Numerals

Last update: 2006-06-26 13:24:17 CEST



Produced by gfdoc - a rudimentary GF document generator. (c) Aarne Ranta (aarne@cs.chalmers.se) 2002 under GNU GPL.

This grammar defines numerals from 1 to 999999. The implementations are adapted from the numerals library which defines numerals for 88 languages. The resource grammar implementations add to this inflection (if needed) and ordinal numbers.

Note 1. Number 1 as defined in the category Numeral here should not be used in the formation of noun phrases, and should therefore be removed. Instead, one should use Structural.one_Quant. This makes the grammar simpler because we can assume that numbers form plural noun phrases.

Note 2. The implementations introduce spaces between parts of a numeral, which is often incorrect - more work on (un)lexing is needed to solve this problem.

    abstract Numeral = Cat ** {
    
    cat 
      Digit ;       -- 2..9
      Sub10 ;       -- 1..9
      Sub100 ;      -- 1..99
      Sub1000 ;     -- 1..999
      Sub1000000 ;  -- 1..999999
    
    fun 
      num : Sub1000000 -> Numeral ;
    
      n2, n3, n4, n5, n6, n7, n8, n9 : Digit ;
    
      pot01 : Sub10 ;                               -- 1
      pot0 : Digit -> Sub10 ;                       -- d * 1
      pot110 : Sub100 ;                             -- 10
      pot111 : Sub100 ;                             -- 11
      pot1to19 : Digit -> Sub100 ;                  -- 10 + d
      pot0as1 : Sub10 -> Sub100 ;                   -- coercion of 1..9
      pot1 : Digit -> Sub100 ;                      -- d * 10
      pot1plus : Digit -> Sub10 -> Sub100 ;         -- d * 10 + n
      pot1as2 : Sub100 -> Sub1000 ;                 -- coercion of 1..99
      pot2 : Sub10 -> Sub1000 ;                     -- m * 100
      pot2plus : Sub10 -> Sub100 -> Sub1000 ;       -- m * 100 + n
      pot2as3 : Sub1000 -> Sub1000000 ;             -- coercion of 1..999
      pot3 : Sub1000 -> Sub1000000 ;                -- m * 1000
      pot3plus : Sub1000 -> Sub1000 -> Sub1000000 ; -- m * 1000 + n
    
    }