
An idea coming from ...

• higher-order substitution (Russell, Withehead, Church, Curry,

Henkin, ...)

• λ-calculus (Church, Curry, ...)

• type theory (de Bruijn, Martin-Löf, Coquand, Huet, ...)

• automated deduction (Plotkin, Peterson, Stickel, ...)

• proof-checking (Boyer, Moore, ...)

• the practice of mathematic (Appel, Haken, Hales, ...)

Proofs are built with

Deduction rules, axioms

Proofs are built with

Deduction rules, axioms and computation rules

A simple expression of this idea

In predicate logic: deduction modulo

I. Deduction modulo

a. Deduction modulo

b. Proofs and certificates

c. An example of theory in deduction modulo: Arithmetic

II. A uniform proof language

I. Deduction modulo

a. Deduction modulo

b. Proofs and certificates

c. An example of theory in deduction modulo: Arithmetic

II. A uniform proof language

Assumed

1. Syntax of terms and formulae in predicate logic

2. Natural deduction rules (for constructive logic)

3. Many sorted predicate logic

Deduction modulo

Proof: sequence of deduction steps

Theory: set of axioms

Deduction modulo

Proof: sequence of deduction steps and computation steps

Theory: set of axioms and computation rules

A terminating and confluent system of computation rules

Computation rules apply to terms, e.g.

0 + y −→ y

and to atomic formulae, e.g.

x × y = 0 −→ x = 0 ∨ y = 0

An example: Arithmetic

∀x (x = x)

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

(0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

∀y 0 + y = y

∀x∀y S(x) + y = S(x + y)

∀y 0 × y = 0

∀x∀y S(x) × y = x × y + y

An example: Arithmetic

∀x (x = x)

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

(0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

0 + y −→ y

S(x) + y −→ S(x + y)

0 × y −→ 0

S(x) × y −→ x × y + y

Congruence

The computation rules define a congruence on formulae e.g.

(2 × 2 = 4) ≡ (4 = 4)

Smallest relation that

• is an equivalence relation

• is a congruence (compatible with all the symbols)

• contains l ≡ r for each computation rule l → r

The congruence ≡ is decidable (thanks to termination and

confluence)

Deduction rules

Deduction rules parametrized by the congruence ≡, e.g.

Γ ` A ⇒ B Γ ` A
⇒-elim

Γ ` B

Γ ` C Γ ` A
⇒-elim if C ≡ (A ⇒ B)

Γ ` B

How to squeeze a proof on a single slide ?

Axiom
∀x x = x ` ∀x x = x

∀-elim
∀x x = x ` 2 × 2 = 4

∃-intro
∀x x = x ` ∃y 2 × y = 4

Business as usual (The equivalence lemma)

For each congruence ≡, there is a theory T such that

Γ `≡ A

iff

T ,Γ ` A

e.g. T = {∀ (P ⇔ Q) | P ≡ Q}

Nothing new from the provability point of view

Something new from the proof structure point of view

Proofs and certificates

A test: is 221 prime or composite ?

Proofs and certificates

A test: is 221 prime or composite ?

Four answers: 221 composite

• as you can check yourself

• because 13 is a divisor

• because 221 = 13 × 17

• because

1 7
1 3

1 7
5 1

2 2 1

2

1

• C defined by computation rules:

>-intro
C(221)

(as you can check yourself)

• | defined by computation rules C(x) = ∃y y | x

>-intro
13 | 221

∃-intro
C(221)

(because 13 is a divisor)

• × defined by computation rules C(x) = ∃y∃z x = y × z

axiom
∀x (x = x)

∀-elim
221 = 13 × 17

∃-intro
∃z (221 = 13 × z)

∃-intro
C(221)

(because 221 = 13 × 17)

• only axioms (each step of the computation)

...

221 = 13 × 17
∃-intro

∃z (221 = 13 × z)
∃-intro

C(221)

Purely computational theories

No axioms

Only computation rules and deduction rules

Examples: arithmetic, simple type theory, set theory

Peano fourth and fifth axioms

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

Peano fourth and fifth axioms

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

Pred(S(x)) −→ x

No term rule for the fourth axiom: no one point model

Null(0) −→ >

Null(S(x)) −→ ⊥

Exercise: prove the two axioms

Where are we ?

∀x (x = x)

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

∀x∀y (S(x) = S(y) ⇒ x = y)

∀x ¬0 = S(x)

(0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

∀y 0 + y = y

∀x∀y S(x) + y = S(x + y)

∀y 0 × y = 0

∀x∀y S(x) × y = x × y + y

Equality

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

Example:

∀x ∀y (x = y ⇒ x ≤ 4 ⇒ y ≤ 4)

A second sort for sets and the set {z | z ≤ 4}: fz,z≤4

z ∈ {z | z ≤ 4} ⇔ z ≤ 4

∀x ∀y (x = y ⇒ ∀E (x ∈ E ⇒ y ∈ E))

Equality

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

Example:

∀x ∀y (x = y ⇒ x ≤ 4 ⇒ y ≤ 4)

A second sort for sets and the set {z | z ≤ 4}: fz,z≤4

z ∈ {z | z ≤ 4} ⇔ z ≤ 4

∀x ∀y (x = y ⇔ ∀E (x ∈ E ⇒ y ∈ E))

Equality

∀x ∀y (x = y ⇒ (x/z)A ⇒ (y/z)A)

Example:

∀x ∀y (x = y ⇒ x ≤ 4 ⇒ y ≤ 4)

A second sort for sets and the set {z | z ≤ 4}: fz,z≤4

z ∈ {z | z ≤ 4} −→ z ≤ 4

x = y −→ ∀E (x ∈ E ⇒ y ∈ E)

Induction

(0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

Induction

∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ ∀n n ∈ E)

Induction

∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ ∀n (N(n) ⇒ n ∈ E))

Induction

∀n (N(n) ⇒ ∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ n ∈ E))

Induction

∀n (N(n) ⇔ ∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ n ∈ E))

Induction

N(n) −→ ∀E (0 ∈ E ⇒ ∀x (x ∈ E ⇒ S(x) ∈ E) ⇒ n ∈ E)

x ∈ fx,y1,...,yn,P (y1, . . . , yn) −→ P

y = z −→ ∀E (y ∈ E ⇒ z ∈ E)

Pred(0) −→ 0 Pred(S(x)) −→ x

Null(0) −→ > Null(S(x)) −→ ⊥

N(n) −→ ∀E (0 ∈ E ⇒ ∀y (y ∈ E ⇒ S(y) ∈ E) ⇒ n ∈ E)

0 + y −→ y

S(x) + y −→ S(x + y)

0 × y −→ 0

S(x) × y −→ x × y + y

I. Deduction modulo

II. A uniform proof language

a. λΠ

b. Axioms, non logical deduction rules, computation rules

c. An example: polymorphism

Type theories

A language to express (among other things) proofs

Proofs in which theory ?

It depends: propositional logic (simply typed λ-calculus),

predicate logic (λΠ), arithmetic (T), second-order propositional

logic (F), predicative higher-order arithmetic (ITT), second-order

arithmetic (AF2), higher-order logic (CoC, Fω), full higher-order

arithmetic (CIC), ...

A uniform approach ?

Representing proofs

Proof trees (2-dimensional) are tedious to draw

Data bases, communication

A useful operation on proofs: from a proof of Γ, A ` B and a proof

of Γ ` A build a proof of Γ ` B

• suppress hypothesis A in all sequents

• replace axiom rules using A by the proof of Γ ` A

A better notation for proofs

In A1, ..., An ` B, associate a variable ξi to each hypothesis Ai

A proof of A1, ..., An ` B = a term containing the variables

ξ1, ..., ξn

Axiom
A1, ..., An ` Ai

ξi

To each rule: a function symbol (some are binders)

π1

Γ ` A

π2

Γ ` B
∧-intro

Γ ` A ∧ B

f(π1, π2)
π1

Γ, A ` B
⇒-intro

Γ ` A ⇒ B

g(ξπ1)

The operation

π2 π2 π2

π1

is substitution

(π2/ξ)π1

A notation for proofs

π ::= ξ

| ξ 7→ π | (π1 π2) app(π1, π2)

| 〈π1, π2〉 | fst(π) | snd(π)

| i(π) | j(π) | (δ π1 ξ1π2 ξ2π3)

| I

| (δ⊥ π)

| x 7→ π | (π t)

| 〈t, π〉 | (δ∃ π1 xξπ2)

Brouwer-Heyting-Kolmogorov interpretation of proofs

A proof of A ∧ B is an ordered pair formed with a proof of A and

a proof of B

A proof of A ⇒ B is an algorithmic function mapping a proof of A

to a proof of B

A proof of ∀x A(x) is an algorithmic function mapping n to a

proof of A(n)

Explains the notation ξ 7→ π and (π1 π2)

Curry-de Bruijn-Howard isomorphism

A proof of A ⇒ B is an algorithmic function mapping a proof of A

to a proof of B

If ΦA is the type of the proofs of A then

Φ(A ⇒ B) = ΦA → ΦB

Φ isomorphism between formulae and types

Propositions play the role of types of their proofs

Dependent types

A proof of ∀x (even(x) ∨ odd(x)) is an algorithmic function

mapping n to a proof of even(n) ∨ odd(n)

f(n) : even(n) ∨ odd(n)

f : (x : nat) → (even(x) ∨ odd(x))

f : Πx : nat (even(x) ∨ odd(x))

A choice

Three languages:

S(S(0)) terms

S(S(0)) = 0 formulae

x 7→ x proofs

One language:

S(S(0)), S(S(0)) = 0 and x 7→ x are all terms of the language

One language: λΠ-calculus

A type T (e.g. nat) for the objects of the theory

T : Type

One language: λΠ-calculus

A type T (e.g. nat) for the objects of the theory

T : Type

Translate each term as a term of type T

To each function symbol f f : T → ... → T → T

Translate each atomic formula P (t, u) to a term of type Type

To each predicate symbol P P : T → ... → T → Type

One language: λΠ-calculus

A type T (e.g. nat) for the objects of the theory

T : Type

Translate each term as a term of type T

To each function symbol f f : T → ... → T → T

Translate each atomic formula P (t, u) to a term of type Type

To each predicate symbol P P : T → ... → T → Type

Translate A ⇒ B to A → B

Translate ∀x A(x) to Πx : T A(x)

...

An example

Assume π is a proof of ∀x ∀y (S(x) = S(y) ⇒ x = y)

And π′ of 1 = 2

Find a proof of 0 = 1

Theories

So far: predicate logic

Need to be extended to theories (e.g. arithmetic, simple type

theory, set theory, ...) ?

A first way to arithmetic

For each axiom: a constant

p3 : ∀x ∀y (S(x) = S(y) ⇒ x = y)

p4 : ∀x (0 = S(x) ⇒ ⊥)

RecA : (0/z)A ⇒ ∀x ((x/z)A ⇒ (S(x)/z)A) ⇒ ∀n (n/z)A

...

ξ : 1 = 2 ` (p3 0 1 ξ) : 0 = 1

ξ : 1 = 2 ` (p4 0 (p3 0 1 ξ)) : ⊥

` ξ : 1 = 2 7→ (p4 0 (p3 0 1 ξ)) : (1 = 2) ⇒ ⊥

A second way

Replace axioms by non logical deduction rules

Γ ` (0/z)A Γ ` ∀x ((x/z)A ⇒ (S(x)/z)A)

Γ ` ∀n (n/z)A

Introduce a new construction in the proof language: Rec(π1, π2)

Almost the same but Rec a construction (like app), not a constant

A particular case, the folding and unfolding rules

x ∈ (A ∩ B)

x ∈ A ∨ x ∈ B

Axioms poison proof reduction

In predicate logic: a normal closed terms is an introduction

Consistency, disjunction, witness, finite failure of search of ⊥, ...

With constants normal closed terms need not be introductions

e.g. with an axiom ∃x P (x)

No witness property, no finite failure of search of ⊥, ...

Extra reduction rules

e.g.

Rec a b 0 −→ 0

Rec a b S(x) −→ (b x (Rec a b x))

ι-reduction (inductive types)

Each new axiom: a new constant and a new proof-reduction rule

Replacing axioms by computation rules: λΠ modulo

Null(0) −→ >

Null(S(x)) −→ ⊥

x ∈ fNull −→ Null(x)

∀x ¬(0 = S(x)) now has the proof

x : nat 7→ α : (0 = S(x)) 7→ (α fNull I)

Not a constant

No need for extra reduction rules, the terms reduces for itself

Polymorphism

Simple type theory (higher-order logic)

∀P (P ⇒ P)

(Q ⇒ Q) ⇒ (Q ⇒ Q)

Polymorphism

ΠP : Type (P ⇒ P)

built on the same pattens as

Πx : nat (x = x)

But the red part nat must be of type Type

Type : Type ? No way

Extra typing rules to form more products (polymorphism)

Polymorphism through rewriting

Express simple type theory as a first-order theory

∀P (P ⇒ P)

∀p (ε(p) ⇒ ε(p))

substitute by ar(q, q)

ε(ar(q, q)) ⇒ ε(ar(q, q))

Polymorphism through rewriting

Express simple type theory as a first-order theory

∀P (P ⇒ P)

∀p (ε(p) ⇒ ε(p))

substitute by ar(q, q)

ε(ar(q, q)) ⇒ ε(ar(q, q))

Need a rule

ε(ar(x, y)) −→ ε(x) ⇒ ε(y)

Proofs of simple type theory in λΠ modulo

A uniform proof language

λΠ modulo

A simple extension of λΠ with a (parametric) congruence on types

Proofs of all axiom free theories in deduction modulo

Unifies many (more or less esoteric) type theories

Allows to design new type theories (for set theory, ...)

Uniformity allows uniform meta-theory (e.g. termination criteria)

