
Exercises of the class of Herman Geuvers

Exercises 1a: Simple Type Theory

1. Find inhabitants (i.e. closed terms) of the following types (in STT)

(a) (α→β)→(β→γ)→α→γ

(b) α→β→(α→β→γ)→γ

(c) ((α→β→α)→α)→α

(d) β→((α→β)→γ)→γ

2. The type α→(α→α)→α is also called nat.

(a) Show that there are infinitely many closed terms (inhabitants) of type nat.

(b) Describe a term 0 : nat and the succesor succ : nat→nat.

(c) Describe the derivations that the (infinitely many) terms under (a) correspond
to.

(d) Construct a derivation of ((α→β)→γ)→β→γ and the associated typed λ-term.

3. Add product types to λ→, that is add σ × τ to the types and

(a) Add the appropriate term constructors to extend the term language of λ→.

(b) Give typing rules for terms of type σ × τ , by giving an elimination rule and an
introduction rule. (A term of type σ× τ should be built up from a term of type
σ and a term of type τ .)

(c) Give a reduction rule for the new term constructors. Try to give an “β-like”
rule and an “η-like” rule.

4. Prove the claim made in the proof of the Weak Normalization theorem (page 16 of
the slides of lesson 2): If we reduce in P a redex of maximum height (height h(P ))
that does not contain any other redex of height h(P ), obtaining the term Q, then
m(Q) <l m(P ).

5. Fill the three gaps in the proof of Strong Normalization (page 17 of the slides of
lesson 2). That is, prove

(a) [[σ]] ⊆ SN (by induction on σ)

(b) If M [N/x]~P ∈ [[τ ]], N ∈ [[σ]], then (λx.M)N ~P ∈ [[τ ]] (by induction on σ)

(c) (By induction on the derivation of Γ ` M : σ).

x1:τ1, . . . , xn:τn ` M : σ
N1 ∈ [[τ1]], . . . , Nn ∈ [[τn]]

}
⇒ M [N1/x1, . . . Nn/xn] ∈ [[σ]]

6. Prove the Substitution Lemma (by induction on the derivation of Γ, x : τ, ∆ ` M : σ).
(That is, prove that if Γ, x : τ, ∆ ` M : σ and Γ ` P : τ , then Γ, ∆ ` M [P/x] : σ.)

1



Exercises 1b: Polymorphic Lambda Calculus

1. ⊥ is the type ∀α.α. Give the typing derivations of the following typing. λx:⊥.λα.x(α→α)(xα).

2. Find terms of the following types in λ2. (See the slides for the definitions.)

(a) σ→σ ∨ τ . Now make this term polymorphic in σ and τ .

(b) σ→τ→σ ∧ τ

(c) ∀β.σ→∃α.σ[α/β]. Which logical rule does this term correspond to?

(d) Given M : ∃α.σ and F : ∀α.σ→τ , with α /∈ FV(τ), construct a term of type τ .
Which logical rule does this term correspond to?

3. Define the type of booleans bool in λ2 as bool := ∀α.α→α→α

(a) Define true : bool and false : bool.

(b) Define conjunction and disjunction over the booleans

4. Recall the natural numbers in λ2.

(a) Define exponentiation exp : nat→nat→nat on the natural numbers in λ2. (Use
the iterator and already defined functions.)

(b) Define the function Z? : nat→bool such that Z?0 =β true and Z?(Sx) =β false.

5. The type of lists over A is defined by listA := ∀α.α→(A→α→α)→α.

(a) Define the “head” function over listA. This function requires a “default value”
for the case of the nil-list:

head : A→listA→A.

NB. The tail function is not so easy to define. It can’t be defined directly by
iteration.

(b) Define the function suclist : listnat→nat that adds 1 to each element in a list of
natural numbers. (See the “map” function on the slides.)

6. Consider the type of Binary trees with nodes in A and leaves in B, as given in the
lecture:

treeA,B := ∀α.(B→α)→(A→α→α→α)→α

(a) Define the functions leaf : B→treeA,B and join : A→treeA,B→treeA,B→treeA,B.

(b) Define the iterator for tree:

it : ∀γ.(B→γ)→(A→γ→γ→γ)→treeA,B→γ.

(Given a type γ and functions f : (γ→B) and g : (γ→A→A), it should produce
a function from treeA,B to γ.)

2



(c) Take B := nat and write a function tsuml that computes the sum of all leaves.

(d) Take A := nat and write a function tsumln that computes the sum of all leaves
and nodes.

(e) Take A := bool and write a function tend that computes the leave (a term of
type B) that is found by going “left” if the boolean in the node is true and
“right” if it’s false.

(f) Take A, B := bool and write a function tpath that computes the path (as a term
of type Listbool to the leaf by going “left” if the boolean in the node is true and
“right” if it’s false.

7. Prove Strong Normalization for λ2 by proving the following by induction on the
derivation.
Proposition

x1 : τ1, . . . , xn : τn ` M : σ ⇒ M [P1/x1, . . . , Pn/xn] ∈ [[σ]]ρ

for all valuations ρ and P1 ∈ [[τ1]]ρ, . . . , Pn ∈ [[τn]]ρ
See the slides or the Handbook article by Barendregt (Def 4.1.7, page 50) for the
derivation rules of λ2. See the slides for how this fits in the proof of SN.

3



Exercises of the class of Herman Geuvers

Exercises 2a: Higher Order Logic

1. Define the Leibniz equality on A as t =A q := ∀P :A→Prop.(P t)→(P q). Prove the
following by finding terms of the associated types.

(a) reflexivity of =A: ∀x:A.x =A x.

(b) transitivity of =A: ∀x, y, z:A.x =A y → y =A z → x =A z.

(c) symmetry of =A: ∀x, y:A.x =A y → y =A x.

2. The transitive closure of a relation R is defined as follows.

trclos := λR:A→A→Prop.λx, y:A.(∀Q:A→A→Prop.(trans(Q)→(R ⊆ Q)→(Qxy))).

So trclos is of type (A→A→Prop)→(A→A→Prop)

(a) Define the notions trans and ⊆ in the definition of trclos.

(b) Prove that the transitive closure is transitive. (Find a term of type trans(trclosR)).

(c) Prove that the transitive closure of R contains R. (Find a term of type
R ⊆ (trclosR)).

3. In this exercises we will prove in higher order logic a variant of the Knaster-Tarski
fixed-point theorem.
Given a domain A, we identify A→Prop with the collection of subsets of A. In
this exercise we consider maps Φ : (A→Prop)→(A→Prop), mapping subsets of A to
subsets of A.
Φ is asumed to be monotone: ∀P,Q:A→Prop.P ⊆ Q→ (ΦP ) ⊆ (ΦQ).
(P ⊆ Q is an abbreviation for ∀x:A.(P x)→(Qx), which is also gives away the answer
to the exercise above.)
P : A→Prop is called Φ-closed if (ΦP ) ⊆ P .

(a) Define (formally) X : A→Prop as the smallest Φ-closed subset of A.

(b) Prove (for arbitrary P : A→Prop): if P is Φ-closed, then X ⊆ P .
(Find a term of type ∀P :A→Prop.(ΦP ) ⊆ P → X ⊆ P .)

(c) Prove (ΦX) ⊆ X.

(d) Prove X ⊆ (ΦX).

(e) Conclude that X is the least fixed point of Φ:

i. X ≈ (ΦX),

ii. P ≈ (ΦP ) → X ⊆ P .

where we take the equality ≈ to be defined in the set-theoretical way as
P ≈ Q := P ⊆ Q ∧Q ⊆ P .

1



4. Recall the induction principle over natural numbers as a higher order formula. Given
a domain N and 0 : N,S : N→N , IndN is

∀P :N→Prop.(P 0) → (∀x:N.(P x)→(P (S x))) → ∀x:N.(P x)

(a) Consider a datatype of lists over a base domain A. So we have two base domains
A and L and we let Nil : L,Cons : A→L→L. Define the induction principle
over lists.

(b) Consider a datatype of binary trees with leaves in base type A and node labels
in base type B. So So we have three base domains A,B and T : Set and we
let Leaf : A→T, Join : B→T→T→T . Define the induction principle over these
trees.

Exercises 2b: Extensions of λHOL; the λ cube; PTSs

1. (a) Explain for every → and Π in the following judgment which Π-rule (of λHOL)
is needed to make it a valid construction.

A : Type, R : A→A→Prop ` Πx:A.ΠQ:(A→Prop)→Prop.Q(Rx)→Rxx : Prop

(b) Do the same for the following judgment in CC.

A : Prop ` ΠF :(Πα:Prop.ΠQ:α→Prop.Πy:αQy→Qy).F A→ Prop : Type

2. Give a context Γ and a term M of the type

(Πx:A.(Rxa→Ra (f x)))→Raa→Ra (f a)

in this context.
What is the simplest system of the λ cube in which this typing is valid?

3. (a) Recall the polymorphic type of lists over A, ListA and define it in λ2. (So
A : Prop ` ListA : Prop; verify that this is indeed possible in the λ-cube system
λ2.)

(b) Define induction over lists as a proposition in λP2. (SoA : Prop ` indList : Prop;
verify that this is indeed possible in the λ-cube system λP2.)

4. Define in CC, ϕ := ∀x:A.x = a, ψ := ∀x:B.∃y:B.x 6= y (with A,B : Prop) and define

EXT := ∀α, β:Prop.(α⇔ β) ⇒ (α =Prop β).

Give a term of type ⊥ in CC in the following context

e : EXT, A,B : Prop, h1 : ϕ, h2 : ψ

Alternatively you may try to find this term in Coq, see the file coq_ex7.v8.

2



5. Prove the following basic property for any Pure Type System (S,A,R). (By induc-
tion on the derivation.)
(Variable Lemma)
If Γ `M : A, then Γ ` x : B for all x : B ∈ Γ.

6. Prove the Substitution Lemma for PTSs. (By induction on the derivation; do the
cases for the last rule being (weak) or (λ).

3


