Introduction to Co-Induction in Coq

Yves Bertot

August 2005

Yves Bertot Introduction to Co-Induction in Coq

Motivation

Motivation

» Reason about infinite data-structures,

» Reason about lazy computation strategies,

» Reason about infinite processes, abstracting away from dates.

» Finite state automata,
» Temporal logic,
» Computation on streams of data.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Inductive types as least fixpoint types

» Inductive types are fixpoints of “abstract functions”,
» If {ci}icqa,...jy are the constructors of / and ¢; a1 --- ax is
well-typed then ¢; a; --- ax €/
» Fixpoint property also gives pattern-matching: if
¢G:Tipx - Tix—1land fi: Tj; -+ Tjx — B, then there
exists a single function ¢ : | — B such that
o(ciay... ag)="fiay -+ ak.
» Initiality:
» if f; are functions with type f; : T;1[A/I] - Ti«[A/I] — A,
then there exists a single function ¢ : I — A such that
¢(cr a1 -+ ax) =1 ay -+ a,, where al, = ¢(ap) if Tpm=1
and a,, = a,, otherwise.
> Initiality gives structural recursion.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Colnductive types

» Consider a type C with the first two fixpoint properties,

» Images of constructors are in C (the co-inductive type),

» Functions on C can be defined by pattern-matching,

» Take a closer look at pattern-matching:

» With pattern matching you can define a function
0c:C—(Tiu* % Tye)+(Torx -+ % Tpg)+ - so that
o(t)=(a1,...ak) € (T *--- Ty,) when t =c¢; a1 - a

» Replace initiality with co-initiality, i.e.,

> If
fiA— (Tix oo Ty)[A/Cl+(Tarx -+ x Top,)[A/Cl+- -+,
then there exists a single ¢ : A — C such that
#(a) =ci ay --- a), when f(a) = (Tix - Ty,)[A/C] and
ai = ¢(a;) if Tj = C and a} = aj otherwise.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Practical reading of theory

» For both kinds of types,
» constructors and pattern-matching can be used in a similar
way,
» For inductive types,
» Recursion is only used to consume elements of the type,
» Arguments of recursive calls can only be sub-components of
constructors,
» For co-inductive types,

» Co-recursion is only used to produce elements of the type,
» Co-recursive calls can only produce sub-components of
constructors.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Theory on an example

» Consider the two definitions:
Inductive list (A:Set) : Set :=
nil : list A | cons : A -> list A -> list A.
CoInductive Llist (A:Set) : Set :=
Lnil : Llist A
| Lcons : A -> Llist A -> Llist A.
Implicit Arguments Lcons.

» given values and functions v:B and f:A->B->B, we can define
a function phi : 1list A -> B by the following
Fixpoint phi (1:list A) : B :=
match 1 with
nil => v | const a t => f a (phi t)
end.

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Theory on an example (continued)

» The “natural result type” of pattern-matching on inductive
lists is: unit+(A*list A)

Definition sigmal(A:Set)(l:1ist A):unit+(A*list A):
match 1 with
nil => inl (B:=Axlist A) tt
| cons a t1 => inr (A:=unit) (a,tl)
end.

» The natural result type of pattern matching on co-inductive
lists (type L1list) is similar: unit+(A*Llist A)

» We can define a co-recursive function phi : B -> Llist A
if we are able to inhabit the type B —> unit+(A*B).

Yves Bertot Introduction to Co-Induction in Coq

Theoretical background

Categorical terminology

» In the category Set, collections of constructors define a
functor F,

» for a given object A, F(A) corresponds to the natural result
type for pattern-matching as described in the previous slide,

» An F-algebra is an object with a morphism F(A) — A,

» F-algebras form a category, and the inductive type is an initial
object in this category,

» An F-coalgebra is an object with a morphism A — F(A),

» F-coalgebras form a category, and the coinductive type is a
final object in this category.

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Co-Inductive types in Coq

» Syntactic form of definitions is similar to inductive types
(given a few frames before),

» pattern-matching with the same syntax as for inductive types.

» Elements of the co-inductive type can be obtained by:

» Using the constructors,
» Using the pattern-matching construct,
» Using co-recursion.

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Constructing co-inductive elements

Definition 11123 :=
Lcons 1 (Lcons 2 (Lcons 3 (Lnil nat))).
Fixpoint list_to_1llist (A:Set) (1:list A)
{struct 1} : Llist A :=
match 1 with
nil => Lnil A
| a::tl => Lcons a (list_to_llist A tl1)
end.
Definition 11123’ := list_to_llist nat (1::2::3::nil).

» list_to_1list uses plain structural recursion on lists and
plain calls to constructors.

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Infinite elements

» list_to_1llist shows that 1ist A is isomorphic to a subset
of Llist A

» Lists in 1ist A are finite, recursive traversal on them
terminates,

» There are infinite elements:
CoFixpoint lones : Llist nat := Lcons 1 lones.

» lomnes is the value of the co-recursive function defined by the
finality statement for the following £:
Definition f : wunit -> unit+(nat*unit) :=

fun _ => inr unit (1,tt).

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Infinite elements (continued)

» Here is a definition of what is called the finality statement in
this lecture:
CoFixpoint Llist_finality
(A:Set) (B:Set) (f:B->unit+(A*B)) :B->Llist A:=
fun b:B => match f b with
inl tt => Lnil A
| inr (a,b2) => Lcons a (Llist_finality A B f b2)
end.

» The finality statement is never used in Coq.

» Instead syntactic check on recursive definitions
(guarded-by-constructors criterion).

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Streams

CoInductive stream (A:Set) : Set :=
Cons : A -> stream A -> stream A.
Implicit Arguments Cons.

» an example of type where no element could be built without
co-recursion.
CoFixpoint nums (n:nat) : stream nat :=
Cons n (nums (n+1)).

Yves Bertot Introduction to Co-Induction in Coq

Coq co-induction and co-recursion

Computing with co-recursive values

» Unleashed unfolding of co-recursive definitions would lead to
infinite reduction,

» A redex appears only when patern-matching is applied on a
co-recursive value.

» Unfolding is performed (only) as needed.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Proving properties of co-recursive values

Definition Llist _decompose (A:Set)(1:Llist A) : Llist
A :=

match 1 with Lnil => Lnil A | Lcons a tl => Lcons a
tl end.
Implicit Arguments Llist_decompose.

» Proofs by pattern-matching as in inductive types.

Theorem Llist_dec_thm :
forall (A:Set)(1l:Llist A), 1 = Llist _decompose 1.
Proof.
intros A 1; case 1; simpl; trivial.
Qed.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Unfolding techniques

» The theorem Llist_dec_thm is not just an example,
» A tool to force co-recursive functions to unfold.

» Create a redex that maybe reduced by unfolding recursion.

Theorem lones_dec : Lcons 1 lones = lones.
simpl.

Lcons 1 lones = lones
pattern lones at 2; rewrite (Llist_dec_thm nat lones);
simpl.

Lcons 1 lones = Lcons 1 lones

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Proving equality

» Usual equality is an “inductive concept” with no recursion,
» Co-recursion can only provide new values in co-recursive types,
» Need a co-recursive notion of equality.
»

Express that two terms are “equal” when then cannot be
distinguished by any amount of pattern-matching,

v

specific notion of equality for each co-inductive type.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Co-inductive equality

CoInductive bisimilar (A:Set) : Llist A -> Llist A
-> Prop :=
bisim0 : bisimilar A (Lnil A) (Lnil A)
| bisiml : forall x t1 t2, bisimilar A t1 t2 —>
bisimilar A (Lcons x t1) (Lcons x t2).

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Proofs by Co-induction

» Use a tactic cofix to introduce a co-recursive value,

» Adds a new hypothesis in the context with the same type as
the goal,

» The new hypothesis can only be used to fill a constructor’s
sub-component,

» Non-typed criterion, the correctness is checked using a
Guarded command.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Example material

CoFixpoint lmap (A B:Set)(f:A -> B)(1:Llist A)
Llist B :=
match 1 with
Lnil => Lnil B
| Lcons a tl => Lcons (f a) (Imap A B f tl)
end.

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Example proof by co-induction

Theorem lmap bi’ : forall (A:Set)(1l:Llist A),
bisimilar A (lmap A A (fun x => x) 1) 1.

cofix.

1 subgoal

Imap_bi’ : forall (A : Set) (I : Llist A),
bisimilar A (Imap A A (funx : A= x) I) |

forall (A : Set) (I : Llist A),
bisimilar A (Imap A A (fun x : A=>x) 1) |

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Example proof by co-induction (continued)

intros A 1; rewrite
(Llist_dec_thm _ (lmap A A (fun x=>x) 1)); simpl.

bisimilar A

match
match | with
| Lcons a tl => Lcons a (Imap A A (fun x : A => x) tl)
| Lnil = Lnil A
end

with

| Lcons a tl => Lcons a tl

| Lnil = Lnil A

end |

Proof techniques

Example proof by co-induction (continued)

forall (a: A) (10 : Llist A),
bisimilar A (Lcons a (Imap A A (fun x : A => x) 10)) (Lcons a 10)

subgoal 2 is:
bisimilar A (Lnil A) (Lnil A)

Yves Bertot Introduction to Co-Induction in Coq

Proof techniques

Example proof by co-induction (continued)

intros a k; apply bisiml.

Imap_bi’ : forall (A : Set) (I : Llist A),
bisimilar A (Imap A A (fun x : A= x) I) |

bisimilar A (Imap A A (fun x : A => x) k) k
» A constructor was used, the recursive hypothesis can be used.

apply lmap_bi’.
apply bisimO.
Qed.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Minimal real arithmetics

» Represent the real numbers in [0,1] as infinite sequences of
bits,

» add a third bit to make computation practical.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Redundant floating-point representations

» In usual represenation 1/2 is both 0.01111... and 0.1000. . .,

» Every number p/2" where p and n are integers has two
representations,

» Other numbers have only one,

» A number whose prefix is 0.1010... (but finite) is a number
that can be bigger or smaller than 1/3,

» When computing 1/3 + 1/6 we can never decide what should
be the first bit of the result.

» Problem solved by adding a third bit : Now L, C, or R.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Explaining redundancy

» A number of the form L. .. isin [0,1/2], (like a number of
the form 0.0...),
» A number of the form R. .. isin [1/2,1], (like a number of the
form 0.1...),
» A number of the form C... isin [1/4,3/4].
» Taking an infinite stream of bits and adding a L in front
divides by 2,
» Adding a R divides by 2 and adds 1/2,
» Adding a C divides by 2 and adds 1/4.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Coq encoding

Inductive idigit : Set :=L | C

CoInductive represents
Rdefinitions.R -> Prop :

reprlL : forall s r,
(0 <= r <=
represents

| reprR : forall s r,
(0 <=1 <=
represents

| reprC : forall s r,
(0 <= r <=
represents

stream
represents
1)%R ->
(Cons L s)
represents
DY%R ->
(Cons R s)
represents
1)%R ->
(Cons C s)

idigit ->
s r —->

(r/2)

s r —>

((r+1)/2)

s r —->

((2%r+1)/4).

Yves Bertot Introduction to Co-Induction in Coq

Example application

Encoding rational numbers

CoFixpoint rat_to_stream (a b:Z) : stream idigit :=
if Z_le_gt_dec (2*a) b then
Cons L (rat_to_stream (2*a) b)
else
Cons R (rat_to_stream (2*a-b) b).

Yves Bertot Introduction to Co-Induction in Coq

Example application

Affine combination of redundant digit streams

» compute the representation of

a b c

T T
where x and y are real numbers in [0,1] given by redundant
digit streams, and a--- ¢’ are positive integers (non-zero when
relevant).

» if 2c > ¢’ then the result has the form Rz where z is

2a 2b 2c — ¢

C/

Yves Bertot Introduction to Co-Induction in Coq

Example application

Computation of other digits

» Similar sufficient condition to decide on Cz and Lz, for
suitable values of z:

| 4

b 1
— —|— b —|— 5 produce L
c b
— Za d— + = b + — < 3/4 produce C
> if 5+ g is small enough, you can produce a digit,

» But sometimes necessary to observe x and y.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Consuming input

» if x and y are Lx” and Ly’, then

a b c
Ty T

is also
ix’ + i ’+ £
24’ 2b’y c

» Condition for outputting a digit may still not be ensured, but

a b 1l a b

27 tay =2zt)

» Similar for other possible forms of x and y.

Yves Bertot Introduction to Co-Induction in Coq

Example application

Coq encoding

» Use a well-founded recursive function to consume from x and
y until the condition is ensured to produce a digit,

» Produce a digit and perform a co-recursive call,

» This style of decomposition between well-founded part and
co-recursive is quite powerful (not documented in Coq'Art,
though).

Yves Bertot Introduction to Co-Induction in Coq

	Motivation
	Theoretical background
	Coq co-induction and co-recursion
	Proof techniques
	Example application

