
Agda

Catarina Coquand

August 16, 2005

– Typeset by FoilTEX –

Agda Catarina Coquand [1]

Background

• Agda is an interactive system for developing proofs in a variant of Martin-Löf’s
type theory

• It is based on the idea of direct manipulation of proof-term and not on tactics.
The proof is a term, not a script.

• The language has ordinary programming constructs such as data-types and
case-expressions, signatures and records, let-expressions and modules.

• Has an emacs-interface and a graphical interface, Alfa

– Typeset by FoilTEX – 1

Agda Catarina Coquand [2]

System

Agda is an interactive system.

• It consists of a type checker and a termination checker

• Implemented in Haskell

• You will use a simpler version of Agda (with a small library)

– Typeset by FoilTEX – 2

Agda Catarina Coquand [3]

A proof of A → A

• The proof of A → A is the term λx : A.x

• In Agda

\x -> x
-- alternative: \(x::A) -> x

• The syntax of Agda is rather close to Haskell

– Typeset by FoilTEX – 3

Agda Catarina Coquand [4]

The identity function

• Function definition

id (A::Set) :: A -> A
id = \a -> a

• Application:

id 0
id ’c’

– Typeset by FoilTEX – 4

Agda Catarina Coquand [5]

Syntactic Sugar for Function Definitions

id (A::Set) :: A -> A
id a = a

– Typeset by FoilTEX – 5

Agda Catarina Coquand [6]

Inbuilt type: Pairs

• Pairs are written A × B

• A pair is written (a,b)

• Projection functions

– fst :: A × B -> A
– snd :: A × B -> B

• Corresponds to logical and

– Typeset by FoilTEX – 6

Agda Catarina Coquand [7]

Rule for And

[A&B]
C A B

C

curry (A,B,C::Set) :: (A × B -> C) -> A -> B -> C
curry f a b = f (a,b)

– Typeset by FoilTEX – 7

Agda Catarina Coquand [8]

And-elimination

Stating the &-elimination rule:

[A B]
C A&B

C

uncurry(A,B,C::Set) :: (A -> B -> C) -> A × B -> C

– Typeset by FoilTEX – 8

Agda Catarina Coquand [9]

Swap

Bengt’s proof of A&B =⇒ B&A. We use the &-elimination i.e. uncurry

swap (A,B::Set) :: (A × B) -> B × A
swap p = uncurry (\x y -> (y,x)) p

– Typeset by FoilTEX – 9

Agda Catarina Coquand [10]

Inbuilt Type: Booleans

• Type is Bool

• Constructed by True and False

• We have the ordinary if_then_else construction

– Typeset by FoilTEX – 10

Agda Catarina Coquand [11]

Inbuilt Types: Lists

• Type is List A

• Constructed by Nil and :

• The list [] is syntactic sugar for Nil

• The list [1,2,5] is syntactic sugar for 1:[2,5]

• The list [1,2,5] is syntactic sugar for 1:2:5:Nil

– Typeset by FoilTEX – 11

Agda Catarina Coquand [12]

More Inbuilt Types

• Integer: Infinite integers with usual operations except division

• Char: Characters with some standard operations

• String: Strings are lists of characters

– Typeset by FoilTEX – 12

Agda Catarina Coquand [13]

Let-expressions

We can also use let-notation

ex :: Integer
ex = let {

big :: Integer;
big = 12324567891234566789;
neg :: Integer;
neg = negate 1000;
}

in big*neg

– Typeset by FoilTEX – 13

Agda Catarina Coquand [14]

Layout rule

ex :: Integer
ex = let big :: Integer

big = 12324567891234566789
neg :: Integer
neg = negate 1000

in big*neg

– Typeset by FoilTEX – 14

Agda Catarina Coquand [15]

Equality Type

• We write equality as a == b

• It is reflexive, symmetric, transitive, and substitutive

• Equivalent to Leibniz-equality

– Typeset by FoilTEX – 15

Agda Catarina Coquand [16]

Typechecking a proof of Reflexivity

We have refId x is of type x == x,

refId 6 :: 6 == 6 -- also the inferred type
refId 6 :: 2 * 3 == 4 + 2

This is so since 6 == 6 and 2∗3 == 4+2 are convertible. (See Herman Geuver’s
note on type checking)

– Typeset by FoilTEX – 16

Agda Catarina Coquand [17]

Stating a Quantified Theorem

State that == is symmetrical: ∀ x y.x == y =⇒ y == x

symmEq (A::Set):: (x,y::A) -> x == y -> y == x
symmEq x y =

Equivalent to

symmEq (A::Set) :: (x::A) -> (y::A) -> x == y -> y == x
symmEq x y =

– Typeset by FoilTEX – 17

Agda Catarina Coquand [18]

Defining Type Synonyms

Pred :: Set -> Type
Pred X = X -> Set

Rel :: Set -> Type
Rel X = X -> X -> Set

Symmetrical (X::Set) :: (R::Rel X) -> Set
Symmetrical R = (x1,x2::X) |-> (x1 ‘R‘ x2 -> x2 ‘R‘ x1)

symmEq (A::Set) :: Symmetrical (==)
symmEq x1 x2 = ...

– Typeset by FoilTEX – 18

Agda Catarina Coquand [19]

Language Constructions : Data Types

We introduce a new type by data-type construction

data Bool = True | False
data List (A::Set) = Nil | (:) (a::A) (l::List A)

– Typeset by FoilTEX – 19

Agda Catarina Coquand [20]

Language Constructions :Case Expressions

We can introduce implicitly defined constants by case-expressions. (Should be
thought of as defining functions with pattern-equations.)

(++)(A::Set) :: List A -> List A -> List A
(++) xs ys = case xs of

(Nil) -> ys
(x : xs’) -> x:xs’++ys

Has to cover all possible cases. The term xs ++ ys is on normal form.

– Typeset by FoilTEX – 20

Agda Catarina Coquand [21]

Elimination Rule for Lists

elimList (A ::Set) ::
(C::List A -> Set) ->
C [] ->
((x::A) -> (xs::List A) -> C xs -> C (x:xs)) ->
(xs::List A) ->
C xs

elimList C c_nil c_con xs =
case xs of

(Nil) -> c_nil
(x : xs’) -> c_con x xs’ (elimList C c_nil c_con xs’)

– Typeset by FoilTEX – 21

Agda Catarina Coquand [22]

Logic

• Or: data Plus (X,Y::Set) = Inl (x::X) | Inr (y::Y)

• Exists: data Sigma (X::Set) (Y::X -> Set) = dep_pair (x::X)(y::Y x)

• Truth: data Unit :: Set = unit

• Absurdity: data Empty :: Set =

– Typeset by FoilTEX – 22

Agda Catarina Coquand [23]

Or- elimination

elimPlus (X,Y::Set) ::
(C::Plus X Y -> Set) ->
(c_lft::(x::X) -> C (Inl x)) ->
(c_rgt::(y::Y) -> C (Inr y)) ->
(xy::Plus X Y) ->
C xy

elimPlus C c_lft c_rgt xy = case xy of
(Inl x) -> c_lft x
(Inr y) -> c_rgt y

whenPlus (X,Y,Z::Set) :: (f::X -> Z) -> (g::Y -> Z) -> (Plus X Y -> Z)
whenPlus = elimPlus (\h -> Z)

– Typeset by FoilTEX – 23

Agda Catarina Coquand [24]

Absurdity

data Empty :: Set =

elimEmpty :: (C::Empty -> Set) -> (z::Empty) -> C z
elimEmpty C z = case z of { }

whenEmpty :: (X::Set) -> Empty -> X
whenEmpty X z = case z of { }

Not :: Set -> Set
Not X = X -> Empty
absurdElim (A::Set) :: A -> Not A -> (X::Set) -> X
absurdElim h h’ X = whenEmpty X (h’ h)

– Typeset by FoilTEX – 24

Agda Catarina Coquand [25]

Inductive families

idata (==) (X::Set) :: X -> X -> Set where
refId (x::X) :: (==) x x

Use elimination rules and not case for inductive families.

– Typeset by FoilTEX – 25

Agda Catarina Coquand [26]

Language Constructions : Structures/Signature

PlusSig :: (A::Set) -> Set
PlusSig A = sig

zer :: A
plus :: A -> A -> A

IntPluSig :: PlusSig Integer
IntPluSig = struct

zer :: Integer
zer = 0
plus :: Integer -> Integer -> Integer
plus = (+)

– Typeset by FoilTEX – 26

Agda Catarina Coquand [27]

Another Instance

ListPluSig :: (A::Set) -> PlusSig (List A)
ListPluSig A = struct

zer :: List A
zer = []
plus :: List A -> List A -> List A
plus = (++)

– Typeset by FoilTEX – 27

Agda Catarina Coquand [28]

Using Struct/Sig

f :: Integer
f = IntPlusSig.plus IntPlusSig.zer (IntPlusSig.zer +1)

f :: Integer
f = let open IntPlusSig use plus, zer

in plus zer (zer + 1)

– Typeset by FoilTEX – 28

Agda Catarina Coquand [29]

Packages

Packages

package Natural where
open Prelude use Pred
open Boolean use Bool, False, True

data Nat = Zero | Succ (n::Nat)

natrec (C::Pred Nat)(bc::C Zero)
(ic::(n::Nat) -> C n -> C (Succ n))
(m::Nat)

:: C m =
isZero (a::Nat) :: Bool

=

– Typeset by FoilTEX – 29

Agda Catarina Coquand [30]

Examples : typechecking

F :: Set
F = Bool
f :: Bool -> F
f = \a -> a

Gives an equality constraint:

Bool = F

We must compute F to see that they are equal.

– Typeset by FoilTEX – 30

Agda Catarina Coquand [31]

Example : Typechecking

F :: (A::Set) -> Set
F = \A -> A

f :: (B::Set) -> B -> F B
f = \B -> \a -> a

Gives the equality constraint:

B = F B

– Typeset by FoilTEX – 31

Agda Catarina Coquand [32]

Meta-variables

• A meta-variable can only occur in one typing constraint.

• The result of typechecking is a set of typing constraints and equality constraints
instead of a yes and no answer when type-checking terms with meta-variables.

• Using higher-order unification will sometimes (often) solve the constraints.

– Typeset by FoilTEX – 32

Agda Catarina Coquand [33]

Meta-variables

f :: (A::Set) -> (a::A) -> A
f = \(B::Set) -> \(b::B) -> ?

Is type correct if
B : Set, b : B ` ? : B

– Typeset by FoilTEX – 33

Agda Catarina Coquand [34]

Examples Meta Variables ctd

f :: (A::Set) -> (a::A) -> A
f = \(B::Set) -> \(b::?) -> b

Is type correct if
B : Set ` ? type

and
A ≡ ?(B = A)

– Typeset by FoilTEX – 34

Agda Catarina Coquand [35]

Hidden Arguments

We do not have polymorhism, but hidden arguments

id (A::Set) :: A -> A
id a = a
id ’c’

is translated into id |? ’c’ .

– Typeset by FoilTEX – 35

Agda Catarina Coquand [36]

Hidden Arguments ctd

We can write more explicitly

id :: (A::Set) |-> A -> A
id = \(A::Set) |-> \a -> a

id |Char ’c’

– Typeset by FoilTEX – 36

Agda Catarina Coquand [37]

Emacs-symbols

(global-set-key (kbd "C-*") (lambda () (interactive) (insert "\327")))
;;; Cartesian product
(global-set-key (kbd "C-.") (lambda () (interactive) (insert "\260")))
;;;; Ring
(global-set-key (kbd "C-!") (lambda () (interactive) (insert "\254")))
;;;; not
(global-set-key [f9] (lambda () (interactive) (insert "\330")))
;;;; Empty set
(global-set-key [f10] (lambda () (interactive) (insert "\267"))) ;;;; Multiplication dot
(global-set-key [f11] (lambda () (interactive) (insert "\367")))

– Typeset by FoilTEX – 37

