incomplete concrete ConjunctionRomance of Conjunction = CatRomance ** open CommonRomance, ResRomance, Coordination, Prelude in { flags optimize=all_subs ; lin ConjS conj ss = conjunctTable Mood conj ss ; DConjS conj ss = conjunctDistrTable Mood conj ss ; ConjAdv conj ss = conjunctSS conj ss ; DConjAdv conj ss = conjunctDistrSS conj ss ; ConjNP conj ss = conjunctTable NPForm conj ss ** { a = {g = ss.a.g ; n = conjNumber conj.n ss.a.n ; p = ss.a.p} ; hasClit = False } ; DConjNP conj ss = conjunctDistrTable NPForm conj ss ** { a = {g = ss.a.g ; n = conjNumber conj.n ss.a.n ; p = ss.a.p} ; hasClit = False } ; ConjAP conj ss = conjunctTable AForm conj ss ** { isPre = ss.isPre } ; DConjAP conj ss = conjunctDistrTable AForm conj ss ** { isPre = ss.isPre } ; -- These fun's are generated from the list cat's. BaseS = twoTable Mood ; ConsS = consrTable Mood comma ; BaseAdv = twoSS ; ConsAdv = consrSS comma ; BaseNP x y = { s1 = \\c => x.s ! stressedCase c ; s2 = \\c => y.s ! (conjunctCase c) ; a = conjAgr x.a y.a } ; ConsNP x xs = { s1 = \\c => x.s ! stressedCase c ++ comma ++ xs.s1 ! (conjunctCase c) ; s2 = \\c => xs.s2 ! (conjunctCase c) ; a = conjAgr x.a xs.a } ; BaseAP x y = twoTable AForm x y ** {isPre = andB x.isPre y.isPre} ; ConsAP xs x = consrTable AForm comma xs x ** {isPre = andB xs.isPre x.isPre} ; lincat [S] = {s1,s2 : Mood => Str} ; [Adv] = {s1,s2 : Str} ; [NP] = {s1,s2 : NPForm => Str ; a : Agr} ; [AP] = {s1,s2 : AForm => Str ; isPre : Bool} ; }