A Calculus of Definitions

Programs

Programs

M,A = v, | MM|AM|ITAA|MD|cM|B|L

Definitions, Branches and Labelled Sums

—. —

D = [M:A] B = c M,...,c Mp, L = ¢ ffl,...,ckAk



A Calculus of Definitions

Environments and Values

Environments and Values

p,o == ()| p,ul| Dp u,V = Mp|luu| X; | LIV V

Access rules
vo(o,u) =u  vpri(o,u) = vgo
and if p = [M : Ao then

—

Vip = ’UZ'(O', M,O)
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(M1 Ma)p = Mip (Map) (M D)
(II A F)p =11 (Ap) (Fp)

()‘ M),O’LLZM(,O,U)

Evaluation rules

(c1 N1,..., ¢ Ni)p (¢
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|
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Programs, version with names

Programs

M,A w= 2| MM|X.M|ITz:AA|MD|cM|B|L

T := ()| T T = A|(x: AT
Definitions, Branches and Labelled Sums
D ::= [f:T:M] B = ¢ 21— Mq,..., ¢, x5, — My

L = C1 Tl,...,Ck; Tk
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Conversion test

Each branch B has a name fg and each labelled sum L a name dj, associated
to it. We test A1 = Ay by comparing R, Ay and Ry Ao

R X1 = v
Ry, (AM)p) = ARp41(M(p, Xi)) Rk (u1 u2) = R ur (R u2)
Ry IV F)=1 (R, V) (Rx F) Ry (cud)=c (R u)
Ry (Bp) = fB(Rx p) Ry (Lp) = dr(Rg p)
R, () =0 Rk (p,u) = (Bi p, By u) Ry, (Dp) = Ry, p
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Conversion test

Here is the grammar for the normal forms produced by the readback function
Ry,

t o= Nt |dp(t,....;t) [Tt t]| fe(t,...,t) | c(t,...,t) | n
n = vy |nt| felt....t)n
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Type-checking

The judgements are of the form p,I' -1 A and p,I' i M : V where I' is a
list of type values and k the number of free variables. For instance

o, I' v, : I'ln
o, 'Fe N:IIV F o, ' MV
p, U N M : F (Mp)
(,O,Xk),(F,V) l_k—I—l N : F Xk
o, ' AN 11V F
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Examples

Nat : Set 0O | S Nat

Bin : Set = 1 | SO Bin | S1 Bin

natrec : (P : Nat -> Set) ->
PO->((1: Nat) >P i ->P (S 1i)) ->
(n : Nat) -=> P n =
\P ->\p0->\ pS —>
[ 0O -> pO
IS x -> pS x (natrec P pO pS x) |
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Examples

mutual
BSTree : Set =
slf | snd (a : A) (1 r : BSTree) (>=T a 1) (k=T a r)

>=T : A -> BSTree -> Set =
\ a > [ s1f -> True

|lsnd x 1 r -> (a<=x) & >=T ar) ]

<=T : A -> BSTree -> Set =
\ a > [ slf -> True
lsnd x 1 r _ _ > (x<=a) & (<=T a l) ]
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Denotational Semantics

Formal neighbourhoods
W = V|W-W|WNW |cW |[e1 Uy,...,co Uy

U= AW

10
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Denotational Semantics

DLUORM.UD . . 10,UCYE-M.UO D UOEN:V

I'-ND:V

—

where D is [M : A] and U is A.
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Denotational Semantics

The elements of the domain D are either constructor terms ¢ @ or product
IT u f or labelled sums [c¢; a3, ...,c, dp] or functions f

Theorem: [If the semantics of a term M is #1 then M is SN

12
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Models

A totality on D is a subset X C D such that L ¢ X and T € X. We write
TP(D) the set of all totality on D.

A partial interpretation of type theory is a pair (X, El) with X in TP(D) and
Elin X — TP(D) such that EI(T) is the singleton {T}

We extend X and El to vectors: () in X and () € Fl() and (a,a) in X iff
a€ X and @ u in X for all u € El(a). Then (u,u) in El(a,a) iff u € El(a) and
uin El(a u)

13
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Models

(X, El) total interpretation: b in X iff

b=1Ila fand a € X and f u € X for all u € Fl(a) and w € EI(b) iff
w u € BI(f u) for all u € Fl(a)

or b =lc1 ai,...,¢n ap] and a; € X and w € FEI(b) iff w = ¢; @ with
u € Fl(ay)

14
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Peano induction for binary numbers

Bin : Set = 1 | SO Bin | S1 Bin

bsuc : Bin -> Bin =
[ 1 -> S0 1
SO x -> S1 x
|1S1 x => SO (bsuc x) ]

15



A Calculus of Definitions

Peano induction for binary numbers

binPeano : (P : Bin -> Set) > P 1 ->
(i : Bin) -=> P i -> P (bsuc 1)) ->
(b : Bin) -> P b = \P->\pl >\ ps —>
[ 1 > pl
|SO x —>
binPeano (\ b -> P (SO b)) (ps 1 pl)
(\ i h ->ps (St 1) (ps (S0 i) (ps (SO i) h))) x
|IS1 x ->
binPeano (\ b -> P (S1 b)) (ps (SO 1) (ps 1 pl))
(\ih-—>
ps (81 1) (ps (SO (bsuc i)) (ps (81 i) h))) x ]

16



A Calculus of Definitions

Peano induction for binary numbers

“So that's that, except that it's a bit tricky and a bit higher-order and, worst
of all, quite expensive in the size of the inductions involved. If we're being
scrupulous about universe levels, we have to be careful about quantifying over
arbitrary P : Bin — Set;. To be allowed such a thing we need to use our
structural induction principal at Set;1."

Induction principle in this version of type theory (with pattern-matching)
works on an arbitrary type

Similar analysis in Lorenzen: induction principle is justified on an arbitrary
formula

17
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Peano
pl
ps

peano

double

Peano induction for binary numbers

: Bin -> Set where

: Pe

{x

ano 1
: Bin} -> Peano x -> Peano (bsuc x)

(b : Bin) -> Peano b

{b : Peano} -> Peano b -> Peano (SO b)

18
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Other example

Lookup function on vectors

vec
vec
vec

get

(Nat -> Set) -> Nat -> Set
B O = One
B (S x) = (vec B x) * (B x)

(B : Nat -> Set) -> (n x :
x <n ->vec Bn -> B x

Nat) ->

19



