
Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Introduction to Co-Induction in Coq

Yves Bertot

August 2005

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Motivation

I Reason about infinite data-structures,

I Reason about lazy computation strategies,
I Reason about infinite processes, abstracting away from dates.

I Finite state automata,
I Temporal logic,
I Computation on streams of data.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Inductive types as least fixpoint types

I Inductive types are fixpoints of “abstract functions”,
I If {ci}i∈{1,...,j} are the constructors of I and ci a1 · · · ak is

well-typed then ci a1 · · · ak ∈ I
I Fixpoint property also gives pattern-matching: if

ci : Ti,1 · · · Ti,k → I and fi : Ti,1 · · · Ti,k → B, then there
exists a single function φ : I → B such that
φ(ci a1 . . . ak) = fi a1 · · · ak .

I Initiality:
I if fi are functions with type fi : Ti,1[A/I] · · · Ti,k [A/I] → A,

then there exists a single function φ : I → A such that
φ(c1 a1 · · · ak) = fi a′1 · · · a′k , where a′m = φ(am) if Tm = I
and a′m = am otherwise.

I Initiality gives structural recursion.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

CoInductive types

I Consider a type C with the first two fixpoint properties,
I Images of constructors are in C (the co-inductive type),
I Functions on C can be defined by pattern-matching,

I Take a closer look at pattern-matching:
I With pattern matching you can define a function

σ : C → (T11 ∗ · · · ∗ T1k1) + (T21 ∗ · · · ∗T2k2) + · · · so that
σ(t) = (a1, . . . aki) ∈ (Ti1 ∗ · · · Tiki) when t = ci a1 · · · ak

I Replace initiality with co-initiality, i.e.,
I If

f : A → (T11∗ · · ·∗ T1k1)[A/C]+(T21∗ · · · ∗T2k2)[A/C]+· · ·,
then there exists a single φ : A → C such that
φ(a) = ci a′1 · · · a′ki

when f (a) = (Ti1 ∗ · · · ∗ Tiki)[A/C] and
a′j = φ(aj) if Tij = C and a′j = aj otherwise.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Practical reading of theory

I For both kinds of types,
I constructors and pattern-matching can be used in a similar

way,

I For inductive types,
I Recursion is only used to consume elements of the type,
I Arguments of recursive calls can only be sub-components of

constructors,

I For co-inductive types,
I Co-recursion is only used to produce elements of the type,
I Co-recursive calls can only produce sub-components of

constructors.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Theory on an example

I Consider the two definitions:
Inductive list (A:Set) : Set :=

nil : list A | cons : A -> list A -> list A.
CoInductive Llist (A:Set) : Set :=

Lnil : Llist A
| Lcons : A -> Llist A -> Llist A.
Implicit Arguments Lcons.

I given values and functions v:B and f:A->B->B, we can define
a function phi : list A -> B by the following
Fixpoint phi (l:list A) : B :=

match l with
nil => v | const a t => f a (phi t)

end.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Theory on an example (continued)

I The “natural result type” of pattern-matching on inductive
lists is: unit+(A*list A)

Definition sigma1(A:Set)(l:list A):unit+(A*list A):=
match l with

nil => inl (B:=A*list A) tt
| cons a tl => inr (A:=unit) (a,tl)
end.

I The natural result type of pattern matching on co-inductive
lists (type Llist) is similar: unit+(A*Llist A)

I We can define a co-recursive function phi : B -> Llist A
if we are able to inhabit the type B -> unit+(A*B).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Categorical terminology

I In the category Set, collections of constructors define a
functor F ,

I for a given object A, F (A) corresponds to the natural result
type for pattern-matching as described in the previous slide,

I An F -algebra is an object with a morphism F (A) → A,

I F -algebras form a category, and the inductive type is an initial
object in this category,

I An F -coalgebra is an object with a morphism A → F (A),

I F -coalgebras form a category, and the coinductive type is a
final object in this category.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Co-Inductive types in Coq

I Syntactic form of definitions is similar to inductive types
(given a few frames before),

I pattern-matching with the same syntax as for inductive types.
I Elements of the co-inductive type can be obtained by:

I Using the constructors,
I Using the pattern-matching construct,
I Using co-recursion.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Constructing co-inductive elements

Definition ll123 :=
Lcons 1 (Lcons 2 (Lcons 3 (Lnil nat))).

Fixpoint list to llist (A:Set) (l:list A)
{struct l} : Llist A :=

match l with
nil => Lnil A

| a::tl => Lcons a (list to llist A tl)
end.

Definition ll123’ := list to llist nat (1::2::3::nil).

I list to llist uses plain structural recursion on lists and
plain calls to constructors.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Infinite elements

I list to llist shows that list A is isomorphic to a subset
of Llist A

I Lists in list A are finite, recursive traversal on them
terminates,

I There are infinite elements:
CoFixpoint lones : Llist nat := Lcons 1 lones.

I lones is the value of the co-recursive function defined by the
finality statement for the following f:
Definition f : unit -> unit+(nat*unit) :=

fun => inr unit (1,tt).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Infinite elements (continued)

I Here is a definition of what is called the finality statement in
this lecture:
CoFixpoint Llist finality

(A:Set)(B:Set)(f:B->unit+(A*B)):B->Llist A:=
fun b:B => match f b with

inl tt => Lnil A
| inr (a,b2) => Lcons a (Llist finality A B f b2)
end.

I The finality statement is never used in Coq.

I Instead syntactic check on recursive definitions
(guarded-by-constructors criterion).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Streams

CoInductive stream (A:Set) : Set :=
Cons : A -> stream A -> stream A.

Implicit Arguments Cons.

I an example of type where no element could be built without
co-recursion.
CoFixpoint nums (n:nat) : stream nat :=

Cons n (nums (n+1)).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Computing with co-recursive values

I Unleashed unfolding of co-recursive definitions would lead to
infinite reduction,

I A redex appears only when patern-matching is applied on a
co-recursive value.

I Unfolding is performed (only) as needed.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Proving properties of co-recursive values

Definition Llist decompose (A:Set)(l:Llist A) : Llist
A :=

match l with Lnil => Lnil A | Lcons a tl => Lcons a
tl end.
Implicit Arguments Llist decompose.

I Proofs by pattern-matching as in inductive types.

Theorem Llist dec thm :
forall (A:Set)(l:Llist A), l = Llist decompose l.

Proof.
intros A l; case l; simpl; trivial.

Qed.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Unfolding techniques

I The theorem Llist dec thm is not just an example,

I A tool to force co-recursive functions to unfold.

I Create a redex that maybe reduced by unfolding recursion.

Theorem lones dec : Lcons 1 lones = lones.
simpl.
============================
Lcons 1 lones = lones

pattern lones at 2; rewrite (Llist dec thm nat lones);
simpl.

============================
Lcons 1 lones = Lcons 1 lones

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Proving equality

I Usual equality is an “inductive concept” with no recursion,

I Co-recursion can only provide new values in co-recursive types,

I Need a co-recursive notion of equality.

I Express that two terms are “equal” when then cannot be
distinguished by any amount of pattern-matching,

I specific notion of equality for each co-inductive type.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Co-inductive equality

CoInductive bisimilar (A:Set) : Llist A -> Llist A
-> Prop :=

bisim0 : bisimilar A (Lnil A)(Lnil A)
| bisim1 : forall x t1 t2, bisimilar A t1 t2 ->

bisimilar A (Lcons x t1) (Lcons x t2).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Proofs by Co-induction

I Use a tactic cofix to introduce a co-recursive value,

I Adds a new hypothesis in the context with the same type as
the goal,

I The new hypothesis can only be used to fill a constructor’s
sub-component,

I Non-typed criterion, the correctness is checked using a
Guarded command.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example material

CoFixpoint lmap (A B:Set)(f:A -> B)(l:Llist A) :
Llist B :=

match l with
Lnil => Lnil B

| Lcons a tl => Lcons (f a) (lmap A B f tl)
end.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example proof by co-induction

Theorem lmap bi’ : forall (A:Set)(l:Llist A),
bisimilar A (lmap A A (fun x => x) l) l.

cofix.
1 subgoal

lmap bi’ : forall (A : Set) (l : Llist A),
bisimilar A (lmap A A (fun x : A => x) l) l

============================
forall (A : Set) (l : Llist A),
bisimilar A (lmap A A (fun x : A => x) l) l

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example proof by co-induction (continued)

intros A l; rewrite
(Llist dec thm (lmap A A (fun x=>x) l)); simpl.

. . .
============================
bisimilar A

match
match l with
| Lcons a tl => Lcons a (lmap A A (fun x : A => x) tl)
| Lnil => Lnil A
end

with
| Lcons a tl => Lcons a tl
| Lnil => Lnil A
end l

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example proof by co-induction (continued)

case l.
. . .

============================
forall (a : A) (l0 : Llist A),
bisimilar A (Lcons a (lmap A A (fun x : A => x) l0)) (Lcons a l0)

subgoal 2 is:
bisimilar A (Lnil A) (Lnil A)

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Example proof by co-induction (continued)

intros a k; apply bisim1.
. . .

lmap bi’ : forall (A : Set) (l : Llist A),
bisimilar A (lmap A A (fun x : A => x) l) l

. . .
============================
bisimilar A (lmap A A (fun x : A => x) k) k

I A constructor was used, the recursive hypothesis can be used.

apply lmap bi’.
apply bisim0.
Qed.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Minimal real arithmetics

I Represent the real numbers in [0,1] as infinite sequences of
bits,

I add a third bit to make computation practical.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Redundant floating-point representations

I In usual represenation 1/2 is both 0.01111 . . . and 0.1000 . . .,

I Every number p/2n where p and n are integers has two
representations,

I Other numbers have only one,

I A number whose prefix is 0.1010 . . . (but finite) is a number
that can be bigger or smaller than 1/3,

I When computing 1/3 + 1/6 we can never decide what should
be the first bit of the result.

I Problem solved by adding a third bit : Now L, C, or R.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Explaining redundancy

I A number of the form L... is in [0,1/2], (like a number of
the form 0.0 . . .),

I A number of the form R... is in [1/2,1], (like a number of the
form 0.1 . . .),

I A number of the form C... is in [1/4,3/4].

I Taking an infinite stream of bits and adding a L in front
divides by 2,

I Adding a R divides by 2 and adds 1/2,
I Adding a C divides by 2 and adds 1/4.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Coq encoding

Inductive idigit : Set := L | C | R.

CoInductive represents : stream idigit ->
Rdefinitions.R -> Prop :=

reprL : forall s r, represents s r ->
(0 <= r <= 1)%R ->
represents (Cons L s) (r/2)

| reprR : forall s r, represents s r ->
(0 <= r <= 1)%R ->
represents (Cons R s) ((r+1)/2)

| reprC : forall s r, represents s r ->
(0 <= r <= 1)%R ->
represents (Cons C s) ((2*r+1)/4).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Encoding rational numbers

CoFixpoint rat to stream (a b:Z) : stream idigit :=
if Z le gt dec (2*a) b then
Cons L (rat to stream (2*a) b)

else
Cons R (rat to stream (2*a-b) b).

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Affine combination of redundant digit streams

I compute the representation of

a

a′ x +
b

b′ y +
c

c ′ ,

where x and y are real numbers in [0,1] given by redundant
digit streams, and a · · · c ′ are positive integers (non-zero when
relevant).

I if 2c > c ′ then the result has the form Rz where z is

2a

a′ x +
2b

b′ y +
2c − c ′

c ′

.

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Computation of other digits

I Similar sufficient condition to decide on Cz and Lz , for
suitable values of z :

I

a

a′
+

b

b′
+

c

c ′
≤ 1

2
produce L

I

c

c ′
≥ 1

4
and

a

a′
+

b

b′
+

c

c ′
≤ 3/4 produce C

I if a
a′ + b

b′ is small enough, you can produce a digit,

I But sometimes necessary to observe x and y .

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Consuming input

I if x and y are Lx ′ and Ly ′, then

a

a′ x +
b

b′ y +
c

c ′

is also
a

2a′ x
′ +

b

2b′ y
′ +

c

c ′

I Condition for outputting a digit may still not be ensured, but

a

2a′ +
b

2b′ =
1

2
(
a

a′ +
b

b′)

I Similar for other possible forms of x and y .

Yves Bertot Introduction to Co-Induction in Coq

Motivation
Theoretical background

Coq co-induction and co-recursion
Proof techniques

Example application

Coq encoding

I Use a well-founded recursive function to consume from x and
y until the condition is ensured to produce a digit,

I Produce a digit and perform a co-recursive call,

I This style of decomposition between well-founded part and
co-recursive is quite powerful (not documented in Coq’Art,
though).

Yves Bertot Introduction to Co-Induction in Coq

	Motivation
	Theoretical background
	Coq co-induction and co-recursion
	Proof techniques
	Example application

