
A Calculus of Definitions

Programs

Programs

M,A ::= vk | M M | λM | Π A A | M D | c ~M | B | L

Definitions, Branches and Labelled Sums

D ::= [~M : ~A] B ::= c1 M1, . . . , ck Mk L ::= c1
~A1, . . . , ck

~Ak

1

A Calculus of Definitions

Environments and Values

Environments and Values

ρ, σ ::= () | ρ, u | Dρ u, V ::= Mρ | u u | Xl | Π V V

Access rules
v0(σ, u) = u vk+1(σ, u) = vkσ

and if ρ = [~M : ~A]σ then

viρ = vi(σ, ~Mρ)

2

A Calculus of Definitions

Evaluation rules

(M1 M2)ρ = M1ρ (M2ρ) (M D)ρ = M(Dρ)

(Π A F)ρ = Π (Aρ) (Fρ) (c ~M)ρ = c (~Mρ)

(λ M)ρ u = M(ρ, u) (c1 N1, . . . , ck Nk)ρ (ci ~u) = Ni(ρ, ~u)

3

A Calculus of Definitions

Programs, version with names

Programs

M,A ::= x | M M | λx.M | Π x : A,A | M D | c ~M | B | L

T ::= () | T ′ T ′ ::= A | (x : A, T ′)

Definitions, Branches and Labelled Sums

D ::= [~x : T = ~M] B ::= c1 ~x1 → M1, . . . , ck ~xk → Mk

L ::= c1 T1, . . . , ck Tk

4

A Calculus of Definitions

Conversion test

Each branch B has a name fB and each labelled sum L a name dL associated
to it. We test A1 = A2 by comparing Rk A1 and Rk A2

Rk Xl = vk−l−1

Rk ((λM)ρ) = λRk+1(M(ρ,Xk)) Rk (u1 u2) = Rk u1 (Rk u2)

Rk (Π V F) = Π (Rk V) (Rk F) Rk (c ~u) = c (Rk ~u)

Rk (Bρ) = fB(Rk ρ) Rk (Lρ) = dL(Rk ρ)

Rk () = () Rk (ρ, u) = (Rk ρ,Rk u) Rk (Dρ) = Rk ρ

5

A Calculus of Definitions

Conversion test

Here is the grammar for the normal forms produced by the readback function
Rk

t ::= λ t | dL(t, . . . , t) | Π t t | fB(t, . . . , t) | c(t, . . . , t) | n

n ::= vl | n t | fB(t, . . . , t) n

6

A Calculus of Definitions

Type-checking

The judgements are of the form ρ,Γ `k A and ρ,Γ `k M : V where Γ is a
list of type values and k the number of free variables. For instance

ρ,Γ `k vn : Γ!n
ρ,Γ `k N : Π V F ρ,Γ `k M : V

ρ,Γ `k N M : F (Mρ)
(ρ,Xk), (Γ, V) `k+1 N : F Xk

ρ,Γ `k λN : Π V F

7

A Calculus of Definitions

Examples

Nat : Set = 0 | S Nat

Bin : Set = 1 | S0 Bin | S1 Bin

natrec : (P : Nat -> Set) ->
P 0 -> ((i : Nat) -> P i -> P (S i)) ->
(n : Nat) -> P n =

\ P -> \ p0 -> \ pS ->
[0 -> p0
|S x -> pS x (natrec P p0 pS x)]

8

A Calculus of Definitions

Examples

mutual
BSTree : Set =

slf | snd (a : A) (l r : BSTree) (>=T a l) (<=T a r)

>=T : A -> BSTree -> Set =
\ a -> [slf -> True

|snd x l r _ _ -> (a <= x) & (>=T a r)]

<=T : A -> BSTree -> Set =
\ a -> [slf -> True

|snd x l r _ _ -> (x <= a) & (<=T a l)]

9

A Calculus of Definitions

Denotational Semantics

Formal neighbourhoods

W ::= ∇ | W → W | W ∩W | c ~W | [c1
~U1, . . . , cn

~Un]

U ::= ∆ | W

10

A Calculus of Definitions

Denotational Semantics

Γ, ~U (0) ` ~M : ~U (1) . . . Γ, ~U (l−1) ` ~M : ~U (l) Γ, ~U (l) ` N : V

Γ ` ND : V

where D is [~M : ~A] and ~U (0) is ~∆.

11

A Calculus of Definitions

Denotational Semantics

The elements of the domain D are either constructor terms c ~u or product
Π u f or labelled sums [c1 ~a1, . . . , cn ~an] or functions f

Theorem: If the semantics of a term M is 6=⊥ then M is SN

12

A Calculus of Definitions

Models

A totality on D is a subset X ⊆ D such that ⊥/∈ X and > ∈ X. We write
TP(D) the set of all totality on D.

A partial interpretation of type theory is a pair (X, El) with X in TP(D) and
El in X → TP(D) such that El(>) is the singleton {>}

We extend X and El to vectors: () in X and () ∈ El() and (a,~a) in X iff
a ∈ X and ~a u in X for all u ∈ El(a). Then (u, ~u) in El(a,~a) iff u ∈ El(a) and
~u in El(~a u)

13

A Calculus of Definitions

Models

(X, El) total interpretation: b in X iff

b = Π a f and a ∈ X and f u ∈ X for all u ∈ El(a) and w ∈ El(b) iff
w u ∈ El(f u) for all u ∈ El(a)

or b = [c1 ~a1, . . . , cn ~an] and ~ai ∈ X and w ∈ El(b) iff w = ci ~u with
~u ∈ El(~ai)

14

A Calculus of Definitions

Peano induction for binary numbers

Bin : Set = 1 | S0 Bin | S1 Bin

bsuc : Bin -> Bin =
[1 -> S0 1
|S0 x -> S1 x
|S1 x -> S0 (bsuc x)]

15

A Calculus of Definitions

Peano induction for binary numbers

binPeano : (P : Bin -> Set) -> P 1 ->
((i : Bin) -> P i -> P (bsuc i)) ->
(b : Bin) -> P b = \ P -> \ p1 -> \ ps ->

[1 -> p1
|S0 x ->
binPeano (\ b -> P (S0 b)) (ps 1 p1)

(\ i h -> ps (S1 1) (ps (S0 i) (ps (S0 i) h))) x
|S1 x ->
binPeano (\ b -> P (S1 b)) (ps (S0 1) (ps 1 p1))

(\ i h ->
ps (S1 1) (ps (S0 (bsuc i)) (ps (S1 i) h))) x]

16

A Calculus of Definitions

Peano induction for binary numbers

“So that’s that, except that it’s a bit tricky and a bit higher-order and, worst
of all, quite expensive in the size of the inductions involved. If we’re being
scrupulous about universe levels, we have to be careful about quantifying over
arbitrary P : Bin → Seti. To be allowed such a thing we need to use our
structural induction principal at Seti+1.”

Induction principle in this version of type theory (with pattern-matching)
works on an arbitrary type

Similar analysis in Lorenzen: induction principle is justified on an arbitrary
formula

17

A Calculus of Definitions

Peano induction for binary numbers

Peano : Bin -> Set where
p1 : Peano 1
ps : {x : Bin} -> Peano x -> Peano (bsuc x)

peano : (b : Bin) -> Peano b

double : {b : Peano} -> Peano b -> Peano (S0 b)

18

A Calculus of Definitions

Other example

Lookup function on vectors

vec : (Nat -> Set) -> Nat -> Set
vec B 0 = One
vec B (S x) = (vec B x) * (B x)

get : (B : Nat -> Set) -> (n x : Nat) ->
x < n -> vec B n -> B x

19

