Grammatical Framework Tutorial

Author: Aarne Ranta aarne (at) cs.chalmers.se

Last update: Sun Jul 8 18:36:24 2007

Contents

1 Introduction
1.1 GF = Grammatical Framework
1.2 What are GF grammars used for
1.3 Who is this tutorial for o000
1.4 The coverage of the tutorial
1.5 Getting the GF program

1.6 Running the GF program

2 The .cf grammar format
2.1 Importing grammars and parsing strings
2.2 Generating trees and strings
2.3 Visualizing trees Lo oo o
2.4 Some random-generated sentences
2.5 Systematic generation
2.6 More on pipes; tracingo

2.7 Writing and reading files L 0oL

3 The .gf grammar format
3.1 Abstract and concrete syntax L.
3.2 Judgement formso
3.3 Module types
3.4 Basic types and function types Lo
3.5 Records and strings Lo Lo
3.6 An abstract syntax example
3.7 A concrete syntax example

3.8 Modules and files

4 Multilingual grammars and translation

10
10

11
12
13
14
15
16
16
17

17
18
18
19
19
20
21
22
22

23

4.1 An Ttalian concrete syntax
4.2 Using a multilingual grammar
4.3 Translation session 0L

4.4 Translation quizo o

5 Grammar architecture
5.1 Extending a grammar
5.2 Multiple inheritanceo o oL
5.3 Visualizing module structure

5.4 System commands o000

6 Resource modules
6.1 The golden rule of functional programming
6.2 Operation definitions
6.3 The “resource* module type
6.4 Opening aresourceo
6.5 Partial application00,
6.6 Testing resource modules

6.7 Division of labour.

7 Morphology
7.1 Parameters and tables 0.
7.2 Inflection tables and paradigms
7.3 Worst-case functions and data abstraction
7.4 A system of paradigms using Prelude operations
7.5 Pattern matching o oo
7.6 An intelligent noun paradigm using pattern matching

7.7 Morphological resource modules

8 Using parameters in concrete syntax

27
27
27
28
29

30
30
30
31
31
32
33
33

33
34
35
36
37
38
38
39

40

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Parametric vs. inherent features, agreement
English concrete syntax with parameters
Hierarchic parameter types
Morphological analysis and morphology quiz.
Discontinuous constituents,
Free variation Lo oo

Overloading of operations

More constructs for concrete syntax

Local definitions Lo oo
Record extension and subtyping
Tuples and product types
Record and tuple patterns00
Regular expression patterns L.
Prefix-dependent choices

Predefined types

10 Using the resource grammar library

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

The coverage of the library
The resource APT
Example: French
Functor implementation of multilingual grammars
Interfaces and instances
Adding languages to a functor implementation
Division of labour revisited
Restricted inheritance 000

Browsing the resource with GF commands

11 More concepts of abstract syntax

46
46
46
47
47
48
49
50

50
50
51
53
55
58
59
60
62
63

65

11.1 GF as a logical framework
11.2 Dependent types
11.3 Polymorphism
11.4 Dependent types and spoken language models .

11.4.1 Grammar-based language models

11.4.2 Statistical language models

11.5 Digression: dependent types in concrete syntax

11.5.1 Variables in function types
11.5.2 Polymorphism in concrete syntax
11.6 Proof objects
11.6.1 Proof-carrying documents
11.7 Restricted polymorphism
11.8 Variable bindings

11.9 Semantic definitions

12 Practical issues

12.1 Lexers and unlexers
12.2 Speech input and output
12.3 Multilingual syntax editor

12.4 Communicating with GF.

13 Embedded grammars in Haskell and Java

13.1 Writing GF grammars

13.1.1 Creating the first grammar

13.1.2 Testing
13.1.3 Adding a new language
13.1.4 Extending the language
13.2 Building a user program

13.2.1 Producing a compiled grammar package

13.2.2 Writing the Haskell application 88

13.2.3 Compiling the Haskell grammar. 89
13.2.4 Building a distribution 90
13.2.5 Using a Makefile 90
14 Embedded grammars in Java 90
15 Further reading 90

1 Introduction

1.1 GF = Grammatical Framework

The term GF is used for different things:

e a program used for working with grammars

e a programming language in which grammars can be written

e a theory about grammars and languages
This tutorial is primarily about the GF program and the GF programming
language. It will guide you

e to use the GF program

e to write GF grammars

e to write programs in which GF grammars are used as components

1.2 What are GF grammars used for

A grammar is a definition of a language. From this definition, different lan-
guage processing components can be derived:

e parsing: to analyse the language
e linearization: to generate the language

e translation: to analyse one language and generate another

A GF grammar can be seen as a declarative program from which these
processing tasks can be automatically derived. In addition, many other tasks
are readily available for GF grammars:

e morphological analysis: find out the possible inflection forms of
words

e morphological synthesis: generate all inflection forms of words
e random generation: generate random expressions
e corpus generation: generate all expressions

e treebank generation: generate a list of trees with multiple lineariza-
tions

e teaching quizzes: train morphology and translation

e multilingual authoring: create a document in many languages si-
multaneously

e speech input: optimize a speech recognition system for your grammar

A typical GF application is based on a multilingual grammar involving
translation on a special domain. Existing applications of this idea include

e Alfa:: a natural-language interface to a proof editor (languages: En-
glish, French, Swedish)

e KeY: a multilingual authoring system for creating software specifica-
tions (languages: OCL, English, German)

e TALK: multilingual and multimodal dialogue systems (languages: En-
glish, Finnish, French, German, Italian, Spanish, Swedish)

http://www.cs.chalmers.se/~hallgren/Alfa/Tutorial/GFplugin.html
http://www.key-project.org/
http://www.talk-project.org

e WebALT: a multilingual translator of mathematical exercises (lan-
guages: Catalan, English, Finnish, French, Spanish, Swedish)

e Numeral translator: number words from 1 to 999,999 (88 languages)

The specialization of a grammar to a domain makes it possible to obtain
much better translations than in an unlimited machine translation system.
This is due to the well-defined semantics of such domains. Grammars having
this character are called application grammars. They are different from
most grammars written by linguists just because they are multilingual and
domain-specific.

However, there is another kind of grammars, which we call resource gram-
mars. These are large, comprehensive grammars that can be used on any
domain. The GF Resource Grammar Library has resource grammars for 10
languages. These grammars can be used as libraries to define application
grammars. In this way, it is possible to write a high-quality grammar with-
out knowing about linguistics: in general, to write an application grammar
by using the resource library just requires practical knowledge of the target
language. and all theoretical knowledge about its grammar is given by the
libraries.

1.3 Who is this tutorial for

This tutorial is mainly for programmers who want to learn to write appli-
cation grammars. It will go through GF’s programming concepts without
entering too deep into linguistics. Thus it should be accessible to anyone
who has some previous programming experience.

A separate document has been written on how to write resource grammars:
the Resource HOWTO. In this tutorial, we will just cover the program-
ming concepts that are used for solving linguistic problems in the resource
grammars.

The easiest way to use GF is probably via the interactive syntax editor. Its
use does not require any knowledge of the GF formalism. There is a separate
Editor User Manual by Janna Khegai, covering the use of the editor. The
editor is also a platform for many kinds of GF applications, implementing
the slogan

write a document in a language you don’t know, while seeing it in a language
you know.

http://webalt.math.helsinki.fi/content/index_eng.html
http://www.cs.chalmers.se/~bringert/gf/translate/
file:../../lib/resource-1.0/doc/Resource-HOWTO.html
http://www.cs.chalmers.se/~aarne/GF2.0/doc/javaGUImanual/javaGUImanual.htm

1.4 The coverage of the tutorial

The tutorial gives a hands-on introduction to grammar writing. We start by
building a small grammar for the domain of food: in this grammar, you can
say things like

this Italian cheese is delicious

in English and Italian.

The first English grammar food.cf is written in a context-free notation
(also known as BNF). The BNF format is often a good starting point for
GF grammar development, because it is simple and widely used. However,
the BNF format is not good for multilingual grammars. While it is possible
to "translate” by just changing the words contained in a BNF grammar to
words of some other language, proper translation usually involves more. For
instance, the order of words may have to be changed:

Italian cheese ===> formaggio italiano

The full GF grammar format is designed to support such changes, by sep-
arating between the abstract syntax (the logical structure) and the con-
crete syntax (the sequence of words) of expressions.

There is more than words and word order that makes languages different.
Words can have different forms, and which forms they have vary from lan-
guage to language. For instance, Italian adjectives usually have four forms
where English has just one:

delicious (wine, wines, pizza, pizzas)
vino delizioso, vini deliziosi, pizza deliziosa, pizze deliziose

The morphology of a language describes the forms of its words. While
the complete description of morphology belongs to resource grammars, this
tutorial will explain the programming concepts involved in morphology. This
will moreover make it possible to grow the fragment covered by the food
example. The tutorial will in fact build a miniature resource grammar in
order to give an introduction to linguistically oriented grammar writing.

Thus it is by elaborating the initial food. cf example that the tutorial makes
a guided tour through all concepts of GF. While the constructs of the GF
language are the main focus, also the commands of the GF system are in-
troduced as they are needed.

10

file:food.cf

To learn how to write GF grammars is not the only goal of this tutorial.
We will also explain the most important commands of the GF system. With
these commands, simple applications of grammars, such as translation and
quiz systems, can be built simply by writing scripts for the system.

More complicated applications, such as natural-language interfaces and dia-
logue systems, moreover require programming in some general-purpose lan-
guage. Thus we will briefly explain how GF grammars are used as compo-
nents of Haskell programs. Chapters on using them in Java and Javascript
programs are forthcoming; a comprehensive manual on GF embedded in
Java, by Bjorn Bringert, is available in http://www.cs.chalmers.se/ bringert/gf/gf-java.html.

1.5 Getting the GF program

The GF program is open-source free software, which you can download via
the GF Homepage:

http://www.cs.chalmers.se/ aarne/GF

There you can download

e binaries for Linux, Mac OS X, and Windows

e source code and documentation

e grammar libraries and examples
If you want to compile GF from source, you need a Haskell compiler. To
compile the interactive editor, you also need a Java compilers. But normally

you don’t have to compile, and you definitely don’t need to know Haskell or
Java to use GF.

We are assuming the availability of a Unix shell. Linux and Mac OS X users
have it automatically, the latter under the name ”terminal”. Windows users
are recommended to install Cywgin, the free Unix shell for Windows.

1.6 Running the GF program
To start the GF program, assuming you have installed it, just type
% gf

in the shell. You will see GF’s welcome message and the prompt >. The
command

11

http://www.cs.chalmers.se/~bringert/gf/gf-java.html
http://www.cs.chalmers.se/~aarne/GF

> help

will give you a list of available commands.

As a common convention in this Tutorial, we will use

e 7 as a prompt that marks system commands

e > as a prompt that marks GF commands

Thus you should not type these prompts, but only the lines that follow them.

2 The .cf grammar format

Now you are ready to try out your first grammar. We start with one that
is not written in the GF language, but in the much more common BNF
notation (Backus Naur Form). The GF program understands a variant of
this notation and translates it internally to GF’s own representation.

To get started, type (or copy) the following lines into a file named food. cf:

Is. S ::= Ttem "is" Quality ;
That. Item ::= "that" Kind ;
This. Item ::= "this" Kind ;
QKind. Kind ::= Quality Kind ;
Cheese. Kind ::= "cheese" ;

Fish. Kind ::= "fish" ;

Wine. Kind 1= "wine" ;
Italian. Quality ::= "Italian" ;
Boring. Quality ::= "boring" ;
Delicious. Quality ::= "delicious" ;
Expensive. Quality ::= "expensive" ;
Fresh. Quality ::= "fresh"

Very. Quality ::= "very" Quality ;
Warm. Quality ::= "warm" ;

For those who know ordinary BNF, the notation we use includes one extra
element: a label appearing as the first element of each rule and terminated
by a full stop.

The grammar we wrote defines a set of phrases usable for speaking about
food. It builds sentences (S) by assigning Qualitys to Items. Items are

12

build from Kinds by prepending the word ”this” or ”that”. Kinds are either
atomic, such as ”cheese” and ”wine”, or formed by prepending a Quality
to a Kind. A Quality is either atomic, such as ”Italian” and ”boring”, or
built by another Quality by prepending ”very”. Those familiar with the
context-free grammar notation will notice that, for instance, the following
sentence can be built using this grammar:

this delicious Italian wine is very very expensive

2.1 Importing grammars and parsing strings
The first GF command needed when using a grammar is to import it. The

command has a long name, import, and a short name, i. You can type
either

> import food.cf
or
> i food.cf

to get the same effect. The effect is that the GF program compiles your
grammar into an internal representation, and shows a new prompt when it
is ready. It will also show how much CPU time is consumed:

> i food.cf

- parsing cf food.cf 12 msec
16 msec

>

You can now use GF for parsing:

> parse "this cheese is delicious"
Is (This Cheese) Delicious

> p "that wine is very very Italian"
Is (That Wine) (Very (Very Italian))

The parse (= p) command takes a string (in double quotes) and returns
an abstract syntax tree - the thing beginning with Is. Trees are built

13

from the rule labels given in the grammar, and record the ways in which the
rules are used to produce the strings. A tree is, in general, something easier
than a string for a machine to understand and to process further.

Strings that return a tree when parsed do so in virtue of the grammar you
imported. Try parsing something else, and you fail

> p "hello world"
Unknown words: hello world

Exercise. Extend the grammar food.cf by ten new food kinds and quali-
ties, and run the parser with new kinds of examples.

Exercise. Add a rule that enables questions of the form is this cheese Italian.

Exercise. Add the rule

IsVery. S ::= Item "is" "very" Quality ;

and see what happens when parsing this wine is very very Italian.
You have just made the grammar ambiguous: it now assigns several trees
to some strings.

Exercise. Modify the grammar so that at most one Quality may attach to
a given Kind. Thus boring Italian fish will no longer be recognized.

2.2 Generating trees and strings

You can also use GF for linearizing (linearize = 1). This is the inverse
of parsing, taking trees into strings:

> linearize Is (That Wine) Warm
that wine is warm

What is the use of this? Typically not that you type in a tree at the GF
prompt. The utility of linearization comes from the fact that you can obtain
a tree from somewhere else. One way to do so is random generation
(generate_random = gr):

> generate_random
Is (This (QKind Italian Fish)) Fresh

14

Now you can copy the tree and paste it to the linearize command. Or, more
conveniently, feed random generation into linearization by using a pipe.

>gr | 1
this Italian fish is fresh

Pipes in GF work much the same way as Unix pipes: they feed the output
of one command into another command as its input.

2.3 Visualizing trees

The gibberish code with parentheses returned by the parser does not look
like trees. Why is it called so? From the abstract mathematical point of
view, trees are a data structure that represents nesting: trees are branching
entities, and the branches are themselves trees. Parentheses give a linear
representation of trees, useful for the computer. But the human eye may
prefer to see a visualization; for this purpose, GF provides the command
visualizre tree = vt, to which parsing (and any other tree-producing
command) can be piped:

> parse "this delicious cheese is very Italian" | vt

15

Iz 2 5
. y
A~ -,
- e
- “
This : Item Vary : Guality
BEinAd 2 Kind Italian * HQuality

Delicious : OQuality Cheese : Kind

This command uses the programs Graphviz and Ghostview, which you might
not have, but which are freely available on the web.

2.4 Some random-generated sentences

Random generation is a good way to test a grammar; it can also be fun. So
you may want to generate ten strings with one and the same command:

> gr
that
that
that
this
that
that
that
this
this
this

-number=10 | 1

wine is boring

fresh cheese is fresh
cheese is very boring
cheese is Italian
expensive cheese is expensive
fish is fresh

wine is very Italian
wine is Italian
cheese is boring

fish is boring

16

2.5 Systematic generation

To generate all sentence that a grammar can generate, use the command
generate trees = gt.

> generate_trees | 1

that cheese is very Italian
that cheese is very boring
that cheese is very delicious
that cheese is very expensive
that cheese is very fresh

this wine is expensive
this wine is fresh
this wine is warm

You get quite a few trees but not all of them: only up to a given depth of
trees. To see how you can get more, use the help = h command,

> help gt

Exercise. If the command gt generated all trees in your grammar, it would
never terminate. Why?

Exercise. Measure how many trees the grammar gives with depths 4 and
5, respectively. You use the Unix word count command wc to count lines.
Hint. You can pipe the output of a GF command into a Unix command by
using the escape 7, as follows:

> generate_trees | 7 wc

2.6 More on pipes; tracing

A pipe of GF commands can have any length, but the ”output type” (either
string or tree) of one command must always match the ”input type” of the
next command.

The intermediate results in a pipe can be observed by putting the tracing
flag —tr to each command whose output you want to see:

17

>gr -tr | 1 -tr | p
Is (This Cheese) Boring

this cheese is boring
Is (This Cheese) Boring

This facility is good for test purposes: for instance, you may want to see if
a grammar is ambiguous, i.e. contains strings that can be parsed in more
than one way.

Exercise. Extend the grammar food.cf so that it produces ambiguous
strings, and try out the ambiguity test.

2.7 Writing and reading files

To save the outputs of GF commands into a file, you can pipe it to the
write_file = wf command,

> gr -number=10 | 1 | write_file exx.tmp
You can read the file back to GF with the read file = rf command,
> read_file exx.tmp | p -lines

Notice the flag -1ines given to the parsing command. This flag tells GF to
parse each line of the file separately. Without the flag, the grammar could
not recognize the string in the file, because it is not a sentence but a sequence
of ten sentences.

3 The .gf grammar format

To see GF’s internal representation of a grammar that you have imported,
you can give the command print_grammar = pg,

> print_grammar

The output is quite unreadable at this stage, and you may feel happy that
you did not need to write the grammar in that notation, but that the GF
grammar compiler produced it.

18

However, we will now start the demonstration how GF’s own notation gives
you much more expressive power than the .cf format. We will introduce the
.gf format by presenting another way of defining the same grammar as in
food.cf. Then we will show how the full GF grammar format enables you
to do things that are not possible in the context-free format.

3.1 Abstract and concrete syntax

A GF grammar consists of two main parts:

e abstract syntax, defining what syntax trees there are

e concrete syntax, defining how trees are linearized into strings

The context-free format fuses these two things together, but it is always
possible to take them apart. For instance, the sentence formation rule

Is. S ::= Item "is" Quality ;

is interpreted as the following pair of GF rules:

fun Is : Item -> Quality -> S ;
lin Is item quality = {s = item.s ++ "is" ++ quality.s} ;

The former rule, with the keyword fun, belongs to the abstract syntax. It
defines the function Is which constructs syntax trees of form (Is item
quality).

The latter rule, with the keyword 1in, belongs to the concrete syntax. It
defines the linearization function for syntax trees of form (Is item qual-

ity).

3.2 Judgement forms

Rules in a GF grammar are called judgements, and the keywords fun and
lin are used for distinguishing between two judgement forms. Here is a
summary of the most important judgement forms:

e abstract syntax

19

form reading
cat C C is a category
fun f : A | fis a function of type A

e concrete syntax

form reading
lincat C =T | category C has linearization type T
linf=t function f has linearization t

We return to the precise meanings of these judgement forms later. First we
will look at how judgements are grouped into modules, and show how the
food grammar is expressed by using modules and judgements.

3.3 Module types

A GF grammar consists of modules, into which judgements are grouped.
The most important module forms are

e abstract A = M, abstract syntax A with judgements in the module
body M.

e concrete C of A = M, concrete syntax C of the abstract syntax A,
with judgements in the module body M.

3.4 Basic types and function types
The nonterminals of a context-free grammar, i.e. categories, are called basic

types in the type system of GF. In addition to them, there are function
types such as

Item -> Quality -> S

This type is read ”a function from iterms and qualities to sentences”. The
last type in the arrow-separated sequence is the value type of the function
type, the earlier types are its argument types.

20

3.5 Records and strings

The linearization type of a category is a record type, with zero of more
fields of different types. The simplest record type used for linearization in
GF is

{s : Str}

which has one field, with label s and type Str.

Examples of records of this type are

llfooll}
"hello" ++ "world"}

{s
{s

Whenever a record r of type {s : Str} is given, r.s is an object of type
Str. This is a special case of the projection rule, allowing the extraction
of fields from a record:

eifr:{..p:T .. }thenrp:T

The type Str is really the type of token lists, but most of the time one
can conveniently think of it as the type of strings, denoted by string literals
in double quotes.

Notice that
"hello world"

is not recommended as an expression of type Str. It denotes a token with a
space in it, and will usually not work with the lexical analysis that precedes
parsing. A shorthand exemplified by

["hello world and people"] === "hello" ++ "world" ++ "and" ++ "people"
can be used for lists of tokens. The expression
(]

denotes the empty token list.

21

3.6 An abstract syntax example

To express the abstract syntax of food.cf in a file Food.gf, we write two
kinds of judgements:

e Each category is introduced by a cat judgement.

e Each rule label is introduced by a fun judgement, with the type formed
from the nonterminals of the rule.

abstract Food = {

cat
S ; Item ; Kind ; Quality ;

fun
Is : Item -> Quality -> S ;
This, That : Kind -> Item ;
QKind : Quality -> Kind -> Kind ;
Wine, Cheese, Fish : Kind ;
Very : Quality -> Quality ;
Fresh, Warm, Italian, Expensive, Delicious, Boring : Quality ;

Notice the use of shorthands permitting the sharing of the keyword in sub-
sequent judgements,

cat S ; Item ; === cat S ; cat Item ;

and of the type in subsequent fun judgements,

fun Wine, Fish : Kind ;
fun Wine : Kind ; Fish : Kind ; ===
fun Wine : Kind ; fun Fish : Kind ;

The order of judgements in a module is free.

Exercise. Extend the abstract syntax Food with ten new kinds and qualities,
and with questions of the form is this wine Italian.

22

3.7 A concrete syntax example

Fach category introduced in Food.gf is given a lincat rule, and each func-
tion is given a lin rule. Similar shorthands apply as in abstract modules

concrete FoodEng of Food = {
lincat
S, Item, Kind, Quality = {s : Str} ;

lin
Is item quality = {s = item.s ++ "is" ++ quality.s} ;
This kind = {s = "this" ++ kind.s} ;
That kind = {s = "that" ++ kind.s} ;
QKind quality kind = {s = quality.s ++ kind.s} ;
Wine = {s = "wine"} ;
Cheese = {s = "cheese"} ;
Fish = {s = "fish"} ;
Very quality = {s = "very" ++ quality.s} ;
Fresh = {s = "fresh"} ;
Warm = {s =
Italian = {s = "Italian"} ;
Expensive = "expensive"} ;
Delicious = {s "delicious"} ;
Boring = {s = "boring"} ;

-~
n
I

Exercise. Extend the concrete syntax FoodEng so that it matches the ab-
stract syntax defined in the exercise of the previous section. What happens

if the concrete syntax lacks some of the new functions?

3.8 Modules and files

GF uses suffixes to recognize different file formats. The most important ones

are:

e Source files: Module name + .gf = file name

e Target files: each module is compiled into a .gfc file.

Import FoodEng.gf and see what happens:

23

> i FoodEng.gf
- compiling Food.gf... wrote file Food.gfc 16 msec
- compiling FoodEng.gf... wrote file FoodEng.gfc 20 msec

The GF program does not only read the file FoodEng.gf, but also all other
files that it depends on - in this case, Food.gf.

For each file that is compiled, a .gfc file is generated. The GFC format
(=”GF Canonical”) is the "machine code” of GF, which is faster to process
than GF source files. When reading a module, GF decides whether to use
an existing .gfc file or to generate a new one, by looking at modification
times.

Exercise. What happens when you import FoodEng.gf for a second time?
Try this in different situations:

Right after importing it the first time (the modules are kept in the
memory of GF and need no reloading).

After issuing the command empty (e), which clears the memory of GF.

After making a small change in FoodEng. gf, be it only an added space.

After making a change in Food.gf.

4 Multilingual grammars and translation

The main advantage of separating abstract from concrete syntax is that one
abstract syntax can be equipped with many concrete syntaxes. A system
with this property is called a multilingual grammar.

Multilingual grammars can be used for applications such as translation. Let
us build an Italian concrete syntax for Food and then test the resulting
multilingual grammar.

4.1 An Italian concrete syntax

concrete FoodIta of Food = {

lincat
S, Item, Kind, Quality = {s : Str} ;

lin

24

Is item quality = {s = item.s ++ "&" ++ quality.s} ;
This kind = {s = "questo" ++ kind.s} ;

That kind = {s = "quello" ++ kind.s} ;

QKind quality kind = {s = kind.s ++ quality.s} ;
Wine = {s = "vino"} ;

Cheese = {s = "formaggio"} ;

Fish = {s = "pesce"} ;

Very quality = {s = "molto" ++ quality.s} ;

Fresh = {s = "fresco"} ;

Warm = {s = "caldo"} ;

Italian = {s = "italiano"} ;
Expensive = {s = "caro"} ;
Delicious = {s = "delizioso"} ;
Boring = {s = "noioso"} ;

Exercise. Write a concrete syntax of Food for some other language. You
will probably end up with grammatically incorrect output - but don’t worry
about this yet.

Exercise. If you have written Food for German, Swedish, or some other
language, test with random or exhaustive generation what constructs come
out incorrect, and prepare a list of those ones that cannot be helped with
the currently available fragment of GF.

4.2 Using a multilingual grammar

Import the two grammars in the same GF session.

> i FoodEng.gf
> i FoodIta.gf

Try generation now:

>gr | 1
quello formaggio molto noioso & italiano

> gr | 1 -lang=FoodEng
this fish is warm

Translate by using a pipe:

25

> p -lang=FoodEng "this cheese is very delicious" | 1 -lang=FoodIta

questo formaggio & molto delizioso

Generate a multilingual treebank, i.e. a set of trees with their translations
in different languages:

> gr -number=2 | tree_bank

Is (That Cheese) (Very Boring)

quello formaggio & molto noioso
that cheese is very boring

Is (That Cheese) Fresh
quello formaggio & fresco
that cheese is fresh

The lang flag tells GF which concrete syntax to use in parsing and lin-
earization. By default, the flag is set to the last-imported grammar. To see
what grammars are in scope and which is the main one, use the command
print_options = po:

> print_options

main abstract : Food
main concrete : FoodIta
actual concretes : FoodIta FoodEng

You can change the main grammar by the command change main = cm:

> change_main FoodEng

main abstract : Food
main concrete : FoodEng
actual concretes : FoodIta FoodEng

4.3 Translation session

If translation is what you want to do with a set of grammars, a convenient
way to do it is to open a translation_session = ts. In this session, you
can translate between all the languages that are in scope. A dot . terminates
the translation session.

26

> ts

trans> that very warm cheese is boring

quello formaggio molto caldo & noioso

that very warm cheese is boring

trans> questo vino molto italiano & molto delizioso
questo vino molto italiano € molto delizioso

this very Italian wine is very delicious

trans>
>

4.4 Translation quiz

This is a simple language exercise that can be automatically generated from
a multilingual grammar. The system generates a set of random sentences,
displays them in one language, and checks the user’s answer given in another

language. The command translation quiz = tq makes this in a subshell
of GF.

> translation_quiz FoodEng FoodIta

Welcome to GF Translation Quiz.

The quiz is over when you have done at least 10 examples
with at least 75 % success.

You can interrupt the quiz by entering a line consisting of a dot (’.’).

this fish is warm
questo pesce & caldo
> Yes.

Score 1/1

this cheese is Italian

questo formaggio & noioso

> No, not questo formaggio & noioso, but
questo formaggio & italiano

Score 1/2
this fish is expensive

You can also generate a list of translation exercises and save it in a file for
later use, by the command translation list = tl

27

> translation_list -number=25 FoodEng FoodIta | write_file transl.txt

The number flag gives the number of sentences generated.

5 Grammar architecture

5.1 Extending a grammar

The module system of GF makes it possible to extend a grammar in dif-
ferent ways. The syntax of extension is shown by the following example. We
extend Food by adding a category of questions and two new functions.

abstract Morefood = Food ** {
cat
Question ;
fun
QIs : Item -> Quality -> Question ;
Pizza : Kind ;

Parallel to the abstract syntax, extensions can be built for concrete syntaxes:

concrete MorefoodEng of Morefood = FoodEng ** {
lincat
Question = {s : Str} ;
lin
QIs item quality = {s = "is" ++ item.s ++ quality.s} ;
Pizza = {s = "pizza"} ;

The effect of extension is that all of the contents of the extended and ex-
tending module are put together. We also say that the new module inherits
the contents of the old module.

5.2 Multiple inheritance
Specialized vocabularies can be represented as small grammars that only

do ”one thing” each. For instance, the following are grammars for fruit and
mushrooms

28

abstract Fruit = {
cat Fruit ;
fun Apple, Peach : Fruit ;

}

abstract Mushroom = {
cat Mushroom ;
fun Cep, Agaric : Mushroom ;

}

They can afterwards be combined into bigger grammars by using multiple
inheritance, i.e. extension of several grammars at the same time:

abstract Foodmarket = Food, Fruit, Mushroom ** {
fun
FruitKind : Fruit -> Kind ;
MushroomKind : Mushroom -> Kind ;

3

At this point, you would perhaps like to go back to Food and take apart
Wine to build a special Drink module.

5.3 Visualizing module structure

When you have created all the abstract syntaxes and one set of concrete
syntaxes needed for Foodmarket, your grammar consists of eight GF mod-
ules. To see how their dependences look like, you can use the command
visualize_graph = vg,

> visualize_graph

and the graph will pop up in a separate window.

The graph uses

oval boxes for abstract modules

square boxes for concrete modules

black-headed arrows for inheritance

white-headed arrows for the concrete-of-abstract relation

29

|
| Foodnarketbnp

______ & _ R _‘____I Tl
- . i
| CrewllnE [el ket H I IR TRE ARG S| M- b vacemlCing
L --‘.-.-‘_ _'_-r:-'-\._"j'___J ______|____
, u bl
! o " Tl ;
- . S
- i L | n T &
_..-"'-.- " e mgt o T F'__h__-
; . " a =
I Freol l-':l [Fruil) 1, Fur=liaacan
. - L . -

- - - - -— -

Just as the visualize tree = vt command, the open source tools Ghostview
and Graphviz are needed.

5.4 System commands

To document your grammar, you may want to print the graph into a file,
e.g. a .png file that can be included in an HTML document. You can do
this by first printing the graph into a file .dot and then processing this file
with the dot program (from the Graphviz package).

> pm -printer=graph | wf Foodmarket.dot
> | dot -Tpng Foodmarket.dot > Foodmarket.png

The latter command is a Unix command, issued from GF by using the shell
escape symbol !. The resulting graph was shown in the previous section.

The command print multi = pm is used for printing the current multilin-
gual grammar in various formats, of which the format -printer=graph just
shows the module dependencies. Use help to see what other formats are
available:

> help pm
> help -printer
> help help

Another form of system commands are those usable in GF pipes. The escape
symbol is then 7.

> generate_trees | 7 wc

30

6 Resource modules

6.1 The golden rule of functional programming

In comparison to the .cf format, the .gf format looks rather verbose, and
demands lots more characters to be written. You have probably done this by
the copy-paste-modify method, which is a common way to avoid repeating
work.

However, there is a more elegant way to avoid repeating work than the
copy-and-paste method. The golden rule of functional programming
says that

e whenever you find yourself programming by copy-and-paste, write a
function instead.

A function separates the shared parts of different computations from the
changing parts, its arguments, or parameters. In functional programming
languages, such as Haskell, it is possible to share much more code with
functions than in imperative languages such as C and Java.

6.2 Operation definitions

GF is a functional programming language, not only in the sense that the
abstract syntax is a system of functions (fun), but also because functional
programming can be used to define concrete syntax. This is done by using
a new form of judgement, with the keyword oper (for operation), distinct
from fun for the sake of clarity. Here is a simple example of an operation:

oper ss : Str -> {s : Str} = \x -> {s = x} ;

The operation can be applied to an argument, and GF will compute the
application into a value. For instance,

ss “boy" R {s = "boy“}

(We use the symbol ===> to indicate how an expression is computed into a
value; this symbol is not a part of GF)

Thus an oper judgement includes the name of the defined operation, its type,
and an expression defining it. As for the syntax of the defining expression,
notice the lambda abstraction form \x -> t of the function.

31

http://www.haskell.org

6.3 The “resource“ module type

Operator definitions can be included in a concrete syntax. But they are not
really tied to a particular set of linearization rules. They should rather be
seen as resources usable in many concrete syntaxes.

The resource module type can be used to package oper definitions into
reusable resources. Here is an example, with a handful of operations to
manipulate strings and records.

resource StringOper = {
oper
SS : Type = {s : Str} ;
ss : Str -> 8S = \x -> {s = x} ;
cc : S8 -> S8S -> S8 = \x,y -> ss (x.s ++ y.s) ;
prefix : Str -> 8S -> SS = \p,x -> ss (p ++ x.8) ;

Resource modules can extend other resource modules, in the same way as
modules of other types can extend modules of the same type. Thus it is
possible to build resource hierarchies.

6.4 Opening a resource

Any number of resource modules can be opened in a concrete syntax,
which makes definitions contained in the resource usable in the concrete
syntax. Here is an example, where the resource String0Oper is opened in a
new version of FoodEng.

concrete Food2Eng of Food = open StringOper in {

lincat
S, Item, Kind, Quality = SS ;

lin
Is item quality = cc item (prefix "is" quality) ;
This k = prefix "this" k ;
That k = prefix "that" k ;
QKind k q = cc k q ;
Wine = ss "wine" ;
Cheese = ss '"cheese" ;
Fish = ss "fish" ;

32

Very = prefix "very" ;

Fresh = ss "fresh" ;

Warm = ss "warm" ;

Italian = ss "Italian" ;
Expensive = ss "expensive" ;
Delicious ss "delicious" ;
Boring = ss "boring" ;

Exercise. Use the same string operations to write FoodIta more concisely.

6.5 Partial application

GF, like Haskell, permits partial application of functions. An example of
this is the rule

lin This k = prefix "this" k ;

which can be written more concisely

lin This = prefix "this" ;

The first form is perhaps more intuitive to write but, once you get used
to partial application, you will appreciate its conciseness and elegance. The
logic of partial application is known as currying, with a reference to Haskell
B. Curry. The idea is that any n-place function can be defined as a 1-place
function whose value is an n-1 -place function. Thus

oper prefix : Str -> SS -> S8 ;

can be used as a 1-place function that takes a Str into a function SS ->
SS. The expected linearization of This is exactly a function of such a type,
operating on an argument of type Kind whose linearization is of type SS.
Thus we can define the linearization directly as prefix "this".

Exercise. Define an operation infix analogous to prefix, such that it
allows you to write

lin Is = infix "is"

33

6.6 Testing resource modules

To test a resource module independently, you must import it with the flag
-retain, which tells GF to retain oper definitions in the memory; the usual
behaviour is that oper definitions are just applied to compile linearization
rules (this is called inlining) and then thrown away.

> i -retain StringOper.gf

The command compute_concrete = cc computes any expression formed by
operations and other GF constructs. For example,

> compute_concrete prefix "in" (ss "addition")

{

s : Str = "in" ++ "addition"

6.7 Division of labour

Using operations defined in resource modules is a way to avoid repetitive
code. In addition, it enables a new kind of modularity and division of labour
in grammar writing: grammarians familiar with the linguistic details of a
language can make their knowledge available through resource grammar
modules, whose users only need to pick the right operations and not to
know their implementation details.

In the following sections, we will go through some such linguistic details.
The programming constructs needed when doing this are useful for all GF
programmers, even if they don’t hand-code the linguistics of their applica-
tions but get them from libraries. It is also useful to know something about
the linguistic concepts of inflection, agreement, and parts of speech.

7 Morphology

Suppose we want to say, with the vocabulary included in Food.gf, things
like

all Italian wines are delicious

The new grammatical facility we need are the plural forms of nouns and
verbs (wines, are), as opposed to their singular forms.

34

The introduction of plural forms requires two things:

e the inflection of nouns and verbs in singular and plural

e the agreement of the verb to subject: the verb must have the same
number as the subject

Different languages have different rules of inflection and agreement. For in-
stance, Italian has also agreement in gender (masculine vs. feminine). We
want to express such special features of languages in the concrete syntax
while ignoring them in the abstract syntax.

To be able to do all this, we need one new judgement form and many new
expression forms. We also need to generalize linearization types from strings
to more complex types.

Exercise. Make a list of the possible forms that nouns, adjectives, and verbs
can have in some languages that you know.

7.1 Parameters and tables

We define the parameter type of number in Englisn by using a new form
of judgement:

param Number = Sg | P1 ;

To express that Kind expressions in English have a linearization depending
on number, we replace the linearization type {s : Str} with a type where
the s field is a table depending on number:

lincat Kind = {s : Number => Str} ;

The table type Number => Str is in many respects similar to a function
type (Number -> Str). The main difference is that the argument type of a
table type must always be a parameter type. This means that the argument-
value pairs can be listed in a finite table. The following example shows such
a table:

lin Cheese = {s = table {
Sg => "cheese" ;
P1 => "cheeses"
}

s

35

The table consists of branches, where a pattern on the left of the arrow
=> is assigned a value on the right.

The application of a table to a parameter is done by the selection operator
I. For instance,

table {Sg => "cheese" ; P1 => "cheeses"} ! Pl

is a selection that computes into the value "cheeses". This computation is
performed by pattern matching: return the value from the first branch
whose pattern matches the selection argument. Thus

table {Sg => "cheese" ; P1 => "cheeses"} ! Pl
===> '"cheeses"

Exercise. In a previous exercise, we make a list of the possible forms that
nouns, adjectives, and verbs can have in some languages that you know.
Now take some of the results and implement them by using parameter type
definitions and tables. Write them into a resource module, which you can
test by using the command compute_concrete.

7.2 Inflection tables and paradigms

All English common nouns are inflected in number, most of them in the same
way: the plural form is obtained from the singular by adding the ending s.
This rule is an example of a paradigm - a formula telling how the inflection
forms of a word are formed.

From the GF point of view, a paradigm is a function that takes a lemma -
also known as a dictionary form - and returns an inflection table of desired
type. Paradigms are not functions in the sense of the fun judgements of
abstract syntax (which operate on trees and not on strings), but operations
defined in oper judgements. The following operation defines the regular noun
paradigm of English:

oper regNoun : Str -> {s : Number => Str} = \x -> {

s = table {
Sg => x
P1 => x + "g"
}

}

36

The gluing operator + tells that the string held in the variable x and the
ending "s" are written together to form one token. Thus, for instance,

(regNoun "cheese").s ! P1 ---> "cheese" + "s" ---> ‘cheeses"
Exercise. Identify cases in which the regNoun paradigm does not apply in
English, and implement some alternative paradigms.

Exercise. Implement a paradigm for regular verbs in English.

Exercise. Implement some regular paradigms for other languages you have
considered in earlier exercises.

7.3 Worst-case functions and data abstraction

Some English nouns, such as mouse, are so irregular that it makes no sense
to see them as instances of a paradigm. Even then, it is useful to perform
data abstraction from the definition of the type Noun, and introduce a
constructor operation, a worst-case function for nouns:

oper mkNoun : Str -> Str -> Noun = \x,y -> {

s = table {
Sg => x
P1 =>y
}

s

Thus we can define
lin Mouse = mkNoun "mouse" "mice" ;
and

oper regNoun : Str -> Noun = \x ->
mkNoun x (x + "s") ;

instead of writing the inflection tables explicitly.

The grammar engineering advantage of worst-case functions is that the au-
thor of the resource module may change the definitions of Noun and mkNoun,
and still retain the interface (i.e. the system of type signatures) that makes
it correct to use these functions in concrete modules. In programming terms,
Noun is then treated as an abstract datatype.

37

7.4 A system of paradigms using Prelude operations

In addition to the completely regular noun paradigm regNoun, some other
frequent noun paradigms deserve to be defined, for instance,

sNoun : Str -> Noun = \kiss -> mkNoun kiss (kiss + "es") ;

What about nouns like fly, with the plural flies? The already available so-
lution is to use the longest common prefix fI (also known as the technical
stem) as argument, and define

yNoun : Str -> Noun = \fl -> mkNoun (f1 + "y") (f1 + "ies") ;

But this paradigm would be very unintuitive to use, because the technical
stem is not an existing form of the word. A better solution is to use the
lemma and a string operator init, which returns the initial segment (i.e. all
characters but the last) of a string:

yNoun : Str -> Noun = \fly -> mkNoun fly (init fly + "ies") ;

The operation init belongs to a set of operations in the resource module
Prelude, which therefore has to be opened so that init can be used. Its
dual is last:

> cc init "curry"
n curr n

> cc last "curry"
llyll

As generalizations of the library functions init and last, GF has two
predefined funtions: Predef .dp, which ”drops” suffixes of any length, and
Predef .tk, which ”"takes” a prefix just omitting a number of characters from
the end. For instance,

> cc Predef.tk 3 "worried"
"WOI‘I‘ n

> cc Predef.dp 3 "worried"
n iedll

The prefix Predef is given to a handful of functions that could not be defined
internally in GF. They are available in all modules without explicit open of
the module Predef.

38

7.5 Pattern matching

We have so far built all expressions of the table form from branches whose
patterns are constants introduced in param definitions, as well as constant
strings. But there are more expressive patterns. Here is a summary of the
possible forms:

a variable pattern (identifier other than constant parameter) matches
anything

the wild card _ matches anything

a string literal pattern, e.g. "s", matches the same string

a disjunctive pattern P | ... | Q matches anything that one of the
disjuncts matches

Pattern matching is performed in the order in which the branches appear in
the table: the branch of the first matching pattern is followed.

As syntactic sugar, one-branch tables can be written concisely,
\\P,...,Q =>t === table {P => ... table {Q => t} ...}

Finally, the case expressions common in functional programming languages
are syntactic sugar for table selections:

case e of {...} === table {...} ! e

7.6 An intelligent noun paradigm using pattern matching

It may be hard for the user of a resource morphology to pick the right inflec-
tion paradigm. A way to help this is to define a more intelligent paradigm,
which chooses the ending by first analysing the lemma. The following variant
for English regular nouns puts together all the previously shown paradigms,
and chooses one of them on the basis of the final letter of the lemma (found
by the prelude operator last).

regNoun : Str -> Noun = \s -> case last s of {

"s" | "z" => mkNoun s (s + "es")
ny => mkNoun s (init s + "ies") ;
_ => mkNoun s (s + "s")

T

39

This definition displays many GF expression forms not shown befores; these
forms are explained in the next section.

The paradigms regNoun does not give the correct forms for all nouns. For in-
stance, mouse - mice and fish - fish must be given by using mkNoun. Also the
word boy would be inflected incorrectly; to prevent this, either use mkNoun
or modify regNoun so that the "y" case does not apply if the second-last
character is a vowel.

Exercise. Extend the regNoun paradigm so that it takes care of all varia-
tions there are in English. Test it with the nouns az, bamboo, boy, bush, hero,
match. Hint. The library functions Predef .dp and Predef .tk are useful in
this task.

Exercise. The same rules that form plural nouns in English also apply in
the formation of third-person singular verbs. Write a regular verb paradigm
that uses this idea, but first rewrite regNoun so that the analysis needed
to build s-forms is factored out as a separate oper, which is shared with
regVerb.

7.7 Morphological resource modules

A common idiom is to gather the oper and param definitions needed for
inflecting words in a language into a morphology module. Here is a simple
example, MorphoEng.

--# -path=.:prelude
resource MorphoEng = open Prelude in {

param
Number = Sg | P1 ;

oper
Noun, Verb : Type = {s : Number => Str} ;

mkNoun : Str -> Str -> Noun = \x,y -> {

s = table {
Sg => x ;
Pl =>y
}

s

regNoun : Str -> Noun = \s -> case last s of {

40

file:resource/MorphoEng.gf

"s" | "z" => mkNoun s (s + "es") ;
"y => mkNoun s (init s + "ies") ;
=> mkNoun s (s + "s")

}

mkVerb : Str -> Str -> Verb = \x,y -> mkNoun y x ;

regVerb : Str -> Verb = \s -> case last s of {

g | "z" => mkVerb s (s + "es") ;

Hy => mkVerb s (init s + "ies") ;
"o => mkVerb s (s + "es") ;

_ => mkVerb s (s + "s")

L

The first line gives as a hint to the compiler the search path needed to find
all the other modules that the module depends on. The directory prelude
is a subdirectory of GF/1ib; to be able to refer to it in this simple way, you
can set the environment variable GF_LIB_PATH to point to this directory.

8 Using parameters in concrete syntax

We can now enrich the concrete syntax definitions to comprise morphology.
This will involve a more radical variation between languages (e.g. English
and Italian) then just the use of different words. In general, parameters and
linearization types are different in different languages - but this does not
prevent the use of a common abstract syntax.

8.1 Parametric vs. inherent features, agreement

The rule of subject-verb agreement in English says that the verb phrase
must be inflected in the number of the subject. This means that a noun
phrase (functioning as a subject), inherently has a number, which it passes
to the verb. The verb does not have a number, but must be able to receive
whatever number the subject has. This distinction is nicely represented by
the different linearization types of noun phrases and verb phrases:

lincat NP
lincat VP

{s : Str ; n : Number} ;
{s : Number => Str} ;

41

We say that the number of NP is an inherent feature, whereas the number
of NP is a variable feature (or a parametric feature).

The agreement rule itself is expressed in the linearization rule of the predi-
cation function:

lin PredVP np vp = {s = np.s ++ vp.s ! np.n} ;

The following section will present FoodsEng, assuming the abstract syntax
Foods that is similar to Food but also has the plural determiners These and
Those. The reader is invited to inspect the way in which agreement works
in the formation of sentences.

8.2 English concrete syntax with parameters

The grammar uses both Prelude and MorphoEng. We will later see how to
make the grammar even more high-level by using a resource grammar library
and parametrized modules.

--# -path=.:resource:prelude
concrete FoodsEng of Foods = open Prelude, MorphoEng in {

lincat
S, Quality = SS ;
Kind = {s : Number => Str} ;
Item = {s : Str ; n : Number} ;

lin
Is item quality = ss (item.s ++ (mkVerb "are" "is").s ! item.n ++ quality.s) ;

This = det Sg "this" ;
That = det Sg "that" ;
These = det P1 "these" ;
Those = det P1 "those" ;

QKind quality kind = {s = \\n => quality.s ++ kind.s ! n} ;
Wine = regNoun "wine" ;

Cheese = regNoun "cheese"

Fish = mkNoun "fish" "fish" ;

Very = prefixSS "very" ;

Fresh = ss "fresh" ;

Warm = ss "warm" ;

Italian = ss "Italian" ;

42

file:../../lib/prelude/Prelude.gf

Expensive = ss "expensive" ;
Delicious ss "delicious" ;
Boring = ss "boring" ;

oper
det : Number -> Str -> Noun -> {s : Str ; n : Number} = \n,d,cn -> {
d ++ cn.s ! n ;

=1n

“ B ®n
|

8.3 Hierarchic parameter types

The reader familiar with a functional programming language such as Haskell
must have noticed the similarity between parameter types in GF and alge-
braic datatypes (data definitions in Haskell). The GF parameter types are
actually a special case of algebraic datatypes: the main restriction is that in
GF, these types must be finite. (It is this restriction that makes it possible
to invert linearization rules into parsing methods.)

However, finite is not the same thing as enumerated. Even in GF, parameter
constructors can take arguments, provided these arguments are from other
parameter types - only recursion is forbidden. Such parameter types impose
a hierarchic order among parameters. They are often needed to define the
linguistically most accurate parameter systems.

To give an example, Swedish adjectives are inflected in number (singular or
plural) and gender (uter or neuter). These parameters would suggest 2*2=4
different forms. However, the gender distinction is done only in the singular.
Therefore, it would be inaccurate to define adjective paradigms using the
type Gender => Number => Str. The following hierarchic definition yields
an accurate system of three adjectival forms.

param AdjForm
param Gender

ASg Gender | AP1 ;
Utr | Neutr ;

Here is an example of pattern matching, the paradigm of regular adjectives.

oper regAdj : Str -> AdjForm => Str = \fin -> table {
ASg Utr => fin ;
ASg Neutr => fin + "t"
APl => fin + "a"

}

43

http://www.haskell.org

A constructor can be used as a pattern that has patterns as arguments. For
instance, the adjectival paradigm in which the two singular forms are the
same, can be defined

oper plattAdj : Str -> AdjForm => Str = \platt -> table {
ASg _ => platt ;
AP1 => platt + "a"
}

8.4 Morphological analysis and morphology quiz

Even though morphology is in GF mostly used as an auxiliary for syntax,
it can also be useful on its own right. The command morpho_analyse = ma
can be used to read a text and return for each word the analyses that it has
in the current concrete syntax.

> rf bible.txt | morpho_analyse

In the same way as translation exercises, morphological exercises can be
generated, by the command morpho_quiz = mq. Usually, the category is set
to be something else than S. For instance,

> cd GF/lib/resource-1.0/
> i french/IrregFre.gf
> morpho_quiz -cat=V

Welcome to GF Morphology Quiz.
réapparaitre : VFin VCondit P1 P2
réapparaitriez

> No, not réapparaitriez, but

réapparaitriez
Score 0/1

Finally, a list of morphological exercises can be generated off-line and saved
in a file for later use, by the command morpho_list = ml

> morpho_list -number=25 -cat=V | wf exx.txt

The number flag gives the number of exercises generated.

44

8.5 Discontinuous constituents

A linearization type may contain more strings than one. An example of where
this is useful are English particle verbs, such as switch off. The linearization
of a sentence may place the object between the verb and the particle: he
switched it off.

The following judgement defines transitive verbs as discontinuous con-
stituents, i.e. as having a linearization type with two strings and not just
one.

lincat TV = {s : Number => Str ; part : Str} ;

This linearization rule shows how the constituents are separated by the
object in complementization.

lin PredTV tv obj = {s = \\n => tv.s ! n ++ obj.s ++ tv.part} ;

There is no restriction in the number of discontinuous constituents (or other
fields) a lincat may contain. The only condition is that the fields must be
of finite types, i.e. built from records, tables, parameters, and Str, and not
functions.

A mathematical result about parsing in GF says that the worst-case com-
plexity of parsing increases with the number of discontinuous constituents.
This is potentially a reason to avoid discontinuous constituents. Moreover,
the parsing and linearization commands only give accurate results for cat-
egories whose linearization type has a unique Str valued field labelled s.
Therefore, discontinuous constituents are not a good idea in top-level cate-
gories accessed by the users of a grammar application.

8.6 Free variation

Sometimes there are many alternative ways to define a concrete syntax. For
instance, the verb negation in English can be expressed both by does not
and doesn’t. In linguistic terms, these expressions are in free variation.

The variants construct of GF can be used to give a list of strings in free
variation. For example,

NegVerb verb = {s = variants {["does not"] ; "doesn’t} ++ verb.s ! P1} ;

An empty variant list

45

variants {}

can be used e.g. if a word lacks a certain form.

In general, variants should be used cautiously. It is not recommended for
modules aimed to be libraries, because the user of the library has no way to
choose among the variants.

8.7 Overloading of operations

Large libraries, such as the GF Resource Grammar Library, may define
hundreds of names, which can be unpractical for both the library writer
and the user. The writer has to invent longer and longer names which are
not always intuitive, and the user has to learn or at least be able to find
all these names. A solution to this problem, adopted by languages such as
C++, is overloading: the same name can be used for several functions.
When such a name is used, the compiler performs overload resolution to
find out which of the possible functions is meant. The resolution is based on
the types of the functions: all functions that have the same name must have
different types.

In C++, functions with the same name can be scattered everywhere in the
program. In GF, they must be grouped together in overload groups. Here
is an example of an overload group, defining four ways to define nouns in
Italian:

oper mkN = overload {

mkN : Str -> N = -- regular nouns

mkN : Str -> Gender -> N = —- regular nouns with unexpected gender
mkN : Str -> Str -> N = -- irregular nouns

mkN : Str -> Str -> Gender -> N = -- irregular nouns with unexpected gender

All of the following uses of mkN are easy to resolve:

lin Pizza = mkN "pizza" ; -- Str > N
lin Hand = mkN "mano" Fem ; -— Str -> Gender -> N
lin Man = mkN "uomo" "uomini" ; -- Str -> Str -> N

46

9 DMore constructs for concrete syntax

In this chapter, we go through constructs that are not necessary in simple
grammars or when the concrete syntax relies on libraries. But they are useful
when writing advanced concrete syntax implementations, such as resource
grammar libraries. This chapter can safely be skipped if the reader prefers
to continue to the chapter on using libraries.

9.1 Local definitions

Local definitions (”1let expressions”) are used in functional programming
for two reasons: to structure the code into smaller expressions, and to avoid
repeated computation of one and the same expression. Here is an example,
from MorphoIta:

oper regNoun : Str -> Noun = \vino ->

let
vin = init vino ;
o = last vino

in

case o of {
"a" => mkNoun Fem vino (vin + "e") ;
"o" | "e" => mkNoun Masc vino (vin + "i") ;
- => mkNoun Masc vino vino
s

9.2 Record extension and subtyping

Record types and records can be extended with new fields. For instance,
in German it is natural to see transitive verbs as verbs with a case. The
symbol ** is used for both constructs.

lincat TV = Verb **x {c : Case} ;
lin Follow = regVerb "folgen" ** {c = Dativel} ;

To extend a record type or a record with a field whose label it already has
is a type error.

A record type T is a subtype of another one R, if T has all the fields of
R and possibly other fields. For instance, an extension of a record type is
always a subtype of it.

47

file:resource/MorphoIta.gf

If T is a subtype of R, an object of T can be used whenever an object of R
is required. For instance, a transitive verb can be used whenever a verb is
required.

Contravariance means that a function taking an R as argument can also
be applied to any object of a subtype T.

9.3 Tuples and product types
Product types and tuples are syntactic sugar for record types and records:

Tl * ... *Tn === {pl :T1; ... ; pn : Tn}
<tl, ..., tn> === {pl =T1,; ... ; pn = Tn}

Thus the labels p1, p2,... are hard-coded.

9.4 Record and tuple patterns

Record types of parameter types are also parameter types. A typical example
is a record of agreement features, e.g. French

oper Agr : PType = {g : Gender ; n : Number ; p : Person} ;

Notice the term PType rather than just Type referring to parameter types.
Every PType is also a Type, but not vice-versa.

Pattern matching is done in the expected way, but it can moreover utilize
partial records: the branch

{g = Fen} => t
in a table of type Agr => T means the same as
{g=Fem ;n=_;p=_}=>¢%

Tuple patterns are translated to record patterns in the same way as tuples
to records; partial patterns make it possible to write, slightly surprisingly,

case <g,n,p> of {
<Fem> => t

48

9.5 Regular expression patterns

To define string operations computed at compile time, such as in morphol-
ogy, it is handy to use regular expression patterns:
e p + ¢ : token consisting of p followed by ¢

e p * : token p repeated 0 or more times (max the length of the string
to be matched)

- p : matches anything that p does not match

z @ p : bind to z what p matches

e p | ¢ : matches what either p or ¢ matches
The last three apply to all types of patterns, the first two only to token
strings. As an example, we give a rule for the formation of English word

forms ending with an s and used in the formation of both plural nouns and
third-person present-tense verbs.

add_s : Str -> Str = \w -> case w of {

_ + "oo" =>yw + "s" ; —-- bamboo
_+ ("s" | "z" | "x" | "sh" | "o") =>w + "es" ; -- bus, hero
_+ (Ma" | "o" | "u" | "e") + "y" =>w + "s" ; -- boy

x + "y" =>x + "jes" ; -- fly

_ =y + "s" -- car

I

Here is another example, the plural formation in Swedish 2nd declension.
The second branch uses a variable binding with @ to cover the cases where an
unstressed pre-final vowel e disappears in the plural (nyckel-nycklar, seger-
segrar, bil-bilar):

plural2 : Str -> Str = \w -> case w of {

pOJk + Nna" => pOJk + "ar"

nyck + "a" 4 1@(“1" | nypn | nnn) => nyck + 1 + "gr" ;
bil => bil + "ar"

s

Semantics: variables are always bound to the first match, which is the
first in the sequence of binding lists Match p v defined as follows. In the
definition, p is a pattern and v is a value. The semantics is given in Haskell
notation.

49

Match (pillp2) v
Match (pl+p2) s

Match pl ++ U Match p2 v
[Match pl s1 ++ Match p2 s2 |
i <- [0..length s], (s1,s2) = splitAt i sl

Match p* s = [[0] if Match "" s ++ Match p s ++ Match (p+p) s ++... /= []
Match -p v = [[J] if Match p v = []
Match ¢ v = [[]] if ¢ == -- for constant and literal patterns c
Match x v = [[(x,v]] -- for variable patterns x
Match x@p v =[[(x,v)]] +M if M = Match p v /= []
Match p v = [] otherwise -- failure
Examples:
e x + "e" + y matches "peter" with x = "p", y = "ter"
e x + "er"k matches "burgerer" with “x = "burg”

Exercise. Implement the German Umlaut operation on word stems. The
operation changes the vowel of the stressed stem syllable as follows: a to
a, au to au, o to 0, and u to u. You can assume that the operation only
takes syllables as arguments. Test the operation to see whether it correctly
changes Arzt to Arzt, Baum to Bium, Topf to Tépf, and Kuh to Kiih.

9.6 Prefix-dependent choices

Sometimes a token has different forms depending on the token that follows.
An example is the English indefinite article, which is an if a vowel follows, a
otherwise. Which form is chosen can only be decided at run time, i.e. when
a string is actually build. GF has a special construct for such tokens, the
pre construct exemplified in

oper artIndef : Str =

pre {nau ; nanu / strs {uan ; ||e|| ; ||i|| ; "O"}} ;
Thus
artIndef ++ "cheese" ---> "a" ++ '"cheese"
artIndef ++ "apple" -—=> "an" ++ "apple"

This very example does not work in all situations: the prefix u has no general
rules, and some problematic words are euphemism, one-eyed, n-gram. It is
possible to write

50

oper artIndef : Str =

pre {nau
nau / strs {ueun ; llonell} ;
"an" / strs {"a" ; P ; nyn ; "ot ; "Il—"}
s

9.7 Predefined types

GF has the following predefined categories in abstract syntax:

cat Int ; -- integers, e.g. 0, 5, 743145151019
cat Float ; -- floats, e.g. 0.0, 3.1415926
cat String ; -- strings, e.g. "", "foo", "123"

The objects of each of these categories are literals as indicated in the com-
ments above. No fun definition can have a predefined category as its value
type, but they can be used as arguments. For example:

fun StreetAddress : Int -> String -> Address ;
lin StreetAddress number street = {s = number.s ++ street.s} ;

-- e.g. (StreetAddress 10 "Downing Street") : Address

FIXME: The linearization type is {s : Str} for all these categories.

10 Using the resource grammar library

In this chapter, we will take a look at the GF resource grammar library.
We will use the library to implement a slightly extended Food grammar and
port it to some new languages.

10.1 The coverage of the library

The GF Resource Grammar Library contains grammar rules for 10 languages
(in addition, 2 languages are available as incomplete implementations, and a
few more are under construction). Its purpose is to make these rules available
for application programmers, who can thereby concentrate on the seman-
tic and stylistic aspects of their grammars, without having to think about
grammaticality. The targeted level of application grammarians is that of a

o1

skilled programmer with a practical knowledge of the target languages, but
without theoretical knowledge about their grammars. Such a combination of
skills is typical of programmers who, for instance, want to localize software
to new languages.

The current resource languages are

Arabic (incomplete)
e Catalan (incomplete)
e Danish

e English

e Finnish

e French

e German

e Italian

e Norwegian

e Russian

e Spanish

Swedish

The first three letters (Eng etc) are used in grammar module names. The
incomplete Arabic and Catalan implementations are enough to be used in
many applications; they both contain, amoung other things, complete in-
flectional morphology.

10.2 The resource API

The resource library API is devided into language-specific and language-
independent parts. To put it roughly,

e the syntax API is language-independent, i.e. has the same types and
functions for all languages. Its name is Syntax L for each language L

e the morphology API is language-specific, i.e. has partly different types
and functions for different languages. Its name is Paradigms L for each
language L

52

A full documentation of the API is available on-line in the resource synopsis.
For our examples, we will only need a fragment of the full API.

In the first examples, we will make use of the following categories, from the
module Syntax.

Category | Explanation Example
Utt sentence, question, word... ”be quiet”
Adv verb-phrase-modifying adverb, ”in the house”
AdA adjective-modifying adverb, " very”
S declarative sentence ”she lived here”
Cl declarative clause, with all tenses ”she looks at this”
AP adjectival phrase ”very warm”
CN common noun (without determiner) | “red house”
NP noun phrase (subject or object) ”the red house”
Det determiner phrase ”those seven”
Predet predeterminer ”only”
Quant quantifier with both sg and pl "this/these”
Prep preposition, or just case ”in”
A one-place adjective ”warm”
N common noun "house”
We will need the following syntax rules from Syntax.
Function | Type Example
mkUtt S -> Utt John walked
mkUtt Cl -> Utt John walks
mkC1l NP -> AP -> C1 John is very old
mkNP Det -> CN -> NP the first old man
mkNP Predet -> NP -> NP | only John
mkDet Quant -> Det this
mkCN N -> CN house
mkCN AP -> CN -> CN very big blue house
mkAP A -> AP old
mkAP AdA -> AP -> AP very very old

We will also need the following structural words from Syntax.

Function Type | Example
all Predet | Predet | all
defP1Det Det the (houses)
this_Quant | Quant this
very_AdA AdA very

93

file:../../lib/resource-1.0/synopsis.html

For French, we will use the following part of ParadigmsFre.

Function | Type Example
Gender Type -
masculine | Gender -
feminine Gender -
mkN (cheval : Str) -> N -
mkN (foie : Str) -> Gender -> N | -
mkA (cher : Str) -> A -
mkA (sec,seche : Str) -> A -

For German, we will use the following part of ParadigmsGer.

Function | Type Example
Gender Type -

masculine | Gender -

feminine Gender -

neuter Gender -

mkN (Stufe : Str) -> N -

mkN (Bild,Bilder : Str) -> Gender -> N | -

mkA Str -> A -

mkA (gut,besser,beste : Str) -> A gut,besser,beste

Exercise. Try out the morphological paradigms in different languages. Do

in this way:

> i -path=alltenses:prelude -retain alltenses/ParadigmsGer.gfr
"Farbe"

> cc mkN

> cc mkA "gut" "besser" "beste"

10.3 Example: French

We start with an abstract syntax that is like Food before, but has a plural
determiner (all wines) and some new nouns that will need different genders

in most languages.

abstract Food = {

cat

S ; Item ; Kind ; Quality ;

54

fun
Is : Item -> Quality -> S ;
This, All : Kind -> Item ;
QKind : Quality —-> Kind -> Kind ;
Wine, Cheese, Fish, Beer, Pizza : Kind ;
Very : Quality -> Quality ;
Fresh, Warm, Italian, Expensive, Delicious, Boring : Quality ;

The French implementation opens SyntaxFre and ParadigmsFre to get ac-
cess to the resource libraries needed. In order to find the libraries, a path
directive is prepended; it is interpreted relative to the environment variable
GF_LIB_PATH.

--# -path=. :present:prelude

concrete FoodFre of Food = open SyntaxFre,ParadigmsFre in {
lincat
S = Utt ;
Item = NP ;
Kind = CN ;
Quality = AP ;
lin
Is item quality = mkUtt (mkCl item quality) ;
This kind = mkNP (mkDet this_Quant) kind ;
A1l kind = mkNP all_Predet (mkNP defPlDet kind) ;
QKind quality kind = mkCN quality kind ;
Wine = mkCN (mkN "vin") ;
Beer = mkCN (mkN "biére") ;
Pizza = mkCN (mkN "pizza" feminine) ;
Cheese = mkCN (mkN "fromage" masculine) ;
Fish = mkCN (mkN "poisson") ;
Very quality = mkAP very_AdA quality ;
Fresh = mkAP (mkA "frais" "fraiche") ;
Warm = mkAP (mkA "chaud")
Italian = mkAP (mkA "italien") ;
Expensive = mkAP (mkA "cher") ;
Delicious = mkAP (mkA "délicieux") ;
Boring = mkAP (mkA "ennuyeux") ;

The lincat definitions in FoodFre assign resource categories to appli-
cation categories. In a sense, the application categories are semantic, as

95

they correspond to concepts in the grammar application, whereas the re-
source categories are syntactic: they give the linguistic means to express
concepts in any application.

The 1in definitions likewise assign resource functions to application func-
tions. Under the hood, there is a lot of matching with parameters to take
care of word order, inflection, and agreement. But the user of the library
sees nothing of this: the only parameters you need to give are the genders
of some nouns, which cannot be correctly inferred from the word.

In French, for example, the one-argument mkN assigns the noun the feminine
gender if and only if it ends with an e. Therefore the words fromage and
pizza are given genders. One can of course always give genders manually, to
be on the safe side.

As for inflection, the one-argument adjective pattern mkA takes care of com-
pletely regular adjective such as chaud-chaude, but also of special cases such
as italien-italienne, cher-chére, and délicieuz-délicieuse. But it cannot form
frais-fraiche properly. Once again, you can give more forms to be on the safe
side. You can also test the paradigms in the GF program.

Exercise. Compile the grammar FoodFre and generate and parse some
sentences.

Exercise. Write a concrete syntax of Food for English or some other lan-
guage included in the resource library. You can also compare the output
with the hand-written grammars presented earlier in this tutorial.

Exercise. In particular, try to write a concrete syntax for Italian, even if
you don’t know Italian. What you need to know is that "beer” is birra and
”pizza” is pizza, and that all the nouns and adjectives in the grammar are
regular.

10.4 Functor implementation of multilingual grammars

If you did the exercise of writing a concrete syntax of Food for some other
language, you probably noticed that much of the code looks exactly the same
as for French. The immediate reason for this is that the Syntax API is the
same for all languages; the deeper reason is that all languages (at least those
in the resource package) implement the same syntactic structures and tend
to use them in similar ways. Thus it is only the lexical parts of a concrete
syntax that you need to write anew for a new language. In brief,

e first copy the concrete syntax for one language

e then change the words (the strings and perhaps some paradigms)

o6

But programming by copy-and-paste is not worthy of a functional program-
mer. Can we write a function that takes care of the shared parts of grammar
modules? Yes, we can. It is not a function in the fun or oper sense, but a
function operating on modules, called a functor. This construct is famil-
iar from the functional languages ML and OCaml, but it does not exist in
Haskell. It also bears some resemblance to templates in C++. Functors are
also known as parametrized modules.

In GF, a functor is a module that opens one or more interfaces. An
interface is a module similar to a resource, but it only contains the
types of opers, not their definitions. You can think of an interface as a kind
of a record type. Thus a functor is a kind of a function taking records as
arguments and producins a module as value.

Let us look at a functor implementation of the Food grammar. Consider its
module header first:

incomplete concrete Foodl of Food = open Syntax, LexFood in

In the functor-function analogy, FoodI would be presented as a function
with the following type signature:

FoodI : instance of Syntax -> instance of LexFood -> concrete of Food

It takes as arguments two interfaces:

e Syntax, the resource grammar interface

e LexFood, the domain-specific lexicon interface

Functors opening Syntax and a domain lexicon interface are in fact so typical
in GF applications, that this structure could be called a design patter for
GF grammars. The idea in this pattern is, again, that the languages use the
same syntactic structures but different words.

Before going to the details of the module bodies, let us look at how functors
are concretely used. An interface has a header such as

interface LexFood = open Syntax in

To give an instance of it means that all opers are given definitione (of
appropriate types). For example,

o7

instance LexFoodGer of LexFood = open SyntaxGer, ParadigmsGer in

Notice that when an interface opens an interface, such as Syntax, then
its instance opens an instance of it. But the instance may also open some
resources - typically, a domain lexicon instance opens a Paradigms module.

In the function-functor analogy, we now have

SyntaxGer : instance of Syntax
LexFoodGer : instance of LexFood

Thus we can complete the German implementation by ”applying” the func-
tor:

FoodI SyntaxGer LexFoodGer : concrete of Food

The GF syntax for doing so is

concrete FoodGer of Food = FoodI with
(Syntax = SyntaxGer),
(LexFood = LexFoodGer) ;

Notice that this is the complete module, not just a header of it. The module
body is received from FoodI, by instantiating the interface constants with
their definitions given in the German instances.

A module of this form, characterized by the keyword with, is called a func-
tor instantiation.

Here is the complete code for the functor FoodI:

incomplete concrete FoodI of Food = open Syntax, LexFood in {
lincat
S = Utt ;
Item = NP ;
Kind = CN ;
Quality = AP ;
lin
Is item quality = mkUtt (mkCl item quality) ;
This kind = mkNP (mkDet this_Quant) kind ;
A1l kind = mkNP all_Predet (mkNP defPlDet kind) ;
QKind quality kind = mkCN quality kind ;

o8

Wine = mkCN wine_N ;

Beer mkCN beer_N ;

Pizza = mkCN pizza_N ;

Cheese = mkCN cheese_N ;

Fish = mkCN fish_N ;

Very quality = mkAP very_AdA quality ;
Fresh = mkAP fresh_A ;

Warm = mkAP warm_A ;

Italian = mkAP italian_A ;
Expensive = mkAP expensive_A ;
Delicious mkAP delicious_A ;
Boring = mkAP boring A ;

10.5 Interfaces and instances

Let us now define the LexFood interface:

interface LexFood = open Syntax in {

oper
wine_ N : N ;
beer_N : N ;
pizza_ N : N ;
cheese_N : N ;
fish_ N : N ;
fresh_ A : A ;
warm_A : A ;
italian_A : A ;
expensive_A : A ;
delicious_A : A
boring A : A ;

I

In this interface, only lexical items are declared. In general, an interface can
declare any functions and also types. The Syntax interface does so.

Here is the German instance of the interface:

instance LexFoodGer of LexFood = open SyntaxGer, ParadigmsGer in {

oper
wine_N = mkN "Wein"
beer_N = mkN "Bier" "Biere" neuter ;

99

pizza_N = mkN "Pizza" "Pizzen" feminine ;
cheese_N = mkN "K&se" "Kdsen" masculine ;
fish_N = mkN "Fisch"

fresh_A = mkA "frisch" ;

warm_A = mkA "warm" "wirmer" "wirmste" ;
italian_A = mkA "italienisch" ;
expensive_A = mkA "teuer" ;

delicious_A = mkA "kostlich"

boring A = mkA "langweilig" ;

Just to complete the picture, we repeat the German functor instantiation
for FoodI, this time with a path directive that makes it compilable.

-—# -path=.:present:prelude
concrete FoodGer of Food = FoodI with

(Syntax = SyntaxGer),
(LexFood = LexFoodGer) ;

Exercise. Compile and test FoodGer

Exercise. Refactor FoodFre into a functor instantiation.

10.6 Adding languages to a functor implementation

Once we have an application grammar defined by using a functor, adding a
new language is simple. Just two modules need to be written:

e a domain lexicon instance

e a functor instantiation

The functor instantiation is completely mechanical to write. Here is one for
Finnish:

-—# -path=.:present:prelude
concrete FoodFin of Food = FoodI with

(Syntax = SyntaxFin),
(LexFood = LexFoodFin) ;

60

The domain lexicon instance requires some knowledge of the words of the
language: what words are used for which concepts, how the words are in-
flected, plus features such as genders. Here is a lexicon instance for Finnish:

instance LexFoodFin of LexFood = open SyntaxFin, ParadigmsFin in {

oper
wine_N = mkN "viini"
beer_N = mkN "olut"

pizza_N = mkN "pizza" ;

cheese_N = mkN "juusto" ;

fish_ N = mkN "kala"

fresh_A = mkA "tuore" ;

warm_A = mkA "ld&mmin" ;
italian_A = mkA "italialainen" ;
expensive_A = mkA "kallis" ;
delicious_A = mkA "herkullinen"
boring A = mkA "tylsi"

Exercise. Instantiate the functor FoodI to some language of your choice.

10.7 Division of labour revisited

One purpose with the resource grammars was stated to be a division of
labour between linguists and application grammarians. We can now reflect
on what this means more precisely, by asking ourselves what skills are re-
quired of grammarians working on different components.

Building a GF application starts from the abstract syntax. Writing an ab-
stract syntax requires

e understanding the semantic structure of the application domain

e knowledge of the GF fragment with categories and functions
If the concrete syntax is written by means of a functor, the programmer
has to decide what parts of the implementation are put to the interface and
what parts are shared in the functor. This requires

e knowing how the domain concepts are expressed in natural language

e knowledge of the resource grammar library - the categories and com-

binators

61

e understanding what parts are likely to be expressed in language-dependent
ways, so that they must belong to the interface and not the functor

e knowledge of the GF fragment with function applications and strings

Instantiating a ready-made functor to a new language is less demanding. It
requires essentially

e knowing how the domain words are expressed in the language
e knowing, roughly, how these words are inflected
e knowledge of the paradigms available in the library

e knowledge of the GF fragment with function applications and strings

Notice that none of these tasks requires the use of GF records, tables, or
parameters. Thus only a small fragment of GF is needed; the rest of GF is
only relevant for those who write the libraries.

Of course, grammar writing is not always straightforward usage of libraries.
For example, GF can be used for other languages than just those in the
libraries - for both natural and formal languages. A knowledge of records
and tables can, unfortunately, also be needed for understanding GF’s error
messages.

Exercise. Design a small grammar that can be used for controlling an MP3
player. The grammar should be able to recognize commands such as play
this song, with the following variations:

e verbs: play, remove

e objects: song, artist

e determiners: this, the previous

e verbs without arguments: stop, pause
The implementation goes in the following phases:

1. abstract syntax
2. functor and lexicon interface

3. lexicon instance for the first language

62

4. functor instantiation for the first language
5. lexicon instance for the second language
6. functor instantiation for the second language

7.

10.8 Restricted inheritance

A functor implementation using the resource Syntax interface works as long
as all concepts are expressed by using the same structures in all languages. If
this is not the case, the deviant linearization can be made into a parameter
and moved to the domain lexicon interface.

Let us take a slightly contrived example: assume that English has no word
for Pizza, but has to use the paraphrase Italian pie. This paraphrase is no
longer a noun N, but a complex phrase in the category CN. An obvious way
to solve this problem is to change interface LexEng so that the constant
declared for Pizza gets a new type:

oper pizza_CN : CN ;

But this solution is unstable: we may end up changing the interface and the
function with each new language, and we must every time also change the
interface instances for the old languages to maintain type correctness.

A better solution is to use restricted inheritance: the English instantia-
tion inherits the functor implementation except for the constant Pizza. This
is how we write:

--# -path=.:present:prelude

concrete FoodEng of Food = FoodIl - [Pizza] with
(Syntax = SyntaxEng),
(LexFood = LexFoodEng) x*x
open SyntaxEng, ParadigmsEng in {

lin Pizza = mkCN (mkA "Italian") (mkN "pie") ;
Restricted inheritance is available for all inherited modules. One can for in-
stance exclude some mushrooms and pick up just some fruit in the FoodMarket

example:

63

abstract Foodmarket = Food, Fruit [Peach], Mushroom - [Agaric]

A concrete syntax of Foodmarket must then indicate the same inheritance
restrictions.

Exercise. Change FoodGer in such a way that it says, instead of X is Y,
the equivalent of X must be Y (X muss Y sein). You will have to browse
the full resource API to find all the functions needed.

10.9 Browsing the resource with GF commands

In addition to reading the resource synopsis, you can find resource function
combinations by using the parser. This is so because the resource library
is in the end implemented as a top-level abstract-concrete grammar, on
which parsing and linearization work.

Unfortunately, only English and the Scandinavian languages can be parsed
within acceptable computer resource limits when the full resource is used.

To look for a syntax tree in the overload API by parsing, do like this:

> $GF_LIB_PATH

> i -path=alltenses:prelude alltenses/OverLangEng.gfc

> p -cat=S -overload "this grammar is too big"

mkS (mkCl (mkNP (mkDet this_Quant) grammar_N) (mkAP too_AdA big_A))

To view linearizations in all languages by parsing from English:

> i alltenses/langs.gfcm

> p -cat=S -lang=LangEng "this grammar is too big" | tb

UseCl TPres ASimul PPos (PredVP (DetCN (DetSg (SgQuant this_Quant)
NoOrd) (UseN grammar_N)) (UseComp (CompAP (AdAP too_AdA (PositA big_A)))))

Den h&r grammatiken &r for stor

Esta gramatica es demasiado grande

(Cyrillic: eta grammatika govorit des’at’ jazykov)

Denne grammatikken er for stor

Questa grammatica & troppo grande

Diese Grammatik ist zu grof3

Cette grammaire est trop grande

Tam& kielioppi on liian suuri

This grammar is too big

Denne grammatik er for stor

64

file:../../lib/resource-1.0/synopsis.html

Unfortunately, the Russian grammar uses at the moment a different char-
acter encoding than the rest and is therefore not displayed correctly in a
terminal window. However, the GF syntax editor does display all examples
correctly:

% gfeditor alltenses/langs.gfcm

When you have constructed the tree, you will see the following screen:

& —0Ox
File Languages View Menus Usability
T T
Lang |Hew |T| Upen Text I| Save As || Ilew Cram
Phrl: Phr den har grammatiken talar tio sprak
D I"qnl:‘lf'“_.-;‘;-n] ‘ pl:_-lcf'lj o
7 Lkt o« Lie esta gramatica habla diez lenguas
$EUseci:s ([T
[} TPres : Tense ___§Tarpamuatika rosop T HRERTRINERNGE
[asimul : Ant denne grammatikkan snakkar gl sprak
DPPos:Pal [feesses samwre
¢ EPredvP: Cl questa gramrmatica parla dieei lingua
=@ DetCH: NP |
§ B Complv2 : vP digse Crammatik spricht zehn Sprachen
Ol speak vz vz [e
“‘IjEICH: MP| cette grammaire parla dix langues

;;;;;;;;;;;;

D Movoc : Voo

FUF R a—

this grammar speaks ten languages

R]

denne grammatik taler tl Spreg

|] I [®] P
Lo e JL e J > | >2]
GF cemmand | Read |:M¢'difhf J'l Alpha | Random ||_
[4] 1 [[¥]

Exercise. Find the resource grammar translations for the following English
phrases (parse in the category Phr). You can first try to build the terms
manually.

every man loves a woman
this grammar speaks more than ten languages
which languages aren’t in the grammar

which languages did you want to speak

65

11 More concepts of abstract syntax

11.1 GF as a logical framework

In this section, we will show how to encode advanced semantic concepts in an
abstract syntax. We use concepts inherited from type theory. Type theory
is the basis of many systems known as logical frameworks, which are used
for representing mathematical theorems and their proofs on a computer. In
fact, GF has a logical framework as its proper part: this part is the abstract
syntax.

In a logical framework, the formalization of a mathematical theory is a set
of type and function declarations. The following is an example of such a
theory, represented as an abstract module in GF.

abstract Arithm = {

cat
Prop ; —-— proposition
Nat ; —-- natural number
fun
Zero : Nat ; -0
Succ : Nat -> Nat ; —- successor of x
Even : Nat -> Prop ; -- X is even
And : Prop -> Prop -> Prop ; -— A and B
}

Exercise. Give a concrete syntax of Arithm, either from scatch or by using
the resource library.

11.2 Dependent types

Dependent types are a characteristic feature of GF, inherited from the
constructive type theory of Martin-Lof and distinguishing GF from most
other grammar formalisms and functional programming languages.

Dependent types can be used for stating stronger conditions of well-
formedness than ordinary types. A simple example is a ”smart house”
system, which defines voice commands for household appliances. This ex-
ample is borrowed from the Regulus Book (Rayner & al. 2006).

One who enters a smart house can use speech to dim lights, switch on the fan,
etc. For each Kind of a device, there is a set of Actions that can be performed
on it; thus one can dim the lights but not the fan, for example. These

66

http://cslipublications.stanford.edu/site/1575865262.html

dependencies can be expressed by by making the type Action dependent on
Kind. We express this as follows in cat declarations:

cat
Command ;
Kind ;
Action Kind ;
Device Kind ;

The crucial use of the dependencies is made in the rule for forming com-
mands:

fun CAction : (k : Kind) -> Action k -> Device k -> Command ;

In other words: an action and a device can be combined into a command
only if they are of the same Kind k. If we have the functions

DKindOne : (k : Kind) -> Device k ; -- the light

light, fan : Kind ;
dim : Action light ;

we can form the syntax tree

CAction light dim (DKindOne light)

but we cannot form the trees

CAction light dim (DKindOne fan)
CAction fan dim (DKindOne light)
CAction fan dim (DKindOne fan)

Linearization rules are written as usual: the concrete syntax does not know
if a category is a dependent type. In English, you can write as follows:

lincat Action = {s : Str} ;
lin CAction kind act dev = {s = act.s ++ dev.s} ;

67

Notice that the argument kind does not appear in the linearization. The
type checker will be able to reconstruct it from the dev argument.

Parsing with dependent types is performed in two phases:

1. context-free parsing
2. filtering through type checker

If you just parse in the usual way, you don’t enter the second phase, and the
kind argument is not found:

> parse "dim the light"
CAction ? dim (DKindOne light)

Moreover, type-incorrect commands are not rejected:

> parse "dim the fan"
CAction ? dim (DKindOne fan)

The question mark 7 is a metavariable, and is returned by the parser for
any subtree that is suppressed by a linearization rule.

To get rid of metavariables, you must feed the parse result into the second
phase of solving them. The solve process uses the dependent type checker
to restore the values of the metavariables. It is invoked by the command
put_tree = pt with the flag ~transform=solve:

> parse "dim the light" | put_tree -transform=solve
CAction light dim (DKindOne light)

The solve process may fail, in which case no tree is returned:

> parse "dim the fan" | put_tree -transform=solve
no tree found

Exercise. Write an abstract syntax module with above contents and an
appropriate English concrete syntax. Try to parse the commands dim the
light and dim the fan, with and without solve filtering.

Exercise. Perform random and exhaustive generation, with and without
solve filtering.

Exercise. Add some device kinds and actions to the grammar.

68

11.3 Polymorphism

Sometimes an action can be performed on all kinds of devices. It would
be possible to introduce separate fun constants for each kind-action pair,
but this would be tedious. Instead, one can use polymorphic actions, i.e.
actions that take a Kind as an argument and produce an Action for that
Kind:

fun switchOn, switchOff : (k : Kind) -> Action k ;

Functions that are not polymorphic are monomorphic. However, the di-
chotomy into monomorphism and full polymorphism is not always sufficien
for good semantic modelling: very typically, some actions are defined for a
proper subset of devices, but not just one. For instance, both doors and
windows can be opened, whereas lights cannot. We will return to this prob-
lem by introducing the concept of restricted polymorphism later, after
a chapter on proof objects.

11.4 Dependent types and spoken language models

We have used dependent types to control semantic well-formedness in gram-
mars. This is important in traditional type theory applications such as proof
assistants, where only mathematically meaningful formulas should be con-
structed. But semantic filtering has also proved important in speech recog-
nition, because it reduces the ambiguity of the results.

11.4.1 Grammar-based language models

The standard way of using GF in speech recognition is by building grammar-
based language models. To this end, GF comes with compilers into sev-
eral formats that are used in speech recognition systems. One such format is
GSL, used in the Nuance speech recognizer. It is produced from GF simply
by printing a grammar with the flag -printer=gsl.

> import -conversion=finite SmartEng.gf
> print_grammar -printer=gsl

;GSL2.0

; Nuance speech recognition grammar for SmartEng
; Generated by GF

69

file:www.nuance.com

.MAIN SmartEng_2

SmartEng O [("switch" "off") ("switch" "on")]
SmartEng_1 ["dim" ("switch" "off")
("switch" "on")]
SmartEng_2 [(SmartEng_ O SmartEng_3)
(SmartEng_1 SmartEng_4)]
SmartEng_3 ("the" SmartEng_5)
SmartEng_4 ("the" SmartEng_6)
SmartEng_5 "fan"
SmartEng_6 "light"

Now, GSL is a context-free format, so how does it cope with dependent
types? In general, dependent types can give rise to infinitely many basic
types (exercise!), whereas a context-free grammar can by definition only
have finitely many nonterminals.

This is where the flag ~conversion=finite is needed in the import com-
mand. Its effect is to convert a GF grammar with dependent types to one
without, so that each instance of a dependent type is replaced by an atomic
type. This can then be used as a nonterminal in a context-free grammar. The
finite conversion presupposes that every dependent type has only finitely
many instances, which is in fact the case in the Smart grammar.

Exercise. If you have access to the Nuance speech recognizer, test it with
GF-generated language models for SmartEng. Do this both with and without
-conversion=finite.

Exercise. Construct an abstract syntax with infinitely many instances of
dependent types.

11.4.2 Statistical language models

An alternative to grammar-based language models are statistical language
models (SLMs). An SLM is built from a corpus, i.e. a set of utterances.
It specifies the probability of each n-gram, i.e. sequence of n words. The
typical value of n is 2 (bigrams) or 3 (trigrams).

One advantage of SLMs over grammar-based models is that they are ro-
bust, i.e. they can be used to recognize sequences that would be out of the
grammar or the corpus. Another advantage is that an SLM can be built ”for
free” if a corpus is available.

However, collecting a corpus can require a lot of work, and writing a gram-
mar can be less demanding, especially with tools such as GF or Regulus.

70

This advantage of grammars can be combined with robustness by creating
a back-up SLM from a synthesized corpus. This means simply that the
grammar is used for generating such a corpus. In GF, this can be done with
the generate_trees command. As with grammar-based models, the quality
of the SLM is better if meaningless utterances are excluded from the cor-
pus. Thus a good way to generate an SLM from a GF grammar is by using
dependent types and filter the results through the type checker:

> generate_trees | put_trees -transform=solve | linearize

Exercise. Measure the size of the corpus generated from SmartEng, with
and without type checker filtering.

11.5 Digression: dependent types in concrete syntax
11.5.1 Variables in function types

A dependent function type needs to introduce a variable for its argument
type, as in

switchOff : (k : Kind) -> Action k

Function types without variables are actually a shorthand notation: writing
fun PredVP : NP -> VP -> S

is shorthand for
fun PredVP : (x : NP) -> (y : VP) -> S

or any other naming of the variables. Actually the use of variables sometimes
shortens the code, since they can share a type:

octuple : (x,y,z,u,v,w,s,t : Str) -> Str

If a bound variable is not used, it can here, as elsewhere in GF, be replaced
by a wildcard:

OCtuP]-e : (—’—’—,_3_,_’_,_ . Str) -> Str

71

A good practice for functions with many arguments of the same type is to
indicate the number of arguments:

octuple : (x1,_,_,_,_,_,_,x8 : Str) -> Str

One can also use the variables to document what each argument is expected
to provide, as is done in inflection paradigms in the resource grammar.

mkV : (drink,drank,drunk : Str) -> V

11.5.2 Polymorphism in concrete syntax

The functional fragment of GF terms and types comprises function types,
applications, lambda abstracts, constants, and variables. This fragment is
similar in abstract and concrete syntax. In particular, dependent types are
also available in concrete syntax. We have not made use of them yet, but
we will now look at one example of how they can be used.

Those readers who are familiar with functional programming languages like
ML and Haskell, may already have missed polymorphic functions. For
instance, Haskell programmers have access to the functions

const :: a -> b -> a
const ¢ _ = ¢
flip :: (a > b ->c¢c) >b > a > c

flipfyx==fxy

which can be used for any given types a,b, and c.
The GF counterpart of polymorphic functions are monomorphic functions

with explicit type variables. Thus the above definitions can be written

oper const :(a,b : Type) -> a -> b -> a =
’,Cy_ -> cC ;

oper flip : (a,b,c : Type) -> (a => b ->c) => b -> a -> ¢ =
o, Exy > fyx g

When the operations are used, the type checker requires them to be equipped
with all their arguments; this may be a nuisance for a Haskell or ML pro-

gramimer.

72

11.6 Proof objects

Perhaps the most well-known idea in constructive type theory is the Curry-
Howard isomorphism, also known as the propositions as types prin-
ciple. Its earliest formulations were attempts to give semantics to the logical
systems of propositional and predicate calculus. In this section, we will con-
sider a more elementary example, showing how the notion of proof is useful
outside mathematics, as well.

We first define the category of unary (also known as Peano-style) natural
numbers:

cat Nat ;
fun Zero : Nat ;
fun Succ : Nat -> Nat ;

The successor function Succ generates an infinite sequence of natural
numbers, beginning from Zero.

We then define what it means for a number z to be less than a number y.
Our definition is based on two axioms:

e Zero is less than Succ y for any y.

o If z is less than y, then Succ z is less than Succ y.

The most straightforward way of expressing these axioms in type theory is
as typing judgements that introduce objects of a type Less z y:

cat Less Nat Nat ;
fun lessZ : (y : Nat) -> Less Zero (Succ y) ;
fun lessS : (x,y : Nat) -> Less x y —-> Less (Succ x) (Succ y) ;

Objects formed by lessZ and lessS are called proof objects: they establish
the truth of certain mathematical propositions. For instance, the fact that
2 is less that 4 has the proof object

lessS (Succ Zero) (Succ (Succ (Succ Zero)))
(lessS Zero (Succ (Succ Zero)) (lessZ (Succ Zero)))

whose type is

73

Less (Succ (Succ Zero)) (Succ (Succ (Succ (Succ Zero))))

which is the formalization of the proposition that 2 is less than 4.

GF grammars can be used to provide a semantic control of well-formedness
of expressions. We have already seen examples of this: the grammar of well-
formed actions on household devices. By introducing proof objects we have
now added a very powerful technique of expressing semantic conditions.

A simple example of the use of proof objects is the definition of well-formed
time spans: a time span is expected to be from an earlier to a later time:

from 3 to 8

is thus well-formed, whereas

from 8 to 3

is not. The following rules for spans impose this condition by using the Less
predicate:

cat Span ;
fun span : (m,n : Nat) -> Less m n -> Span ;

Exercise. Write an abstract and concrete syntax with the concepts of this
section, and experiment with it in GF.

Exercise. Define the notions of ”even” and ”odd” in terms of proof objects.
Hint. You need one function for proving that 0 is even, and two other
functions for propagating the properties.

11.6.1 Proof-carrying documents

Another possible application of proof objects is proof-carrying docu-
ments: to be semantically well-formed, the abstract syntax of a document
must contain a proof of some property, although the proof is not shown in
the concrete document. Think, for instance, of small documents describing
flight connections:

To fly from Gothenburg to Prague, first take LH3043 to Frankfurt, then
OKO0537 to Prague.

The well-formedness of this text is partly expressible by dependent typing:

74

cat
City ;
Flight City City ;

fun
Gothenburg, Frankfurt, Prague : City ;
LH3043 : Flight Gothenburg Frankfurt ;
0KO537 : Flight Frankfurt Prague ;

This rules out texts saying take OK0537 from Gothenburg to Prague. How-
ever, there is a further condition saying that it must be possible to change
from LH3043 to OK0537 in Frankfurt. This can be modelled as a proof ob-
ject of a suitable type, which is required by the constructor that connects
flights.

cat
IsPossible (x,y,z : City) (Flight x y)(Flight y z) ;
fun
Connect : (x,y,z : City) ->
(u : Flight x y) -> (v : Flight y z) ->
IsPossible x y z u v -> Flight x z ;

11.7 Restricted polymorphism

In the first version of the smart house grammar Smart, all Actions were
either of

e monomorphic: defined for one Kind

e polymorphic: defined for all Kinds
To make this scale up for new Kinds, we can refine this to restricted poly-
morphism: defined for Kinds of a certain class
The notion of class can be expressed in abstract syntax by using the Curry-
Howard isomorphism as follows:

e a class is a predicate of Kinds - i.e. a type depending of Kinds

e a Kind is in a class if there is a proof object of this type

Here is an example with switching and dimming. The classes are called
switchable and dimmable.

75

cat
Switchable Kind ;
Dimmable Kind ;

fun
switchable_light : Switchable light ;
switchable_fan : Switchable fan ;
dimmable_light : Dimmable light ;

switchOn : (k : Kind) -> Switchable k -> Action k ;
dim : (k : Kind) -> Dimmable k -> Action k ;

One advantage of this formalization is that classes for new actions can be
added incrementally.

Exercise. Write a new version of the Smart grammar with classes, and test
it in GF.

Exercise. Add some actions, kinds, and classes to the grammar. Try to
port the grammar to a new language. You will probably find out that re-
stricted polymorphism works differently in different languages. For instance,
in Finnish not only doors but also TVs and radios can be ”opened”, which
means switching them on.

11.8 Variable bindings

Mathematical notation and programming languages have expressions that
bind variables. For instance, a universally quantifier proposition

(A11 x)B(x)

consists of the binding (A1l x) of the variable x, and the body B(x),
where the variable x can have bound occurrences.

Variable bindings appear in informal mathematical language as well, for
instance,

for all x, x is equal to x

the function that for any numbers x and y returns the maximum of x+y

and x*y

Let x be a natural number. Assume that x is even. Then x + 3 is odd.

76

In type theory, variable-binding expression forms can be formalized as func-
tions that take functions as arguments. The universal quantifier is defined

fun A1l : (Ind -> Prop) -> Prop

where Ind is the type of individuals and Prop, the type of propositions. If
we have, for instance, the equality predicate

fun Eq : Ind -> Ind -> Prop

we may form the tree
A11 (\x -> Eq x x)

which corresponds to the ordinary notation
(A1l) (x = x).

An abstract syntax where trees have functions as arguments, as in the two
examples above, has turned out to be precisely the right thing for the se-
mantics and computer implementation of variable-binding expressions. The
advantage lies in the fact that only one variable-binding expression form is
needed, the lambda abstract \x -> b, and all other bindings can be reduced
to it. This makes it easier to implement mathematical theories and reason
about them, since variable binding is tricky to implement and to reason
about. The idea of using functions as arguments of syntactic constructors is
known as higher-order abstract syntax.

The question now arises: how to define linearization rules for variable-binding
expressions? Let us first consider universal quantification,

fun A1l : (Ind -> Prop) -> Prop
We write

lin A11 B = {s = "(" ++ "All" ++ B.$0 ++ ")" ++ B.s}

to obtain the form shown above. This linearization rule brings in a new GF
concept - the $0 field of B containing a bound variable symbol. The general
rule is that, if an argument type of a function is itself a function type A
-> C, the linearization type of this argument is the linearization type of C
together with a new field $0 : Str. In the linearization rule for Al11, the
argument B thus has the linearization type

77

{$0 : Str ; s : Str},

since the linearization type of Prop is

{s : Str}

In other words, the linearization of a function consists of a linearization
of the body together with a field for a linearization of the bound variable.
Those familiar with type theory or lambda calculus should notice that GF
requires trees to be in eta-expanded form in order to be linearizable: any
function of type

A ->B
always has a syntax tree of the form

\x => Db
where b : B under the assumption x : A. It is in this form that an expres-
sion can be analysed as having a bound variable and a body.
Given the linearization rule

lin Ega b= {s = "(" ++ a.s ++ "=" ++ b.s ++ ")"}
the linearization of

\x -> Eq x x
is the record

{$0 = "x", s = ["(x =x)"]}

Thus we can compute the linearization of the formula,

A1l (\x > Eq xx) -->{s ="[(A1l x) (x=x)]"}.

78

How did we get the linearization of the variable x into the string "x"? GF
grammars have no rules for this: it is just hard-wired in GF that variable
symbols are linearized into the same strings that represent them in the print-
out of the abstract syntax.

To be able to parse variable symbols, however, GF needs to know what
to look for (instead of e.g. trying to parse any string as a variable). What
strings are parsed as variable symbols is defined in the lexical analysis part
of GF parsing

> p -cat=Prop -lexer=codevars "(All x)(x = x)"
A1l (\x -> Eq x x)

(see more details on lexers below). If several variables are bound in the same
argument, the labels are $0, $1, $2, etc.

Exercise. Write an abstract syntax of the whole predicate calculus, with
the connectives "and”, ”or”, ”implies”, and "not”, and the quantifiers
7exists” and "for all”. Use higher-order functions to guarantee that un-
bounded variables do not occur.

Exercise. Write a concrete syntax for your favourite notation of predicate
calculus. Use Latex as target language if you want nice output. You can also
try producing Haskell boolean expressions. Use as many parenthesis as you
need to guarantee non-ambiguity.

11.9 Semantic definitions

We have seen that, just like functional programming languages, GF has dec-
larations of functions, telling what the type of a function is. But we have
not yet shown how to compute these functions: all we can do is provide
them with arguments and linearize the resulting terms. Since our main in-
terest is the well-formedness of expressions, this has not yet bothered us
very much. As we will see, however, computation does play a role even in
the well-formedness of expressions when dependent types are present.

GF has a form of judgement for semantic definitions, recognized by the
key word def. At its simplest, it is just the definition of one constant, e.g.

def one = Succ Zero ;

We can also define a function with arguments,

79

def Neg A = Impl A Abs ;

which is still a special case of the most general notion of definition, that of
a group of pattern equations:

def
sum X Zero = X ;
sum x (Succ y) = Succ (Sum x y) ;

To compute a term is, as in functional programming languages, simply to
follow a chain of reductions until no definition can be applied. For instance,
we compute

Sum one one —->
Sum (Succ Zero) (Succ Zero) -->
Succ (sum (Succ Zero) Zero) -->
Succ (Succ Zero)

Computation in GF is performed with the pt command and the compute
transformation, e.g.

>p -tr "1 + 1" | pt -transform=compute -tr | 1
sum one one
Succ (Succ Zero)

s(s(0))

The def definitions of a grammar induce a notion of definitional equality
among trees: two trees are definitionally equal if they compute into the
same tree. Thus, trivially, all trees in a chain of computation (such as the
one above) are definitionally equal to each other. So are the trees

sum Zero (Succ one)
Succ one
sum (sum Zero Zero) (sum (Succ Zero) one)

and infinitely many other trees.

A fact that has to be emphasized about def definitions is that they are
not performed as a first step of linearization. We say that linearization is
intensional, which means that the definitional equality of two trees does not
imply that they have the same linearizations. For instance, each of the seven
terms shown above has a different linearizations in arithmetic notation:

80

1 +1

s(0) + s(0)
s(s(0) + 0)
s(s(0))

0 + s(0)

s(1)

0+ 0+ s(0) +1

This notion of intensionality is no more exotic than the intensionality of any
pretty-printing function of a programming language (function that shows
the expressions of the language as strings). It is vital for pretty-printing to
be intensional in this sense - if we want, for instance, to trace a chain of
computation by pretty-printing each intermediate step, what we want to see
is a sequence of different expression, which are definitionally equal.

What is more exotic is that GF has two ways of referring to the abstract
syntax objects. In the concrete syntax, the reference is intensional. In the
abstract syntax, the reference is extensional, since type checking is exten-
sional. The reason is that, in the type theory with dependent types, types
may depend on terms. Two types depending on terms that are definitionally
equal are equal types. For instance,

Proof (0dd one)
Proof (0dd (Succ Zero))

are equal types. Hence, any tree that type checks as a proof that 1 is odd
also type checks as a proof that the successor of 0 is odd. (Recall, in this
connection, that the arguments a category depends on never play any role
in the linearization of trees of that category, nor in the definition of the
linearization type.)

In addition to computation, definitions impose a paraphrase relation on ex-
pressions: two strings are paraphrases if they are linearizations of trees that
are definitionally equal. Paraphrases are sometimes interesting for transla-
tion: the direct translation of a string, which is the linearization of the
same tree in the targer language, may be inadequate because it is e.g. uni-
diomatic or ambiguous. In such a case, the translation algorithm may be
made to consider translation by a paraphrase.

To stress express the distinction between constructors (=canonical func-
tions) and other functions, GF has a judgement form data to tell that certain
functions are canonical, e.g.

data Nat = Succ | Zero ;

81

Unlike in Haskell, but similarly to ALF (where constructor functions are
marked with a flag C), new constructors can be added to a type with new
data judgements. The type signatures of constructors are given separately,
in ordinary fun judgements. One can also write directly

data Succ : Nat -> Nat ;

which is equivalent to the two judgements

fun Succ : Nat -> Nat ;
data Nat = Succ ;

Exercise. Implement an interpreter of a small functional programming lan-
guage with natural numbers, lists, pairs, lambdas, etc. Use higher-order
abstract syntax with semantic definitions. As target language, use your
favourite programming language.

Exercise. To make your interpreted language look nice, use precedences
instead of putting parentheses everywhere. You can use the precedence li-
brary of GF to facilitate this.

12 Practical issues

12.1 Lexers and unlexers

Lexers and unlexers can be chosen from a list of predefined ones, using
the flags-lexer and “ -unlexer® either in the grammar file or on the GF
command line. Here are some often-used lexers and unlexers:

The default is words.

-lexer=words tokens are separated by spaces or newlines

-lexer=literals like words, but GF integer and string literals recognized
-lexer=vars like words, but "x","x_...","$...$" as vars, "?..." as meta
-lexer=chars each character is a token

-lexer=code use Haskell’s lex

-lexer=codevars like code, but treat unknown words as variables, 7?7 as meta
-lexer=text with conventions on punctuation and capital letters
-lexer=codelit like code, but treat unknown words as string literals
-lexer=textlit like text, but treat unknown words as string literals

82

file:../../lib/prelude/Precedence.gf
file:../../lib/prelude/Precedence.gf

The default is unwords.

-unlexer=unwords space-separated token list (like unwords)
-unlexer=text format as text: punctuation, capitals, paragraph <p>
-unlexer=code format as code (spacing, indentation)
-unlexer=textlit like text, but remove string literal quotes
-unlexer=codelit like code, but remove string literal quotes
-unlexer=concat remove all spaces

More options can be found by help -lexer and help -unlexer:

12.2 Speech input and output

The speak_aloud = sa command sends a string to the speech synthesizer
Flite. It is typically used via a pipe:

generate_random | linearize | speak_aloud

The result is only satisfactory for English.

The speech_input = si command receives a string from a speech recognizer
that requires the installation of ATK. It is typically used to pipe input to a
parser:

speech_input -tr | parse

The method words only for grammars of English.

Both Flite and ATK are freely available through the links above, but they
are not distributed together with GF.

12.3 Multilingual syntax editor

The Editor User Manual describes the use of the editor, which works for any
multilingual GF grammar.

Here is a snapshot of the editor:

83

http://www.speech.cs.cmu.edu/flite/doc/
http://mi.eng.cam.ac.uk/~sjy/software.htm
http://www.cs.chalmers.se/~aarne/GF2.0/doc/javaGUImanual/javaGUImanual.htm

& —-0Ox
File Languages Wiew Meanus Usability

I
Lang |r~lew |'|| QOpen Text I| Save As || Plew Cram
Phrihe : Phr den har grammatiken talar tie sprak
D rJ':IF'C';}rIj : P':-\}I"Ij A .
=4 Ut : Lke esta gramatica habla diez lenguas
BEuseci:s [T
[} TPres : Tense _‘ua:r‘a*:fir:mamm roBopUT BECATE ASEIKCE
[3 asimut : Ant denne grammatikkan snakker £l sprak
DF'F'C-s : Pol bbbl amme
= Predvi: C questa grammatica parla digei lingue
e DetCh: MNP [fressssssssss
? |‘_'ii:i:~n-|p|'w.-'1 WP diese Crammatik spricht zehn Sprachen

D S.Dﬂ_i:'lk_"-'lz . "-'-2 ok gl e e ey iy .
o= DercH : MNP) cette grammaire parle dix langues

Movoco : Voo R
N tirmd kiglioppi pubuu kymmentd kislos

R R T T

this grammar speaks fen languages

o okl el

denne grammatik taler ti Spreg

| [[#] P
7e Jl< Jltee J[> |l >7]
GF cemmand | Read |.M|:-diﬁ,r J';| Alpha || Fandaom il_
1 1 | [

The grammars of the snapshot are from the Letter grammar package.

12.4 Communicating with GF

Other processes can communicate with the GF command interpreter, and
also with the GF syntax editor. Useful flags when invoking GF are

e -batch suppresses the promps and structures the communication with
XML tags.

e —s suppresses non-output non-error messages and XML tags.

e -nocpu suppresses CPU time indication.
Thus the most silent way to invoke GF is
gf -batch -s -nocpu

84

http://www.cs.chalmers.se/~aarne/GF/examples/letter

13 Embedded grammars in Haskell and Java

GF grammars can be used as parts of programs written in the following
languages. We will go through a skeleton application in Haskell, while the
next chapter will show how to build an application in Java.

We will show how to build a minimal resource grammar application whose
architecture scales up to much larger applications. The application is run
from the shell by the command

math

whereafter it reads user input in English and French. To each input line, it
answers by the truth value of the sentence.

./math

zéro est pair

True

zero is odd

False

zero is even and zero is odd
False

The source of the application consists of the following files:

LexEng.gf -- English instance of Lex
LexFre.gf -- French instance of Lex

Lex.gf -- lexicon interface

Makefile -- a makefile

MathEng.gf -- English instantiation of MathlI
MathFre.gf -- French instantiation of MathI
Math.gf -—- abstract syntax

MathI.gf -- concrete syntax functor for Math
Run.hs -- Haskell Main module

The system was built in 22 steps explained below.

13.1 Writing GF grammars
13.1.1 Creating the first grammar
1. Write Math.gf, which defines what you want to say.

85

abstract Math = {

cat Prop ; Elem ;

fun
And : Prop -> Prop -> Prop ;
Even : Elem -> Prop ;
Zero : Elem ;

2. Write Lex.gf, which defines which language-dependent parts are needed
in the concrete syntax. These are mostly words (lexicon), but can in fact be
any operations. The definitions only use resource abstract syntax, which is
opened.

interface Lex = open Syntax in {
oper

even_A : A ;

zero_PN : PN ;
X

3. Write LexEng.gf, the English implementation of Lex.gf This module
uses English resource libraries.

instance LexEng of Lex = open GrammarEng, ParadigmsEng in {
oper

even_A = regh "even" ;

zero_PN = regPN "zero"

4. Write MathI.gf, a language-independent concrete syntax of Math.gf. It
opens interfaces. which makes it an incomplete module, aka. parametrized
module, aka. functor.

incomplete concrete MathI of Math =
open Syntax, Lex in {
flags startcat = Prop ;

lincat
Prop = S ;

86

Elem = NP ;

lin
And x y = mkS and_Conj x y ;
Even x = mkS (mkCl x even_A) ;
Zero = mkNP zero_PN ;

5. Write MathEng.gf, which is just an instatiation of MathI.gf, replacing
the interfaces by their English instances. This is the module that will be
used as a top module in GF, so it contains a path to the libraries.

instance LexEng of Lex = open SyntaxEng, ParadigmsEng in {
oper

even_A = mkA "even"

zero_PN = mkPN "zero"

¥

13.1.2 Testing

6. Test the grammar in GF by random generation and parsing.

$ gf

> i MathEng.gf

>gr -tr | 1 -tr | p

And (Even Zero) (Even Zero)
zero is evenand zero is even
And (Even Zero) (Even Zero)

When importing the grammar, you will fail if you haven’t

e correctly defined your GF_LIB_PATH as GF/1ib

e installed the resource package or compiled the resource from source by
make in GF/lib/resource-1.0

13.1.3 Adding a new language

7. Now it is time to add a new language. Write a French lexicon LexFre.gf:

instance LexFre of Lex = open SyntaxFre, ParadigmsFre in {

87

oper
even_A = mkA "pair"
zero_PN = mkPN "zéro"

}
8. You also need a French concrete syntax, MathFre.gf:

--# -path=. :present:prelude

concrete MathFre of Math = MathI with
(Syntax = SyntaxFre),
(Lex = LexFre) ;

9. This time, you can test multilingual generation:

> i MathFre.gf
> gr | tb
Even Zero

zéro est pair
zZero is even

13.1.4 Extending the language

10. You want to add a predicate saying that a number is odd. It is first
added to Math.gf:

fun 0dd : Elem -> Prop ;

11. You need a new word in Lex.gf.
oper odd_A : A ;

12. Then you can give a language-independent concrete syntax in MathI.gf:
1lin 0dd x = mkS (mkCl x odd_A) ;

13. The new word is implemented in LexEng.gf.

oper odd_A = mkA "odd" ;

88

14. The new word is implemented in LexFre.gf.

oper odd_A = mkA "impair" ;

15. Now you can test with the extended lexicon. First empty the environment
to get rid of the old abstract syntax, then import the new versions of the
grammars.

e
i MathEng.gf

i MathFre.gf

gr | tb

And (0dd Zero) (Even Zero)

zéro est impair et zéro est pair
zero is odd and zero is even

vV V V V

13.2 Building a user program

13.2.1 Producing a compiled grammar package

16. Your grammar is going to be used by persons whMathEng.gfo do not
need to compile it again. They may not have access to the resource library,
either. Therefore it is advisable to produce a multilingual grammar package

in a single file. We call this package math.gfcm and produce it, when we
have MathEng.gf and MathEng.gf in the GF state, by the command

> pm | wf math.gfcm

13.2.2 Writing the Haskell application
17. Write the Haskell main file Run.hs. It uses the EmbeddedAPI module

defining some basic functionalities such as parsing. The answer is produced
by an interpreter of trees returned by the parser

module Main where

import GSyntax
import GF.Embed.EmbedAPI

main :: I0 ()

89

main = do
gr <- file2grammar "math.gfcm"
loop gr

loop :: MultiGrammar -> I0 ()
loop gr = do

s <- getLine

interpret gr s

loop gr

interpret :: MultiGrammar -> String -> I0 ()
interpret gr s = do
let tss = parseAll gr "Prop" s
case (concat tss) of
[l -> putStrLn "no parse"
t:_ -> print $ answer $ fg t

answer :: GProp —-> Bool
answer p = case p of
(G0dd x1) -> odd (value x1)
(GEven x1) -> even (value x1)
(GAnd x1 x2) -> answer x1 && answer x2

value :: GElem -> Int
value e = case e of
GZero -> 0

18. The syntax trees manipulated by the interpreter are not raw GF trees,
but objects of the Haskell datatype GProp. From any GF grammar, a file
GFSyntax.hs with datatypes corresponding to its abstract syntax can be
produced by the command

> pg -printer=haskell | wf GSyntax.hs

The module also defines the overloaded functions gf and fg for translating
from these types to raw trees and back.

13.2.3 Compiling the Haskell grammar
19. Before compiling Run.hs, you must check that the embedded GF mod-

ules are found. The easiest way to do this is by two symbolic links to your
GF source directories:

90

$ 1n -s /home/aarne/GF/src/GF
$ 1n -s /home/aarne/GF/src/Transfer/

20. Now you can run the GHC Haskell compiler to produce the program.
$ ghc --make -o math Run.hs

The program can be tested with the command ./math.

13.2.4 Building a distribution

21. For a stand-alone binary-only distribution, only the two files math and
math.gfcm are needed. For a source distribution, the files mentioned in the
beginning of this documents are needed.

13.2.5 Using a Makefile

22. As a part of the source distribution, a Makefile is essential. The Makefile
is also useful when developing the application. It should always be possible
to build an executable from source by typing make. Here is a minimal such
Makefile:

all:
echo "pm | wf math.gfcm" | gf MathEng.gf MathFre.gf
echo "pg -printer=haskell | wf GSyntax.hs" | gf math.gfcm
ghc -—-make -o math Run.hs

14 Embedded grammars in Java

Forthcoming; at the moment, the document
http://www.cs.chalmers.se/ bringert/gf/gf-java.html

by Bjorn Bringert gives more information on Java.

15 Further reading

Syntax Editor User Manual:

91

http://www.cs.chalmers.se/~bringert/gf/gf-java.html

http://www.cs.chalmers.se/ aarne/GF2.0/doc/javaGUImanual/javaGUImanual .htm
Resource Grammar Synopsis (on using resource grammars):
http://www.cs.chalmers.se/aarne/GF/lib/resource-1.0/synopsis.html
Resource Grammar HOWTO (on writing resource grammars):
http://www.cs.chalmers.se/ aarne/GF/lib/resource-1.0/synopsis.html

GF Homepage:

http://www.cs.chalmers.se/ aarne/GF/doc

92

http://www.cs.chalmers.se/~aarne/GF2.0/doc/javaGUImanual/javaGUImanual.htm
file:../../lib/resource-1.0/synopsis.html
file:../../lib/resource-1.0/doc/Resource-HOWTO.html
file:../..

	Introduction
	GF = Grammatical Framework
	What are GF grammars used for
	Who is this tutorial for
	The coverage of the tutorial
	Getting the GF program
	Running the GF program

	The .cf grammar format
	Importing grammars and parsing strings
	Generating trees and strings
	Visualizing trees
	Some random-generated sentences
	Systematic generation
	More on pipes; tracing
	Writing and reading files

	The .gf grammar format
	Abstract and concrete syntax
	Judgement forms
	Module types
	Basic types and function types
	Records and strings
	An abstract syntax example
	A concrete syntax example
	Modules and files

	Multilingual grammars and translation
	An Italian concrete syntax
	Using a multilingual grammar
	Translation session
	Translation quiz

	Grammar architecture
	Extending a grammar
	Multiple inheritance
	Visualizing module structure
	System commands

	Resource modules
	The golden rule of functional programming
	Operation definitions
	The ``resource`` module type
	Opening a resource
	Partial application
	Testing resource modules
	Division of labour

	Morphology
	Parameters and tables
	Inflection tables and paradigms
	Worst-case functions and data abstraction
	A system of paradigms using Prelude operations
	Pattern matching
	An intelligent noun paradigm using pattern matching
	Morphological resource modules

	Using parameters in concrete syntax
	Parametric vs. inherent features, agreement
	English concrete syntax with parameters
	Hierarchic parameter types
	Morphological analysis and morphology quiz
	Discontinuous constituents
	Free variation
	Overloading of operations

	More constructs for concrete syntax
	Local definitions
	Record extension and subtyping
	Tuples and product types
	Record and tuple patterns
	Regular expression patterns
	Prefix-dependent choices
	Predefined types

	Using the resource grammar library
	The coverage of the library
	The resource API
	Example: French
	Functor implementation of multilingual grammars
	Interfaces and instances
	Adding languages to a functor implementation
	Division of labour revisited
	Restricted inheritance
	Browsing the resource with GF commands

	More concepts of abstract syntax
	GF as a logical framework
	Dependent types
	Polymorphism
	Dependent types and spoken language models
	Grammar-based language models
	Statistical language models

	Digression: dependent types in concrete syntax
	Variables in function types
	Polymorphism in concrete syntax

	Proof objects
	Proof-carrying documents

	Restricted polymorphism
	Variable bindings
	Semantic definitions

	Practical issues
	Lexers and unlexers
	Speech input and output
	Multilingual syntax editor
	Communicating with GF

	Embedded grammars in Haskell and Java
	Writing GF grammars
	Creating the first grammar
	Testing
	Adding a new language
	Extending the language

	Building a user program
	Producing a compiled grammar package
	Writing the Haskell application
	Compiling the Haskell grammar
	Building a distribution
	Using a Makefile

	Embedded grammars in Java
	Further reading

