions that can treat types polymorphically:
add types Va.o:
Examples

o Vo.a—a
If M :Va.a—a, then M can map any type to itself.

e Va.V3.a—pF—a
If M : Va.VB.a—p—a, then M can take two inputs (of
arbitrary types) and return a value of the first input type.

1R

Derivation rules of \2:
Full (system F-style) polymorphism:

Typ := TVar | (Typ—Typ) | V. Typ.

'-M:o 'FM:Vao
a ¢ FV(D for 7 any type
' Xa.M :Va.o 9 ' Mt :o[r/a]

Examples:
e \a NG v \y:f.a: VaVi.a—F—a.
o \u:(VYo.a) \y:o.at : (Va.a)—o—T.

o \u:(Vo.a).x (0—7) (xo): (Va.a)—T.

Formulas-as-types for A\2:
There is a formulas-as-types isomorphism between A2 and sec-
ond order proposition logic, PROP2

Derivation rules of PROP2:
Fo [+Va.o
— = a¢FVID) =
Fhvao “ YO op olr/al
NB This is constructive second order proposition logic:

Va.V3.((a—f)—a)—a Peirce's law

is not derivable.

Recall: Important Properties

I'EM:o? TCP
'EM:? TSP
7o TIP

Properties of A2
o TIP is undecidable,
e TCP and TSP are equivalent & decidable.

Definability of the other connectives:
1 = Vo«
oNT = Va.(c—T—a)—a
oVT = Va.(c—a)—=(T—a)—a

Ja.o = VE.(Va.o—pF)—f

and all the standard constructive derivation rules are derivable.
Example (A-elimination):

1
Va.(lc—=1—a)—a ol

_T—0
(c—=T17—0)—0 o0—oT—0
o

Idea:
The definition of a connective is an encoding of the elimination
rule.

Data types in A2 Properties of A2.
Nat := Va.a—(a—a)—a e Uniqueness of types
This type can be used as the type of natural numbers, using the FIEM:oand ' M: 7 then o = 7.
encoding of IN as Church numerals in the A-calculus. ® Subject Reduction
no Ao A F(. (fz)) n-times f IfI'-M: o and M—>57) N,then'H N : 0.
o () := A \r:a\fa—a.x
o 5 = M:Nat \a. \z:a\fra—a.f(nazf)

e lteration: if c:o and g:c—ao, then define It c g : Nat—o as

e Strong Normalization
If ' M : o, then all Bn-reductions from M terminate.

An:Natnocyg

Then
ltcgn =g(...(gc)) (n times g)
= Define 4, X, ... using iteration.
Strong Normalization of § for A2. Strong Normalization of § for A2.
Note:
e There are two kinds of 3-reductions Question:

| 7
— (\z:o.M)P — 5 M[P/a] How to define [Vor.o] 77

— (Aa.M)T — 3 M[1/q]
e The second doesn’t do any harm: we can just look at the o What is [/?
underlying untyped \-terms '

[Vo.o] = xeplola—x??

The collection of all ‘possible’ interpretations of types (?)

o [Ixcr/lo],.—x may get very (too?) big.
Girard:

e [Va.o] should be small

Recall the proof for A—-:

e [a] := Term(a) N SN.

o [o—7] :={M:0—7|VN € [o](MN € [7])}.
Question:

How to define [Va.o] 77 M [oo—x
XeU

Va.o] :=Uxeplo]y—x?? e Characterization of U.

922 o1

U := SAT, the collection of saturated sets of (untyped) A-terms.

X C A is saturated if
exP ... P, € X (forall z € Var, P|,..., P, € SN)
e X CSN
o If M[N/z]P € X and N € SN, then (\z.M)NP € X.

Let p : TVar — SAT be a valuation of type variables.
Define the interpretation of types [[0]]/) as follows.

i [[a]]p = p(Oé)
o [o—7],:={M|VN € [0] (MN € [7],)}

* [[VO[.O'HP = mXGSAT[[U]]p,a::X

Proposition
XL Tlyee Xy Tp =M o= M[P)/xy,...,Py/xy] € 0]

for all valuations p and P; € [[Tl]]p, ... Pye [[Tn]]p

Proof
By induction on the derivation of ' - M : 0.

Corollary A2 is SN

(Proof: take P; to be x1, ..., Py to be x5,.)

9%

P

