Exercises of the class of Herman Geuvers

Exercises 1a: Simple Type Theory

- 1. Find inhabitants (i.e. *closed* terms) of the following types (in STT)
 - (a) $(\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$
 - (b) $\alpha \rightarrow \beta \rightarrow (\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \gamma$
 - (c) $((\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha$
 - (d) $\beta \rightarrow ((\alpha \rightarrow \beta) \rightarrow \gamma) \rightarrow \gamma$
- 2. The type $\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha$ is also called **nat**.
 - (a) Show that there are infinitely many closed terms (inhabitants) of type nat.
 - (b) Describe a term 0 : nat and the successor succ : nat \rightarrow nat.
 - (c) Describe the derivations that the (infinitely many) terms under (a) correspond to.
 - (d) Construct a derivation of $((\alpha \rightarrow \beta) \rightarrow \gamma) \rightarrow \beta \rightarrow \gamma$ and the associated typed λ -term.
- 3. Add product types to $\lambda \rightarrow$, that is add $\sigma \times \tau$ to the types and
 - (a) Add the appropriate term constructors to extend the term language of $\lambda \rightarrow .$
 - (b) Give typing rules for terms of type $\sigma \times \tau$, by giving an *elimination rule* and an *introduction rule*. (A term of type $\sigma \times \tau$ should be built up from a term of type σ and a term of type τ .)
 - (c) Give a reduction rule for the new term constructors. Try to give an " β -like" rule and an " η -like" rule.
- 4. Prove the claim made in the proof of the Weak Normalization theorem (page 16 of the slides of lesson 2): If we reduce in P a redex of maximum height (height h(P)) that does not contain any other redex of height h(P), obtaining the term Q, then $m(Q) <_l m(P)$.
- 5. Fill the three gaps in the proof of Strong Normalization (page 17 of the slides of lesson 2). That is, prove
 - (a) $\llbracket \sigma \rrbracket \subseteq \mathsf{SN}$ (by induction on σ)
 - (b) If $M[N/x]\vec{P} \in [[\tau]], N \in [[\sigma]]$, then $(\lambda x.M)N\vec{P} \in [[\tau]]$ (by induction on σ)
 - (c) (By induction on the derivation of $\Gamma \vdash M : \sigma$).

$$\left. \begin{array}{c} x_1:\tau_1,\ldots,x_n:\tau_n \vdash M:\sigma\\ N_1 \in \llbracket \tau_1 \rrbracket,\ldots,N_n \in \llbracket \tau_n \rrbracket \end{array} \right\} \Rightarrow M[N_1/x_1,\ldots,N_n/x_n] \in \llbracket \sigma \rrbracket$$

6. Prove the Substitution Lemma (by induction on the derivation of $\Gamma, x : \tau, \Delta \vdash M : \sigma$). (That is, prove that if $\Gamma, x : \tau, \Delta \vdash M : \sigma$ and $\Gamma \vdash P : \tau$, then $\Gamma, \Delta \vdash M[P/x] : \sigma$.)

Exercises 1b: Polymorphic Lambda Calculus

- 1. \perp is the type $\forall \alpha.\alpha$. Give the typing derivations of the following typing. $\lambda x: \perp \lambda \alpha. x(\alpha \rightarrow \alpha)(x\alpha)$.
- 2. Find terms of the following types in $\lambda 2$. (See the slides for the definitions.)
 - (a) $\sigma \rightarrow \sigma \lor \tau$. Now make this term polymorphic in σ and τ .
 - (b) $\sigma \rightarrow \tau \rightarrow \sigma \wedge \tau$
 - (c) $\forall \beta. \sigma \rightarrow \exists \alpha. \sigma [\alpha/\beta]$. Which logical rule does this term correspond to?
 - (d) Given $M : \exists \alpha.\sigma \text{ and } F : \forall \alpha.\sigma \rightarrow \tau$, with $\alpha \notin FV(\tau)$, construct a term of type τ . Which logical rule does this term correspond to?
- 3. Define the type of booleans **bool** in $\lambda 2$ as **bool** := $\forall \alpha. \alpha \rightarrow \alpha \rightarrow \alpha$
 - (a) Define true : bool and false : bool.
 - (b) Define conjunction and disjunction over the booleans
- 4. Recall the natural numbers in $\lambda 2$.
 - (a) Define exponentiation $exp : nat \rightarrow nat \rightarrow nat$ on the natural numbers in $\lambda 2$. (Use the iterator and already defined functions.)
 - (b) Define the function Z? : nat \rightarrow bool such that Z? $=_{\beta}$ true and Z? $(Sx) =_{\beta}$ false.
- 5. The type of lists over A is defined by $\mathsf{list}_A := \forall \alpha. \alpha \rightarrow (A \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$.
 - (a) Define the "head" function over $list_A$. This function requires a "default value" for the case of the nil-list:

head :
$$A \rightarrow list_A \rightarrow A$$
.

NB. The tail function is not so easy to define. It can't be defined directly by iteration.

- (b) Define the function suclist : list_{nat}→nat that adds 1 to each element in a list of natural numbers. (See the "map" function on the slides.)
- 6. Consider the type of Binary trees with nodes in A and leaves in B, as given in the lecture:

$$\mathsf{tree}_{A,B} := \forall \alpha. (B \to \alpha) \to (A \to \alpha \to \alpha \to \alpha) \to \alpha$$

- (a) Define the functions leaf : $B \rightarrow \mathsf{tree}_{A,B}$ and join : $A \rightarrow \mathsf{tree}_{A,B} \rightarrow \mathsf{tree}_{A,B} \rightarrow \mathsf{tree}_{A,B}$.
- (b) Define the *iterator* for tree:

$$\mathsf{it}: \forall \gamma. (B \rightarrow \gamma) \rightarrow (A \rightarrow \gamma \rightarrow \gamma \rightarrow \gamma) \rightarrow \mathsf{tree}_{A,B} \rightarrow \gamma.$$

(Given a type γ and functions $f : (\gamma \rightarrow B)$ and $g : (\gamma \rightarrow A \rightarrow A)$, it should produce a function from tree_{A,B} to γ .)

- (c) Take B := nat and write a function tsum that computes the sum of all leaves.
- (d) Take A := nat and write a function tsumln that computes the sum of all leaves and nodes.
- (e) Take A := bool and write a function tend that computes the leave (a term of type B) that is found by going "left" if the boolean in the node is true and "right" if it's false.
- (f) Take A, B := bool and write a function tpath that computes the path (as a term of type List_{bool} to the leaf by going "left" if the boolean in the node is true and "right" if it's false.
- 7. Prove Strong Normalization for $\lambda 2$ by proving the following by induction on the derivation.

Proposition

$$x_1:\tau_1,\ldots,x_n:\tau_n\vdash M:\sigma\Rightarrow M[P_1/x_1,\ldots,P_n/x_n]\in \llbracket\sigma\rrbracket_{\rho}$$

for all valuations ρ and $P_1 \in \llbracket \tau_1 \rrbracket_{\rho}, \ldots, P_n \in \llbracket \tau_n \rrbracket_{\rho}$

See the slides or the Handbook article by Barendregt (Def 4.1.7, page 50) for the derivation rules of $\lambda 2$. See the slides for how this fits in the proof of SN.

Exercises of the class of Herman Geuvers

Exercises 2a: Higher Order Logic

- 1. Define the Leibniz equality on A as $t =_A q := \forall P: A \rightarrow \mathsf{Prop.}(Pt) \rightarrow (Pq)$. Prove the following by finding terms of the associated types.
 - (a) reflexivity of $=_A$: $\forall x: A.x =_A x$.
 - (b) transitivity of $=_A$: $\forall x, y, z : A : x =_A y \to y =_A z \to x =_A z$.
 - (c) symmetry of $=_A: \forall x, y: A.x =_A y \to y =_A x$.
- 2. The transitive closure of a relation R is defined as follows.

 $\begin{aligned} \operatorname{trclos} &:= \lambda R : A \to A \to \operatorname{Prop}. \lambda x, y : A. (\forall Q : A \to A \to \operatorname{Prop}. (\operatorname{trans}(Q) \to (R \subseteq Q) \to (Q x y))). \end{aligned}$ So trclos is of type $(A \to A \to \operatorname{Prop}) \to (A \to A \to \operatorname{Prop})$

- (a) Define the notions trans and \subseteq in the definition of trclos.
- (b) Prove that the transitive closure is transitive. (Find a term of type trans(trclos R)).
- (c) Prove that the transitive closure of R contains R. (Find a term of type $R \subseteq (\operatorname{trclos} R)$).
- 3. In this exercises we will prove in higher order logic a variant of the Knaster-Tarski fixed-point theorem.

Given a domain A, we identify $A \rightarrow \mathsf{Prop}$ with the collection of subsets of A. In this exercise we consider maps $\Phi : (A \rightarrow \mathsf{Prop}) \rightarrow (A \rightarrow \mathsf{Prop})$, mapping subsets of A to subsets of A.

 Φ is asumed to be *monotone*: $\forall P, Q: A \rightarrow \mathsf{Prop}. P \subseteq Q \rightarrow (\Phi P) \subseteq (\Phi Q).$

 $(P \subseteq Q \text{ is an abbreviation for } \forall x:A.(P x) \rightarrow (Q x)$, which is also gives away the answer to the exercise above.)

 $P: A \rightarrow \mathsf{Prop} \text{ is called } \Phi\text{-}closed \text{ if } (\Phi P) \subseteq P.$

- (a) Define (formally) $X : A \rightarrow \mathsf{Prop}$ as the smallest Φ -closed subset of A.
- (b) Prove (for arbitrary $P : A \rightarrow \mathsf{Prop}$): if P is Φ -closed, then $X \subseteq P$. (Find a term of type $\forall P : A \rightarrow \mathsf{Prop}.(\Phi P) \subseteq P \rightarrow X \subseteq P$.)
- (c) Prove $(\Phi X) \subseteq X$.
- (d) Prove $X \subseteq (\Phi X)$.
- (e) Conclude that X is the least fixed point of Φ :
 - i. $X \approx (\Phi X)$,
 - ii. $P \approx (\Phi P) \rightarrow X \subseteq P$.

where we take the equality \approx to be defined in the set-theoretical way as $P \approx Q := P \subseteq Q \land Q \subseteq P$.

4. Recall the induction principle over natural numbers as a higher order formula. Given a domain N and $0: N, S: N \rightarrow N$, Ind_N is

 $\forall P: N \rightarrow \mathsf{Prop.}(P \ 0) \rightarrow (\forall x: N.(P \ x) \rightarrow (P(S \ x))) \rightarrow \forall x: N.(P \ x)$

- (a) Consider a datatype of lists over a base domain A. So we have two base domains A and L and we let Nil : L, Cons : $A \rightarrow L \rightarrow L$. Define the induction principle over lists.
- (b) Consider a datatype of binary trees with leaves in base type A and node labels in base type B. So So we have three base domains A, B and T: Set and we let Leaf : $A \rightarrow T$, Join : $B \rightarrow T \rightarrow T \rightarrow T$. Define the induction principle over these trees.

Exercises 2b: Extensions of λHOL ; the λ cube; PTSs

1. (a) Explain for every \rightarrow and Π in the following judgment which Π -rule (of λHOL) is needed to make it a valid construction.

 $A: \mathsf{Type}, R: A \to A \to \mathsf{Prop} \vdash \Pi x: A. \Pi Q: (A \to \mathsf{Prop}) \to \mathsf{Prop}. Q(Rx) \to Rxx: \mathsf{Prop}$

(b) Do the same for the following judgment in CC.

 $A : \mathsf{Prop} \vdash \Pi F : (\Pi \alpha : \mathsf{Prop}.\Pi Q : \alpha \rightarrow \mathsf{Prop}.\Pi y : \alpha Q y \rightarrow Q y) . F A \rightarrow \mathsf{Prop} : \mathsf{Type}$

2. Give a context Γ and a term M of the type

$$(\Pi x: A.(R x a \rightarrow R a (f x))) \rightarrow R a a \rightarrow R a (f a)$$

in this context.

What is the simplest system of the λ cube in which this typing is valid?

- 3. (a) Recall the polymorphic type of *lists over A*, List_A and define it in λ2. (So A : Prop ⊢ List_A : Prop; verify that this is indeed possible in the λ-cube system λ2.)
 - (b) Define *induction over lists* as a proposition in $\lambda P2$. (So $A : \mathsf{Prop} \vdash \mathsf{ind}_{\mathsf{List}} : \mathsf{Prop}$; verify that this is indeed possible in the λ -cube system $\lambda P2$.)
- 4. Define in CC, $\varphi := \forall x : A : x = a, \psi := \forall x : B : \exists y : B : x \neq y \text{ (with } A, B : \mathsf{Prop}) \text{ and define}$

$$\mathrm{EXT} := \forall \alpha, \beta : \mathsf{Prop.}(\alpha \Leftrightarrow \beta) \Rightarrow (\alpha =_{\mathsf{Prop}} \beta).$$

Give a term of type \perp in CC in the following context

$$e: \mathrm{EXT}, A, B: \mathsf{Prop}, h_1: \varphi, h_2: \psi$$

Alternatively you may try to find this term in Coq, see the file coq_ex7.v8.

- 5. Prove the following basic property for any Pure Type System (S, A, R). (By induction on the derivation.) (Variable Lemma)
 If Γ ⊢ M : A, then Γ ⊢ x : B for all x : B ∈ Γ.
- 6. Prove the Substitution Lemma for PTSs. (By induction on the derivation; do the cases for the last rule being (weak) or (λ) .