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Introduction

These lecture notes present some techniques to verify programs correctness using the Coq
proof assistant.

In Chapter 1, we show how to use Coq directly to verify purely functional programs,
using the Coq extraction mechanism which produces correct ML programs out of con-
structive proofs. This chapter describes techniques to define and prove correct functions
in Coq, focusing on issues such as partial functions, non-structurally recursive functions,
or the use of dependent types to specify functions. The interested reader will find much
more material related to this subject in Y. Bertot and P. Castéran’s book dedicated to
Coq [3].

In Chapter 2, we introduce the Why tool for the verification of imperative programs.
The Why tool is actually not specifically related to Coq, since it offers a wide range of
other back-end provers (PVS, Isabelle/HOL, Simplify, etc.). But Coq plays a particu-
lar role since Why can interpret imperative programs as purely functional programs in
Coq, providing increased trust in the verification process and making a clear connection
between the two chapters of these notes. The interested reader will find more material
related to Why on its web site http://why.lri.fr/, including a reference manual, many
examples and links to related tools for the verification of C and Java programs.
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Chapter 1

Verification of purely functional
programs

In this chapter, we focus on the specification and verification of purely functional pro-
grams. We show how the Coq proof assistant can be used to produce correct ML code.
This chapter is illustrated using the case study of balanced binary search trees, which
constitutes an example of purely functional program simultaneously useful and complex.

In the following, we call informative what lies in the sort Set and logic what lies in
the sort Prop. This sort distinction is exploited by the Coq extraction mechanism [19,
20, 17, 18]. This tool extracts the informative contents of a Coq term as an ML program.
The logical parts disappear (or subsist as a degenerated value with no associated compu-
tation). The theoretical foundations of program extraction can be found in the references
above.

1.1 Immediate method

The most immediate way to verify a purely functional program consists in defining it as
a Coq function and then to prove some properties of this function. Indeed, most (purely
functional) ML programs can be written in the Calculus of Inductive Constructions.

Generally speaking, we first define in Coq a “pure” function, that is with a purely
informative type a la ML (a type from system F). Let us assume here a function we only
one argument:

f : τ1 → τ2

We show that this function realizes a given specification S : τ1 → τ2 → Prop with a
theorem of the shape

∀x. (S x (f x))

The proof is conducted following the definition of f .

Example. We use a finite sets library based on balanced binary trees as a running
example. We first introduce a datatype of binary trees containing integers

Inductive tree : Set :=

| Empty

| Node : tree -> Z -> tree -> tree.
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and a membership relation In stating that an element occurs in a tree (independently of
any insertion choice):

Inductive In (x:Z) : tree -> Prop :=

| In_left : forall l r y, (In x l) -> (In x (Node l y r))

| In_right : forall l r y, (In x r) -> (In x (Node l y r))

| Is_root : forall l r, (In x (Node l x r)).

A function testing for the empty set can be defined as

Definition is_empty (s:tree) : bool := match s with

| Empty => true

| _ => false end.

and its correctness proof is stated as

Theorem is_empty_correct :

forall s, (is_empty s)=true <-> (forall x, ~(In x s)).

The proof follows the definition of is empty and is only three lines long:

Proof.

destruct s; simpl; intuition.

inversion_clear H0.

elim H with z; auto.

Qed.

Let us consider now the membership test within a binary search tree. We first assume
an ordering relation over integers:

Inductive order : Set := Lt | Eq | Gt.

Hypothesis compare : Z -> Z -> order.

Then we define a function mem looking for an element in a tree which is assumed to be a
binary search tree:

Fixpoint mem (x:Z) (s:tree) {struct s} : bool := match s with

| Empty =>

false

| Node l y r => match compare x y with

| Lt => mem x l

| Eq => true

| Gt => mem x r

end

end.

The correctness proof of this function requires the definition of a binary search tree, as
the following bst predicate:
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Inductive bst : tree -> Prop :=

| bst_empty :

(bst Empty)

| bst_node :

forall x (l r : tree),

bst l -> bst r ->

(forall y, In y l -> y < x) ->

(forall y, In y r -> x < y) -> bst (Node l x r).

Now the correctness of the mem function can be stated:

Theorem mem_correct :

forall x s, (bst s) -> (mem x s=true <-> In x s).

We see on this example that the specification S has the particular shape P x→ Q x (f x).
P is called a precondition and Q a postcondition.

Modularity. When trying to prove mem correct we start with induction s; simpl

to follow mem’s definition. The first case (Empty) is trivial. On the second one (Node s1

z s2) we bump into the term match compare x z with ... and it is not possible to
go further. Indeed, we know nothing about the compare function used in mem. We have
to specify it first, using for instance the axiom

Hypothesis compare_spec :

forall x y, match compare x y with

| Lt => x<y

| Eq => x=y

| Gt => x>y

end.

Then we can use this specification in the following way:

generalize (compare_spec x z); destruct (compare x z).

The proof is completed without difficulty.

Note. For purely informative functions such as is empty or mem, the extracted program
is identical to the Coq term. As an example, the command Extraction mem gives the
following ocaml code:

let rec mem x = function

| Empty -> false

| Node (l, y, r) ->

(match compare x y with

| Lt -> mem x l

| Eq -> true

| Gt -> mem x r)
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1.1.1 The case of partial functions

A first difficulty occurs when the function is partial, i.e. has a Coq type of the shape

f : ∀x : τ1. (P x)→ τ2

The typical case is a division function expecting a non-zero divisor.
In our running example, we may want to define a function min elt returning the

smallest element of a set which is assumed to be non-empty (that is the leftmost element
in the binary search tree). We can give this function the following type:

min elt : ∀s : tree. ¬s = Empty→ Z (1.1)

where the precondition is ¬s = Empty. The specification of min elt can be stated as

∀s. ∀h : ¬s = Empty. bst s→ In (min elt s h) s ∧ ∀x. In x s→ min elt s h ≤ x

with the same precondition as the function itself (hypothesis h) together with the other
precondition bst s. The hypothesis h is mandatory to be able to apply min elt. We see
that using a partial function in Coq is not easy: one has to pass proofs as arguments, and
proof terms may be difficult to build.

Even the definition of a partial function may be difficult. Let us write a function
min elt with type (1.1). The ML code we have in mind is:

let rec min_elt = function

| Empty -> assert false

| Node (Empty, x, _) -> x

| Node (l, _, _) -> min_elt l

Unfortunately, the Coq definition is more difficult. First, the assert false in the first
case of the pattern matching corresponds to an absurd case (we assumed a non-empty
tree). The Coq definition expresses this absurdity using the False rec elimination applied
to a proof of False. So one has to build such a proof from the precondition. Similarly,
the third case of the pattern matching makes a recursive call to min elt and thus we have
to build a proof that l is non-empty. Here it is a consequence of the pattern matching
which has already eliminated the case where l is Empty. In both cases, the necessity to
build these proof terms complicates the pattern matching, which must be dependent. We
get the following definition:

Fixpoint min_elt (s:tree) (h:~s=Empty) { struct s } : Z :=

match s return ~s=Empty -> Z with

| Empty =>

(fun h => False_rec _ (h (refl_equal Empty)))

| Node l x _ =>

(fun h => match l as a return a=l -> Z with

| Empty => (fun _ => x)

| _ => (fun h => min_elt l

(Node_not_empty _ _ _ _ h))

end (refl_equal l))

end h.
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The first proof (argument of False rec) is built directly. The second one uses the
following lemma:

Lemma Node_not_empty : forall l x r s, Node l x r=s -> ~s=Empty.

We can now prove the correctness of min elt:

Theorem min_elt_correct :

forall s (h:~s=Empty), bst s ->

In (min_elt s h) s /\

forall x, In x s -> min_elt s h <= x.

Once again, the proof is conducted following the definition of the function and does not
contain any difficulty.

One can check that the extracted code is indeed the one we had in mind. Extraction
min elt outputs:

let rec min_elt = function

| Empty -> assert false (* absurd case *)

| Node (l, x, t) ->

(match l with

| Empty -> x

| Node (t0, z0, t1) -> min_elt l)

There are several points of interest here. First, the use of False rec is extracted to
assert false, which is precisely the expected behavior (we proved that this program
point was not reachable, so it is legitimate to say that reaching it is absurd i.e. a “proof”
of false). Second, we see that the logical arguments that were complicating the definition
have disappeared in the extracted code (since they were in sort Prop).

Another solution is to define the min elt function using a proof rather than a defini-
tion. It is then easier to build the proof terms (using the interactive proof editor). Here
the definition-proof is rather simple:

Definition min_elt : forall s, ~s=Empty -> Z.

Proof.

induction s; intro h.

elim h; auto.

destruct s1.

exact z.

apply IHs1; discriminate.

Defined.

But it is more difficult to be convinced that we are building the right function (as long
as we haven’t proved its correctness). In particular, one has to use the automatic tactics
such as auto with great care, since it could build a function different from the one we
have in mind. One the example above, auto is only used on a logical goal (Empty=Empty).

One way to get convinced that the underlying code is the right one is to have a look
at the extracted code. Here we get exactly the same as before.
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The refine tactic helps in defining partial functions (but not only). It allows the
user to give an incomplete proof term, some parts being omitted (when denoted by )
and turned into subgoals. We can redefine the min elt function using the refine tactic
as follows:

Definition min_elt : forall s, ~s=Empty -> Z.

refine

(fix min (s:tree) (h:~s=Empty) { struct s } : Z :=

match s return ~s=Empty -> Z with

| Empty =>

(fun h => _)

| Node l x _ =>

(fun h => match l as a return a=l -> Z with

| Empty => (fun _ => x)

| _ => (fun h => min_elt l _)

end _)

end h).

We get two subgoals that are easy to discharge. However, we notice that a dependent
matching is still required.

A last solution consists in making the function total, by completing it in an arbitrary
way out of its definition domain. Here we may choose to return the value 0 when the
set is empty. This way we avoid the logical argument ¬s = Empty and all its nasty
consequences. The type of min elt is back to tree→ Z and its definition quite simple:

Fixpoint min_elt (s:tree) : Z := match s with

| Empty => 0

| Node Empty z _ => z

| Node l _ _ => min_elt l

end.

The correctness theorem is still the same, however:

Theorem min_elt_correct :

forall s, ~s=Empty -> bst s ->

In (min_elt s) s /\

forall x, In x s -> min_elt s <= x.

The correctness statement still has the precondition ¬s = Empty, otherwise it would not
be possible to ensure In (min elt s) s.

Note. The division function Zdiv over integers is defined this way as a total function
but its properties are only provided under the assumption that the divisor is non-zero.

Note. Another way to make the function min elt total would be to make it return
a value of type option Z, that is None when the set is empty and Some m when a
smallest element m exists. But then the underlying code is slightly different (and so is
the correctness statement).
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1.1.2 Functions that are not structurally recursive

Issues related to the definition and the use of a partial function are similar to the ones en-
countered when defining and proving correct a recursive function which is not structurally
recursive.

Indeed, one way to define such a function is to use a principle of well-founded induc-
tion, such as

well_founded_induction

: forall (A : Set) (R : A -> A -> Prop),

well_founded R ->

forall P : A -> Set,

(forall x : A, (forall y : A, R y x -> P y) -> P x) ->

forall a : A, P a

But then the definition requires to build proofs of R y x for each recursive call on y; we
are faced to the same problems, but also to the same solutions, mentioned in the section
above.

Let us assume we want to define a function subset checking for set inclusion on our
binary search trees. A possible ML code is the following:

let rec subset s1 s2 = match (s1, s2) with

| Empty, _ ->

true

| _, Empty ->

false

| Node (l1, v1, r1), (Node (l2, v2, r2) as t2) ->

let c = compare v1 v2 in

if c = 0 then

subset l1 l2 && subset r1 r2

else if c < 0 then

subset (Node (l1, v1, Empty)) l2 && subset r1 t2

else

subset (Node (Empty, v1, r1)) r2 && subset l1 t2

We see that recursive calls are performed on trees that are not always strict sub-terms of
the initial arguments (not mentioning the additional difficulty of a simultaneous recursion
on two arguments). Though there exists a simple termination criterion, that is the total
number of elements in the two trees.

Thus we first establish a well-founded induction principle over two trees based on the
sum of their cardinalities:

Fixpoint cardinal_tree (s:tree) : nat := match s with

| Empty => O

| Node l _ r => (S (plus (cardinal_tree l) (cardinal_tree r)))

end.

Lemma cardinal_rec2 :
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forall (P:tree->tree->Set),

(forall (x x’:tree),

(forall (y y’:tree),

(lt (plus (cardinal_tree y) (cardinal_tree y’))

(plus (cardinal_tree x) (cardinal_tree x’))) -> (P y y’))

-> (P x x’)) ->

forall (x x’:tree), (P x x’).

The proof is simple: we first manage to reuse a well-founded induction principle over type
nat provided in the Coq library, namely well founded induction type 2, and then we
prove that the relation is well-founded since it is of the shape lt (f y y′) (f x x′) and
because lt itself is a well-founded relation over nat (another result from the Coq library):

Proof.

intros P H x x’.

apply well_founded_induction_type_2 with

(R:=fun (yy’ xx’:tree*tree) =>

(lt (plus (cardinal_tree (fst yy’)) (cardinal_tree (snd yy’)))

(plus (cardinal_tree (fst xx’)) (cardinal_tree (snd xx’)))));

auto.

apply (Wf_nat.well_founded_ltof _

(fun (xx’:tree*tree) =>

(plus (cardinal_tree (fst xx’)) (cardinal_tree (snd xx’))))).

Save.

We are now in position to define the subset function with a definition-proof using the
refine tactic:

Definition subset : tree -> tree -> bool.

Proof.

First we apply the induction principle cardinal rec2:

intros s1 s2; pattern s1, s2; apply cardinal_rec2.

Then we match on x and x’, both Empty cases being trivial:

destruct x.

(* x=Empty *)

intros; exact true.

(* x = Node x1 z x2 *)

destruct x’.

(* x’=Empty *)

intros; exact false.

Next we proceed by case on the result of compare z z0:

(* x’ = Node x’1 z0 x’2 *)

intros; case (compare z z0).
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In each of the three cases, the recursive calls (hypothesis H) are handled using the refine
tactic. We get a proof obligation expressing the decreasing of the total number of ele-
ments, which is automatically discharged by simpl; omega (simpl is required to unfold
the definition of cardinal tree):

(* z < z0 *)

refine (andb (H (Node x1 z Empty) x’2 _)

(H x2 (Node x’1 z0 x’2) _)); simpl; omega.

(* z = z0 *)

refine (andb (H x1 x’1 _) (H x2 x’2 _)); simpl ; omega.

(* z > z0 *)

refine (andb (H (Node Empty z x2) x’2 _)

(H x1 (Node x’1 z0 x’2) _)); simpl ; omega.

Defined.

Note. We could have used a single refine for the whole definition.

Note. It is interesting to have a look at the extracted code for a function defined using
a principle such as well founded induction. We can first have a look at the extracted
code for well founded induction and we recognize a fixed point operator:

let rec well_founded_induction x a =

x a (fun y _ -> well_founded_induction x y)

When unfolding this operator and two other constants

Extraction NoInline andb.

Extraction Inline cardinal_rec2 Acc_iter_2 well_founded_induction_type_2.

Extraction subset.

we get exactly the expected ML code:

let rec subset x x’ =

match x with

| Empty -> True

| Node (x1, z0, x2) ->

(match x’ with

| Empty -> False

| Node (x’1, z1, x’2) ->

(match compare z0 z1 with

| Lt ->

andb (subset (Node (x1, z0, Empty)) x’2)

(subset x2 (Node (x’1, z1, x’2)))

| Eq -> andb (subset x1 x’1) (subset x2 x’2)

| Gt ->

andb (subset (Node (Empty, z0, x2)) x’2)

(subset x1 (Node (x’1, z1, x’2)))))

Many other techniques to define functions that are not structurally recursive are
described in the chapter 15 of Interactive Theorem Proving and Program Development [3].

12



1.2 The use of dependent types

Another approach to program verification in Coq consists in using the richness of the
type system to express the specification of the function within its type. Actually, a type
is a specification. In the case of ML, it is only a very poor specification (e.g. a function
expects an integer and returns an integer) but in Coq one can express that a function is
expecting a non-negative integer and returning a prime integer:

f : {n : Z | n ≥ 0} → {p : Z | prime p}

We are going to show how to do this in this section.

1.2.1 The subtype type sig

The Coq notation {x : A | P} denotes the “subtype of A of values satisfying the property
P” or, in a set-theoretical setting, the “subset of A of elements satisfying P”. The
notation {x : A | P} actually stands for the application sig A (fun x ⇒ P ) where sig

is the following inductive type:

Inductive sig (A : Set) (P : A -> Prop) : Set :=

exist : forall x:A, P x -> sig P

This inductive type is similar to the existential ex, apart from its sort which is Set

instead of Prop (we aim at defining a function and thus its arguments and result must
be informative).

In practice, we need to relate the argument and the result within a postcondition Q
and thus we prefer the more general specification:

f : ∀ (x : τ1), P x→ {y : τ2 | Q x y}

If we come back to the min elt function, its specification can be the following:

Definition min_elt :

forall s, ~s=Empty -> bst s ->

{ m:Z | In m s /\ forall x, In x s -> m <= x }.

We still have the definition issues mentioned in the previous section and thus we usually
adopt a definition by proof (still with the same caution w.r.t. automatic tactics).

Note. The move of the property bst s from the postcondition to the precondition is
not mandatory; it is only more natural.

Note. The extraction of sig A Q forgets the logical annotation Q and thus reduces to
the extraction of type A. Said otherwise, the sig type can disappear at extraction time.
And indeed we have

Coq < Extraction sig.

type ’a sig = ’a

(* singleton inductive, whose constructor was exist *)
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1.2.2 Variants of sig

We can introduce other types similar to sig. For instance, if we want to define a function
returning two integers, such as an Euclidean division function, it seems natural to combine
two instances of sig as we would do with two existentials ex:

div : ∀a b, b > 0→ {q | {r | a = bq + r ∧ 0 ≤ r < b}}

But the second instance of sig has sort Set and not Prop, which makes this statement
ill-typed. Coq introduces for this purpose a variant of sig, sigS :

Inductive sigS (A : Set) (P : A -> Set) : Set :=

existS : forall x:A, P x -> sig P

where the sole difference is the sort of P (Set instead of Prop). sigS A (fun x ⇒ P ) is
written {x : A & P}, which allows to write

div : ∀a b, b > 0→ {q & {r | a = bq + r ∧ 0 ≤ r < b}}

The extraction of sigS is naturally a pair:

Coq < Extraction sigS.

type (’a, ’p) sigS =

| ExistS of ’a * ’p

Similarly, if we want a specification looking like

{x : A | P x ∧Q x}

there exists and inductive “made on purpose”, sig2, defined as

Inductive sig2 (A : Set) (P : A -> Prop) (Q : A -> Prop) : Set :=

exist2 : forall x : A, P x -> Q x -> sig2 P Q

Its extraction is identical to the one of sig.

1.2.3 Specification of a boolean function: sumbool

A very common kind of specification is the one of a boolean function. In this case, we want
to specify what are the two properties holding when the function is returning false and
true respectively. Coq introduces an inductive type for this purpose, sumbool, defined
as

Inductive sumbool (A : Prop) (B : Prop) : Set :=

| left : A -> sumbool A B

| right : B -> sumbool A B
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It is a type similar to bool but each constructor contains a proof, of A and B respectively.
sumbool A B is written {A}+{B}. A function checking for the empty set can be specified
as follows:

is empty : ∀s, {s = Empty}+ {¬s = Empty}

A more general case, very common in practice, is the one of a decidable equality. Indeed,
if a type A is equipped with an equality eq : A → A → Prop, we can specify a function
deciding this equality as

A eq dec : ∀x y, {eq x y}+ {¬(eq x y)}

It is exactly as stating
∀x y, (eq x y) ∨ ¬(eq x y)

apart from the sort which is different. In the latter case, we have a disjunction in sort
Prop (an excluded-middle instance for the predicate eq) whereas in the former case we
have a “disjunction” in sort Set, that is a program deciding the equality.

The extraction of sumbool is a type isomorphic to bool:

Coq < Extraction sumbool.

type sumbool =

| Left

| Right

In practice, one can tell the Coq extraction to use ML booleans directly instead of Left
and Right (which allows the ML if-then-else to be used in the extracted code).

Variant sumor

There exists a variant of sumbool where the sorts are not the same on both sides:

Inductive sumor (A : Set) (B : Prop) : Set :=

| inleft : A -> A + {B}

| inright : B -> A + {B}

This inductive type can be used to specify an ML function returning a value of type
α option: the constructor inright stands for the case None and adds a proof of property
B, and the constructor inleft stands for the case Some and adds a proof of property A.
The extraction of type sumor is isomorphic to the ML type option:

Coq < Extraction sumor.

type ’a sumor =

| Inleft of ’a

| Inright

We can combine sumor and sig to specify the min elt in the following way:

Definition min_elt :

forall s, bst s ->

{ m:Z | In m s /\ forall x, In x s -> m <= x } + { s=Empty }.
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It corresponds to the ML function turned total using an option type.
We can even combine sumor and sumbool to specify our ternary compare function:

Hypothesis compare : forall x y, {x<y} + {x=y} + {x>y}.

Note that now this single hypothesis replaces the inductive order and the two hypotheses
compare and compare spec.

Let us go back to the membership function on binary search trees, mem. We can now
specify it using a dependent type:

Definition mem :

forall x s, bst s -> { In x s }+{ ~(In x s) }.

The definition-proof starts with an induction over s.

Proof.

induction s; intros.

(* s = Empty *)

right; intro h; inversion_clear h.

The case s=Empty is trivial. In the case s=Node s1 z s2, we need to proceed by case on
the result of compare x z. It is now simpler than with the previous method: no more
need to call for the compare spec lemma, since compare x z contains its specification in
its type.

(* s = Node s1 z s2 *)

case (compare x z); intro.

Similarly, each induction hypothesis (over s1 and s2) is a function containing its specifi-
cation in its type. We use it, when needed, by applying the case tactic. The remaining
of the proof is easy.

Note. It is still possible to obtain the pure function as a projection of the function
specified using a dependent type:

Definition mem_bool x s (h:bst s) := match mem x s h with

| left _ => true

| right _ => false

end.

Then it is easy to show the correctness of this pure function (since the proof is “contained”
in the type of the initial function):

Theorem mem_bool_correct :

forall x s, forall (h:bst s),

(mem_bool x s h)=true <-> In x s.

Proof.

intros.

unfold mem_bool; simpl; case (mem x s h); intuition.

discriminate H.

Qed.

But this projection has few interests in practice.
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Note. It is important to notice that each function is now given its specification when
it is defined: it is no more possible to establish several properties of a same function as
it was with a pure function.

1.3 Modules and functors

The adequacy of Coq as formalism to specify and prove correct purely functional ML
programs extends to the module system. Indeed, Coq is equipped with a module system
inspired by the module system of Objective Caml [16, 6, 7] since version 8. As Coq function
types can enrich ML types with logical annotations, Coq modules can enrich ML ones.

For instance, if we want to write our finite sets library as a functor taking an arbitrary
type as argument (and no more Z only as it was the case up to now) equipped with a
total order, we start by defining a signature for this functor argument. It packs together
a type t, an equality eq and an order relation lt over this type:

Module Type OrderedType.

Parameter t : Set.

Parameter eq : t -> t -> Prop.

Parameter lt : t -> t -> Prop.

together as a decidability result for lt and eq:

Parameter compare : forall x y, {lt x y}+{eq x y}+{lt y x}.

We also have to include some properties of eq (equivalence relation) and lt (order relation
not compatible with eq) without which the functions over binary search trees would not
be correct:

Axiom eq_refl : forall x, (eq x x).

Axiom eq_sym : forall x y, (eq x y) -> (eq y x).

Axiom eq_trans : forall x y z, (eq x y) -> (eq y z) -> (eq x z).

Axiom lt_trans : forall x y z, (lt x y) -> (lt y z) -> (lt x z).

Axiom lt_not_eq : forall x y, (lt x y) -> ~(eq x y).

Last, we can add some Hint commands for the auto tactic to this signature, so that they
will be automatically available within the functor body:

Hint Immediate eq_sym.

Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.

End OrderedType.

Then we can write our finite sets library as a functor taking an argument X of type
OrderedType as argument:

Module ABR (X: OrderedType).

Inductive tree : Set :=

| Empty
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| Node : tree -> X.t -> tree -> tree.

Fixpoint mem (x:X.t) (s:tree) {struct s} : bool := ...

Inductive In (x:X.t) : tree -> Prop := ...

Hint Constructors In.

Inductive bst : tree -> Prop :=

| bst_empty : (bst Empty)

| bst_node :

forall x (l r : tree),

bst l -> bst r ->

(forall y, In y l -> X.lt y x) ->

(forall y, In y r -> X.lt x y) -> bst (Node l x r).

(* etc. *)

Note. The Objective Caml language provides a finite sets library based on balanced
binary search trees (AVLs [2]), as a functor taking an ordered type as argument. This
library implements all usual operations over sets (union, intersection, difference, cardinal,
smallest element, etc.), iterators (map, fold, iter) and even a total order over sets
allowing the construction of sets of sets by a second application of the same functor (and
so on). This library has been verified using Coq by Pierre Letouzey and Jean-Christophe
Filliâtre [11]. This proof exhibited a balancing bug in some functions; the code was fixed
in ocaml 3.07 (and the fix verified with Coq).
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Chapter 2

Verification of imperative programs:
the Why tool

This chapter is an introduction to the Why tool. This tool implements a programming
language designed for the verification of sequential programs. This is an intermediate
language to which existing programming languages can be compiled and from which
verification conditions can be computed.

Section 2.1 introduces the theory behind the Why tool (syntax, typing, semantics and
weakest preconditions for its language). Then Section 2.2 illustrates the practical use of
the tool on several examples and quickly describes the application of the Why tool to the
verification of C and Java programs.

2.1 Underlying theory

Implementing a verification condition generator (VCG) for a realistic programming lan-
guage such as C is a lot of work. Each construct requires a specific treatment and there
are many of them. Though, almost all rules will end up to be instances of the five his-
torical Hoare Logic rules [12]. Reducing the VCG to a core language thus seems a good
approach. Similarly, if one has written a VCG for C and has to write another one for
Java, there are clearly enough similarities to hope for this core language to be reused.
Last, if one has to experiment with several logics, models and/or proof tools, this core
language should ideally remain the same.

The Why tool implements such an intermediate language for VCGs, that we call HL in
the following (for Hoare Language). Syntax, typing, semantics and weakest preconditions
calculus are given below, but we first start with a tour of HL features.

Genericity. HL annotations are written in a first-order predicate syntax but are not
interpreted at all. This means that HL is independent of the underlying logic in
which the annotations are interpreted. The WP calculus only requires the logic to
be minimal i.e. to include universal quantification, conjunction and implication.

ML syntax. HL has an ML-like syntax where there is no distinction between expressions
and statements. This greatly simplifies the language—not only the syntax but also
the typing and semantics. However HL has few in common with the ML family
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languages (functions are not first-class values, there is no polymorphism, no type
inference, etc.)

Aliases. HL is an alias-free language. This is ensured by the type checking rules. Being
alias free is crucial for reasoning about programs, since the rule for assignment

{P [x← E]}x := E {P}

implicitly assumes that any variable other than x is left unmodified. Note however
that the absence of alias in HL does not prevent the interpretation of programs with
possible aliases: such programs can be interpreted using a more or less complex
memory model made of several unaliased variables (see Section 2.2.3).

Exceptions. Beside conditional and loop, HL only has a third kind of control statement,
namely exceptions. Exceptions can be thrown from any program point and caught
anywhere upper in the control-flow. Arbitrary many exceptions can be declared and
they may carry values. Exceptions can be used to model exceptions from the source
language (e.g. Java’s exceptions) but also to model all kinds of abrupt statements
(e.g. C and Java’s return, break or continue).

Typing with effects. HL has a typing with effects: each expression is given a type
together with the sets of possibly accessed and possibly modified variables and the
set of possibly raised exceptions. Beside its use for the alias check, this is the key
to modularity: one can declare and use a function without implementing it, since
its type mentions its side-effects. In particular, the WP rule for function call is
absolutely trivial.

Auxiliary variables. The usual way to relate the values of variables at several pro-
gram points is to used the so-called auxiliary variables. These are variables only
appearing in annotations and implicitly universally quantified over the whole Hoare
triple. Though auxiliary variables can be given a formal meaning [21] their use is
cumbersome in practice: they pollute the annotations and introduce unnecessary
equality reasoning on the prover side. Instead we propose the use of program la-
bels—similar to those used for gotos—to refer to the values of variables at specific
program points. This appears to be a great improvement over auxiliary variables,
without loss of expressivity.

2.1.1 Syntax

Types and specifications

Program annotations are written using the following minimal first-order logic:

t ::= c | x | !x | φ(t, . . . , t) | old(t) | at(t, L)
p ::= P (t, . . . , t) | ∀x : β.p | p⇒ p | p ∧ p | . . .

A term t can be a constant c, a variable x, the contents of a reference x (written !x) or the
application of a function symbol φ. It is important to notice that φ is a function symbol
belonging to the logic: it is not defined in the program. The construct old(t) denotes
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the value of term t in the precondition state (only meaningful within the corresponding
postcondition) and the construct at(t, L) denotes the value of the term t at the program
point L (only meaningful within the scope of a label L).

We assume the existence of a set of pure types (β) in the logical world, containing at
least a type unit with a single value void and a type bool for booleans with two values
true and false.

Predicates necessarily include conjunction, implication and universal quantification
as they are involved in the weakest precondition calculus. In practice, one is likely to
add at least disjunction, existential quantification, negation and true and false predicates.
An atomic predicate is the application of a predicate symbol P and is not interpreted.
For the forthcoming WP calculus, it is also convenient to introduce an if-then-else

predicate:
if t then p1 else p2 ≡

(t = true⇒ p1) ∧ (t = false⇒ p2)

Program types and specifications are classified as follows:

τ ::= β | β ref | (x : τ)→ κ
κ ::= {p} τ ε {q}
q ::= p; E ⇒ p; . . . ; E ⇒ p
ε ::= reads x, . . . , x writes x, . . . , x raises E, . . . , E

A value of type τ is either an immutable variable of a pure type (β), a reference containing
a value of a pure type (β ref) or a function of type (x : τ) → {p} β ε {q} mapping the
formal parameter x to the specification of its body, that is a precondition p, the type τ
for the returned value, an effect ε and a postcondition q. An effect is made of tree lists
of variables: the references possibly accessed (reads), the references possibly modified
(writes) and the exceptions possibly raised (raises). A postcondition q is made of
several parts: one for the normal termination and one for each possibly raised exception
(E stands for an exception name).

When a function specification {p} β ε {q} has no precondition and no postcondition
(both being true) and no effect (ε is made of three empty lists) it can be shortened to
τ . In particular, (x1 : τ1) → · · · → (xn : τn) → κ denotes the type of a function with n
arguments that has no effect as long as it not applied to n arguments. Note that functions
can be partially applied.

Expressions

The syntax for program expressions is given in Figure 2.1. In particular, programs contain
pure terms (t) made of constants, variables, dereferences (written !x) and application of
function symbols from the logic to pure terms. The syntax mostly follows ML’s one.
ref e introduces a new reference initialized with e. loop e {invariant p variant t} is
an infinite loop of body e, invariant p and which termination is ensured by the variant
t. The raise construct is annotated with a type τ since there is no polymorphism in
HL. There are two ways to insert proof obligations in programs: assert {p}; e places an
assertion p to be checked right before e and e {q} places a postcondition q to be checked
right after e.

21



t ::= c | x | !x | φ(t, . . . , t)
e ::= t

| x := e
| let x = e in e
| let x = ref e in e
| if e then e else e
| loop e {invariant p variant t}
| L:e
| raise (E e) : τ
| try e with E x→ e end

| assert {p}; e
| e {q}
| fun (x : τ)→ {p} e
| rec x (x : τ) . . . (x : τ) : β {variant t} = {p} e
| e e

Figure 2.1: Syntax

The traditional sequence construct is only syntactic sugar for a let-in binder where
the variable does not occur in e2:

e1; e2 ≡ let = e1 in e2

We also simplify the raise construct whenever both the exception contents and the whole
raise expression have type unit:

raise E ≡ raise (E void) : unit

The traditional while loop is also syntactic sugar for a combination of an infinite loop
and the use of an exception Exit to exit the loop:

while e1 do e2 {invariant p variant t} ≡
try

loop if e1 then e2 else raise Exit
{invariant p variant t}

with Exit -> void end

Functions and programs

A program (p) is a list of declarations. A declaration (d) is either a definition introduced
with let or a declaration introduced with val, or an exception declaration.

2.1.2 Typing

This section introduces typing and semantics for HL.
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p ::= ∅ | d p
d ::= let x = e

| val x : τ
| exception E of β

Typing environments contain bindings from variables to types of values, exceptions
declarations and labels:

Γ ::= ∅ | x : τ, Γ | exception E of β, Γ | label L, Γ

The type of a constant or a function symbol is given by the operator Typeof . A type τ
is said to be pure, and we write τ pure, if it is not a reference type. We write x ∈ τ
whenever the reference x appears in type τ i.e. in any annotation or effect within τ .

An effect is composed of three sets of identifiers. When there is no ambiguity we
write (r, w, e) for the effect reads r writes w raises e. Effects compose a natural
semi-lattice of bottom element ⊥ = (∅, ∅, ∅) and supremum (r1, w1, e1) t (r2, w2, e2) =
(r1∪r2, w1∪w2, e1∪e2). We also define the erasing of the identifier x in effect ε = (r, w, e)
as ε\x = (r\{x}, w\{x}, e\{x}).

We introduce the typing judgment Γ ` e : (τ, ε) with the following meaning: in envi-
ronment Γ the expression e has type τ and effect ε. Typing rules are given in Figure 2.2.
They assume the definitions of the following extra judgments:

• Γ ` κ wf : the specification κ is well formed in environment Γ,

• Γ ` p wf : the precondition p is well formed in environment Γ,

• Γ ` q wf : the postcondition q is well formed in environment Γ,

• Γ ` t : β : the logical term t has type β in environment Γ.

The purpose of this typing with effects is two-fold. First, it rejects aliases: it is
not possible to bind one reference variable to another reference, neither using a let in

construct, nor a function application. Second, it will be used when interpreting programs
in Type Theory (in Section 2.1.5 below).

2.1.3 Semantics

We give a big-step operational semantics to HL. The notions of values and states are the
following:

v ::= c | E c | rec f x = e
s ::= {(x, c), . . . , (x, c)}

A value v is either a constant value (integer, boolean, etc.), an exception E carrying a
value c or a closure rec f x = e representing a possibly recursive function f binding x
to e. For the purpose of the semantic rules, it is convenient to add the notion of closure
to the set of expressions:

e ::= . . . | rec f x = e
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Typeof (c) = β

Γ ` c : (β,⊥)

x : τ ∈ Γ τ pure

Γ ` x : (τ,⊥)

x : β ref ∈ Γ

Γ ` !x : (β, reads x)

Γ ` ti : (βi, εi) Typeof (φ) = β1, . . . , βn → β

Γ ` φ(t1, . . . , tn) : (β,
⊔
i

εi)

x : β ref ∈ Γ Γ ` e : (β, ε)

Γ ` x := e : (unit, (writes x) t ε)

Γ ` e1 : (τ1, ε1) τ1 pure Γ, x : τ1 ` e2 : (τ2, ε2)

Γ ` let x = e1 in e2 : (τ2, ε1 t ε2)

Γ ` e1 : (β1, ε1) Γ, x : β1 ref ` e2 : (τ2, ε2) x 6∈ τ2

Γ ` let x = ref e1 in e2 : (τ2, ε1 t ε2\x)

Γ ` e1 : (bool, ε1) Γ ` e2 : (τ, ε2) Γ ` e3 : (τ, ε3)

Γ ` if e1 then e2 else e3 : (τ, ε1 t ε2 t ε3)

Γ ` e : (unit, ε) Γ ` p wf Γ ` t : int

Γ ` loop e {invariant p variant t} : (unit, ε)

Γ, label L ` e : (τ, ε)

Γ ` L:e : (τ, ε)

exception E of β ∈ Γ Γ ` e : (β, ε)

Γ ` raise (E e) : τ : (τ, (raises E) t ε))

exception E of β ∈ Γ Γ ` e1 : (τ, ε1) Γ, x : β ` e2 : (τ, ε2)

Γ ` try e1 with E x→ e2 end : (τ, ε1\{raises E} t ε2)

Γ ` p wf Γ ` e : (τ, ε)

Γ ` assert {p}; e : (τ, ε)

Γ ` e : (τ, ε) Γ, result : τ ` q wf

Γ ` e {q} : (τ, ε)

Γ, x : τ ` p wf Γ, x : τ ` e {q} : (τ ′, ε)

Γ ` fun (x : τ)→ {p} e {q} : ((x : τ)→ {p} τ ′ ε {q},⊥)

Γ′ ≡ Γ, x1 : τ1, . . . , xn : τn Γ′ ` p wf Γ′ ` t : int
Γ′, f : (x1 : τ1)→ · · · (xn : τn)→ {p} τ ε {q} ` e {q} : (τ, ε)

Γ ` rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e {q}
: ((x1 : τ1)→ · · · (xn : τn)→ {p} τ ε {q},⊥)

Γ ` e1 : ((x : τ2)→ {p} τ2 ε {q}, ε1) Γ ` e2 : (τ2, ε2)) τ2 pure

Γ ` e1 e2 : (τ, ε1 t ε2 t ε)

Γ ` e1 : ((x : β ref)→ {p} τ2 ε {q}, ε1) x2 : β ref ∈ Γ x2 6∈ τ2

Γ ` e1 x2 : (τ [x← x2], ε1 t ε[x← x2])

Figure 2.2: Typing
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In order to factor out all semantic rules dealing with uncaught exceptions, we introduce
the following set of contexts R:

R ::= [] | x := R | let x = R in e | let x = ref R in e
| if R then e else e | loop R {invariant p variant t}
| raise (E R) : τ | R e

The semantics rules are given Figure 2.3.

2.1.4 Weakest preconditions

Programs correctness is defined using a calculus of weakest preconditions. We note
wp(e, q; r) the weakest precondition for a program expression e and a postcondition q; r
where q is the property to hold when terminating normally and r = E1 ⇒ q1; . . . ; En ⇒ qn

is the set of properties to hold for each possibly uncaught exception. Expressing the cor-
rectness of a program e is simply a matter of computing wp(e, True).

The rules for the basic constructs are the following:

wp(t, q; r) = q[result ← t]
wp(x := e, q; r) = wp(e, q[result ← void; x← result ]; r)

wp(let x = e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x← result ]; r)
wp(let x = ref e1 in e2, q; r) = wp(e1,wp(e2, q)r[x← result ]; r)

wp(if e1 then e2 else e3, q; r) = wp(e1, if result then wp(e2, q; r) else wp(e3, q; r); r)
wp(L:e, q; r) = wp(e, q; r)[at(x, L)← x]

On the traditional constructs of Hoare logic, these rules simplify to the well known iden-
tities. For instance, the case of the assignment of a side-effect free expression gives

wp(x := t, q) = q[x← t]

and the case of a (exception free) sequence gives

wp(e1; e2, q) = wp(e1,wp(e2, q))

The cases of exceptions and annotations are also straightforward:

wp(raise (E e) : τ, q; r) = wp(e, r(E); r)
wp(try e1 with E v → e2 end, q; r) = wp(e1, q;wp(e2, q; r)[v ← result ])

wp(assert {p}; e, q; r) = p ∧ wp(e, q; r)
wp(e {q′, r′}, q; r) = wp(e, q′ ∧ q; r′ ∧ r)

The case of an infinite loop is more subtle:

wp(loop e {invariant p variant t}, q; r) = p ∧ ∀ω. p⇒ wp(L:e, p ∧ t < at(t, L); r)

where ω stands for the set of references possibly modified by the loop body (the writes

part of e’s effect). Here the weakest precondition expresses that the invariant must hold
initially and that for each turn in the loop (represented by ω), either p is preserved by e
and e decreases the value of t (to ensure termination), or e raises an exception and thus
must establish r directly.
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s, c −→ s, c s, !x −→ s, s(x)

s, ti −→ s, ci

s, φ(t1, . . . , tn) −→ s, φ(c1, . . . , cn)

s, e −→ s′, E c

s, R[e] −→ s′, E c

s, e −→ s′, c

s, x := e −→ s′ ⊕ {x 7→ c}, void

s, e1 −→ s1, v1 v1 not exc. s1, e2[x← v1] −→ s2, v2

s, let x = e1 in e2 −→ s2, v2

s, e1 −→ s1, c1 s1 ⊕ {x 7→ c1}, e2 −→ s2, v2

s, let x = ref e1 in e2 −→ s2, v2

s, e1 −→ s1, true s1, e2 −→ s2, v2

s, if e1 then e2 else e3 −→ s2, v2

s, e1 −→ s1, false s1, e3 −→ s3, v3

s, if e1 then e2 else e3 −→ s3, v3

s, e −→ s′, void s′, loop e {invariant p variant t} −→ s′′, v

s, loop e {invariant p variant t} −→ s′′, v

s, e −→ s′, v

s, L:e −→ s′, v

s, e −→ s′, c

s, raise (E e) : τ −→ s′, E c

s, e1 −→ s1, E
′ c E ′ 6= E

s, try e1 with E x→ e2 end −→ s1, E
′ c

s, e1 −→ s1, E c s1, e2[x← c] −→ s2, v2

s, try e1 with E x→ e2 end −→ s2, v2

s, e1 −→ s1, v1 v1 not exc.

s, try e1 with E x→ e2 end −→ s1, v1

s, e −→ s′, v

s, {p} e −→ s′, v

s, e −→ s′, v

s, e {q} −→ s′, v

s, fun (x : τ)→ {p} e −→ s, rec x = e

s, rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e −→
s, rec f x1 = rec x2 = . . . rec xn = e

s, e1 −→ s1, rec f x = e s1, e2 −→ s2, v2 s2, e[f ← rec f x = e, x← v2] −→ s3, v

e1 e2 −→ s3, v

Figure 2.3: Semantics
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By combining this rule and the rule for the conditional, we can retrieve the rule for
the usual while loop:

wp(while e1 do e2 {invariant p variant t}, q; r)
= p ∧ ∀ω. p⇒

wp(L:if e1 then e2 else raise E, p ∧ t < at(t, L), E ⇒ q; r)
= p ∧ ∀ω. p⇒

wp(e1, if result then wp(e2, p ∧ t < at(t, L)) else q, r)[at(x, L)← x]

Finally, we give the rules for functions and function calls. Since a function cannot be
mentioned within the postcondition, the weakest preconditions for function constructs
fun and rec are only expressing the correctness of the function body:

wp(fun (x : τ)→ {p} e, q; r) = q ∧ ∀x.∀ρ.p⇒ wp(e, True)

wp(rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e, q; r)
= q ∧ ∀x1. . . .∀xn.∀ρ.p⇒ wp(L:e, True)

where ρ stands for the set of references possibly accessed by the loop body (the reads

part of e’s effect). In the case of a recursive function, wp(L:e, True) must be computed
within an environment where f is assumed to have type (x1 : τ1) → · · · → (xn : τn) →
{p∧ t < at(t, L)} τ ε {q} i.e. where the decreasing of the variant t has been added to the
precondition of f .

The case of a function call e1 e2 can be simplified to the case of an application x1 x2

of one variable to another, using the following transformation if needed:

e1 e2 ≡ let x1 = e1 in let x2 = e2 in x1 x2

Then assuming that x1 has type (x : τ)→ {p′} τ ′ ε {q′}, we define

wp(x1 x2, q) = p′[x← x2] ∧ ∀ω.∀result .(q′[x← x2]⇒ q)[old(t)← t]

that is (1) the precondition of the function must hold and (2) its postcondition must
imply the expected property q whatever the values of the modified references and of the
result are. Note that q and q′ may contain exceptional parts and thus the implication is
an abuse for the conjunction of all implications for each postcondition part.

2.1.5 Interpretation in Type Theory

Expressing program correctness using weakest preconditions is error-prone. Another ap-
proach consists in interpreting programs in Type Theory [9, 10] in such a way that if
the interpretation can be typed then the initial imperative program is correct. It can be
shown that the resulting set of proof obligations is equivalent to the weakest precondition.

The purpose of these notes is not to detail this methodology, only to introduce the
language implemented in the Why tool.
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2.2 The WHY tool in practice

The Why tool implements the programming language presented in the previous section. It
takes annotated programs as input and generates proof obligations for a wide set of proof
assistants (Coq, PVS, Isabelle/HOL, HOL 4, HOL Light, Mizar) and decision procedures
(Simplify, haRVey, CVC Lite). The Why can be seen from two angles:

1. as a tool to verify algorithms rather than programs, since it implements a rather
abstract and idealistic programming language. Several non-trivial algorithms have
already been verified using the Why tool, such as the Knuth-Morris-Pratt string
searching algorithm for instance.

2. as a tool to compute weakest preconditions, to be used as an intermediate step in
the verification of existing programming languages. It has already been successfully
applied to the verification of C and Java programs (as briefly sketched in the next
section 2.2.3).

To remain independent of the back-end prover that will be used (it may even be
several of them), the Why tool makes no assumption regarding the logic used. It uses a
syntax of first-order predicates for annotations with no particular interpretation (apart
from the usual connectives). Function symbols and predicates can be declared in order
to be used in annotations, but they will be given meaning on the prover side.

2.2.1 A trivial example

Here is a small example of Why input code:

logic min: int, int -> int

parameter r: int ref

let f (n:int) = {} r := min !r n { r <= r@ }

This code declares a function symbol min and gives its arity. Whatever the status of this
function is on the prover side (primitive, user-defined, axiomatized, etc.), it simply needs
to be declared in order to be used in the following of the code. The next line declares a
parameter, that is a value that is not defined but simply assumed to exist i.e. to belong
to the environment. Here the parameter has name r and is an integer reference (Why’s
concrete syntax is very close to Ocaml’s syntax). The third line defines a function f

taking a integer n as argument (the type has to be given since there is no type inference
in Why) and assigning to r the value of min !r n. The function f has no precondition
and a postcondition expressing that the final value of r is smaller than its initial value.
The current value of a reference x is directly denoted by x within annotations (not !x)
and within postconditions x@ is the notation for old(x).

Let us assume the three lines code above to be in file test.why. Then we can pro-
duce the proof obligations for this program, to be verified with Coq, using the following
command line:

why --coq test.why

A Coq file test why.v is produced which contains the statement of a single proof obli-
gation, which looks like
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Lemma f_po_1 :

forall (n: Z),

forall (r: Z),

forall (result: Z),

forall (Post2: result = (min r n)),

result <= r.

Proof.

(* FILL PROOF HERE *)

Save.

The proof itself has to be filled in by the user. If the Why input code is modified and Why
run again, only the statement of the proof obligation will be updated and the remaining
of the file (including the proof) will be left unmodified. Assuming that min is adequately
defined in Coq, the proof above is trivial.

Trying an automatic decision procedure instead of Coq is as easy as running Why
with a different command line option. For instance, to use Simplify [1], we type in

why --simplify test.why

A Simplify input file test why.sx is produced. But Simplify is not able to discharge the
proof obligation, since the meaning of min is unknown for Simplify:

Simplify test_why.sx

...

1: Invalid

The user can edit the header of test why.sx to insert an axiom for min. Alternatively,
this axiom can be inserted directly in the Why input code:

logic min: int, int -> int

axiom min_ax: forall x,y:int. min(x,y) <= x

parameter r: int ref

let f (n:int) = {} r := min !r n { r <= r@ }

This way this axiom will be replicated in any prover selected by the user. When using
Coq, it is even possible to prove this axiom, though it is not mandatory. With the addition
of this axiom, Simplify is now able to discharge the proof obligation:

why --simplify test.why

Simplify test_why.sx

1: Valid.

2.2.2 A less trivial example: Dijkstra’s Dutch flag

Dijkstra’s Dutch flag is a classical algorithm which sorts an array where elements can
have only three different values. Assuming that these values are the three colors blue,
white and red, the algorithm restores the Dutch (or French :-) national flag within the
array.

This algorithm can be coded with a few lines of C, as follows:
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typedef enum { BLUE, WHITE, RED } color;

void swap(int t[], int i, int j) { color c = t[i]; t[i] = t[j]; t[j] = c;}

void flag(int t[], int n) {

int b = 0, i = 0, r = n;

while (i < r) {

switch (t[i]) {

case BLUE: swap(t, b++, i++); break;

case WHITE: i++; break;

case RED: swap(t, --r, i); break;

}

}

}

We are going to show how to verify this algorithm—the algorithm, not the C code—
using Why. First we introduce an abstract type color for the colors together with three
values blue, white and red:

type color

logic blue : color

logic white : color

logic red : color

Such a new type is necessarily an immutable datatype. The only mutable values in Why
are references (and they only contain immutable values).

Then we introduce another type color array for arrays:

type color_array

logic acc : color_array, int -> color

logic upd : color_array, int, color -> color_array

Again, this is an immutable type, so it comes with a purely applicative signature (upd
is returning a new array). To get the usual theory of applicative arrays, we can add the
necessary axioms:

axiom acc_upd_eq :

forall t:color_array. forall i:int. forall c:color.

acc(upd(t,i,c),i) = c

axiom acc_upd_neq :

forall t:color_array. forall i:int. forall j:int. forall c:color.

j<>i -> acc(upd(t,i,c),j) = acc(t,j)

The program arrays will be references containing values of type color array. In
order to constraint accesses and updates to be performed within arrays bounds, we add
a notion of array length and two “programs” get and set with adequate preconditions:
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logic length : color_array -> int

axiom length_upd : forall t:color_array. forall i:int. forall c:color.

length(upd(t,i,v)) = length(t)

parameter get :

t:color_array ref -> i:int ->

{ 0<=i<length(t) } color reads t { result=acc(t,i) }

parameter set :

t:color_array ref -> i:int -> c:color ->

{ 0<=i<length(t) } unit writes t { t=upd(t@,i,c) }

These two programs need not being defined (they are only here to insert assertions au-
tomatically), so we declare them as parameters1.

We are now in position to define the swap function:

let swap (t:color_array ref) (i:int) (j:int) =

{ 0 <= i < length(t) and 0 <= j < length(t) }

let c = get t i in

set t i (get t j);

set t j c

{ t = upd(upd(t@,i,acc(t@,j)), j, acc(t@,i)) }

The precondition for swap states that the two indices i and j must point within the
array t and the postcondition is simply a rephrasing of the code on the model level i.e.
on purely applicative arrays. Verifying the swap function is immediate.

Next we need to give the main function a specification. First, we need to express
that the array only contains one of the three values blue, white and red. Indeed,
nothing prevents the type color to be inhabitated with other values (there is no notion
of inductive type in Why logic, since it is intended to be a common fragment of many
tools, including many with no primitive notion of inductive types). So we define the
following predicate is color:

predicate is_color(c:color) = c=blue or c=white or c=red

Note that this predicate is given a definition in Why.
Second, we need to express the main function postcondition that is, for the final

contents of the array, the property of being “sorted” but also the property of being a
permutation of the initial contents of the array (a property usually neglected but clearly
as important as the former). For this purpose, we introduce a predicate monochrome

expressing that a set of successive elements is monochrome:

predicate monochrome(t:color_array, i:int, j:int, c:color) =

forall k:int. i<=k<j -> acc(t,k)=c

1The Why tool actually provides a datatype of arrays, exactly in the way we are doing it here, and
even a nice syntax for array operations.
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For the permutation property, we only declare a predicate that will be defined on the
prover side, whatever the prover is:

logic permutation : color_array, color_array, int, int -> prop

To be able to write down the code, we still need to translate the switch statement
into successive tests, and for this purpose we need to be able to decide equality of the
type color. We can declare this ability with the following parameter:

parameter eq_color :

c1:color -> c2:color -> {} bool { if result then c1=c2 else c1<>c2 }

Note that the meaning of = within annotations has nothing to do with a boolean function
deciding equality that we could use in our programs.

We can now write the Why code for the main function:

let dutch_flag (t:color_array ref) (n:int) =

{ length(t) = n and forall k:int. 0 <= k < n -> is_color(acc(t,k)) }

let b = ref 0 in

let i = ref 0 in

let r = ref n in

while !i < !r do

if (eq_color (get t !i) blue) then begin

swap t !b !i;

b := !b + 1;

i := !i + 1

end else if (eq_color (get t !i) white) then

i := !i + 1

else begin

r := !r - 1;

swap t !r !i

end

done

{ (exists b:int. exists r:int.

monochrome(t,0,b,blue) and

monochrome(t,b,r,white) and

monochrome(t,r,n,red))

and permutation(t,t@,0,n-1) }

As given above, the code cannot be proved correct, since a loop invariant is missing, and
so is a termination argument. The loop invariant must maintain the current situation,
which can be depicted as

0 b i r n

BLUE WHITE . . . to do. . . RED

But the loop invariant must also maintain less obvious properties such as the invariance of
the array length (which is obvious since we only performs upd operations over the array,
but we need not to loose this property) and the permutation w.r.t. the initial array. The
termination is trivially ensured since r-i decreases at each loop step and is bound by 0.
Finally, the loop is annotated as follows:
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JML-annotated Java

model Why code

Proof obligations

prover

Assisted/Automatic proof

Krakatoa

Why

Figure 2.4: Verifying Java programs using Krakatoa and Why

...

while !i < !r do

{ invariant 0 <= b <= i and i <= r <= n and

monochrome(t,0,b,blue) and

monochrome(t,b,i,white) and

monochrome(t,r,n,red) and

length(t) = n and

permutation(t,t@init,0,n-1)

variant r - i }

...

We can now proceed to the verification of the program, which causes no difficulty (most
proof obligations are even discharged automatically by Simplify).

2.2.3 Application to the verification of C and Java programs

The Why tool is applied to the verification of C and Java programs, as the back-end of
two open-source tools Caduceus [14] and Krakatoa [8] respectively. Both tools are
based on the same kind of model, following Bornat [4], and handle almost all ANSI C
and all sequential Java respectively. As far as Krakatoa is concerned, Java programs
are annotated using the Java Modeling Language (JML) [15] and thus Krakatoa is
very similar to tools like Loop [22] or Jack [5]. An overview of the Krakatoa-Why
combination is given Figure 2.4. The combination with Caduceus is very similar.
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