NP ::= Det CN ; NP ::= PN ; NP ::= Pron ; NP ::= Predet Quant Num ; Det ::= Predet Quant OptNum ; Predet ::= ; -- examples -- Predet ::= "only" | "just" ; -- Quant ::= "this" | "the" | "a" | "every" | "some" ; -- Num ::= "one" ; Quant ::= Poss ; OptNum ::= | Num ; Num ::= Ordinal ; -- instead of NMass Quant ::= ; ---NP ::= DetMass NMass ; ---DetMass ::= Predet Quant ; ---DetMass ::= Predet ; ---NMass ::= "wine" ; NP ::= Det_Pl CN_Pl ; NP ::= Predet_Pl Quant_Pl Num_Pl ; -- nonempty det Det_Pl ::= Predet_Pl Quant_Pl OptNum_Pl ; Predet_Pl ::= ; Quant_Pl ::= ; Quant_Pl ::= Poss ; Poss ::= NP "'s" ; -- also "my" ; OptNum_Pl ::= | Num_Pl ; Num_Pl ::= Ordinal ; Num_Pl ::= Int ; Num_Pl ::= Numeral ; -- less than, exactly, almost,... Numeral ::= AdN Numeral ; CN_Pl ::= N_Pl ; CN ::= N ; -- prepositions cannot be expressed generally here -- NB relational nouns explain why complements are closer than adjuncts -- But let us make the resource simpler by excluding them -- CN ::= N2 Prep NP ; -- N2 ::= N3 Prep NP ; -- elliptical constructions -- with exclusion of rel nouns, they just help reuse the old lexicon N2 ::= N3 ; N ::= N2 ; -- these need other modules to produce anything CN ::= AP CN ; CN ::= CN AP_post ; CN ::= CN "that" S ; CN_Pl ::= AP CN_Pl ; CN_Pl ::= CN_Pl AP_post ;