incomplete concrete NounScand of Noun = CatScand ** open CommonScand, ResScand, Prelude in { flags optimize=all_subs ; -- The rule defines $Det Quant Num Ord CN$ where $Det$ is empty if -- it is the definite article ($DefSg$ or $DefPl$) and both $Num$ and -- $Ord$ are empty and $CN$ is not adjectivally modified -- ($AdjCN$). Thus we get $huset$ but $de fem husen$, $det gamla huset$. lin DetCN det cn = let g = cn.g ; m = cn.isMod ; dd = case of { => DDef Indef ; => d } in { s = \\c => det.s ! m ! g ++ cn.s ! det.n ! dd ! caseNP c ; a = agrP3 g det.n } ; UsePN pn = { s = \\c => pn.s ! caseNP c ; a = agrP3 pn.g Sg } ; UsePron p = p ; PredetNP pred np = { s = \\c => pred.s ! np.a.gn ++ np.s ! c ; a = np.a } ; PPartNP np v2 = { s = \\c => np.s ! c ++ v2.s ! (VI (VPtPret (agrAdj np.a.gn DIndef) Nom)) ; a = np.a } ; AdvNP np adv = { s = \\c => np.s ! c ++ adv.s ; a = np.a } ; DetSg quant ord = { s = \\b,g => quant.s ! Sg ! (orB b ord.isDet) ! g ++ ord.s ; n = Sg ; det = quant.det } ; DetPl quant num ord = { s = \\b,g => quant.s ! num.n ! (orB b (orB num.isDet ord.isDet)) ! g ++ num.s ! g ++ ord.s ; n = num.n ; det = quant.det } ; {- --- DEPREC SgQuant quant = { s = quant.s ! Sg ; n = Sg ; det = quant.det } ; PlQuant quant = { s = quant.s ! Pl ; n = Pl ; det = quant.det } ; -} PossPron p = { s = \\n,_,g => p.s ! NPPoss (gennum g n) ; det = DDef Indef } ; NoNum = {s = \\_ => [] ; isDet = False ; n = Pl} ; NoOrd = {s = [] ; isDet = False} ; NumInt n = {s = \\_ => n.s ; isDet = True ; n = Pl} ; --- DEPRECATED OrdInt n = {s = n.s ++ ":e" ; isDet = True} ; --- DEPRECATED NumDigits nu = {s = \\g => nu.s ! NCard g ; isDet = True ; n = nu.n} ; OrdDigits nu = {s = nu.s ! NOrd SupWeak ; isDet = True} ; NumNumeral nu = {s = \\g => nu.s ! NCard g ; isDet = True ; n = nu.n} ; OrdNumeral nu = {s = nu.s ! NOrd SupWeak ; isDet = True} ; AdNum adn num = {s = \\g => adn.s ++ num.s ! g ; isDet = True ; n = num.n} ; OrdSuperl a = { s = case a.isComp of { True => "mest" ++ a.s ! AF (APosit (Weak Sg)) Nom ; _ => a.s ! AF (ASuperl SupWeak) Nom } ; isDet = True } ; DefArt = { s = \\n,b,g => if_then_Str b (artDef (gennum g n)) [] ; det = DDef Def } ; IndefArt = { s = table { Sg => \\_ => artIndef ; Pl => \\_,_ => [] } ; det = DIndef } ; MassDet = {s = \\_,_,_ => [] ; n = Sg ; det = DIndef} ; UseN, UseN2, UseN3 = \noun -> { s = \\n,d,c => noun.s ! n ! specDet d ! c ; ---- part app wo c shows editor bug. AR 8/7/2007 g = noun.g ; isMod = False } ; -- The genitive of this $NP$ is not correct: "sonen till mig" (not "migs"). ComplN2 f x = { s = \\n,d,c => f.s ! n ! specDet d ! Nom ++ f.c2 ++ x.s ! accusative ; g = f.g ; isMod = False } ; ComplN3 f x = { s = \\n,d,c => f.s ! n ! d ! Nom ++ f.c2 ++ x.s ! accusative ; g = f.g ; c2 = f.c3 ; isMod = False } ; AdjCN ap cn = let g = cn.g in { s = \\n,d,c => preOrPost ap.isPre (ap.s ! agrAdj (gennum g n) d) (cn.s ! n ! d ! c) ; g = g ; isMod = True } ; RelCN cn rs = let g = cn.g in { s = \\n,d,c => cn.s ! n ! d ! c ++ rs.s ! agrP3 g n ; g = g ; isMod = cn.isMod } ; AdvCN cn sc = let g = cn.g in { s = \\n,d,c => cn.s ! n ! d ! c ++ sc.s ; g = g ; isMod = cn.isMod } ; SentCN cn sc = let g = cn.g in { s = \\n,d,c => cn.s ! n ! d ! c ++ sc.s ; g = g ; isMod = cn.isMod } ; ApposCN cn np = let g = cn.g in { s = \\n,d,c => cn.s ! n ! d ! Nom ++ np.s ! NPNom ; --c g = g ; isMod = cn.isMod } ; }