Dependently Typed Programming

in Cayenne

or

Lennart Augustsson
lennart@augustsson.net

www.dependent-types.org




An example

We want to write a small program that does bracket abstraction for
\-calculus.

data Exp = App Exp Exp
| Lam Sym EXp
| Var Sym
type Sym = String

The function we want will remove all A-expressions and replace them with
the S, K, and | combinators. We could give it this type:

abstractvVars :: Exp -> Exp

This does not reflect that all Lam constructors are gone.




Bracket abstraction

Remove all A-expressions by using combinators.
Ix = x
Kxy =X
Sfgx=(fx) (g x)
Every lambda term is replaced by its bracket abstraction:
A x.e = [x]e
[xX]x =1
[x]ly = Ky

[x](f e) = S ([xIf) ([x]e)




Use a different result type.

An example

abstractVars :: Exp -> LamFreeExp

Use a "subtype"

type LamFreeExp =
sig exp :: Exp
1f :: LamFree exp




An example, a little logic

data Absurd =

absurd :: (a :: #) |-> Absurd -> a
absurd i = case 1 of { }

data Truth = truth

data (/\) a b = (&) a b




An example

Describe what it means to be LamFree:

LamFree
LamFree
LamFree
LamFree

Exp
(App £

(Lam __

)

(Var

- >
a)
_)

LamFree f /\ LamFree a
Absurd
Truth




An example

We are all set, just proceed as usual:

abstractVars :: Exp -> LamFreeExp
abstractVars e@(Var _) = struct { exp = e; 1f = truth }
abstractVars (App f a) =
let £f' = abstractVars £
a' = abstractVars a
in struct exp = App f'.exp a'.exp
1f = f'.1f & a'.1lf

abstractvars (Lam x e) =
let e' = abstractVars e
in abstractVar x e'.exp e'.lf




An example

abstractVar :: Sym -> (e :: Exp) -> LamFree e -> LamFreeExp
abstractvVar s (App f a) (1f & la) =
let £f' = abstractvVar s £ 1f
a' = abstractVar s a la
in struct exp = App (App S f'.exp) a'.exp
1f = (truth & £'.1f) & a'.1lf
abstractvVar s (Lam _ ) 1 = absurd 1
abstractVar s e@(Var x) 1 =
if (s == x)
(struct {exp = I; 1f :: LamFree exp = truth})
(struct {exp = App K e; 1f :: LamFree exp = truth & 1})

S = var "g"
= Var "K"
I = Var "Iv




Cayenne design goals

A programming language with dependent types.
"First class" types.

Few basic concepts.

No top level.

"Pure", i.e., the B-rule is valid.

Uniform way to define and name things.

Staged execution, i.e., compiled.

All used variables must be explicitly bound.




Cayenne design goals

Lesser goals:

® No silly case restrictions on names.

® Compiled with same efficiency as Haskell.
® Proofs possible.

® Haskell like.




No top level

Many languages have a top level that is different. E.g., C only allows
function definitions on the top level, Haskell only allows type definitions on
the top level.

| want to take any program fragment and move it to where it belongs.

Example:
data BT a = Leaf | Node (BT a) a (BT a)
sortBy :: (a -> a -> Ordering) -> List a -> List a

sortBy cmp Xs =

If the binary tree type is only used in sortBy it should be like this.

sortBy :: (a -> a -> Ordering) -> List a -> List a
sortBy cmp xs =

let data BT a = Leaf | Node (BT a) a (BT a)

in




Staged execution

| want a phase distinction; execution has two phases:
® Compile time: type checking and maybe more.
@ Run time: actual program execution.

Any (closed) expression should be possible to compile.

The type of an expression, A, should be the only thing needed to compile an
expression, B, that is using A.




The function type

The function type is easy, we only need some syntax for dependent
functions. Most of the syntax comes from Haskell.

\ (x :: t) -> e o (x :: t) -> s

Application looks as usual.

If the function is not actually dependent on x we can use the usual Haskell
syntax.

\ (x :: t) -> e ! t -> s

We can also usually leave out the type in the term.




The function type, hidden arguments

Cayenne has the ability to "hide" arguments. This means that they need not
be given when a function is applied, if the type checker can deduce them.




The sum type

We need sum types. Can we take Haskell's data type definitions?

NO

data T = A | B | C

Haskell's data type definition forces the type to have a name.

Naming things should be uniform, so if a type has a name it should be given
in the same way as for anything else, possibly no name at all.

#

T :
T = data A | B | C




The sum type, constructors

Constructors are written in a peculiar way:

cet ' t

Example:

True@ (data False | True)

Contructors do not have any scope (just like record labels), they are only
meaningful with an e.




The sum type, weird stuff

What's the type of this expression?

let T = data A | B | C
in A@T

You could give a type in terms of T, but it's not in scope. | find that bizarre.

The Cayenne answer to the question is:

let T = data A | B | C
in A@T 8 g data A | B | C




Structural equivalence

Types are compared with structural equivalence rather than name
equivalence (unlike, e.g., Haskell).

Rationale: (A) Types do not have to have names. (B) Name equivalence
does not work with the B-rule.

Example:

List a = data Nil | Cons a (List a)

Unfold List

List a = data Nil | Cons a (data Nil | Cons a (List a))

According to the B-rule principle these must be considered equal.

Btw, this is also equivalent:

List a = Fix (\ 1 -> data Nil | Cons a 1)




The sum type, case

The case construct looks mostly familiar:

case xs of
(N11) ->

(x : xs) ->

Contructor patterns must have parenthesis around them. This is to
distinguish them from variable patterns. (There is no case distinction like in
Haskell.)

The dependent type system shows up in that the case arms can have
different types.

case b of case b of
(False) -> 1 »" (False) -> Int
(True) -> "Hello" (True) -> String




The sum type, with plenty of sugar

To make life simpler, Cayenne allows

data T = Cl | C2

which is equivalent to

T = data Cl1 | C2
Cl Cl@T
C2 C2@T

Furthermore, function definitions can be written with pattern matching (like
in Haskell) instead of A and case.




The type of types

The type of types is named # (because * is used for multiplication).

# . #1 :: #2

This isn't the whole story...




The record type

Records with named fields are very, very useful in programming. Their
omission from the original Haskell definition is something of a mystery.

struct sig
xl = el . x1l :: t1l
Xn = en Xxn :: tn
Record selection uses the ordinary ".” notation.




The record type

Should the record type be dependent in some way?

Consider the type theory type:

Hx g A. P(x)

which has elements of the form:

(e, P(e))

We need this in Cayenne records too.

sig
X
D

A
P(x)

Generalize: Let all labels be in scope in all types.




The record type

Since the labels have to be bound in the sig it's natural to have it the same
way in a struct,

Example:

struct
x =5
y = X + 2 -- 1.e., y = 17

This interacts well with types too.

struct
Coord = sgig { x :: Int; y :: Int }
origin = struct { x = 0; yv = 0 }




e.g., Haskell.

let expressions

The struct expression is similar to the definition part of 1let expressions in,

Cayenne defines let in terms of struct. (The label r should be fresh.)

let

in

x1

(struct
x1l = el
= el
o Xn = en
= en
r = e
). T




open expressions

A very convenient feature of Pascal (and other languages) is to "open" a
record and bring its labels into scope. Cayenne defines syntactic sugar for
this too. (The variable r should be fresh.)

let r = e
x1l = r.x1
open e use X1, ... xXn in e' =
Xn = r.Xn
in e

Example:

open coord use X, Y, Z
in sgrt (xA2 + yA2 + zA2)




Modules

In Cayenne the record type has all the power of modules in most languages.
The sig is used for module signatures, and struct for module
implementation. Furthermore, ordinary functions can be used instead of
(ML) functors.

STACK = sig
Stack # -> #
empty (a :: #) |-> Stack a
push :: (a #) |-> a -> Stack a -> Stack a
pop (a :: #) |-> Stack a -> Stack a
top (a #) | -> Stack a -> a
isEmpty (a #) |-> Stack a -> Bool

BUT, this doesn't always work as intended...




Modules, abstract and concrete

Consider the following module for booleans.

struct
Bool
not

data False | True

This module would have the signature

sig

Bool
not

-> Bool

That's not right. Where are the constructors?




Modules, abstract and concrete

We can export values for them.

struct
Bool = data False | True
False = False@Bool
True = True@Bool
not =

This module would have the signature

sig
Bool :: #
False :: Bool
True :: Bool
not :: Bool -> Bool

That's still not right. Pattern matching would not work since there is no
indication that Bool is actually a data type.




Modules, abstract and concrete

We need something more, we need the signature to actually tell us the
definition of Bool.

Enter concrete and abstract !

struct
concrete Bool = data False | True
abstract not =

This module would have the signature

sig
Bool :: # = data False | True
not :: Bool -> Bool

The concrete and abstract qualifiers can be applied to any kind of fields
in a record. Sensible defaults are used if they are not given.




Modules, public and private

When making modules you often need auxilliary definitions that should not
be part of the visible interface of the module.

So we extend the record syntax even more, with public and private.

struct
private x = 12
public yv = x * 2

This module would have the signature

sig
v :: Integer

As usual, sensible defaults are provided.




Modules

Recall
STACK = sig
Stack # -> #
empty (a #) |-> Stack a
push (a #) |-> a -> Stack a -> Stack a
pop (a #) |-> Stack a -> Stack a
top (a #) |-> Stack a -> a
isEmpty (a #) |-> Stack a -> Bool

We can now

give an implementation

ListStack
ListStack

empty
push =
pop =
top =

abstract Stack =

head
isEmpty =

STACK
= struct
List
= Nil
(:)
tail

null




A sighature for queues

Modules, functors

QUEUE

Queue

= sig
empty
engqueue

degueue

H H H H

first

Queue a

a -> Queue a -> Queue a

Queue a -> Queue a

Queue a -> a

A "functor" to turn stacks

into queues (very badly).

SQ STACK -> QUEUE
SQ s struct
open s use Stack,

empty, push,

abstract Queue =

empty empty

enqueue x XS

dequeue xs

first xs

private

app

app xs y =

if (isEmpty xs)

(push y empty)
(push (top xs)

Stack

app xXs X
pop Xs
top xs

(a #) |-> stack a

(app (pop

==

pop, top, isEmpty

a -> Stack

xs) vy))




Modules

A signature for stacks more in the style of, e.g., Oberon

Stack
T

(a

empty
push
pop

top
isEmpty

# sig

> T
o> T
-> a
-> Bool

-> T

H 3 3 9 3 #F —

mkListStack
mkListStack
T
empty

List a
Ni
= ()
tail
head
isEmpty

push

pop
top

#)
struct

(a

| a

1

null

| -> Stack a




Modules in the world

To make modules reusable they need to have a name that is actually
mapped to some external storage so they can be accessed by different
programs.

Cayenne is similar to Java in how this is done.

module ag$global$identifier = e

This defines a "module" in the global name space, named
a$global$identifier .

Cayenne programs may contain free module identifiers. (They are checked
at compile time, of course.)

System$Integer. (+) 30 12

A named module is a compilation unit. In fact, any kind of expression can
be named, not just a struct.




A very simple evaluator

Consider a tiny language of typed expressions:

EBool Bool | EInt Int
EAdd Expr Expr | EAnd Expr Expr | ELE Expr Expr
TBool | TInt

data Expr

data Type

It has the usual typing rules:

x:Int y:Int x:Int y:Int x:Bool y:Bool
i:Int b:Bool x+y:int x<=y:Bool x&y :Bool




A very simple evaluator

In Haskell (without GADTs) we would have to write an evaluator like this:

data Value = VBool Bool | VInt Int

eval :: Expr -> Value

eval (EBool b) = VBool b

eval (EInt i) = VInt i

eval (EAdd x y) =
case (eval x, eval y) of
(VInt x', VInt y') -> VInt (x' + y')
__ -> error "eval"

The wrapping and unwrapping of the values is inefficient. We would like to
write the following, but it's not well typed.

eval (EBool b) = b
eval (EInt i) = 1
eval (EAdd x y) = (eval x) + (eval vy)




So we

A very simple evaluator

can try something better in Cayenne. How about?

eval (e Expr)

eval (EBool b) = b

eval (EInt i) = 1

eval (EAdd x y) = (eval x)

-> TypeOf e

+

(eval vy)

HasType

Absurd

Well, this doesn't work, because not all expressions are well typed. So we
need to express the when an expression is well typed.

HasType Expr -> Type -> #

HasType (EBool _) (TBool) = Truth

HasType (EInt _) (TInt) = Truth

HasType (EAdd el e2) (TInt) = HasType el TInt /\ HasType e2 TInt
HasType (EAnd el e2) (TBool) = HasType el TBool /\ HasType e2 TBool
HasType (ELE el e2) (TBool) = HasType el TInt /\ HasType e2 TInt




A very simple evaluator

Now we can write an evaluator, given a proof that the term is well typed.

eval :: (e :: Expr) -> (t :: Type) -> HasType e t -> Decode t

eval (EBool b) (TBool) p = b

eval (EInt i) (TInt) o) = i

eval (EAdd el e2) (TInt) (pl & p2) = eval el TInt pl + eval e2 TInt p2
eval (EAnd el e2) (TBool) (pl & p2) = eval el TBool pl && eval e2 TBool p2
eval (ELE el e2) (TBool) (pl & p2) = eval el TInt pl <= eval e2 TInt p2
eval _ _ D = absurd p

Decode :: Type -> #

Decode (TBool) = Bool

Decode (TInt) = Int

Where do we get the proof? Well, from a type checker, of course.

This can be extended to deal with variables.




A small equality proof

Cayenne has special syntax for equality proofs.

(++) (a #) |

(++) (Nil) ys = ys

(++) (x Xs) ys = X

appendNilP (a #)
Xs ++ Nil ===

appendNilP (Nil) =
Nil ++ Nil
Nil

appendNilP (x xXs) =
(x:xs) ++ Nil
X: (xs ++ Nil)
X : XS

Nil ++ (x:xs)

-> List a

-> List a
(xs ++ ys)

(xs List a) -

| ->
XS

-> List a

>

DEF }=

DEF }=
appendNilP xs
DEF }=

}




An example with no proofs

In C there is a very useful function, printf, which takes a varying number of
arguments of varying types. | want it!

-- Haskell version WRONG
printf fmt = pr fmt "" where
pr "" res = res
pr ('%$':'d':s) res = \1 -> pr s (res ++ show 1)
pr ('$':'s':s) res = \s -> pr s (res ++ s)
pr ('%': ¢ :s8) res = pr s (res ++ [c])
pr ( c :8) res = pr s (res ++ [c])
Using it:
printf "%d(%d)" :: Int -> Int -> String

printf "hello %s!" :: String -> String




An example with no proofs
PrintfType String -> #
PrintfType "" = String
PrintfType ('%':'d':cs) = Int -> PrintfType cs
PrintfType ('%':'s':cs) = String -> PrintfType cs
PrintfType ('%': _ :cs) = PrintfType cs
PrintfType ( :Cs) = PrintfType cs
printf :: (fmt::String) -> PrintfType fmt
printf fmt = pr fmt ""
pr :: (fmt::String) -> String -> PrintfType fmt
pr "*" res = res
pr ('%':'d':cs) res = \ 1 -> pr cs (res ++ show 1)
pr ('%':'s':cs) res = \ s -> pr cs (res ++ s)
pr ('%' Cc :c8) res = pr cs (res ++ (c Nil))
pr (c:cs) res = pr c¢cs (res ++ (c Nil))




Conclusions

® Cayenne was reasonable successful design (in my opinion).
® It needs more work to become a useful programming language.
® Things | would do differently next time:

® The language should have Agda's idata.

@ Stratified universes are just a pain for programming, use #:: #. (And
use global data flow analysis to get rid of types and proofs.)

® Type error messages need to be much better.

® | want to see more examples that are totally proof free, but uses
dependent types in an essential way (like printf). There are many

examples of dependent vector sizes, but they usually require a
complicated constraint solver.




Try it!
Cayenne can be found at
www .dependent-types.org

All you need is GHC to compile and run programs.




