The Language GFC

BNF-converter

December 2, 2005

This document was automatically generated by the BNF-Converter. It was
generated together with the lexer, the parser, and the abstract syntax mod-
ule, which guarantees that the document matches with the implementation
of the language (provided no hand-hacking has taken place).

The lexical structure of GFC

Identifiers

Identifiers (Ident) are unquoted strings beginning with a letter, followed by
any combination of letters, digits, and the characters _ ’, reserved words
excluded.

Literals

String literals (String) have the form "x", where z is any sequence of any
characters except " unless preceded by \.

Integer literals (Int) are nonempty sequences of digits.

Double-precision float literals (Double) have the structure indicated by the
regular expression (digit) + . (digit) + (‘e’-"?(digit)+)? i.e. two sequences
of digits separated by a decimal point, optionally followed by an unsigned
or negative exponent.

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called sym-
bols, and they are treated in a different way from those that are similar to
identifiers. The lexer follows rules familiar from languages like Haskell, C,
and Java, including longest match and spacing conventions.

The reserved words used in GFC are the following:

Ints Str Type

abstract cat concrete
data flags fun
grammar in lin
lincat of open
oper param pre
resource table transfer
variants

The symbols used in GFC are the following;:

} >

*ok []

\ (

) o<

> $ 7

=> ! 4+

/ e +

| ,
Comments

There are no single-line comments in the grammar.
There are no multiple-line comments in the grammar.

The syntactic structure of GFC

Non-terminals are enclosed between (and). The symbols ::= (production),
| (union) and e (empty rule) belong to the BNF notation. All other symbols
are terminals.

(Canon) := grammar (ListIdent) of (Ident) ; (ListModule)
] (ListModule)
(Line) = grammar (Listldent) of (Ident) ;
| (ModType) = (Extend) (Open) {
| (Flag) ;
| (Def) ;
.
(Module) == (ModType) = (Extend) (Open) { (ListFlag) (ListDef) }

(ModType) := abstract (Ident)

| concrete (Ident) of (Ident)

| resource (Ident)

| transfer (Ident) : (Ident) —> (Ident)
(ListModule) == €

] (Module) (ListModule)
(Extend) := (Listldent) **
| €
(Open) == open (Listldent) in
| €

(Flag) == flags (Ident) = (Ident)
(Def) = cat (Ident) [(ListDecl)] = (ListCldent)

| fun (Ident) : (Exp) = (Exp)

| transfer (Ident) = (Exp)

| param (Ident) = (ListParDef)

| oper (Ident) : (CType) = (Term)

] lincat (Ident) = (CType) = (Term) ; (Term)

| lin (Ident) : (Cldent) = \ (ListArgVar) —> (Term) ; (Term)
| (Ident) (Status) in (Ident)

(ParDef) := (Ident) (ListCType)
(Status) == data
| €
(Cldent) == (Ident) . (Ident)
(Expl) == (Expl) (Exp2)
| (Exp2)
(Exp) == ((Ident) : (Exp)) —> (Exp)
| \ (Ident) —> (Exp)
| { (ListEquation) }
| (Expl)
(Exp2) == (Atom)
| data
| ((Exp))
(Sort) == Type
(Equation) = (ListAPatt) —> (Exp)

(APatt) == ((Cldent) (ListAPatt))
| (Ident)

| (String)
| (Integer)
| (Double)
| _

(ListDecl) := ¢
\ (Decl)
| (Decl) ; (ListDecl)

(ListAPatt) == ¢
| (APatt) (ListAPatt)

(ListEquation) = €
| (Equation) ; (ListEquation)

(Atom) == (Cldent)
| < (CIdent) >
| $ (Ident)

| ? (Integer)

| (String)

| (Integer)

| (Sort)

(Decl) == (Ident) : (Exp)

(CType) == { (ListLabelling) }
| ((CType) => (CType))
| (Cldent)
| Str
| Ints (Integer)

(Labelling) := (Label) : (CType)

(Term2) == (ArgVar)
] (CIdent)
] < (CIdent) (ListTerm2) >
| $ (Ident)
] { (ListAssign) }
] (Integer)

] (Double)

] (Tokn)

| L]

] ((Term))

(Terml) == (Term2) . (Label)

] table (CType) { (ListCase) }

] table (CType) [(ListTerm2)]
| (Terml) ' (Term2)

] variants { (ListTerm2) }

|

(Term?2)
(Term) == (Term) ++ (Terml)
] (Terml)
(Tokn) == (String)
| [pre (ListString) { (ListVariant) }]
(Assign) == (Label) = (Term)
(Case) == (ListPatt) => (Term)
(Variant) = (ListString) / (ListString)
(Label) := (Ident)
| $ (Integer)
(ArgVar) == (Ident) @ (Integer)
| (Ident) + (Integer) @ (Integer)
(Patt) == ((Cldent) (ListPatt))
] (Ident)
| -
| { (ListPattAssign) }
| (Integer)
| (Double)
(PattAssign) = (Label) = (Patt)
(ListFlag) == €
| (Flag) ; (ListFlag)
(ListDef) == €
| (Def) ; (ListDef)
(ListParDef) = €
| (ParDef)
] (ParDef) | (ListParDef)
(ListCType) == €

| (CType) (ListCType)

(ListCldent) == €
| (Cldent) (ListCIldent)

(ListAssign) == €
| (Assign)
| (Assign) ; (ListAssign)
(ListArgVar) == €
| (ArgVar)
| (ArgVar) , (ListArgVar)
(ListLabelling) == €
| (Labelling)
| (Labelling) ; (ListLabelling)
(ListCase) == €
| (Case)

| (Case) ; (ListCase)

(ListTerm2) == ¢
| (Term2) (ListTerm2)
(ListString) == €
| (String) (ListString)
(ListVariant) == €
| (Variant)
| (Variant) ; (ListVariant)
(ListPattAssign) == €
| (PattAssign)
| (PattAssign) ; (ListPattAssign)
(ListPatt) == €
| (Patt) (ListPatt)
(ListIdent) == €
| (Ident)

| (Ident) , (Listldent)

