Produced by gfdoc - a rudimentary GF document generator. (c) Aarne Ranta (aarne@cs.chalmers.se) 2002 under GNU GPL.

A Small Predication Library

(c) Aarne Ranta 2003 under Gnu GPL.

This library is built on a language-independent API of resource grammars. It has a common part, the type signatures (defined here), and language-dependent parts. The user of the library should only have to look at the type signatures.

  incomplete resource Predication = open Resource, ResourceExt in {
We first define a set of predication patterns.
  oper
    predV1 : V -> NP -> S ;             -- one-place verb: "John walks"
    predV2 : TV -> NP -> NP -> S ;      -- two-place verb: "John loves Mary"
    predV3 : V3 -> NP -> NP -> NP -> S ;-- three-place verb: "John prefers Mary to Jane"
    predVColl : V -> NP -> NP -> S ;    -- collective verb: "John and Mary fight"
    predA1 : Adj1 -> NP -> S ;          -- one-place adjective: "John is old"
    predA2 : Adj2 -> NP -> NP -> S ;    -- two-place adj: "John is married to Mary"
    predAComp : AdjDeg -> NP -> NP -> S ; -- compar adj: "John is older than Mary"
    predAColl : Adj1 -> NP -> NP -> S ; -- collective adj: "John and Mary are married"
    predN1 : N -> NP -> S ;             -- one-place noun: "John is a man"
    predN2 : Fun -> NP -> NP -> S ;     -- two-place noun: "John is a lover of Mary"
    predNColl : N -> NP -> NP -> S ;    -- collective noun: "John and Mary are lovers"
    predAdv : AdV -> NP -> S ;          -- adverb: "Joh is outside"
Individual-valued function applications.
    appFun1 : Fun -> NP -> NP ;          -- one-place function: "the successor of x"
    appFun2 : Fun2 -> NP -> NP -> NP ;   -- two-place function: "the distance from x to y"
    appFunColl : Fun -> NP -> NP -> NP ; -- collective function: "the sum of x and y"
Families of types, expressed by common nouns depending on arguments.
    appFam1 : Fun -> NP -> CN ;          -- one-place family: "divisor of x"
    appFamColl : Fun -> NP -> NP -> CN ; -- collective family: "path between x and y"
Type constructor, similar to a family except that the argument is a type.
    constrTyp1 : Fun -> CN -> CN ;
Logical connectives on two sentences.
    conjS : S -> S -> S ;
    disjS : S -> S -> S ;
    implS : S -> S -> S ;
As an auxiliary, we need two-place conjunction of names (John and Mary), used in collective predication.
    conjNP : NP -> NP -> NP ;
--------------------------- -- what follows should be an implementation of the preceding
  oper
    predV1 = \F, x -> PredVP x (PosV F) ;
    predV2 = \F, x, y -> PredVP x (PosTV F y) ;
    predV3 = \F, x, y, z -> PredVP x (PosVG (PredV3 F y z)) ;
    predVColl = \F, x, y -> PredVP (conjNP x y) (PosV F) ;
    predA1 = \F, x -> PredVP x (PosA (AdjP1 F)) ;
    predA2 = \F, x, y -> PredVP x (PosA (ComplAdj F y)) ;
    predAComp = \F, x, y -> PredVP x (PosA (ComparAdjP F y)) ;
    predAColl = \F, x, y -> PredVP (conjNP x y) (PosA (AdjP1 F)) ;
    predN1 = \F, x -> PredVP x (PosCN (UseN F)) ;
    predN2 = \F, x, y -> PredVP x (PosCN (AppFun F y)) ;
    predNColl = \F, x, y -> PredVP (conjNP x y) (PosCN (UseN F)) ;
    predAdv = \F, x -> PredVP x (PosVG (PredAdV F)) ;
  
    appFun1 = \f, x -> DefOneNP (AppFun f x) ;
    appFun2 = \f, x, y -> DefOneNP (AppFun (AppFun2 f y) x) ;
    appFunColl = \f, x, y -> DefOneNP (AppFun f (conjNP x y)) ;
  
    appFam1 = \F, x -> AppFun F x ;
    appFamColl = \F, x, y -> AppFun F (conjNP x y) ;
  
    conjS = \A, B -> ConjS AndConj (TwoS A B) ;
    disjS = \A, B -> ConjS OrConj (TwoS A B) ;
    implS = \A, B -> SubjS IfSubj A B ;
  
    constrTyp1 = \F, A -> AppFun F (IndefManyNP A) ;
  
    conjNP = \x, y -> ConjNP AndConj (TwoNP x y) ;
  
  } ;