
Proof of normalisation using domain theory

Thierry Coquand and Arnaud Spivak

Aug. 24, 2005

Proof of normalisation using domain theory

Goal of the presentation

Show an example where computer science helps in simplifying an argument in
proof theory

How to prove normalisation for some computation rules introduced in proof
theory (variant of bar recursion)

Intuition: if the computation rules make sense, the system should be
normalising

1

Proof of normalisation using domain theory

Goal of the presentation

This presentation aims to present a simplified version of

Ulrich Berger “Continuous Semantics for Strong Normalisation”
LNCS 3526, 23-34, 2005

This work itsef simplifies the argument in

W.W. Tait “Normal form theorem for bar recursive functions of finite type”
Proceedings of the Second Scandinavian Logic Symposium, North-Holland, 1971

2

Proof of normalisation using domain theory

PCF

Introduced by D. Scott in 1969

“A type-theoretical alternative to CUCH, ISWIM and OWHY”

Published in Theoret. Comput. Sci. 121 (1993), no. 1-2, 411–440.

This was the basis of the LCF system

3

Proof of normalisation using domain theory

PCF

G. Plotkin “LCF considered as a programming language”

Theoretical Computer Science, 5:223-255, 1977

Simply typed λ-calculus with with base types o, ι and constants

Basic operations

tt : o, ff : o, kn : ι, (+1) : ι → ι, (−1) : ι → ι, Z : ι → o

⊃ι: o, ι, ι → ι, ⊃o: o, o, o → o

Yσ : (σ → σ) → σ

4

Proof of normalisation using domain theory

Operational semantics

λx.t ⇓ λx.t

t ⇓ λx.t′ t′(x = u) ⇓ v

t u ⇓ v

a ⇓ tt b ⇓ v

⊃ a b c ⇓ v

a ⇓ ff c ⇓ v

⊃ a b c ⇓ v

f (Y f) ⇓ v

Y f ⇓ v

a ⇓ kn

(+1) a ⇓ kn+1

a ⇓ kn+1

(−1) a ⇓ kn

a ⇓ k0

Z a ⇓ tt

a ⇓ kn+1

Z a ⇓ ff

5

Proof of normalisation using domain theory

Denotational semantics

A domain is a complete partial order D, with a least element ⊥ and a top
element >

If D,E are domains, [D → E] is the complete lattice of continuous functions,
i.e. monotone and such that f(∨i∈IXi) = ∨i∈If(Xi) for directed families (Xi)

We have natural choices for Dι and Do

Dσ→τ = [Dσ → Dτ]

We have natural choices for [[c]] ∈ Dσ if c : σ

[[Y]] f =
∨

n∈N fn ⊥ so that [[Y]] ∈ [[Dσ → Dσ] → Dσ]

6

Proof of normalisation using domain theory

Denotational semantics

Given ρ : Vσ → Dσ and t : σ we define [[t]]ρ ∈ Dσ by induction on t

[[x]]ρ = ρ(x)

[[λx.t]]ρ = u 7−→ [[t]](ρ,x=u)

[[t u]]ρ = [[t]]ρ [[u]]ρ

[[c]]ρ = [[c]]

7

Proof of normalisation using domain theory

Adequacy theorem

Theorem: For any closed term t of base type ι and any value kn we have
[[t]] = n iff t ⇓ kn

For instance [[t]] = 0 iff t ⇓ k0

8

Proof of normalisation using domain theory

Application: transformation of programs

Assume we have a program t = C[u] having u as a subprogram

If [[u]] = [[u′]] then [[t]] = [[C[u]]] = [[C[u′]]]

This follows from the compositionality property of the denotational semantics

If t ⇓ k0 then [[t]] = 0 hence [[C[u′]]] = 0

Hence by the adequacy theorem C[u′] ⇓ k0

Elegant way of proving the equivalence of programs (for instance for
justification of compiler optimisations)

Avoids messy syntactical details

9

Proof of normalisation using domain theory

Adequacy theorem

Plotkin’s result is for a simply typed language

Proof by induction on the types, reminiscent of reducibility, by introduction of
a computability predicate

The adequacy result holds for untyped languages!

In some sense, untyped λ-calculus has a type structure

10

Proof of normalisation using domain theory

Finite elements

d ∈ D is finite iff d ≤
∨

i∈I αi implies d ≤
∨

i∈K αi for some finite K ⊆ I

The finite elements represent observable pieces of information about a program

0: the program t reduces to 0

0 → 0: if we apply t to 0 the result t 0 reduces to 0

⊥→ 0: if we apply t to a looping program l the result t l reduces to 0

For the last example this means intuitively that the program t does not even
look at its argument during the computation

11

Proof of normalisation using domain theory

Finite elements

If d1, d2 are finite so is d1 ∨ d2

Algebraic domains: any element is the sup of the set of finite elements below
it

If D,E are algebraic then [D → E] is algebraic: the finite elements are exactly
finite sups of step functions d → e

(d → e) d′ = e if d ≤ d′

(d → e) d′ =⊥ otherwise

12

Proof of normalisation using domain theory

Finite elements

In set theory ι, ι → ι, . . . have greater and greater cardinality

For each type σ the finite elements of Dσ form a countable set

13

Proof of normalisation using domain theory

Adequacy theorems

S. Abramsky “Domain theory in logical form.”
Annals of Pure and Applied Logic, 51:1-77, (199)1.

R. Amadio and P.L. Curien Domains and Lambda-Calculi.
Cambridge tracts in theoretical computer science, 46, (1997).

H. Barendregt, M. Coppo and M. Dezani-Ciancaglini
“A filter lambda model and the completeness of type assignment.”
J. Symbolic Logic 48 (1983), no. 4, 931–940 (1984).

P. Martin-Löf “Lecture note on the domain interpretation of type theory.”
Workshop on Semantics of Programming Languages, Chalmers, (1983).

14

Proof of normalisation using domain theory

An untyped programming language

t ::= n | t t | λx.t n ::= x | c | f

Two kind of constants: defined f, g, . . . and primitive c, c′, . . .

f is defined by equations (computation rules) of the form

f x1 . . . xn (c y1 . . . yk) → u

Each constant has an arity ar(f) = n + 1, ar(c) = k

We write h, h′, . . . for a constant f or c

15

Proof of normalisation using domain theory

Operational semantics

λx.t ⇓ λx.t c ~t ⇓ c ~t

|~t| < ar(h)
h ~t ⇓ h ~t

t ⇓ λx.t′ t′(x = u) ⇓ v

t u ⇓ v

t ⇓ c ~t u(~x = ~u, ~y = ~t) ⇓ v

f ~u t ⇓ v

We suppose f ~x (c ~y) = u

16

Proof of normalisation using domain theory

Finite elements

Given a set of constants c with arity ar(c) ∈ N

U, V ::= ∆ | U → V | U ∩ V | c ~U | ∇

If ~U is a vector U1, . . . , Um we write ~U → U for

U1 → (· · · → (Um → U) . . .)

and c ~U for
c U1 . . . Um

17

Proof of normalisation using domain theory

Finite elements as set of closed programs

Let Λ be the set of all programs

∆ is Λ, ∇ is ∅

c U1 . . . Uk = {t | t ⇓ c u1 . . . uk, ui ∈ Ui}

U → V is the set of programs t such that t computes to λx.t′ or to h ~t,
|~t| < ar(h) and ∀u ∈ U. t u ∈ V

U ∩ V = {t | t ∈ U ∧ t ∈ V }

18

Proof of normalisation using domain theory

Meet-semi lattice

∇ ⊆ U ⊆ ∆

c U1 . . . Uk ∩ c U ′
1 . . . U ′

k = c (U1 ∩ U ′
1) . . . (U1 ∩ U ′

k)

c U1 . . . Uk ∩ (U → V) = ∇ c U1 . . . Uk ∩ c′ U ′
1 . . . U ′

l = ∇

(U → V) ∩ (U → V ′) = U → (V ∩ V ′)

U ′ ⊆ U, V ⊆ V ′ ⇒ (U → V) ⊆ U ′ → V ′

19

Proof of normalisation using domain theory

Key property

Lemma: We have ∩i∈I(Ui → Vi) ⊆ U → V iff (∩i∈LVi) ⊆ V where
L = {i ∈ I | U ⊆ Ui}

This holds only, a priori, for the formal inclusion relation

20

Proof of normalisation using domain theory

Decidability

Given U, V we can decide whether U ⊆ V or not

21

Proof of normalisation using domain theory

Filters

A filter α is a set of types such that

(1) ∆ ∈ α

(2) if U, V ∈ α then U ∩ V ∈ α

(3) if U ∈ α and U ⊆ V then V ∈ α

These elements are ordered by inclusion

↑ (U ∩ V) =↑ U ∨ ↑ V

There is a least element ⊥=↑ ∆ and a top element > =↑ ∇

We identify U and ↑ U

22

Proof of normalisation using domain theory

Filters

The poset of all these filters is a complete lattice D

This poset is algebraic: any element is the directed sup of all finite elements
below it

Notice that the greatest element > is finite!

The finite elements of D are exactly the types

23

Proof of normalisation using domain theory

Filters

This domain D contains 0, s 0, but also s ⊥, s (s ⊥), . . .

We have a continuous function s : D → D

D contains the sup of these elements ω such that ω = s ω

ω = {⊥, s ⊥, s (s ⊥), . . . }

24

Proof of normalisation using domain theory

Filters

We have an application operation on D

α β = {∆} ∪ {V | ∃U. [U → V] ∈ α ∧ U ∈ β}

Notice that

⊥ β =⊥

> β = >

25

Proof of normalisation using domain theory

Typing rules

(x:U) ∈ Γ
Γ ` x : U

Γ, x : U ` t : V

Γ ` λx.t : U → V

Γ ` t : U → V Γ ` u : U

Γ ` t u : V

Γ ` t : U Γ ` t : V

Γ ` t : U ∩ V

Γ ` t : U U ⊆ V

Γ ` t : V Γ ` t : ∆

26

Proof of normalisation using domain theory

Typing rules for constants

` c : ~U → c ~U

~x : ~U, ~y : ~V ` u : U

` f : ~U → (c ~V) → U

We suppose f ~x (c ~y) = u

` f : ~U → ∇→ ∇

27

Proof of normalisation using domain theory

Typing rules for constants

If we have 0, s, add with the equations

add x 0 = x add x (s y) = s (add x y)

then we have the typing rules

add : U → 0 → U

x:U, y:W ` add x y : V

add : U → (s W) → s V

28

Proof of normalisation using domain theory

Types and finite elements

∆ corresponds to ⊥

U → V corresponds to the step function defined by

[U → V] U ′ = V if U ≤ U ′

[U → V] U ′ =⊥ otherwise

∇ corresponds to >, the top element of the domain

29

Proof of normalisation using domain theory

Denotational semantics

[[t]]ρ ∈ D for ρ : V → D

[[c]] (res. [[f]]) is the filter of all types U such that ` d : U (resp. ` f : U)

[[x]]ρ = ρ(x)

[[t u]]ρ = [[t]]ρ [[u]]ρ

[[λx.t]]ρ = α 7−→ [[t]](ρ,x=α)

30

Proof of normalisation using domain theory

Typing rules and denotational semantics

Theorem: We have ` t : U iff U ≤ [[t]]

More generally, we have x1:U1, . . . , xn:Un ` t : U iff

U ≤ [[t]]x1=U1,...,xn=Un

31

Proof of normalisation using domain theory

Denotational semantics

An alternative approach is to define directly [[t]]ρ ∈ D by

[[t]]ρ = {U | x1:U1, . . . , xn:Un ` t : U, Ui ∈ ρ(xi)}

Lemma: Γ ` λx.t : U → V iff Γ, x:U ` t : V

32

Proof of normalisation using domain theory

Denotational semantics

Theorem: We have

[[x]]ρ = ρ(x)

[[t u]]ρ = [[t]]ρ [[u]]ρ

[[λx.t]]ρ α = [[t]](ρ,x=α)

if [[t]]ρ,x=α = [[u]]ν,y=α for all α then [[λx.t]]ρ = [[λy.u]]ν

33

Proof of normalisation using domain theory

Denotational semantics

This alternative characterisation of the semantics of β-conversion is described
in

R. Hindley and J. Seldin “Combinators and λ-calculus”, University Press, 1986

and goes back to G. Berry

34

Proof of normalisation using domain theory

Adequacy theorem

Theorem: If ` t : U then t ∈ U

Corollary: If [[t]] = c ~U then there exists ~u such that t ⇓ c ~u

35

Proof of normalisation using domain theory

Application: Gödel system T

Weak version of the normalisation theorem in a semantical way

The constants of Gödel system T are 0, s, natrec

natrec u v 0 = u natrec u v (s m) = v m (natrec u v m)

The base type is ι and 0 : ι, s : ι → ι and natrec : σ → (ι → σ → σ) → ι → σ

36

Proof of normalisation using domain theory

Application: Gödel system T

To each type σ we associate a predicate Totσ on D

a ∈ D is a total integer iff a = sk 0 for some k ∈ N

Totσ→τ(b) means that Totσ(a) implies Totτ(b a)

If Γ is a context define TotΓ(ρ) to mean Totσ(ρ(x)) for all x:σ in Γ

37

Proof of normalisation using domain theory

Application: Gödel system T

Lemma 1: If Γ ` t : σ and TotΓ(ρ) then Totσ([[t]]ρ). In particular, if ` t : σ
then Totσ([[t]]).

Lemma 2: If Totσ(a) then a 6=⊥

Corollary: If ` t : ι then t ⇓ 0 or there exists t′ such that t ⇓ s t′

38

Proof of normalisation using domain theory

Strong Normalisation

As explained in the talk of Benjamin Grégoire for the (total) correctness of
the type-checking algorithm we need a (strong) normalisation theorem

B. Grégoire and X. Leroy
A compiled implementation of strong reduction, ICFP 2002, 235-246.

39

Proof of normalisation using domain theory

Strong Normalisation

N subset of strongly normalisable terms

We write w,w′ for strongly normalisable terms

Simple terms

s ::= x | s w | f ~w s

40

Proof of normalisation using domain theory

Head-reduction

(λx.u) v � u(x = v)

f ~u (c ~v) � u(~x = ~u, ~y = ~v)

u � u′

u v � u′ v

u � u′

f ~u u � f ~u u′

We say that u is of head-redex form iff there exists u′ such that u � u′

41

Proof of normalisation using domain theory

Head-reduction and reduction

We let S ⊆ N be the set of strongly normalisable terms that reduce to a
simple term

S ⊆ N ⊆ Λ

We write u → u′ ordinary reduction and

→ (u) = {u′ | u → u′}

42

Proof of normalisation using domain theory

Saturated set

X ⊆ Λ is saturated iff

(CR1) S ⊆ X ⊆ N

(CR2) if t ∈ X then → (t) ⊆ X

(CR3) if t is of head-redex form and → (t) ⊆ X then t ∈ X

43

Proof of normalisation using domain theory

Saturated subsets

lemma: If I 6= ∅ and Xi saturated then ∩i∈IXi are saturated

If X, Y ⊆ Λ then we define

X → Y = {t ∈ Λ | ∀u ∈ X. t u ∈ Y }

lemma: If X and Y are saturated then so is X → Y

44

Proof of normalisation using domain theory

Saturated subsets

If X1, . . . , Xk ⊆ Λ then c X1 . . . Xk is the set of terms defined inductively
as follows

if t1 ∈ X1, . . . , tk ∈ Xk then c ~t ∈ c ~X

if t ∈ S then t ∈ c ~X

if t is of head-redex form and → (t) ⊆ c ~X then t ∈ c ~X

45

Proof of normalisation using domain theory

Finite elements as saturated sets

We consider the new set of finite elements (types)

U ::= ∆ | W W, V ::= c ~W | W ∩W | W → W | ∇

Each finite element W can be interpreted as a saturated set

Notice that if c ~u ∈ W then |~u| = ar(c)

46

Proof of normalisation using domain theory

Meet-semi lattice

∇ ⊆ U ⊆ ∆

c W1 . . . Wk ∩ c W ′
1 . . . W ′

k = c (W1 ∩W ′
1) . . . (W1 ∩W ′

k)

c W1 . . . Wk ∩ (W → V) = ∇ c W1 . . . Wk ∩ c′ W ′
1 . . . W ′

l = ∇

(W → V) ∩ (W → V ′) = W → (V ∩ V ′)

W ′ ⊆ W, V ⊆ V ′ ⇒ (W → V) ⊆ W ′ → V ′

47

Proof of normalisation using domain theory

Meet-semi lattice

The filters over this lattice define a new domain E

As before we have an application

α β = {∆} ∪ {W | ∃V. V ∈ β ∧ (V → W) ∈ α}

Notice that α ⊥=⊥ for all α

48

Proof of normalisation using domain theory

Strict semantics

We consider the new typing system with only judgements of the form Γ ` t : W

Lemma: If ` t : W then t belongs to the saturated set W

49

Proof of normalisation using domain theory

Typing rules

(x:W) ∈ Γ
Γ ` x : W

Γ, x : W ` t : V

Γ ` λx.t : W → V

Γ ` t : W → V Γ ` u : W

Γ ` t u : V

Γ ` t : W Γ ` t : V

Γ ` t : W ∩ V

Γ ` t : W W ⊆ V

Γ ` t : V

50

Proof of normalisation using domain theory

Typing rules for constants

` c : ~W → c ~W

~x : ~W, ~y : ~V ` u : W

` f : ~W → (c ~V) → W

We suppose f ~x (c ~y) = u

` f : ~W → ∇→ ∇

51

Proof of normalisation using domain theory

Strict semantics

We define [t]ρ ∈ E to be the following filter: U ∈ [t]ρ iff

(1) U = ∆, or

(2) x1:W1, . . . , xn:Wn ` t : U in the new system, with Wi ∈ ρ(xi)

52

Proof of normalisation using domain theory

Strict semantics

Theorem: We have

[x]ρ = ρ(x)

[t u]ρ = [t]ρ [u]ρ

[λx.t]ρ α = [t](ρ,x=α) if α 6=⊥

if [t]ρ,x=α = [u]ν,y=α for all α 6=⊥ then [λx.t]ρ = [λy.u]ν

53

Proof of normalisation using domain theory

Strict semantics

Theorem: If [t] 6=⊥ then t is strongly normalisable

If [[u]]ρ 6=⊥ then
[[(λx.t) u]]ρ = [[t(x = u)]]ρ

54

Proof of normalisation using domain theory

Application: Gödel’s system T

Theorem: If Γ ` t : σ and TotΓ(ρ) then Totσ([t]ρ)

The crucial case is the application: if ` t : σ → τ and u : σ then by induction
Totσ→τ([t]) and Totτ([u]). Hence [u] 6=⊥ and

[t u] = [t] [u]

Corollary: If ` t : σ then t is strongly normalisable

55

Proof of normalisation using domain theory

Interpretation of >

The special element > ∈ D satisfies

> β = >

if β 6=⊥, but also
f α1 . . . αn > = >

if α1 6=⊥, . . . , αn 6=⊥

56

