Agda Commands

[Agda-documentation team at AIST CVS]
August 15, 2005

Abstract
Contents
A List of commands 2
Al Agdamenu 2
A2 Goal commands. 3

A List of commands

All Agda commands can be invoked by key operations, or by selecting items in
menus. The commands which are effective in the whole of the code are found
in Agda menu in the menu bar. On the other hand, the commands for goals
are found in the popup menu by right-clicking on a goal. Most of items in goal
menu depend on the context.

Commands are classified to four categories roughly.

Necessary commands you must know.
Important commands used very often.

Often commands which help you use Agda effectively. You can do without
them.

A.1 Agda menu

Restart
key: C-c C-x C-c
category: often
(Re-)initializes the type-checker.

Quit

key: C-c C-q
category: necessary
Quits and cleans up after agda. If you do not want Emacs to warn in quiting
Emacs, then you should invoke this command every time.

Goto error
key: C-c
category: important

Jumps to the line the first error occurs.

Load
key: C-c C-x C-b
category: often
Reads and type-checks the current buffer.
Chase-load
key: C-c C-x RET
category: necessary
Reads and type-checks the current buffer and included files.

[

Show constraints
key: C-c C-e
category: often
Shows all constraints in the code. A constraint is an equation of two goals
or of a goal and an expression.

Compute
key: C-c C-x >
category: often
Compute a closed top-level expression. Does not reduce under lambda.

Suggest
key: C-c C-x C-s
category: often
Suggests suitable expressions.

Show goals
key: C-c C-x C-a
category: often
Shows all goals in the current buffer.

Next goal
key: C-c C-f
category: often
Moves the cursor to the next goal, if any.

Previous goal
key: C-c C-b
category: often
Moves the cursor to the previous goal, if any.

Undo
key: C-c C-u
category: important
Cancels the last Agda command or typing.

Text state
key: C-c
category: necessary
Resets agda to the state that the current buffer is loaded.

Check termination
key: C-c C-x C-t
category: often
Runs termination check on the current buffer. You will need to retype-check
the buffer.

Submitting bug report
key:
category:
(not implemented)

A.2 Goal commands.

When a goal is replaced with a new expression by the commands below, we
know that it is type-correct.

Give
key: C-c C-g
category: often
Substitute a given expression in the goal.

Intro
key: C-c TAB
category: often

Introduces the canonical expression of the type the goal i.e. an abstraction,
a record, or a constructor if only one possible exists

Refine
key: C-c C-r
category: important
Given an expression, e, this command will apply the minimum number of
meta-variables needed for the expression e 7 7 ..7 to be type-checkable

Refine(exact)
key: C-c C-s
category: often
Given a expression with arity n it applies n meta-variables to the given
expression.

Refine(projection)

key: C-c C-p

category: often

Refines the goal with a expression in a given package. For example, a

function cat is defined in the package OpList. When a goal is filled with
“OpList cat”, the Refine (projection) command accepts it and refine the goal
but refine command fails. (In case a goal is filled with “OpList.cat”, refine
command works.)

Case
key: C-c C-c
category: often
Makes a template of a case expression with a given formal parameter.

Let
key: C-c C-1
category: often
Makes a template of a let expression with given formal parameters.

Abstraction
key: C-c C-a
category: often
Makes a template of a function expression with given formal parameters.

Goal type
key: C-c C-t
category: often
Shows the type of the goal.

Goal type(unfolded)
key: C-c C-x C-r
category: often
Shows the reduced type of the goal.

Context
key: C-c |
category: important
Shows context (names already defined) of the goal.

Infer type
key: C-c :
category: important
Prompts an expression and infers the type of it, under the current context.

Infer type(unfolded)
key: C-c C-x :
category: often
Prompts an expression and infers the reduced type of it, under the current
context.

References

[1] Programming Logic Team at Chalmers and AIST. Agda, 2000. http://
www.coverproject.org/AgdaPage/.

[2] Lena Magnusson and Bengt Nordstrm. The alf proof editor and its proof
engine. In TYPES ’93: Proceedings of the international workshop on Types
for proofs and programs, pages 213-237. Springer-Verlag New York, Inc.,
1994.

[3] Nordstrom, B., Petersson, K. and Smith, J.M., Programming in Martin-
Léf’s Type Theory, available at
http://www.cs.chalmers.se/Cs/Research/Logic/book/.

[4] Nordstrém, B., Petersson, K. and Smith, J.M., Martin-Lif’s Type Theory,
pp. 1 - 37 in Handbook of Logic in Computer Science, vol. 5 (2000), Oxford
Science Publication.

http://www.coverproject.org/AgdaPage/
http://www.coverproject.org/AgdaPage/

	A List of commands
	A.1 Agda menu
	A.2 Goal commands.

