Getting II right in Set

Thierry Coquand (thanks to discussion with Peter and Andreas)

Oct. 11, 2006

Getting II right in Set [1]

Universes

Introduced in three steps: 71 (V € V), 72 (one universe) and 75 (sequence
of universes)

Also 75: conversion as judgement and new method (due to Peter Hancock)
for showing decidability of conversion

Analogy: computation of a term and evaluation

The normal form of a term is its semantics

nf(M) =\ [M]

Getting II right in Set 2]

Type theory with universes

It is easier to say what a PER model should be than to define the syntax of
such a type theory

Getting IT right in Set [3]

PER model

Untyped universe of computations (domain model, or terms with 3, equality)
with an application operation

We have a notion of constructors: we know when a term is of the form N or
Uorllx f

Constructors are one-to-one

We can then define: a PER of types and whenever A = B a PER associated
to A (which is the same as the PER associated to B)

Getting II right in Set [4]

PER model

Small types: N=Nand0=0: Nandu=v: N implessu=sv:N

If Ay = A5 small types and uy = ug : A1 implies F7 u; = F5 ug small types
then II Al F1 =11 A2 F2 small types

Then V1 = Uy . IT Al Fl Iff U1 = U9 - Al implies V1 U1 = V2 Ug - F1 U

Getting II right in Set

[5]

PER model

We define then the PER of all types

U=U and X; = X5 : U iff X1 = X5 small types
N=Nand0=0:Nandu=v: N impliessu=sv: N

If A1 = Ay and u; = ug : A1 implies F} uy = F5 ug then 11 Ay Fy =11 Ay Fy

Then V1 = Uy . IT Al F1 Iff U1 = U9 - Al implies V1 U1 = V2 U9 - F1 Uq

Getting IT right in Set [6]

PER model

If A is a small type then A is a type

The untyped universe of computation is a combinatory algebra (model of
A-calculus)

We have K such that K x y = x and we can define A — BtobelIl A (K B)
Then vy =vy: A — B iff uy = us : A implies v1 u1 = vy ug : B

Extensional equality?? Almost!

Getting IT right in Set [7]

PER model

v:N—->Niffou:Nifu:N
In general much more elements in the model than the ones that are definable

Even on definable elements, equality at type N — N is not decidable
(extensional equality)

On “pure” typed lambda terms, equality is decidable (it is 3,7 equality)

Getting IT right in Set [8]

PER model

One can add unit types or singleton types or even the types |A] that have the
definitions

[A]=[B]iff A=B
a=b:|Aliffa:Aandb: A

Getting IT right in Set [9]

General notion of PER model

Reminiscent of Frege structure

We have first a model D of untyped A-calculus with constructors II, N, s, 0
and U

Let PER(D) the set of PER on D. If X € PER(D) we write | X| the set of
elements u such that X (u, u)

If X € PER(D) and F : |X| — PER(D) such that X (uj,us) implies
F(u1) = F(ug) then TI(X,F) is the PER defined by II(X, F)(vy,vs9) iff
X(Ul,UQ) — F(Ul)(U1 U1, V2 'UQ)

Getting IT right in Set [10]

General notion of PER model

A PER model for type theory with universe consists of an element 1" €
PER(D) with a function FEl : |T| — PER(D) such that El(uy) = FEl(usg) if
T(Ul,’LLQ)

Furthermore if T(Al,AQ) and we have Al(ul,ug) |mp||es T(Fl ul,Fg ’LLQ)
then T'(IT Ay F1,I1 Ay F5) and then EI(I1 Ay Fy) = II(EI(A1), \u.EI(Fy u))

To have a universe we require also T'(U,U) and EI(U)(A, B) implies T'(A, B)
and the PER EI(U) is closed under the product operation

10

Getting II right in Set

[11]

A special PER model

D domain of “semantical” values

T" the set of “syntactical” normal terms

T = XeT |Mlax:TT|sT|0]|S

S = x T we write v,2/, ... an element of S

We assume that D has a copy of S

11

Getting II right in Set [12]

A special PER model

We add the elements v as small types
We add vy =17 : v
Also VW =1 . N

We define two functions T4: .S — D and | 4: D — T by induction on A type

12

Getting II right in Set

[13]

A special PER model

Tmarv=>M.1Tpu (v (lau))
lmarv=Ar.lp (1,2 (v (Tax))
lvv=Inv=lvr=v
lvv=Inv=lpr=v

L=l

bnarpv=IzJ A J(F (Tax))
In(su)=s(nwu), IN0O=0

13

Getting II right in Set [14]

Implementation of the type-checker

The values T4 x corresponds exactly to the notion of generic values that are
used in the implementation of core agda

The method gives a nice correctness proof of the implementation and extends
for sigma types, record types, singleton types ...

14

Getting IT right in Set [15]

A special PER model

To make this definition rigourous, the simplest way seems to follow a
syntactical approach

(I learnt this from Klaus Aehlig and Felix Joachimski and from Per Martin-Lof's
talk on normalisation by evaluation)

We have untyped lambda-calculus with constants

Constructors II, U, N and Up

We have functions defined by recursion and pattern matching

15

Getting II right in Set

[16]

Up and Down calculus

1 AF)t=Xu 1 (Fu)(t(Au)
lITAF)v=2z. | (F(TAw)) (v (T Ax))
TUt=TNt=1(Upt)t=Upt

LU (Upt)=l N (Upt)=|(Upt) (Upt)=t
L1v=1
JMAF)v=Iz: A | (F (T Ax))

I N(su)=s (] N u), INO0=0

16

Getting II right in Set

[17]

Defined function

If we want to represent a “syntactical” function add, defined by
add x 0=z, addzx (sy)=s (add x y)

then we should have also the clause

add © (Up y) =1 N (add (| N z) y)

We can then prove add : N - N — N

17

Getting IT right in Set [18]

1 expansion

laTa v is the n-expansion of v at type A

(This decomposition of 7 expansion has been discovered by Klaus Aehlig and
Felix Joachimski)

For instance, what is the n-expansion of v at type N — N: Az.v x
At type IT U (AX. X — X) itis A\ X \z.v X o

In general the n expansion of v at type A is not reducible at this type

18

Getting II right in Set

[19]

First main result

If Ay = A and uy = uy: Ap then | 4, u1 =4, us (same normal form)

If Ay = Agthen T4, v=Ta,v:A4A;

For ui,us : A this gives a (decidable) necessary condition for u; = ug : A
It is not sufficient in general ...

but it is if u; and uy are semantics of well-typed terms!

19

Getting II right in Set

[20]

First main result

In particular f T'=1I1X : U X — X we have 1T v : T
Notice that the natural 1 expansion of v is not of type v

This solves the problem of how to define n expansion with universes!

20

Getting II right in Set [21]

The free model

We want a decision procedure for equality of well-typed terms

We should have: if - A then [A] type and if F My = My : A then
[My] = [Mo] - [A]

To conclude it is enough to show:

IfI—M:Athenl—M:l[[A]] [[M]]A

21

Getting II right in Set [22]

The free model

How to define the typing relations = M : A?

A lot of possible choices: we can take most of the rules that are valid in the
model

For instance if one wants, one can take an explicit substitution rule

One can also look for a minimal set of rules: usual typing rules with conversion
as judgement

22

Getting IT right in Set [23]

Rules for the Logical Framework

We have a special primitive constant II of arity 2 and we write
(x: A) — B for
II A (\x.B)

We have also a special primitive constant U of arity 0, and a special primitive
constant El of arity 1

23

Getting II right in Set

[24]

Type-checking rules

rules for contexts

['correct T'FA
() correct [, z:A correct

rules for types

I'correct I'HFM:U I'z:AF B

T+ U T+ M [+ (2:A) — B

24

Getting II right in Set

[25]

rules for terms

Type-checking rules

[' correct (x:A) el
I'Fax:A

I'Nc:AF-M: B
C'-Xe.M: (x:A) — B

'-N:(z:A)—- B TFM:A

[N M: B[M]

25

Getting II right in Set

[26]

type equality rule

Type-checking rules

'-M:A T'A=1EB
I'-M:B

26

Getting II right in Set

[27]

conversion rules

I'FA

'FA=A

I'-M:A
'-M=M:A

Type-checking rules

'A=B T+FA=B I'FB=C
I'FB=A TFA=C

'-FM=N:A THFM=N:A T'EN=P:A

'FN=M:A 'FM=P:A

'FM=N:A TI'FHA=B
I'-M=N:B

27

Getting IT right in Set [28]

Soundness of the PER semantics

All these rules are valid in the PER semantics

If I' = A and p1 = po : I then Ap; = Aps

If ' Ay = Ay and p1 = po : I then A1p1 = Aspo
This is direct by induction on typing derivations

In particular if = M : A we know that [M] : [A] and we can consider
g [M]

To show that = M : A implies - M :i[[A]] [M] : A one introduces a logical
relation (this is the core of the method)

28

Getting IT right in Set [29]

A logical relation

One define R(A,X) for F A and X type and if this holds one defines
Ry x(M,u) for=-M:Aand u:X

This is quite subtle and where all the checks should be done

f -FC =(x:A) - Band Z =11 X F and R(A,X) and R4 x(M,u)
implies R(B[M], F' u) then we have R(C, Z)

If - C' = N then R(C,N) and Ro n(M,u) means M =y u: N

29

Getting IT right in Set [30]

A logical relation

To make the definition works we have to add the non standard conversion rule
(which is semantically valid)

F,ZIZ‘IA1|_Bl F,ZIJZAgl_BQ FF($:A1)—>31:($1A2)%B2
FI_A1:A2 F,I‘ZAl'_Bl:BQ

30

Getting IT right in Set [31]

A logical relation

The rest of the argument is more standard: we introduce new constants c*
for - A with the unique rule ¢4 : A

We prove then that if R(A, X) holds
Ry x(M,u) implies-M =|au: A
if-v=1":Athen Ry x(v,Ta V)

We can also show R(A,[A]) if - A and R, [[A]](M7 [M]) if F M : A by
induction on derivations

It follows that we have - M :l[[A]] [M]:Aif-M: A

31

Getting IT right in Set [32]

Forget the syntax?

One has the following result: if = My : A and = My : A then [M;] = [Ms] :
[A] is decidable

This suggests the following result, which would be “syntax independent” (no
mention of how we build the free model in the statement)

If A in normal form then it is decidable whether or not [A] type, for all PER
models, holds

If M, A in normal form then it is decidable whether or not [M] : [A], for all
PER models, holds in the model

32

Getting IT right in Set [33]

This proof

Perfect for the Logical Framework
Can one avoid the use of the non standard conversion rule?

How did Martin-Lof 75 managed without adding the non standard conversion
rules?

33

