
The GF Resource Grammar Library

Author: Aarne Ranta, Ali El Dada, and Janna Khegai

Last update: Mon Jun 26 13:30:08 2006

1

Contents

1 Motivation 5

1.1 A complete example . 7

1.2 Lock fields . 10

1.3 Parsing with resource grammars? 11

2 To find rules in the resource grammar library 12

2.1 Inflection paradigms . 12

2.2 Syntax rules . 13

2.3 Example-based grammar writing 14

2.4 Special-purpose APIs . 15

3 Overview of syntactic structures 16

3.1 Texts. phrases, and utterances 16

3.2 Sentences and clauses . 17

3.3 Parts of sentences . 19

3.4 Modules and their names . 21

3.5 Top-level grammar and lexicon 21

3.6 Language-specific syntactic structures 22

4 API Documentation 23

4.1 Top-level modules . 23

4.1.1 Grammar: the Main Module of the Resource Grammar 23

4.1.2 Lang: a Test Module for the Resource Grammar . . . 24

4.2 Type system . 24

4.2.1 Cat: the Category System 24

4.2.2 Common: Structures with Common Implementations . 27

4.3 Syntax rule modules . 28

4.3.1 Adjective: Adjectives and Adjectival Phrases 28

2

4.3.2 Adverb: Adverbs and Adverbial Phrases 29

4.3.3 Conjunction: Coordination 30

4.3.4 Idiom: Idiomatic Expressions 31

4.3.5 Noun: Nouns, Noun Phrases, and Determiners 32

4.3.6 Numeral: Cardinal and Ordinal Numerals 35

4.3.7 Phrase: Phrases and Utterances 36

4.3.8 Question: Questions and Interrogative Pronouns . . . 37

4.3.9 Relative: Relative Clauses and Relative Pronouns . . . 38

4.3.10 Sentence: Sentences, Clauses, and Imperatives 38

4.3.11 Structural: Structural Words 40

4.3.12 Text: Texts . 42

4.3.13 Verb: Verb Phrases . 43

4.4 Inflectional paradigms . 44

4.4.1 Arabic . 44

4.4.2 Danish . 49

4.4.3 English . 55

4.4.4 Finnish . 62

4.4.5 French . 69

4.4.6 German . 76

4.4.7 Italian . 81

4.4.8 Norwegian . 87

4.4.9 Russian . 94

4.4.10 Feminine patterns . 96

4.4.11 Neuter patterns . 96

4.4.12 Masculine patterns . 97

4.4.13 Proper names . 98

4.4.14 Spanish . 102

4.4.15 Swedish . 108

3

5 Summary of Categories and Functions 115

5.1 Categories . 115

5.2 Functions . 116

4

This document is about the GF Resource Grammar Library. It presupposes
knowledge of GF and its module system, knowledge that can be acquired
e.g. from the GF tutorial. We start with an introduction to the library, and
proceed to details with the goal of covering all that one needs to know in
order to use the library. How to write one’s own resource grammar (i.e. to
implement the API for a new language), is covered by a separate Resource-
HOWTO document (available in the www address below).

The main part of the document (the API documentation) is generated from
the actual GF code by using the gfdoc tool. This documentation is also
available on-line in HTML format in

http://www.cs.chalmers.se/~aarne/GF/lib/resource-1.0/doc/.

1 Motivation

The GF Resource Grammar Library contains grammar rules for 10 lan-
guages (some more are under construction). Its purpose is to make these
rules available for application programmers, who can thereby concentrate
on the semantic and stylistic aspects of their grammars, without having to
think about grammaticality. The targeted level of application grammarians
is that of a skilled programmer with a practical knowledge of the target
languages, but without theoretical knowledge about their grammars. Such a
combination of skills is typical of programmers who want to localize software
to new languages.

The current resource languages are

• Arabic

• Danish

• English

• Finnish

• French

• German

• Italian

• Norwegian

• Russian

5

http://www.cs.chalmers.se/~aarne/GF/lib/resource-1.0/doc/

• Spanish

• Swedish

The first three letters (Eng etc) are used in grammar module names. The
Arabic implementation is still incomplete, but enough to be used in examples
like GF/examples/bronzeage.

To give an example application, consider music playing devices. In the ap-
plication, we may have a semantical category Kind, examples of Kinds being
Song and Artist. In German, for instance, Song is linearized into the noun
”Lied”, but knowing this is not enough to make the application work, be-
cause the noun must be produced in both singular and plural, and in four
different cases. By using the resource grammar library, it is enough to write

lin Song = reg2N "Lied" "Lieder" neuter

and the eight forms are correctly generated. The resource grammar library
contains a complete set of inflectional paradigms (such as reg2N here), en-
abling the definition of any lexical items.

The resource grammar library is not only about inflectional paradigms -
it also has syntax rules. The music player application might also want to
modify songs with properties, such as ”American”, ”old”, ”good”. The Ger-
man grammar for adjectival modifications is particularly complex, because
adjectives have to agree in gender, number, and case, and also depend on
what determiner is used (”ein amerikanisches Lied” vs. ”das amerikanische
Lied”). All this variation is taken care of by the resource grammar function

fun AdjCN : AP -> CN -> CN

(see the tables in the end of this document for the list of all resource gram-
mar functions). The resource grammar implementation of the rule adding
properties to kinds is

lin PropKind kind prop = AdjCN prop kind

given that

lincat Prop = AP

lincat Kind = CN

6

The resource library API is devided into language-specific and language-
independent parts. To put it roughly,

• the lexicon API is language-specific

• the syntax API is language-independent

Thus, to render the above example in French instead of German, we need
to pick a different linearization of Song,

lin Song = regGenN "chanson" feminine

But to linearize PropKind, we can use the very same rule as in German. The
resource function AdjCN has different implementations in the two languages
(e.g. a different word order in French), but the application programmer need
not care about the difference.

1.1 A complete example

To summarize the example, and also give a template for a programmer to
work on, here is the complete implementation of a small system with songs
and properties. The abstract syntax defines a ”domain ontology”:

abstract Music = {

cat

Kind,

Property ;

fun

PropKind : Kind -> Property -> Kind ;

Song : Kind ;

American : Property ;

}

The concrete syntax is defined by a functor (parametrize module), indepen-
dently of language, by opening two interfaces: the resource Grammar and an
application lexicon.

incomplete concrete MusicI of Music = open Grammar, MusicLex in {

lincat

Kind = CN ;

7

Property = AP ;

lin

PropKind k p = AdjCN p k ;

Song = UseN song_N ;

American = PositA american_A ;

}

The application lexicon MusicLex has an abstract syntax that extends the
resource category system Cat.

abstract MusicLex = Cat ** {

fun

song_N : N ;

american_A : A ;

}

Each language has its own concrete syntax, which opens the inflectional
paradigms module for that language:

concrete MusicLexGer of MusicLex =

CatGer ** open ParadigmsGer in {

lin

song_N = reg2N "Lied" "Lieder" neuter ;

american_A = regA "amerikanisch" ;

}

concrete MusicLexFre of MusicLex =

CatFre ** open ParadigmsFre in {

lin

song_N = regGenN "chanson" feminine ;

american_A = regA "américain" ;

}

The top-level Music grammars are obtained by instantiating the two inter-
faces of MusicI:

concrete MusicGer of Music = MusicI with

(Grammar = GrammarGer),

(MusicLex = MusicLexGer) ;

concrete MusicFre of Music = MusicI with

(Grammar = GrammarFre),

(MusicLex = MusicLexFre) ;

8

Both of these files can use the same path, defined as

--# -path=.:present:prelude

The present category contains the compiled resources, restricted to present
tense; alltenses has the full resources.

To localize the music player system to a new language, all that is needed is
two modules, one implementing MusicLex and the other instantiating Music.
The latter is completely trivial, whereas the former one involves the choice
of correct vocabulary and inflectional paradigms. For instance, Finnish is
added as follows:

concrete MusicLexFin of MusicLex =

CatFin ** open ParadigmsFin in {

lin

song_N = regN "kappale" ;

american_A = regA "amerikkalainen" ;

}

concrete MusicFin of Music = MusicI with

(Grammar = GrammarFin),

(MusicLex = MusicLexFin) ;

More work is of course needed if the language-independent linearizations
in MusicI are not satisfactory for some language. The resource grammar
guarantees that the linearizations are possible in all languages, in the sense
of grammatical, but they might of course be inadequate for stylistic reasons.
Assume, for the sake of argument, that adjectival modification does not
sound good in English, but that a relative clause would be preferrable. One
can then start as before,

concrete MusicLexEng of MusicLex =

CatEng ** open ParadigmsEng in {

lin

song_N = regN "song" ;

american_A = regA "American" ;

}

concrete MusicEng0 of Music = MusicI with

(Grammar = GrammarEng),

(MusicLex = MusicLexEng) ;

9

The module MusicEng0 would not be used on the top level, however, but
another module would be built on top of it, with a restricted import from
MusicEng0. MusicEng inherits everything from MusicEng0 except PropKind,
and gives its own definition of this function:

concrete MusicEng of Music =

MusicEng0 - [PropKind] ** open GrammarEng in {

lin

PropKind k p =

RelCN k (UseRCl TPres ASimul PPos

(RelVP IdRP (UseComp (CompAP p)))) ;

}

1.2 Lock fields

When the categories of the resource grammar are used in applications, a
lock field is added to their linearization types. The lock field for a category
C is a record field

lock_C : {}

with the only possible value

lock_C = <>

The lock field carries no information, but its presence makes the linearization
type of C unique, so that categories with the same implementation are not
confused with each other. (This is inspired by the newtype discipline in
Haskell.)

For example, the lincats of adverbs and conjunctions are the same in CatEng

(and therefore in GrammarEng, which inherits it):

lincat Adv = {s : Str} ;

lincat Conj = {s : Str} ;

But when these category symbols are used to denote their linearization types
in an application, these definitions are translated to

oper Adv : Type = {s : Str ; lock_Adv : {}} ;

oper Conj : Type = {s : Str} ; lock_Conj : {}} ;

10

In this way, the user of a resource grammar cannot confuse adverbs with
conjunctions. In other words, the lock fields force the type checker to function
as grammaticality checker.

When the resource grammar is opened in an application grammar, and only
functions from the resource are used in type-correct way, the lock fields
are never seen (except possibly in type error messages). If an application
grammarian has to write lock fields herself, it is a sign that the guarantees
given by the resource grammar no longer hold. But since the resource may
be incomplete, the application grammarian may occasionally have to provide
the dummy values of lock fields (always <>, the empty record). Here is an
example:

mkUtt : Str -> Utt ;

mkUtt s = {s = s ; lock_Utt = <>} ;

Currently, missing lock field produce warnings rather than errors, but this
behaviour of GF may change in future.

1.3 Parsing with resource grammars?

The intended use of the resource grammar is as a library for writing appli-
cation grammars. It is not designed for parsing e.g. newspaper text. There
are several reasons why this is not practical:

• Efficiency: the resource grammar uses complex data structures, in par-
ticular, discontinuous constituents, which make parsing slow and the
parser size huge.

• Completeness: the resource grammar does not necessarily cover all
rules of the language - only enough many to be able to express every-
thing in one way or another.

• Lexicon: the resource grammar has a very small lexicon, only meant
for test purposes.

• Semantics: the resource grammar has very little semantic control, and
may accept strange input or deliver strange interpretations.

• Ambiguity: parsing in the resource grammar may return lots of results
many of which are implausible.

11

All of these problems should be solved in application grammars. The task
of resource grammars is just to take care of low-level linguistic details such
as inflection, agreement, and word order.

It is for the same reasons that resource grammars are not adequate for
translation. That the syntax API is implemented for different languages of
course makes it possible to translate via it - but there is no guarantee of
translation equivalence. Of course, the use of functor implementations such
as MusicI above only extends to those cases where the syntax API does give
translation equivalence - but this must be seen as a limiting case, and bigger
applications will often use only restricted inheritance of MusicI.

2 To find rules in the resource grammar library

2.1 Inflection paradigms

Inflection paradigms are defined separately for each language L in the mod-
ule ParadigmsL. To test them, the command cc (= compute concrete) can
be used:

> i -retain german/ParadigmsGer.gf

> cc regN "Schlange"

{

s : Number => Case => Str = table Number {

Sg => table Case {

Nom => "Schlange" ;

Acc => "Schlange" ;

Dat => "Schlange" ;

Gen => "Schlange"

} ;

Pl => table Case {

Nom => "Schlangen" ;

Acc => "Schlangen" ;

Dat => "Schlangen" ;

Gen => "Schlangen"

}

} ;

g : Gender = Fem

}

For the sake of convenience, every language implements these five paradigms:

12

oper

regN : Str -> N ; -- regular nouns

regA : Str -> A : -- regular adjectives

regV : Str -> V ; -- regular verbs

regPN : Str -> PN ; -- regular proper names

dirV : V -> V2 ; -- direct transitive verbs

It is often possible to initialize a lexicon by just using these functions, and
later revise it by using the more involved paradigms. For instance, in Ger-
man we cannot use regN "Lied" for Song, because the result would be a
Masculine noun with the plural form "Liede". The individual Paradigms
modules tell what cases are covered by the regular heuristics.

As a limiting case, one could even initialize the lexicon for a new language
by copying the English (or some other already existing) lexicon. This would
produce language with correct grammar but with content words directly
borrowed from English - maybe not so strange in certain technical domains.

2.2 Syntax rules

Syntax rules should be looked for in the abstract modules defining the API.
There are around 10 such modules, each defining constructors for a group of
one or more related categories. For instance, the module Noun defines how to
construct common nouns, noun phrases, and determiners. Thus the proper
place to find out how nouns are modified with adjectives is Noun, because
the result of the construction is again a common noun.

Browsing the libraries is helped by the gfdoc-generated HTML pages, whose
LaTeX versions are included in the present document. However, this is still
not easy, and the most efficient way is probably to use the parser. Even
though parsing is not an intended end-user application of resource gram-
mars, it is a useful technique for application grammarians to browse the
library. To find out which resource function implements a particular struc-
ture, one can just parse a string that exemplifies this structure. For instance,
to find out how sentences are built using transitive verbs, write

> i english/LangEng.gf

> p -cat=Cl -fcfg "she loves him"

PredVP (UsePron she_Pron) (ComplV2 love_V2 (UsePron he_Pron))

Parsing with the English resource grammar has an acceptable speed, but

13

with most languages it takes just too much resources even to build the
parser. However, examples parsed in one language can always be linearized
into other languages:

> i italian/LangIta.gf

> l PredVP (UsePron she_Pron) (ComplV2 love_V2 (UsePron he_Pron))

lo ama

Therefore, one can use the English parser to write an Italian grammar, and
also to write a language-independent (incomplete) grammar. One can also
parse strings that are bizarre in English but the intended way of expression
in another language. For instance, the phrase for ”I am hungry” in Italian
is literally ”I have hunger”. This can be built by parsing ”I have beer” in
LanEng and then writing

lin IamHungry =

let beer_N = regGenN "fame" feminine

in

PredVP (UsePron i_Pron) (ComplV2 have_V2

(DetCN (DetSg MassDet NoOrd) (UseN beer_N))) ;

which uses ParadigmsIta.regGenN.

2.3 Example-based grammar writing

The technique of parsing with the resource grammar can be used in GF
source files, endowed with the suffix .gfe (”GF examples”). The suffix tells
GF to preprocess the file by replacing all expressions of the form

in Module.Cat "example string"

by the syntax trees obtained by parsing ”example string” in Cat in Module.
For instance,

lin IamHungry =

let beer_N = regGenN "fame" feminine

in

(in LangEng.Cl "I have beer") ;

14

will result in the rule displayed in the previous section. The normal binding
rules of functional programming (and GF) guarantee that local bindings of
identifiers take precedence over constants of the same forms. Thus it is also
possible to linearize functions taking arguments in this way:

lin

PropKind car_N old_A = in LangEng.CN "old car" ;

However, the technique of example-based grammar writing has some limi-
tations:

• Ambiguity. If a string has several parses, the first one is returned,
and it may not be the intended one. The other parses are shown in a
comment, from where they must/can be picked manually.

• Lexicality. The arguments of a function must be atomic identifiers,
and are thus not available for categories that have no lexical items.
For instance, the PropKind rule above gives the result

lin

PropKind car_N old_A = AdjCN (UseN car_N) (PositA old_A) ;

However, it is possible to write a special lexicon that gives atomic rules
for all those categories that can be used as arguments, for instance,

fun

cat_CN : CN ;

old_AP : AP ;

and then use this lexicon instead of the standard one included in Lang.

2.4 Special-purpose APIs

To give an analogy with the well-known type setting software, GF can be
compared with TeX and the resource grammar library with LaTeX. Just
like TeX frees the author from thinking about low-level problems of page
layout, so GF frees the grammarian from writing parsing and generation
algorithms. But quite a lot of knowledge of how to write grammars is still
needed, and the resource grammar library helps GF grammarians in a way
similar to how the LaTeX macro package helps TeX authors.

But even LaTeX is often too detailed and low-level, and users are encour-
aged to develop their own macro packages. The same applies to GF resource

15

grammars: the application grammarian might not need all the choises that
the resource provides, but would prefer less writing and higher-level pro-
gramming. To this end, application grammarians may want to write their
own views on the resource grammar. An example of this is already provided,
in mathematical/Predication. Instead of the NP-VP structure, it permits
clause construction directly from verbs and adjectives and their arguments:

predV : V -> NP -> Cl ; -- "x converges"

predV2 : V2 -> NP -> NP -> Cl ; -- "x intersects y"

predV3 : V3 -> NP -> NP -> NP -> Cl ; -- "x intersects y at z"

predVColl : V -> NP -> NP -> Cl ; -- "x and y intersect"

predA : A -> NP -> Cl ; -- "x is even"

predA2 : A2 -> NP -> NP -> Cl ; -- "x is divisible by y"

The implementation of this module is the functor PredicationI:

predV v x = PredVP x (UseV v) ;

predV2 v x y = PredVP x (ComplV2 v y) ;

predV3 v x y z = PredVP x (ComplV3 v y z) ;

predVColl v x y = PredVP (ConjNP and_Conj (BaseNP x y)) (UseV v) ;

predA a x = PredVP x (UseComp (CompAP (PositA a))) ;

predA2 a x y = PredVP x (UseComp (CompAP (ComplA2 a y))) ;

Of course, Predication can be opened together with Grammar, but using the
resulting grammar for parsing can be frustrating, since having both ways of
building clauses simultaneously available will produce spurious ambiguities.
But using just Predication without Verb for parsing is a good idea, since
parsing is more efficient without rules producing verb phrases.

The use of special-purpose APIs is to some extent just an alternative to
grammar writing by parsing, and its importance may decrease as parsing
with resource grammars becomes more practical.

3 Overview of syntactic structures

3.1 Texts. phrases, and utterances

The outermost linguistic structure is Text. Texts are composed from Phrases
(Phr) followed by punctuation marks - either of ”.”, ”?” or ”!” (with their
proper variants in Spanish and Arabic). Here is an example of a Text string.

16

John walks. Why? He doesn’t want to sleep!

Phrases are mostly built from Utterances (Utt), which in turn are declar-
ative sentences, questions, or imperatives - but there are also ”one-word
utterances” consisting of noun phrases or other subsentential phrases. Some
Phrases are atomic, for instance ”yes” and ”no”. Here are some examples of
Phrases.

yes

come on, John

but John walks

give me the stick please

don’t you know that he is sleeping

a glass of wine

a glass of wine please

There is no connection between the punctuation marks and the types of
utterances. This reflects the fact that the punctuation mark in a real text is
selected as a function of the speech act rather than the grammatical form
of an utterance. The following text is thus well-formed.

John walks. John walks? John walks!

What is the difference between Phrase and Utterance? Just technical: a
Phrase is an Utterance with an optional leading conjunction (”but”) and an
optional tailing vocative (”John”, ”please”).

3.2 Sentences and clauses

The richest of the categories below Utterance is S, Sentence. A Sentence is
formed from a Clause (Cl), by fixing its Tense, Anteriority, and Polarity.
The difference between Sentence and Clause is thus also rather technical.
For example, each of the following strings has a distinct syntax tree in the
category Sentence:

John walks

John doesn’t walk

John walked

John didn’t walk

John has walked

17

Node Constructor Value type Other constructors

1. TFullStop Text TQuestMark

2. (PhrUtt Phr

3. NoPConj PConj but_PConj

4. (UttS Utt UttQS

5. (UseCl S UseQCl

6. TPres Tense TPast

7. ASimul Anter AAnter

8. PPos Pol PNeg

9. (PredVP Cl

10. (UsePN NP UsePron, DetCN

11. john_PN) PN mary_PN

12. (UseV VP ComplV2, ComplV3

13. walk_V)))) V sleep_V

14. NoVoc) Voc please_Voc

15. TEmpty Text

Figure 1. Type-annotated syntax tree of the Text ”John walks.”

John hasn’t walked

John will walk

John won’t walk

...

whereas in the category Clause all of them are just different forms of the
same tree.

Figure 1 shows a type-annotated syntax tree of the Text ”John walks.” and
gives an overview of the structural levels.

Here are some examples of the results of changing constructors.

1. TFullStop -> TQuestMark John walks?

3. NoPConj -> but_PConj But John walks.

6. TPres -> TPast John walked.

7. ASimul -> AAnter John has walked.

8. PPos -> PNeg John doesn’t walk.

11. john_PN -> mary_PN Mary walks.

13. walk_V -> sleep_V John sleeps.

14. NoVoc -> please_Voc John sleeps please.

18

All constructors cannot of course be changed so freely, because the resulting
tree would not remain well-typed. Here are some changes involving many
constructors:

4- 5. UttS (UseCl ...) ->

UttQS (UseQCl (... QuestCl ...)) Does John walk?

10-11. UsePN john_PN ->

UsePron we_Pron We walk.

12-13. UseV walk_V ->

ComplV2 love_V2 this_NP John loves this.

3.3 Parts of sentences

The linguistic phenomena mostly discussed in both traditional grammars
and modern syntax belong to the level of Clauses, that is, lines 9-13, and
occasionally to Sentences, lines 5-13. At this level, the major categories are
NP (Noun Phrase) and VP (Verb Phrase). A Clause typically consists of just
an NP and a VP. The internal structure of both NP and VP can be very
complex, and these categories are mutually recursive: not only can a VP

contain an NP,

[VP loves [NP Mary]]

but also an NP can contain a VP

[NP every man [RS who [VP walks]]]

(a labelled bracketing like this is of course just a rough approximation of a
GF syntax tree, but still a useful device of exposition).

Most of the resource modules thus define functions that are used inside NPs
and VPs. Here is a brief overview:

Noun. How to construct NPs. The main three mechanisms for constructing
NPs are

• from proper names: ”John”

• from pronouns: ”we”

• from common nouns by determiners: ”this man”

19

The Noun module also defines the construction of common nouns. The most
frequent ways are

• lexical noun items: ”man”

• adjectival modification: ”old man”

• relative clause modification: ”man who sleeps”

• application of relational nouns: ”successor of the number”

Verb. How to construct VPs. The main mechanism is verbs with their ar-
guments, for instance,

• one-place verbs: ”walks”

• two-place verbs: ”loves Mary”

• three-place verbs: ”gives her a kiss”

• sentence-complement verbs: ”says that it is cold”

• VP-complement verbs: ”wants to give her a kiss”

A special verb is the copula, ”be” in English but not even realized by a verb
in all languages. A copula can take different kinds of complement:

• an adjectival phrase: ”(John is) old”

• an adverb: ”(John is) here”

• a noun phrase: ”(John is) a man”

Adjective. How to constuct APs. The main ways are

• positive forms of adjectives: ”old”

• comparative forms with object of comparison: ”older than John”

Adverb. How to construct Advs. The main ways are

• from adjectives: ”slowly”

• as prepositional phrases: ”in the car”

20

3.4 Modules and their names

The resource modules are named after the kind of phrases that are con-
structed in them, and they can be roughly classified by the ”level” or ”size”
of expressions that are formed in them:

• Larger than sentence: Text, Phrase

• Same level as sentence: Sentence, Question, Relative

• Parts of sentence: Adjective, Adverb, Noun, Verb

• Cross-cut (coordination): Conjunction

Because of mutual recursion such as in embedded sentences, this classifi-
cation is not a complete order. However, no mutual dependence is needed
between the modules themselves - they can all be compiled separately. This
is due to the module Cat, which defines the type system common to the
other modules. For instance, the types NP and VP are defined in Cat, and
the module Verb only needs to know what is given in Cat, not what is given
in Noun. To implement a rule such as

Verb.ComplV2 : V2 -> NP -> VP

it is enough to know the linearization type of NP (as well as those of V2

and VP, all given in Cat). It is not necessary to know what ways there are
to build NPs (given in Noun), since all these ways must conform to the lin-
earization type defined in Cat. Thus the format of category-specific modules
is as follows:

abstract Adjective = Cat ** {...}

abstract Noun = Cat ** {...}

abstract Verb = Cat ** {...}

3.5 Top-level grammar and lexicon

The module Grammar collects all the category-specific modules into a com-
plete grammar:

abstract Grammar =

Adjective, Noun, Verb, ..., Structural, Idiom

21

Lang

Grammar Lexicon

Noun Verb Adjective Adverb Numeral Sentence Question Relative Conjunction Phrase Text Idiom Structural

Cat

Common

Figure 2. The resource syntax API.

The module Structural is a lexicon of structural words (function words),
such as determiners.

The module Idiom is a collection of idiomatic structures whose implementa-
tion is very language-dependent. An example is existential structures (”there
is”, ”es gibt”, ”il y a”, etc).

The module Lang combines Grammar with a Lexicon of ca. 350 content
words:

abstract Lang = Grammar, Lexicon

Using Lang instead of Grammar as a library may give for free some words
needed in an application. But its main purpose is to help testing the resource
library, rather than as a resource itself. It does not even seem realistic to
develop a general-purpose multilingual resource lexicon.

The diagram in Figure 2 shows the structure of the API.

3.6 Language-specific syntactic structures

The API collected in Grammar has been designed to be implementable for
all languages in the resource package. It does contain some rules that are
strange or superfluous in some languages; for instance, the distinction be-
tween definite and indefinite articles does not apply to Finnish and Russian.
But such rules are still easy to implement: they only create some superfluous
ambiguity in the languages in question.

But the library makes no claim that all languages should have exactly the
same abstract syntax. The common API is therefore extended by language-

22

Lang.gf
Lang.gf
Lexicon.gf
Noun.gf
Verb.gf
Adjective.gf
Adverb.gf
Numeral.gf
Sentence.gf
Question.gf
Relative.gf
Conjunction.gf
Phrase.gf
Phrase.gf
Phrase.gf
Structural.gf
Cat.gf
Tense.gf

dependent rules. The top level of each languages looks as follows (with En-
glish as example):

abstract English = Grammar, ExtraEngAbs, DictEngAbs

where ExtraEngAbs is a collection of syntactic structures specific to En-
glish, and DictEngAbs is an English dictionary (at the moment, it consists
of IrregEngAbs, the irregular verbs of English). Each of these language-
specific grammars has the potential to grow into a full-scale grammar of the
language. These grammars can also be used as libraries, but the possibility
of using functors is lost.

To give a better overview of language-specific structures, modules like ExtraEngAbs
are built from a language-independent module ExtraAbs by restricted in-
heritance:

abstract ExtraEngAbs = Extra [f,g,...]

Thus any category and function in Extra may be shared by a subset of
all languages. One can see this set-up as a matrix, which tells what Extra

structures are implemented in what languages. For the common API in
Grammar, the matrix is filled with 1’s (everything is implemented in every
language).

Language-specific extensions and the use of restricted inheritance is a recent
addition to the resource grammar library, and has only been exploited in a
very small scale so far.

4 API Documentation

4.1 Top-level modules

4.1.1 Grammar: the Main Module of the Resource Grammar

This grammar is a collection of the different grammar modules, To test the
resource, import Lang, which also contains a lexicon.

abstract Grammar =

Noun,

Verb,

Adjective,

23

file:Lang.html

Adverb,

Numeral,

Sentence,

Question,

Relative,

Conjunction,

Phrase,

Text,

Structural,

Idiom

** {} ;

4.1.2 Lang: a Test Module for the Resource Grammar

This grammar is for testing the resource as included in the language-independent
API, consisting of a grammar and a lexicon. The grammar without a lexicon
is Grammar, which may be more suitable to open in applications.

abstract Lang =

Grammar,

Lexicon

** {} ;

4.2 Type system

4.2.1 Cat: the Category System

The category system is central to the library in the sense that the other
modules (Adjective, Adverb, Noun, Verb etc) communicate through it. This
means that a e.g. a function using NPs in Verb need not know how NPs are
constructed in Noun: it is enough that both Verb and Noun use the same
type NP, which is given here in Cat.

Some categories are inherited from Common. The reason they are defined there
is that they have the same implementation in all languages in the resource
(typically, just a string). These categories are AdA, AdN, AdV, Adv, Ant,

CAdv, IAdv, PConj, Phr, Pol, SC, Tense, Text, Utt, Voc.

Moreover, the list categories ListAdv, ListAP, ListNP, ListS are de-
fined on Conjunction and only used locally there.

abstract Cat = Common ** {

24

file:Grammar.html
file:Common.html

cat

Sentences and clauses

Constructed in Sentence, and also in Idiom.

S ; -- declarative sentence e.g. "she lived here"

QS ; -- question e.g. "where did she live"

RS ; -- relative e.g. "in which she lived"

Cl ; -- declarative clause, with all tenses e.g. "she looks at this"

Slash ; -- clause missing NP (S/NP in GPSG) e.g. "she looks at"

Imp ; -- imperative e.g. "look at this"

Questions and interrogatives

Constructed in Question.

QCl ; -- question clause, with all tenses e.g. "why does she walk"

IP ; -- interrogative pronoun e.g. "who"

IComp ; -- interrogative complement of copula e.g. "where"

IDet ; -- interrogative determiner e.g. "which"

Relative clauses and pronouns

Constructed in Relative.

RCl ; -- relative clause, with all tenses e.g. "in which she lives"

RP ; -- relative pronoun e.g. "in which"

Verb phrases

Constructed in Verb.

VP ; -- verb phrase e.g. "is very warm"

Comp ; -- complement of copula, such as AP e.g. "very warm"

Adjectival phrases

Constructed in Adjective.

AP ; -- adjectival phrase e.g. "very warm"

25

file:Sentence.html
file:Idiom.html
file:Question.html
file:Relative.html
file:Verb.html
file:Adjective.html

Nouns and noun phrases

Constructed in Noun. Many atomic noun phrases e.g. everybody are con-
structed in Structural. The determiner structure is

Predet (QuantSg | QuantPl Num) Ord

as defined in Noun.

CN ; -- common noun (without determiner) e.g. "red house"

NP ; -- noun phrase (subject or object) e.g. "the red house"

Pron ; -- personal pronoun e.g. "she"

Det ; -- determiner phrase e.g. "those seven"

Predet; -- predeterminer (prefixed Quant) e.g. "all"

QuantSg;-- quantifier (’nucleus’ of sing. Det) e.g. "every"

QuantPl;-- quantifier (’nucleus’ of plur. Det) e.g. "many"

Quant ; -- quantifier with both sg and pl e.g. "this/these"

Num ; -- cardinal number (used with QuantPl) e.g. "seven"

Ord ; -- ordinal number (used in Det) e.g. "seventh"

Numerals

Constructed in Numeral.

Numeral;-- cardinal or ordinal, e.g. "five/fifth"

Structural words

Constructed in Structural.

Conj ; -- conjunction, e.g. "and"

DConj ; -- distributed conj. e.g. "both - and"

Subj ; -- subjunction, e.g. "if"

Prep ; -- preposition, or just case e.g. "in"

Words of open classes

These are constructed in Lexicon and in additional lexicon modules.

V ; -- one-place verb e.g. "sleep"

V2 ; -- two-place verb e.g. "love"

V3 ; -- three-place verb e.g. "show"

26

file:Noun.html
file:Structural.html
file:Noun.html
file:Numeral.html
file:Structural.html
file:Lexicon.html

VV ; -- verb-phrase-complement verb e.g. "want"

VS ; -- sentence-complement verb e.g. "claim"

VQ ; -- question-complement verb e.g. "ask"

VA ; -- adjective-complement verb e.g. "look"

V2A ; -- verb with NP and AP complement e.g. "paint"

A ; -- one-place adjective e.g. "warm"

A2 ; -- two-place adjective e.g. "divisible"

N ; -- common noun e.g. "house"

N2 ; -- relational noun e.g. "son"

N3 ; -- three-place relational noun e.g. "connection"

PN ; -- proper name e.g. "Paris"

}

4.2.2 Common: Structures with Common Implementations

This module defines the categories that uniformly have the linearization {s
: Str} in all languages. Moreover, this module defines the abstract parame-
ters of tense, polarity, and anteriority, which are used in Phrase to generate
different forms of sentences. Together they give 4 x 2 x 2 = 16 sentence
forms. These tenses are defined for all languages in the library. More tenses
can be defined in the language extensions, e.g. the passé simple of Romance
languages in ExtraRomance.

abstract Common = {

cat

Top-level units

Constructed in Text: Text.

Text ; -- text consisting of several phrases e.g. "He is here. Why?"

Constructed in Phrase:

Phr ; -- phrase in a text e.g. "but be quiet please"

Utt ; -- sentence, question, word... e.g. "be quiet"

Voc ; -- vocative or "please" e.g. "my darling"

PConj ; -- phrase-beginning conj. e.g. "therefore"

27

file:Phrase.html
file:../romance/ExtraRomance.gf
file:Text.html
file:Phrase.html

Constructed in Sentence:

SC ; -- embedded sentence or question e.g. "that it rains"

Adverbs

Constructed in Adverb. Many adverbs are constructed in Structural.

Adv ; -- verb-phrase-modifying adverb, e.g. "in the house"

AdV ; -- adverb directly attached to verb e.g. "always"

AdA ; -- adjective-modifying adverb, e.g. "very"

AdN ; -- numeral-modifying adverb, e.g. "more than"

IAdv ; -- interrogative adverb e.g. "why"

CAdv ; -- comparative adverb e.g. "more"

Tense, polarity, and anteriority

Tense ; -- tense: present, past, future, conditional

Pol ; -- polarity: positive, negative

Ant ; -- anteriority: simultaneous, anterior

fun

PPos, PNeg : Pol ; -- I sleep/don’t sleep

TPres : Tense ;

ASimul : Ant ;

TPast, TFut, TCond : Tense ; -- I slept/will sleep/would sleep --# notpresent

AAnter : Ant ; -- I have slept --# notpresent

}

4.3 Syntax rule modules

4.3.1 Adjective: Adjectives and Adjectival Phrases

abstract Adjective = Cat ** {

fun

The principal ways of forming an adjectival phrase are positive, comparative,
relational, reflexive-relational, and elliptic-relational. (The superlative use is
covered in Noun.SuperlA.)

28

file:Sentence.html
file:Adverb.html
file:Structural.html
file:Noun.html

PositA : A -> AP ; -- warm

ComparA : A -> NP -> AP ; -- warmer than Spain

ComplA2 : A2 -> NP -> AP ; -- divisible by 2

ReflA2 : A2 -> AP ; -- divisible by itself

UseA2 : A2 -> A ; -- divisible

Sentence and question complements defined for all adjectival phrases, al-
though the semantics is only clear for some adjectives.

SentAP : AP -> SC -> AP ; -- great that she won, uncertain if she did

An adjectival phrase can be modified by an adadjective, such as very.

AdAP : AdA -> AP -> AP ; -- very uncertain

The formation of adverbs from adjective (e.g. quickly) is covered by Adverb.

}

4.3.2 Adverb: Adverbs and Adverbial Phrases

abstract Adverb = Cat ** {

fun

The two main ways of forming adverbs are from adjectives and by preposi-
tions from noun phrases.

PositAdvAdj : A -> Adv ; -- quickly

PrepNP : Prep -> NP -> Adv ; -- in the house

Comparative adverbs have a noun phrase or a sentence as object of compar-
ison.

ComparAdvAdj : CAdv -> A -> NP -> Adv ; -- more quickly than John

ComparAdvAdjS : CAdv -> A -> S -> Adv ; -- more quickly than he runs

Adverbs can be modified by ’adadjectives’, just like adjectives.

29

file:Adverb.html

AdAdv : AdA -> Adv -> Adv ; -- very quickly

Subordinate clauses can function as adverbs.

SubjS : Subj -> S -> Adv ; -- when he arrives

AdvSC : SC -> Adv ; -- that he arrives ---- REMOVE?

Comparison adverbs also work as numeral adverbs.

AdnCAdv : CAdv -> AdN ; -- more (than five)

}

4.3.3 Conjunction: Coordination

Coordination is defined for many different categories; here is a sample. The
rules apply to lists of two or more elements, and define two general patterns:

• ordinary conjunction: X,...X and X

• distributed conjunction: both X,...,X and X

VP conjunctions are not covered here, because their applicability depends on
language. Some special cases are defined in Extra.

abstract Conjunction = Cat ** {

Rules

fun

ConjS : Conj -> [S] -> S ; -- "John walks and Mary runs"

ConjAP : Conj -> [AP] -> AP ; -- "even and prime"

ConjNP : Conj -> [NP] -> NP ; -- "John or Mary"

ConjAdv : Conj -> [Adv] -> Adv ; -- "quickly or slowly"

DConjS : DConj -> [S] -> S ; -- "either John walks or Mary runs"

DConjAP : DConj -> [AP] -> AP ; -- "both even and prime"

DConjNP : DConj -> [NP] -> NP ; -- "either John or Mary"

DConjAdv : DConj -> [Adv] -> Adv; -- "both badly and slowly"

30

file:../abstract/Extra.gf

Categories

These categories are only used in this module.

cat

[S]{2} ;

[Adv]{2} ;

[NP]{2} ;

[AP]{2} ;

List constructors

The list constructors are derived from the list notation and therefore not
given explicitly. But here are their type signatures:

-- BaseC : C -> C -> [C] ; -- for C = S, AP, NP, Adv

-- ConsC : C -> [C] -> [C] ;

}

4.3.4 Idiom: Idiomatic Expressions

abstract Idiom = Cat ** {

This module defines constructions that are formed in fixed ways, often dif-
ferent even in closely related languages.

fun

ImpersCl : VP -> Cl ; -- it rains

GenericCl : VP -> Cl ; -- one sleeps

CleftNP : NP -> RS -> Cl ; -- it is you who did it

CleftAdv : Adv -> S -> Cl ; -- it is yesterday she arrived

ExistNP : NP -> Cl ; -- there is a house

ExistIP : IP -> QCl ; -- which houses are there

ProgrVP : VP -> VP ; -- be sleeping

ImpPl1 : VP -> Utt ; -- let’s go

}

31

4.3.5 Noun: Nouns, Noun Phrases, and Determiners

abstract Noun = Cat ** {

Noun phrases

The three main types of noun phrases are

• common nouns with determiners

• proper names

• pronouns

fun

DetCN : Det -> CN -> NP ; -- the man

UsePN : PN -> NP ; -- John

UsePron : Pron -> NP ; -- he

Pronouns are defined in the module Structural. A noun phrase already
formed can be modified by a Predeterminer.

PredetNP : Predet -> NP -> NP; -- only the man

A noun phrase can also be postmodified by the past participle of a verb or
by an adverb.

PPartNP : NP -> V2 -> NP ; -- the number squared

AdvNP : NP -> Adv -> NP ; -- Paris at midnight

Determiners

The determiner has a fine-grained structure, in which a ’nucleus’ quantifier
and two optional parts can be discerned. The cardinal numeral is only avail-
able for plural determiners. (This is modified from CLE by further dividing
their Num into cardinal and ordinal.)

DetSg : QuantSg -> Ord -> Det ; -- this best man

DetPl : QuantPl -> Num -> Ord -> Det ; -- these five best men

Quantifiers that have both forms can be used in both ways.

32

file:Structural.html

SgQuant : Quant -> QuantSg ; -- this

PlQuant : Quant -> QuantPl ; -- these

Pronouns have possessive forms. Genitives of other kinds of noun phrases
are not given here, since they are not possible in e.g. Romance languages.
They can be found in Extra.

PossPron : Pron -> Quant ; -- my (house)

All parts of the determiner can be empty, except Quant, which is the kernel
of a determiner.

NoNum : Num ;

NoOrd : Ord ;

Num consists of either digits or numeral words.

NumInt : Int -> Num ; -- 51

NumNumeral : Numeral -> Num ; -- fifty-one

The construction of numerals is defined in Numeral. Num can be modified by
certain adverbs.

AdNum : AdN -> Num -> Num ; -- almost 51

Ord consists of either digits or numeral words.

OrdInt : Int -> Ord ; -- 51st

OrdNumeral : Numeral -> Ord ; -- fifty-first

Superlative forms of adjectives behave syntactically in the same way as or-
dinals.

OrdSuperl : A -> Ord ; -- largest

Definite and indefinite constructions are sometimes realized as neatly dis-
tinct words (Spanish un, unos ; el, los) but also without any particular word
(Finnish; Swedish definites).

33

file:../abstract/Extra.gf
file:Numeral.html

DefArt : Quant ; -- the (house), the (houses)

IndefArt : Quant ; -- a (house), (houses)

Nouns can be used without an article as mass nouns. The resource does
not distinguish mass nouns from other common nouns, which can result in
semantically odd expressions.

MassDet : QuantSg ; -- (beer)

Other determiners are defined in Structural.

Common nouns

Simple nouns can be used as nouns outright.

UseN : N -> CN ; -- house

Relational nouns take one or two arguments.

ComplN2 : N2 -> NP -> CN ; -- son of the king

ComplN3 : N3 -> NP -> N2 ; -- flight from Moscow (to Paris)

Relational nouns can also be used without their arguments. The semantics
is typically derivative of the relational meaning.

UseN2 : N2 -> CN ; -- son

UseN3 : N3 -> CN ; -- flight

Nouns can be modified by adjectives, relative clauses, and adverbs (the last
rule will give rise to many ’PP attachment’ ambiguities when used in con-
nection with verb phrases).

AdjCN : AP -> CN -> CN ; -- big house

RelCN : CN -> RS -> CN ; -- house that John owns

AdvCN : CN -> Adv -> CN ; -- house on the hill

Nouns can also be modified by embedded sentences and questions. For some
nouns this makes little sense, but we leave this for applications to decide.
Sentential complements are defined in Verb.

34

file:Structural.html
file:Verb.html

SentCN : CN -> SC -> CN ; -- fact that John smokes, question if he does

Apposition

This is certainly overgenerating.

ApposCN : CN -> NP -> CN ; -- number x, numbers x and y

} ;

4.3.6 Numeral: Cardinal and Ordinal Numerals

This grammar defines numerals from 1 to 999999. The implementations are
adapted from the numerals library which defines numerals for 88 languages.
The resource grammar implementations add to this inflection (if needed)
and ordinal numbers.

Note 1. Number 1 as defined in the category Numeral here should not be
used in the formation of noun phrases, and should therefore be removed.
Instead, one should use Structural.one Quant. This makes the grammar
simpler because we can assume that numbers form plural noun phrases.

Note 2. The implementations introduce spaces between parts of a numeral,
which is often incorrect - more work on (un)lexing is needed to solve this
problem.

abstract Numeral = Cat ** {

cat

Digit ; -- 2..9

Sub10 ; -- 1..9

Sub100 ; -- 1..99

Sub1000 ; -- 1..999

Sub1000000 ; -- 1..999999

fun

num : Sub1000000 -> Numeral ;

n2, n3, n4, n5, n6, n7, n8, n9 : Digit ;

pot01 : Sub10 ; -- 1

pot0 : Digit -> Sub10 ; -- d * 1

pot110 : Sub100 ; -- 10

35

http://www.cs.chalmers.se/~aarne/GF/examples/numerals/
file:Structural.html

pot111 : Sub100 ; -- 11

pot1to19 : Digit -> Sub100 ; -- 10 + d

pot0as1 : Sub10 -> Sub100 ; -- coercion of 1..9

pot1 : Digit -> Sub100 ; -- d * 10

pot1plus : Digit -> Sub10 -> Sub100 ; -- d * 10 + n

pot1as2 : Sub100 -> Sub1000 ; -- coercion of 1..99

pot2 : Sub10 -> Sub1000 ; -- m * 100

pot2plus : Sub10 -> Sub100 -> Sub1000 ; -- m * 100 + n

pot2as3 : Sub1000 -> Sub1000000 ; -- coercion of 1..999

pot3 : Sub1000 -> Sub1000000 ; -- m * 1000

pot3plus : Sub1000 -> Sub1000 -> Sub1000000 ; -- m * 1000 + n

}

4.3.7 Phrase: Phrases and Utterances

abstract Phrase = Cat ** {

When a phrase is built from an utterance it can be prefixed with a phrasal
conjunction (such as but, therefore) and suffixing with a vocative (typically
a noun phrase).

fun

PhrUtt : PConj -> Utt -> Voc -> Phr ; -- But go home my friend.

Utterances are formed from sentences, questions, and imperatives.

UttS : S -> Utt ; -- John walks

UttQS : QS -> Utt ; -- is it good

UttImpSg : Pol -> Imp -> Utt; -- (don’t) help yourself

UttImpPl : Pol -> Imp -> Utt; -- (don’t) help yourselves

There are also ’one-word utterances’. A typical use of them is as answers to
questions. Note. This list is incomplete. More categories could be covered.
Moreover, in many languages e.g. noun phrases in different cases can be
used.

UttIP : IP -> Utt ; -- who

UttIAdv : IAdv -> Utt ; -- why

UttNP : NP -> Utt ; -- this man

UttAdv : Adv -> Utt ; -- here

UttVP : VP -> Utt ; -- to sleep

36

The phrasal conjunction is optional. A sentence conjunction can also used
to prefix an utterance.

NoPConj : PConj ;

PConjConj : Conj -> PConj ; -- and

The vocative is optional. Any noun phrase can be made into vocative, which
may be overgenerating (e.g. I).

NoVoc : Voc ;

VocNP : NP -> Voc ; -- my friend

}

4.3.8 Question: Questions and Interrogative Pronouns

abstract Question = Cat ** {

A question can be formed from a clause (’yes-no question’) or with an in-
terrogative.

fun

QuestCl : Cl -> QCl ; -- does John walk

QuestVP : IP -> VP -> QCl ; -- who walks

QuestSlash : IP -> Slash -> QCl ; -- who does John love

QuestIAdv : IAdv -> Cl -> QCl ; -- why does John walk

QuestIComp : IComp -> NP -> QCl ; -- where is John

Interrogative pronouns can be formed with interrogative determiners.

IDetCN : IDet -> Num -> Ord -> CN -> IP; -- which five best songs

AdvIP : IP -> Adv -> IP ; -- who in Europe

PrepIP : Prep -> IP -> IAdv ; -- with whom

CompIAdv : IAdv -> IComp ; -- where

More IP, IDet, and IAdv are defined in Structural.

}

37

file:Structural.html

4.3.9 Relative: Relative Clauses and Relative Pronouns

abstract Relative = Cat ** {

fun

The simplest way to form a relative clause is from a clause by a pronoun
similar to such that.

RelCl : Cl -> RCl ; -- such that John loves her

The more proper ways are from a verb phrase (formed in Verb) or a sentence
with a missing noun phrase (formed in Sentence).

RelVP : RP -> VP -> RCl ; -- who loves John

RelSlash : RP -> Slash -> RCl ; -- whom John loves

Relative pronouns are formed from an ’identity element’ by prefixing or
suffixing (depending on language) prepositional phrases.

IdRP : RP ; -- which

FunRP : Prep -> NP -> RP -> RP ; -- all the roots of which

}

4.3.10 Sentence: Sentences, Clauses, and Imperatives

abstract Sentence = Cat ** {

Clauses

The NP VP predication rule form a clause whose linearization gives a table
of all tense variants, positive and negative. Clauses are converted to S (with
fixed tense) with the UseCl function below.

fun

PredVP : NP -> VP -> Cl ; -- John walks

Using an embedded sentence as a subject is treated separately. This can be
overgenerating. E.g. whether you go as subject is only meaningful for some
verb phrases.

38

file:Verb.html
file:Sentence.html

PredSCVP : SC -> VP -> Cl ; -- that you go makes me happy

Clauses missing object noun phrases

This category is a variant of the ’slash category’ S/NP of GPSG and cate-
gorial grammars, which in turn replaces movement transformations in the
formation of questions and relative clauses. Except SlashV2, the construc-
tion rules can be seen as special cases of function composition, in the style
of CCG. Note the set is not complete and lacks e.g. verbs with more than
2 places.

SlashV2 : NP -> V2 -> Slash ; -- (whom) he sees

SlashVVV2 : NP -> VV -> V2 -> Slash; -- (whom) he wants to see

AdvSlash : Slash -> Adv -> Slash ; -- (whom) he sees tomorrow

SlashPrep : Cl -> Prep -> Slash ; -- (with whom) he walks

Imperatives

An imperative is straightforwardly formed from a verb phrase. It has varia-
tion over positive and negative, singular and plural. To fix these parameters,
see Phrase.

ImpVP : VP -> Imp ; -- go

Embedded sentences

Sentences, questions, and infinitival phrases can be used as subjects and
(adverbial) complements.

EmbedS : S -> SC ; -- that you go

EmbedQS : QS -> SC ; -- whether you go

EmbedVP : VP -> SC ; -- to go

Sentences

These are the 2 x 4 x 4 = 16 forms generated by different combinations of
tense, polarity, and anteriority, which are defined in Common.

fun

UseCl : Tense -> Ant -> Pol -> Cl -> S ;

UseQCl : Tense -> Ant -> Pol -> QCl -> QS ;

UseRCl : Tense -> Ant -> Pol -> RCl -> RS ;

}

39

file:Phrase.html
file:Common.html

4.3.11 Structural: Structural Words

Here we have some words belonging to closed classes and appearing in all
languages we have considered. Sometimes more distinctions are needed, e.g.
we Pron in Spanish should be replaced by masculine and feminine variants,
found in ExtraSpa.

abstract Structural = Cat ** {

fun

This is an alphabetical list of structural words

above_Prep : Prep ;

after_Prep : Prep ;

all_Predet : Predet ;

almost_AdA : AdA ;

almost_AdN : AdN ;

although_Subj : Subj ;

always_AdV : AdV ;

and_Conj : Conj ;

because_Subj : Subj ;

before_Prep : Prep ;

behind_Prep : Prep ;

between_Prep : Prep ;

both7and_DConj : DConj ;

but_PConj : PConj ;

by8agent_Prep : Prep ;

by8means_Prep : Prep ;

can8know_VV : VV ;

can_VV : VV ;

during_Prep : Prep ;

either7or_DConj : DConj ;

every_Det : Det ;

everybody_NP : NP ;

everything_NP : NP ;

everywhere_Adv : Adv ;

first_Ord : Ord ;

few_Det : Det ;

from_Prep : Prep ;

he_Pron : Pron ;

here_Adv : Adv ;

here7to_Adv : Adv ;

40

file:../spanish/ExtraSpa.gf

here7from_Adv : Adv ;

how_IAdv : IAdv ;

how8many_IDet : IDet ;

i_Pron : Pron ;

if_Subj : Subj ;

in8front_Prep : Prep ;

in_Prep : Prep ;

it_Pron : Pron ;

less_CAdv : CAdv ;

many_Det : Det ;

more_CAdv : CAdv ;

most_Predet : Predet ;

much_Det : Det ;

must_VV : VV ;

no_Phr : Phr ;

on_Prep : Prep ;

one_Quant : QuantSg ;

only_Predet : Predet ;

or_Conj : Conj ;

otherwise_PConj : PConj ;

part_Prep : Prep ;

please_Voc : Voc ;

possess_Prep : Prep ;

quite_Adv : AdA ;

she_Pron : Pron ;

so_AdA : AdA ;

someSg_Det : Det ;

somePl_Det : Det ;

somebody_NP : NP ;

something_NP : NP ;

somewhere_Adv : Adv ;

that_Quant : Quant ;

that_NP : NP ;

there_Adv : Adv ;

there7to_Adv : Adv ;

there7from_Adv : Adv ;

therefore_PConj : PConj ;

these_NP : NP ;

they_Pron : Pron ;

this_Quant : Quant ;

this_NP : NP ;

those_NP : NP ;

through_Prep : Prep ;

to_Prep : Prep ;

41

too_AdA : AdA ;

under_Prep : Prep ;

very_AdA : AdA ;

want_VV : VV ;

we_Pron : Pron ;

whatPl_IP : IP ;

whatSg_IP : IP ;

when_IAdv : IAdv ;

when_Subj : Subj ;

where_IAdv : IAdv ;

whichPl_IDet : IDet ;

whichSg_IDet : IDet ;

whoPl_IP : IP ;

whoSg_IP : IP ;

why_IAdv : IAdv ;

with_Prep : Prep ;

without_Prep : Prep ;

yes_Phr : Phr ;

youSg_Pron : Pron ;

youPl_Pron : Pron ;

youPol_Pron : Pron ;

}

4.3.12 Text: Texts

Texts are built from an empty text by adding Phrases, using as constructors
the punctuation marks ., ?, and !. Any punctuation mark can be attached
to any kind of phrase.

abstract Text = Common ** {

fun

TEmpty : Text ; --

TFullStop : Phr -> Text -> Text ; -- John walks. ...

TQuestMark : Phr -> Text -> Text ; -- Are you OK? ...

TExclMark : Phr -> Text -> Text ; -- John walks! ...

}

42

4.3.13 Verb: Verb Phrases

abstract Verb = Cat ** {

Complementization rules

Verb phrases are constructed from verbs by providing their complements.
There is one rule for each verb category.

fun

UseV : V -> VP ; -- sleep

ComplV2 : V2 -> NP -> VP ; -- use it

ComplV3 : V3 -> NP -> NP -> VP ; -- send a message to her

ComplVV : VV -> VP -> VP ; -- want to run

ComplVS : VS -> S -> VP ; -- know that she runs

ComplVQ : VQ -> QS -> VP ; -- ask if she runs

ComplVA : VA -> AP -> VP ; -- look red

ComplV2A : V2A -> NP -> AP -> VP ; -- paint the house red

Other ways of forming verb phrases

Verb phrases can also be constructed reflexively and from copula-preceded
complements.

ReflV2 : V2 -> VP ; -- use itself

UseComp : Comp -> VP ; -- be warm

Passivization of two-place verbs is another way to use them. In many lan-
guages, the result is a participle that is used as complement to a copula (is
used), but other auxiliary verbs are possible (Ger. wird angewendet, It. viene
usato), as well as special verb forms (Fin. käytetään, Swe. används).

Note. the rule can be overgenerating, since the V2 need not take a direct
object.

PassV2 : V2 -> VP ; -- be used

Adverbs can be added to verb phrases. Many languages make a distinction
between adverbs that are attached in the end vs. next to (or before) the
verb.

43

AdvVP : VP -> Adv -> VP ; -- sleep here

AdVVP : AdV -> VP -> VP ; -- always sleep

Agents of passives are constructed as adverbs with the preposition Structural.8agent Prep.

Complements to copula

Adjectival phrases, noun phrases, and adverbs can be used.

CompAP : AP -> Comp ; -- (be) small

CompNP : NP -> Comp ; -- (be) a soldier

CompAdv : Adv -> Comp ; -- (be) here

Coercions

Verbs can change subcategorization patterns in systematic ways, but this is
very much language-dependent. The following two work in all the languages
we cover.

UseVQ : VQ -> V2 ; -- ask (a question)

UseVS : VS -> V2 ; -- know (a secret)

}

4.4 Inflectional paradigms

4.4.1 Arabic

Ali El Dada 2005–2006

This is an API to the user of the resource grammar for adding lexical items. It
gives functions for forming expressions of open categories: nouns, adjectives,
verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

The main difference with MorphoAra.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we give

44

file:Structural.html

a worst-case function mkC, which serves as an escape to construct the most
irregular words of type C.

The following modules are presupposed:

resource ParadigmsAra = open

Predef,

Prelude,

MorphoAra,

OrthoAra,

CatAra

in {

flags optimize = noexpand;

oper

Prepositions are used in many-argument functions for rection.

Preposition : Type ;

Nouns

This is used for loan words or anything that has untreated irregularities in
the interdigitization process of its words

mkN : NTable -> Gender -> Species -> N ;

Takes a root string, a singular pattern string, a broken plural pattern string,
a gender, and species. Gives a noun.

brkN : Str -> Str -> Str -> Gender -> Species -> N ;

Takes a root string, a singular pattern string, a gender, and species. Gives
a noun whose plural is sound feminine.

sdfN : Str -> Str -> Gender -> Species -> N ;

takes a root string, a singular pattern string, a gender, and species. Gives a
noun whose plural is sound masculine

45

sdmN : Str -> Str -> Gender -> Species -> N ;

Relational nouns

mkN2 : N -> Preposition -> N2 ;

mkN3 : N -> Preposition -> Preposition -> N3 ;

Adjectives

Takes a root string and a pattern string

sndA : Str -> Str -> A ;

Takes a root string only

clrA : Str -> A ;

Two-place adjectives

Two-place adjectives need a preposition for their second argument.

mkA2 : A -> Preposition -> A2 ;

Adverbs

Adverbs are not inflected. Most lexical ones have position after the verb.
Some can be preverbal.

mkAdv : Str -> Adv ;

mkAdV : Str -> AdV ;

Adverbs modifying adjectives and sentences can also be formed.

mkAdA : Str -> AdA ;

Prepositions

A preposition as used for rection in the lexicon, as well as to build PPs in
the resource API, just requires a string.

46

mkPreposition : Str -> Preposition ;

(These two functions are synonyms.)

Verbs

The verb in the imperfect tense gives the most information

regV : Str -> V ;

Verb Form I : fa‘ala, fa‘ila, fa‘ula

v1 : Str -> Vowel -> Vowel -> V ;

Verb Form II : fa“ala

v2 : Str -> V ;

Verb Form III : faa‘ala

v3 : Str -> V ;

Verb Form IV : ’af‘ala

v4 : Str -> V ;

Verb Form V : tafa“ala

v5 : Str -> V ;

Verb Form VI : tafaa‘ala

v6 : Str -> V ;

Verb Form VIII ’ifta‘ala

v8 : Str -> V ;

47

Two-place verbs

Two-place verbs need a preposition, except the special case with direct ob-
ject. (transitive verbs). Notice that a particle comes from the V.

mkV2 : V -> Preposition -> V2 ;

dirV2 : V -> V2 ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

mkV3 : V -> Preposition -> Preposition -> V3 ; -- speak, with, about

dirV3 : V -> Preposition -> V3 ; -- give,_,to

dirdirV3 : V -> V3 ; -- give,_,_

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Str -> V2S ;

mkVV : V -> VV ;

mkV2V : V -> Str -> Str -> V2V ;

mkVA : V -> VA ;

mkV2A : V -> Str -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Str -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Str -> A2S ;

mkAV : A -> AV ;

mkA2V : A -> Str -> A2V ;

Notice: categories V2S, V2V, V2A, V2Q are in v 1.0 treated just as syn-
onyms of V2, and the second argument is given as an adverb. Likewise AS,

A2S, AV, A2V are just A. V0 is just V.

V0, V2S, V2V, V2A, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

48

4.4.2 Danish

Aarne Ranta 2005 - 2006

This is an API for the user of the resource grammar for adding lexical
items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

The main difference with MorphoDan.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we give
a worst-case function mkC, which serves as an escape to construct the most
irregular words of type C. However, this function should only seldom be
needed: we have a separate module IrregDan, which haves a list of irregular
verbs.

resource ParadigmsDan =

open

(Predef=Predef),

Prelude,

CommonScand,

ResDan,

MorphoDan,

CatDan in {

Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

utrum : Gender ;

neutrum : Gender ;

To abstract over number names, we define the following.

49

file:../../danish/IrregDan.gf

Number : Type ;

singular : Number ;

plural : Number ;

To abstract over case names, we define the following.

Case : Type ;

nominative : Case ;

genitive : Case ;

Prepositions used in many-argument functions are just strings.

mkPrep : Str -> Prep ;

noPrep : Prep ; -- empty string

Nouns

Worst case: give all four forms. The gender is computed from the last letter
of the second form (if n, then utrum, otherwise neutrum).

mkN : (dreng,drengen,drenge,drengene : Str) -> N ;

The regular function takes the singular indefinite form and computes the
other forms and the gender by a heuristic. The heuristic is that all nouns
are utrum with the plural ending er or r.

regN : Str -> N ;

Giving gender manually makes the heuristic more reliable.

regGenN : Str -> Gender -> N ;

This function takes the singular indefinite and definite forms; the gender is
computed from the definite form.

mk2N : (bil,bilen : Str) -> N ;

50

This function takes the singular indefinite and definite and the plural indef-
inite

mk3N : (bil,bilen,biler : Str) -> N ;

Compound nouns

All the functions above work quite as well to form compound nouns, such
as fodbold.

Relational nouns

Relational nouns (datter til x) need a preposition.

mkN2 : N -> Prep -> N2 ;

The most common preposition is af, and the following is a shortcut for
regular relational nouns with af.

regN2 : Str -> Gender -> N2 ;

Use the function mkPrep or see the section on prepositions below to form
other prepositions.

Three-place relational nouns (forbindelse fra x til y) need two prepositions.

mkN3 : N -> Prep -> Prep -> N3 ;

Relational common noun phrases

In some cases, you may want to make a complex CN into a relational noun
(e.g. tidligere kone til). However, N2 and N3 are purely lexical categories.
But you can use the AdvCN and PrepNP constructions to build phrases like
this.

Proper names and noun phrases

Proper names, with a regular genitive, are formed as follows

mkPN : Str -> Gender -> PN ; -- Paris neutrum

regPN : Str -> PN ; -- utrum gender

Sometimes you can reuse a common noun as a proper name, e.g. Bank.

51

nounPN : N -> PN ;

To form a noun phrase that can also be plural and have an irregular genitive,
you can use the worst-case function.

mkNP : Str -> Str -> Number -> Gender -> NP ;

Adjectives

Non-comparison one-place adjectives need three forms:

mkA : (galen,galet,galne : Str) -> A ;

For regular adjectives, the other forms are derived.

regA : Str -> A ;

In most cases, two forms are enough.

mk2A : (stor,stort : Str) -> A ;

Two-place adjectives

Two-place adjectives need a preposition for their second argument.

mkA2 : A -> Prep -> A2 ;

Comparison adjectives may need as many as five forms.

mkADeg : (stor,stort,store,storre,storst : Str) -> A ;

The regular pattern works for many adjectives, e.g. those ending with ig.

regADeg : Str -> A ;

Just the comparison forms can be irregular.

irregADeg : (tung,tyngre,tyngst : Str) -> A ;

52

Sometimes just the positive forms are irregular.

mk3ADeg : (galen,galet,galna : Str) -> A ;

mk2ADeg : (bred,bredt : Str) -> A ;

If comparison is formed by mer, mest, as in general for long adjective, the
following pattern is used:

compoundA : A -> A ; -- -/mer/mest norsk

Adverbs

Adverbs are not inflected. Most lexical ones have position after the verb.
Some can be close to the verb like the negation ikke (e.g. altid).

mkAdv : Str -> Adv ;

mkAdV : Str -> AdV ;

Adverbs modifying adjectives and sentences can also be formed.

mkAdA : Str -> AdA ;

Verbs

The worst case needs six forms.

mkV : (spise,spiser,spises,spiste,spist,spis : Str) -> V ;

The ’regular verb’ function is the first conjugation.

regV : (snakke : Str) -> V ;

The almost regular verb function needs the infinitive and the preteritum.

mk2V : (leve,levde : Str) -> V ;

There is an extensive list of irregular verbs in the module IrregDan. In
practice, it is enough to give three forms, as in school books.

53

irregV : (drikke, drak, drukket : Str) -> V ;

Verbs with ’være’ as auxiliary

By default, the auxiliary is have. This function changes it to være.

vaereV : V -> V ;

Verbs with a particle

The particle, such as in passe p̊a, is given as a string.

partV : V -> Str -> V ;

Deponent verbs

Some words are used in passive forms only, e.g. undres, some as reflexive e.g.
forestille sig.

depV : V -> V ;

reflV : V -> V ;

Two-place verbs

Two-place verbs need a preposition, except the special case with direct ob-
ject. (transitive verbs). Notice that a particle comes from the V.

mkV2 : V -> Prep -> V2 ;

dirV2 : V -> V2 ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

mkV3 : V -> Prep -> Prep -> V3 ; -- snakke, med, om

dirV3 : V -> Prep -> V3 ; -- give,_,til

dirdirV3 : V -> V3 ; -- give,_,_

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

54

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Prep -> V2S ;

mkVV : V -> VV ;

mkV2V : V -> Prep -> Prep -> V2V ;

mkVA : V -> VA ;

mkV2A : V -> Prep -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Prep -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Prep -> A2S ;

mkAV : A -> AV ;

mkA2V : A -> Prep -> A2V ;

Notice: categories V2S, V2V, V2A, V2Q are in v 1.0 treated just as syn-
onyms of V2, and the second argument is given as an adverb. Likewise AS,

A2S, AV, A2V are just A. V0 is just V.

V0, V2S, V2V, V2A, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

4.4.3 English

Aarne Ranta 2003–2005

This is an API for the user of the resource grammar for adding lexical
items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

The main difference with MorphoEng.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we give
a worst-case function mkC, which serves as an escape to construct the most
irregular words of type C. However, this function should only seldom be
needed: we have a separate module IrregEng, which covers irregular verbss.

55

file:../../english/IrregEng.gf

resource ParadigmsEng = open

(Predef=Predef),

Prelude,

MorphoEng,

CatEng

in {

Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

human : Gender ;

nonhuman : Gender ;

masculine : Gender ;

To abstract over number names, we define the following.

Number : Type ;

singular : Number ;

plural : Number ;

To abstract over case names, we define the following.

Case : Type ;

nominative : Case ;

genitive : Case ;

Prepositions are used in many-argument functions for rection. The resource
category Prep is used.

Nouns

Worst case: give all four forms.

mkN : (man,men,man’s,men’s : Str) -> N ;

The regular function captures the variants for nouns ending with s,sh,x,z or
y : kiss - kisses, flash - flashes; fly - flies (but toy - toys),

56

regN : Str -> N ;

In practice the worst case is just: give singular and plural nominative.

mk2N : (man,men : Str) -> N ;

All nouns created by the previous functions are marked as nonhuman. If you
want a human noun, wrap it with the following function:

genderN : Gender -> N -> N ;

Compound nouns

A compound noun ia an uninflected string attached to an inflected noun,
such as baby boom, chief executive officer.

compoundN : Str -> N -> N ;

Relational nouns

Relational nouns (daughter of x) need a preposition.

mkN2 : N -> Prep -> N2 ;

The most common preposition is of, and the following is a shortcut for
regular relational nouns with of.

regN2 : Str -> N2 ;

Use the function mkPrep or see the section on prepositions below to form
other prepositions.

Three-place relational nouns (the connection from x to y) need two prepo-
sitions.

mkN3 : N -> Prep -> Prep -> N3 ;

Relational common noun phrases

In some cases, you may want to make a complex CN into a relational noun
(e.g. the old town hall of).

57

cnN2 : CN -> Prep -> N2 ;

cnN3 : CN -> Prep -> Prep -> N3 ;

Proper names and noun phrases

Proper names, with a regular genitive, are formed as follows

regPN : Str -> PN ;

regGenPN : Str -> Gender -> PN ; -- John, John’s

Sometimes you can reuse a common noun as a proper name, e.g. Bank.

nounPN : N -> PN ;

To form a noun phrase that can also be plural and have an irregular genitive,
you can use the worst-case function.

mkNP : Str -> Str -> Number -> Gender -> NP ;

Adjectives

Non-comparison one-place adjectives need two forms: one for the adjectival
and one for the adverbial form (free - freely)

mkA : (free,freely : Str) -> A ;

For regular adjectives, the adverbial form is derived. This holds even for
cases with the variation happy - happily.

regA : Str -> A ;

Two-place adjectives

Two-place adjectives need a preposition for their second argument.

mkA2 : A -> Prep -> A2 ;

Comparison adjectives may two more forms.

58

ADeg : Type ;

mkADeg : (good,better,best,well : Str) -> ADeg ;

The regular pattern recognizes two common variations: -e (rude - ruder -
rudest) and -y (happy - happier - happiest - happily)

regADeg : Str -> ADeg ; -- long, longer, longest

However, the duplication of the final consonant is nor predicted, but a sep-
arate pattern is used:

duplADeg : Str -> ADeg ; -- fat, fatter, fattest

If comparison is formed by more, most, as in general for long adjective, the
following pattern is used:

compoundADeg : A -> ADeg ; -- -/more/most ridiculous

From a given ADeg, it is possible to get back to A.

adegA : ADeg -> A ;

Adverbs

Adverbs are not inflected. Most lexical ones have position after the verb.
Some can be preverbal (e.g. always).

mkAdv : Str -> Adv ;

mkAdV : Str -> AdV ;

Adverbs modifying adjectives and sentences can also be formed.

mkAdA : Str -> AdA ;

Prepositions

A preposition as used for rection in the lexicon, as well as to build PPs in
the resource API, just requires a string.

59

mkPrep : Str -> Prep ;

noPrep : Prep ;

(These two functions are synonyms.)

Verbs

Except for be, the worst case needs five forms: the infinitive and the third
person singular present, the past indicative, and the past and present par-
ticiples.

mkV : (go, goes, went, gone, going : Str) -> V ;

The regular verb function recognizes the special cases where the last char-
acter is y (cry - cries but buy - buys) or s, sh, x, z (fix - fixes, etc).

regV : Str -> V ;

The following variant duplicates the last letter in the forms like rip - ripped
- ripping.

regDuplV : Str -> V ;

There is an extensive list of irregular verbs in the module IrregularEng. In
practice, it is enough to give three forms, e.g. drink - drank - drunk, with a
variant indicating consonant duplication in the present participle.

irregV : (drink, drank, drunk : Str) -> V ;

irregDuplV : (get, got, gotten : Str) -> V ;

Verbs with a particle.

The particle, such as in switch on, is given as a string.

partV : V -> Str -> V ;

Reflexive verbs

By default, verbs are not reflexive; this function makes them that.

reflV : V -> V ;

60

Two-place verbs

Two-place verbs need a preposition, except the special case with direct ob-
ject. (transitive verbs). Notice that a particle comes from the V.

mkV2 : V -> Prep -> V2 ;

dirV2 : V -> V2 ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

mkV3 : V -> Prep -> Prep -> V3 ; -- speak, with, about

dirV3 : V -> Prep -> V3 ; -- give,_,to

dirdirV3 : V -> V3 ; -- give,_,_

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Prep -> V2S ;

mkVV : V -> VV ;

mkV2V : V -> Prep -> Prep -> V2V ;

mkVA : V -> VA ;

mkV2A : V -> Prep -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Prep -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Prep -> A2S ;

mkAV : A -> AV ;

mkA2V : A -> Prep -> A2V ;

Notice: categories V2S, V2V, V2A, V2Q are in v 1.0 treated just as syn-
onyms of V2, and the second argument is given as an adverb. Likewise AS,

A2S, AV, A2V are just A. V0 is just V.

V0, V2S, V2V, V2A, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

61

4.4.4 Finnish

Aarne Ranta 2003–2005

This is an API to the user of the resource grammar for adding lexical items. It
gives functions for forming expressions of open categories: nouns, adjectives,
verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

The main difference with MorphoFin.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we give
a worst-case function mkC, which serves as an escape to construct the most
irregular words of type C. However, this function should only seldom be
needed.

resource ParadigmsFin = open

(Predef=Predef),

Prelude,

MorphoFin,

CatFin

in {

flags optimize=noexpand ;

Parameters

To abstract over gender, number, and (some) case names, we define the
following identifiers. The application programmer should always use these
constants instead of the constructors defined in ResFin.

oper

Number : Type ;

singular : Number ;

plural : Number ;

Case : Type ;

nominative : Case ;

62

genitive : Case ;

partitive : Case ;

translative : Case ;

inessive : Case ;

elative : Case ;

illative : Case ;

adessive : Case ;

ablative : Case ;

allative : Case ;

The following type is used for defining rection, i.e. complements of many-
place verbs and adjective. A complement can be defined by just a case, or a
pre/postposition and a case.

prePrep : Case -> Str -> Prep ; -- ilman, partitive

postPrep : Case -> Str -> Prep ; -- takana, genitive

postGenPrep : Str -> Prep ; -- takana

casePrep : Case -> Prep ; -- adessive

Nouns

The worst case gives ten forms. In practice just a couple of forms are needed
to define the different stems, vowel alternation, and vowel harmony.

oper

mkN : (talo, talon, talona, taloa, taloon,

taloina,taloissa,talojen,taloja,taloihin : Str) -> N ;

The regular noun heuristic takes just one form (singular nominative) and
analyses it to pick the correct paradigm. It does automatic grade alternation,
and is hence not usable for words like auto (whose genitive would become
audon).

regN : (talo : Str) -> N ;

If regN does not give the correct result, one can try and give two or three
forms as follows. Examples of the use of these functions are given in BasicFin.
Most notably, reg2N is used for nouns like kivi - kiviä, which would otherwise
become like rivi - rivejä. regN3 is used e.g. for sydän - sydämen - sydämiä,
which would otherwise become sydän - sytämen.

63

reg2N : (savi,savia : Str) -> N ;

reg3N : (vesi,veden,vesiä : Str) -> N ;

Some nouns have an unexpected singular partitive, e.g. meri, lumi.

sgpartN : (meri : N) -> (merta : Str) -> N ;

nMeri : (meri : Str) -> N ;

The rest of the noun paradigms are mostly covered by the three heuristics.

Nouns with partitive a,ä are a large group. To determine for grade and
vowel alternation, three forms are usually needed: singular nominative and
genitive, and plural partitive. Examples: talo, kukko, huippu, koira, kukka,
syylä, särki...

nKukko : (kukko,kukon,kukkoja : Str) -> N ;

A special case are nouns with no alternations: the vowel harmony is inferred
from the last letter, which must be one of o, u, ö, y.

nTalo : (talo : Str) -> N ;

Another special case are nouns where the last two consonants undergo reg-
ular weak-grade alternation: kukko - kukon, rutto - ruton, hyppy - hypyn,
sampo - sammon, kunto - kunnon, sisältö - sisällön, .

nLukko : (lukko : Str) -> N ;

arpi - arven, sappi - sapen, kampi - kammen;sylki - syljen

nArpi : (arpi : Str) -> N ;

nSylki : (sylki : Str) -> N ;

Foreign words ending in consonants are actually similar to words like malli -
mallin-malleja, with the exception that the i is not attached to the singular
nominative. Examples: linux, savett, screen. The singular partitive form is
used to get the vowel harmony. (N.B. more than 1-syllabic words ending
in n would have variant plural genitive and partitive forms, like sultanien,
sultaneiden, which are not covered.)

64

nLinux : (linuxia : Str) -> N ;

Nouns of at least 3 syllables ending with a or ä, like peruna, tavara, rytinä.

nPeruna : (peruna : Str) -> N ;

The following paradigm covers both nouns ending in an aspirated e, such
as rae, perhe, savuke, and also many ones ending in a consonant (rengas,
kätkyt). The singular nominative and essive are given.

nRae : (rae, rakeena : Str) -> N ;

The following covers nouns with partitive ta,tä, such as susi, vesi, pieni.
To get all stems and the vowel harmony, it takes the singular nominative,
genitive, and essive.

nSusi : (susi,suden,sutta : Str) -> N ;

Nouns ending with a long vowel, such as puu, pää, pii, leikkuu, are inflected
according to the following.

nPuu : (puu : Str) -> N ;

One-syllable diphthong nouns, such as suo, tie, työ, are inflected by the
following.

nSuo : (suo : Str) -> N ;

Many adjectives but also nouns have the nominative ending nen which in
other cases becomes s: nainen, ihminen, keltainen. To capture the vowel
harmony, we use the partitive form as the argument.

nNainen : (naista : Str) -> N ;

The following covers some nouns ending with a consonant, e.g. tilaus, kaulin,
paimen, laidun.

nTilaus : (tilaus,tilauksena : Str) -> N ;

65

Special case:

nKulaus : (kulaus : Str) -> N ;

The following covers nouns like nauris and adjectives like kallis, tyyris. The
partitive form is taken to get the vowel harmony.

nNauris : (naurista : Str) -> N ;

Separately-written compound nouns, like sambal oelek, Urho Kekkonen, have
only their last part inflected.

compN : Str -> N -> N ;

Nouns used as functions need a case, of which by far the commonest is the
genitive.

mkN2 : N -> Prep -> N2 ;

genN2 : N -> N2 ;

mkN3 : N -> Prep -> Prep -> N3 ;

Proper names can be formed by using declensions for nouns. The plural
forms are filtered away by the compiler.

regPN : Str -> PN ;

mkPN : N -> PN ;

mkNP : N -> Number -> NP ;

Adjectives

Non-comparison one-place adjectives are just like nouns.

mkA : N -> A ;

Two-place adjectives need a case for the second argument.

mkA2 : A -> Prep -> A2 ;

66

Comparison adjectives have three forms. The comparative and the superla-
tive are always inflected in the same way, so the nominative of them is
actually enough (except for the superlative paras of hyvä).

mkADeg : (kiva : N) -> (kivempaa,kivinta : Str) -> A ;

The regular adjectives are based on regN in the positive.

regA : (punainen : Str) -> A ;

Verbs

The grammar does not cover the potential mood and some nominal forms.
One way to see the coverage is to linearize a verb to a table. The worst case
needs twelve forms, as shown in the following.

mkV : (tulla,tulee,tulen,tulevat,tulkaa,tullaan,

tuli,tulin,tulisi,tullut,tultu,tullun : Str) -> V ;

The following heuristics cover more and more verbs.

regV : (soutaa : Str) -> V ;

reg2V : (soutaa,souti : Str) -> V ;

reg3V : (soutaa,soudan,souti : Str) -> V ;

The subject case of verbs is by default nominative. This dunction can change
it.

subjcaseV : V -> Case -> V ;

The rest of the paradigms are special cases mostly covered by the heuris-
tics. A simple special case is the one with just one stem and without grade
alternation.

vValua : (valua : Str) -> V ;

With two forms, the following function covers a variety of verbs, such as
ottaa, käyttää, löytää, huoltaa, hiihtää, siirtää.

67

vKattaa : (kattaa, katan : Str) -> V ;

When grade alternation is not present, just a one-form special case is needed
(poistaa, ryystää).

vOstaa : (ostaa : Str) -> V ;

The following covers juosta, piestä, nousta, rangaista, kävellä, surra, panna.

vNousta : (nousta, nousen : Str) -> V ;

This is for one-syllable diphthong verbs like juoda, syödä.

vTuoda : (tuoda : Str) -> V ;

All the patterns above have nominative as subject case. If another case is
wanted, use the following.

caseV : Case -> V -> V ;

The verbs be is special.

vOlla : V ;

Two-place verbs

Two-place verbs need a case, and can have a pre- or postposition.

mkV2 : V -> Prep -> V2 ;

If the complement needs just a case, the following special function can be
used.

caseV2 : V -> Case -> V2 ;

Verbs with a direct (accusative) object are special, since their complement
case is finally decided in syntax. But this is taken care of in VerbFin.

68

dirV2 : V -> V2 ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

mkV3 : V -> Prep -> Prep -> V3 ; -- puhua, allative, elative

dirV3 : V -> Case -> V3 ; -- siirtää, (accusative), illative

dirdirV3 : V -> V3 ; -- antaa, (accusative), (allative)

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Prep -> V2S ;

mkVV : V -> VV ;

mkV2V : V -> Prep -> V2V ;

mkVA : V -> Prep -> VA ;

mkV2A : V -> Prep -> Prep -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Prep -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Prep -> A2S ;

mkAV : A -> AV ;

mkA2V : A -> Prep -> A2V ;

Notice: categories V2S, V2V, V2Q are in v 1.0 treated just as synonyms of
V2, and the second argument is given as an adverb. Likewise AS, A2S, AV,

A2V are just A. V0 is just V.

V0, V2S, V2V, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

4.4.5 French

Aarne Ranta 2001 - 2006

69

This is an API for the user of the resource grammar for adding lexical
items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

The main difference with MorphoFre.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we give
a worst-case function mkC, which serves as an escape to construct the most
irregular words of type C. However, this function should only seldom be
needed: we have a separate module IrregFre, which covers all irregularly
inflected verbs.

resource ParadigmsFre =

open

(Predef=Predef),

Prelude,

CommonRomance,

ResFre,

MorphoFre,

CatFre in {

flags optimize=all ;

Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

masculine : Gender ;

feminine : Gender ;

To abstract over number names, we define the following.

Number : Type ;

70

file:../../french/IrregFre.gf

singular : Number ;

plural : Number ;

Prepositions used in many-argument functions are either strings (including
the ’accusative’ empty string) or strings that amalgamate with the following
word (the ’genitive’ de and the ’dative’ à).

accusative : Prep ;

genitive : Prep ;

dative : Prep ;

mkPrep : Str -> Prep ;

Nouns

Worst case: give both two forms and the gender.

mkN : (oeil,yeux : Str) -> Gender -> N ;

The regular function takes the singular form, and computes the plural and
the gender by a heuristic. The plural heuristic currently covers the cases
pas-pas, prix-prix, nez-nez, bijou-bijoux, cheveu-cheveux, plateau-plateaux,
cheval-chevaux. The gender heuristic is less reliable: it treats as feminine all
nouns ending with e and ion, all others as masculine. If in doubt, use the
cc command to test!

regN : Str -> N ;

Adding gender information widens the scope of the foregoing function.

regGenN : Str -> Gender -> N ;

Compound nouns

Some nouns are ones where the first part is inflected as a noun but the
second part is not inflected. e.g. numéro de téléphone. They could be formed
in syntax, but we give a shortcut here since they are frequent in lexica.

compN : N -> Str -> N ;

71

Relational nouns

Relational nouns (fille de x) need a case and a preposition.

mkN2 : N -> Prep -> N2 ;

The most common cases are the genitive de and the dative à, with the empty
preposition.

deN2 : N -> N2 ;

aN2 : N -> N2 ;

Three-place relational nouns (la connection de x à y) need two prepositions.

mkN3 : N -> Prep -> Prep -> N3 ;

Relational common noun phrases

In some cases, you may want to make a complex CN into a relational noun
(e.g. la vieille église de). However, N2 and N3 are purely lexical categories.
But you can use the AdvCN and PrepNP constructions to build phrases like
this.

Proper names and noun phrases

Proper names need a string and a gender.

mkPN : Str -> Gender -> PN ; -- Jean

regPN : Str -> PN ; -- feminine if "-e", masculine otherwise

To form a noun phrase that can also be plural, you can use the worst-case
function.

mkNP : Str -> Gender -> Number -> NP ;

Adjectives

Non-comparison one-place adjectives need four forms in the worst case (masc
and fem singular, masc plural, adverbial).

mkA : (banal,banale,banaux,banalement : Str) -> A ;

72

For regular adjectives, all other forms are derived from the masculine singu-
lar. The heuristic takes into account certain deviant endings: banal- -banaux,
chinois- -chinois, heureux-heureuse-heureux, italien-italienne, jeune-jeune,
amer-amère, carré- - -carrément, joli- - -joliment.

regA : Str -> A ;

These functions create postfix adjectives. To switch them to prefix ones
(i.e. ones placed before the noun in modification, as in petite maison), the
following function is provided.

prefA : A -> A ;

Two-place adjectives

Two-place adjectives need a preposition for their second argument.

mkA2 : A -> Prep -> A2 ;

Comparison adjectives

Comparison adjectives are in the worst case put up from two adjectives: the
positive (bon), and the comparative (meilleure).

mkADeg : A -> A -> A ;

If comparison is formed by plus, as usual in French, the following pattern is
used:

compADeg : A -> A ;

For prefixed adjectives, the following function is provided.

prefA : A -> A ;

Adverbs

Adverbs are not inflected. Most lexical ones have position after the verb.

mkAdv : Str -> Adv ;

73

Some appear next to the verb (e.g. toujours).

mkAdV : Str -> AdV ;

Adverbs modifying adjectives and sentences can also be formed.

mkAdA : Str -> AdA ;

Verbs

Irregular verbs are given in the module VerbsFre. If a verb should be missing
in that list, the module BeschFre gives all the patterns of the Bescherelle
book.

Regular verbs are ones with the infinitive er or ir, the latter with plural
present indicative forms as finissons. The regular verb function is the first
conjugation recognizes these endings, as well as the variations among aimer,
céder, placer, peser, jeter, placer, manger, assiéger, payer.

regV : Str -> V ;

Sometimes, however, it is not predictable which variant of the er conjugation
is to be selected. Then it is better to use the function that gives the third
person singular present indicative and future ((il) jette, jettera) as second
argument.

reg3V : (jeter,jette,jettera : Str) -> V ;

The function regV gives all verbs the compound auxiliary avoir. To change
it to être, use the following function. Reflexive implies être.

etreV : V -> V ;

reflV : V -> V ;

Two-place verbs

Two-place verbs need a preposition, except the special case with direct ob-
ject. (transitive verbs).

mkV2 : V -> Prep -> V2 ;

dirV2 : V -> V2 ;

74

You can reuse a V2 verb in V.

v2V : V2 -> V ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

mkV3 : V -> Prep -> Prep -> V3 ; -- parler, à, de

dirV3 : V -> Prep -> V3 ; -- donner,_,à

dirdirV3 : V -> V3 ; -- donner,_,_

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Prep -> V2S ;

mkVV : V -> VV ; -- plain infinitive: "je veux parler"

deVV : V -> VV ; -- "j’essaie de parler"

aVV : V -> VV ; -- "j’arrive à parler"

mkV2V : V -> Prep -> Prep -> V2V ;

mkVA : V -> VA ;

mkV2A : V -> Prep -> Prep -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Prep -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Prep -> A2S ;

mkAV : A -> Prep -> AV ;

mkA2V : A -> Prep -> Prep -> A2V ;

Notice: categories V2S, V2V, V2Q are in v 1.0 treated just as synonyms of
V2, and the second argument is given as an adverb. Likewise AS, A2S, AV,

A2V are just A. V0 is just V.

V0, V2S, V2V, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

75

4.4.6 German

Aarne Ranta & Harald Hammarström 2003–2006

This is an API for the user of the resource grammar for adding lexical
items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

The main difference with MorphoGer.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we
give a worst-case function mkC, which serves as an escape to construct the
most irregular words of type C. However, this function should only seldom
be needed: we have a separate module IrregGer which covers irregularly
inflected verbs.

resource ParadigmsGer = open

(Predef=Predef),

Prelude,

MorphoGer,

CatGer

in {

Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

masculine : Gender ;

feminine : Gender ;

neuter : Gender ;

To abstract over case names, we define the following.

Case : Type ;

76

file:../../german/IrregGer.gf

nominative : Case ;

accusative : Case ;

dative : Case ;

genitive : Case ;

To abstract over number names, we define the following.

Number : Type ;

singular : Number ;

plural : Number ;

Nouns

Worst case: give all four singular forms, two plural forms (others + dative),
and the gender.

mkN : (x1,_,_,_,_,x6 : Str) -> Gender -> N ;

-- mann, mann, manne, mannes, männer, männern

The regular heuristics recognizes some suffixes, from which it guesses the
gender and the declension: e, ung, ion give the feminine with plural ending
-n, -en, and the rest are masculines with the plural -e (without Umlaut).

regN : Str -> N ;

The ’almost regular’ case is much like the information given in an ordinary
dictionary. It takes the singular and plural nominative and the gender, and
infers the other forms from these.

reg2N : (x1,x2 : Str) -> Gender -> N ;

Relational nouns need a preposition. The most common is von with the
dative. Some prepositions are constructed in StructuralGer.

mkN2 : N -> Prep -> N2 ;

vonN2 : N -> N2 ;

77

file:StructuralGer.html

Use the function mkPrep or see the section on prepositions below to form
other prepositions.

Three-place relational nouns (die Verbindung von x nach y) need two prepo-
sitions.

mkN3 : N -> Prep -> Prep -> N3 ;

Proper names and noun phrases

Proper names, with a regular genitive, are formed as follows The regular
genitive is s, omitted after s.

mkPN : (karolus, karoli : Str) -> PN ; -- karolus, karoli

regPN : (Johann : Str) -> PN ;

-- Johann, Johanns ; Johannes, Johannes

Adjectives

Adjectives need three forms, one for each degree.

mkA : (x1,_,x3 : Str) -> A ; -- gut,besser,beste

The regular adjective formation works for most cases, and includes variations
such as teuer - teurer, böse - böser.

regA : Str -> A ;

Invariable adjective are a special case.

invarA : Str -> A ; -- prima

Two-place adjectives are formed by adding a preposition to an adjective.

mkA2 : A -> Prep -> A2 ;

Adverbs

Adverbs are just strings.

mkAdv : Str -> Adv ;

78

Prepositions

A preposition is formed from a string and a case.

mkPrep : Str -> Case -> Prep ;

Often just a case with the empty string is enough.

accPrep : Prep ;

datPrep : Prep ;

genPrep : Prep ;

A couple of common prepositions (always with the dative).

von_Prep : Prep ;

zu_Prep : Prep ;

Verbs

The worst-case constructor needs six forms:

• Infinitive,

• 3p sg pres. indicative,

• 2p sg imperative,

• 1/3p sg imperfect indicative,

• 1/3p sg imperfect subjunctive (because this uncommon form can have
umlaut)

• the perfect participle

mkV : (x1,_,_,_,_,x6 : Str) -> V ; -- geben, gibt, gib, gab, gäbe, gegeben

Weak verbs are sometimes called regular verbs.

regV : Str -> V ; -- führen

Irregular verbs use Ablaut and, in the worst cases, also Umlaut.

79

irregV : (x1,_,_,_,x5 : Str) -> V ; -- sehen, sieht, sah, sähe, gesehen

To remove the past participle prefix ge, e.g. for the verbs prefixed by be-,
ver-.

no_geV : V -> V ;

To add a movable suffix e.g. auf(fassen).

prefixV : Str -> V -> V ;

To change the auxiliary from haben (default) to sein and vice-versa.

seinV : V -> V ;

habenV : V -> V ;

Reflexive verbs can take reflexive pronouns of different cases.

reflV : V -> Case -> V ;

Two-place verbs

Two-place verbs need a preposition, except the special case with direct ob-
ject (accusative, transitive verbs). There is also a case for dative objects.

mkV2 : V -> Prep -> V2 ;

dirV2 : V -> V2 ;

datV2 : V -> V2 ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

mkV3 : V -> Prep -> Prep -> V3 ; -- sprechen, mit, über

dirV3 : V -> Prep -> V3 ; -- senden,(accusative),nach

accdatV3 : V -> V3 ; -- give,accusative,dative

80

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Prep -> V2S ;

mkVV : V -> VV ;

mkV2V : V -> Prep -> V2V ;

mkVA : V -> VA ;

mkV2A : V -> Prep -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Prep -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Prep -> A2S ;

mkAV : A -> AV ;

mkA2V : A -> Prep -> A2V ;

Notice: categories V2S, V2V, V2A, V2Q are in v 1.0 treated just as syn-
onyms of V2, and the second argument is given as an adverb. Likewise AS,

A2S, AV, A2V are just A. V0 is just V.

V0, V2S, V2V, V2A, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

4.4.7 Italian

Aarne Ranta 2003

This is an API for the user of the resource grammar for adding lexical
items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

The main difference with MorphoIta.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we give

81

a worst-case function mkC, which serves as an escape to construct the most
irregular words of type C. However, this function should only seldom be
needed. For verbs, we have a separate module BeschIta, which covers the
Bescherelle verb conjugations.

resource ParadigmsIta =

open

(Predef=Predef),

Prelude,

CommonRomance,

ResIta,

MorphoIta,

BeschIta,

CatIta in {

flags optimize=all ;

Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

masculine : Gender ;

feminine : Gender ;

To abstract over number names, we define the following.

Number : Type ;

singular : Number ;

plural : Number ;

Prepositions used in many-argument functions are either strings (including
the ’accusative’ empty string) or strings that amalgamate with the following
word (the ’genitive’ di and the ’dative’ a).

Prep : Type ;

accusative : Prep ;

82

file:../../italian/BeschIta.gf

genitive : Prep ;

dative : Prep ;

mkPrep : Str -> Prep ;

Nouns

Worst case: give both two forms and the gender.

mkN : (uomo,uomini : Str) -> Gender -> N ;

The regular function takes the singular form and the gender, and computes
the plural and the gender by a heuristic. The heuristic says that the gender
is feminine for nouns ending with a, and masculine for all other words.

regN : Str -> N ;

To force a different gender, use one of the following functions.

mascN : N -> N ;

femN : N -> N ;

Compound nouns

Some nouns are ones where the first part is inflected as a noun but the
second part is not inflected. e.g. numero di telefono. They could be formed
in syntax, but we give a shortcut here since they are frequent in lexica.

compN : N -> Str -> N ;

Relational nouns

Relational nouns (figlio di x) need a case and a preposition.

mkN2 : N -> Prep -> N2 ;

The most common cases are the genitive di and the dative a, with the empty
preposition.

diN2 : N -> N2 ;

aN2 : N -> N2 ;

83

Three-place relational nouns (la connessione di x a y) need two prepositions.

mkN3 : N -> Prep -> Prep -> N3 ;

Relational common noun phrases

In some cases, you may want to make a complex CN into a relational noun
(e.g. la vecchia chiesa di). However, N2 and N3 are purely lexical categories.
But you can use the AdvCN and PrepNP constructions to build phrases like
this.

Proper names and noun phrases

Proper names need a string and a gender.

mkPN : Str -> Gender -> PN ;

regPN : Str -> PN ; -- feminine if "-a", otherwise masculine

To form a noun phrase that can also be plural, you can use the worst-case
function.

mkNP : Str -> Gender -> Number -> NP ;

Adjectives

Non-comparison one-place adjectives need five forms in the worst case (masc
and fem singular, masc plural, adverbial).

mkA : (solo,sola,soli,sole, solamente : Str) -> A ;

For regular adjectives, all other forms are derived from the masculine singu-
lar.

regA : Str -> A ;

These functions create postfix adjectives. To switch them to prefix ones
(i.e. ones placed before the noun in modification, as in vecchia chiesa), the
following function is provided.

prefA : A -> A ;

84

Two-place adjectives

Two-place adjectives need a preposition for their second argument.

mkA2 : A -> Prep -> A2 ;

Comparison adjectives

Comparison adjectives are in the worst case put up from two adjectives: the
positive (buono), and the comparative (migliore).

mkADeg : A -> A -> A ;

If comparison is formed by più, as usual in Italian, the following pattern is
used:

compADeg : A -> A ;

The regular pattern is the same as regA for plain adjectives, with comparison
by più.

regADeg : Str -> A ;

Adverbs

Adverbs are not inflected. Most lexical ones have position after the verb.

mkAdv : Str -> Adv ;

Some appear next to the verb (e.g. sempre).

mkAdV : Str -> AdV ;

Adverbs modifying adjectives and sentences can also be formed.

mkAdA : Str -> AdA ;

Verbs

Regular verbs are ones with the infinitive are or ire, the latter with singular
present indicative forms as finisco. The regular verb function is the first
conjugation recognizes these endings, as well as the variations among amare,
cominciare, mangiare, legare, cercare.

85

regV : Str -> V ;

The module BeschIta gives (almost) all the patterns of the Bescherelle
book. To use them in the category V, wrap them with the function

verboV : Verbo -> V ;

The function regV gives all verbs the compound auxiliary avere. To change
it to essere, use the following function. Reflexive implies essere.

essereV : V -> V ;

reflV : V -> V ;

If BeschIta does not give the desired result or feels difficult to consult, here
is a worst-case function for -ire and -ere verbs, taking 11 arguments.

mkV :

(udire,odo,ode,udiamo,udiro,udii,udisti,udi,udirono,odi,udito : Str) -> V ;

Two-place verbs

Two-place verbs need a preposition, except the special case with direct ob-
ject. (transitive verbs). Notice that a particle comes from the V.

mkV2 : V -> Prep -> V2 ;

dirV2 : V -> V2 ;

You can reuse a V2 verb in V.

v2V : V2 -> V ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

mkV3 : V -> Prep -> Prep -> V3 ; -- parlare, a, di

dirV3 : V -> Prep -> V3 ; -- dare,_,a

dirdirV3 : V -> V3 ; -- dare,_,_

86

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Prep -> V2S ;

mkVV : V -> VV ; -- plain infinitive: "voglio parlare"

deVV : V -> VV ; -- "cerco di parlare"

aVV : V -> VV ; -- "arrivo a parlare"

mkV2V : V -> Prep -> Prep -> V2V ;

mkVA : V -> VA ;

mkV2A : V -> Prep -> Prep -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Prep -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Prep -> A2S ;

mkAV : A -> Prep -> AV ;

mkA2V : A -> Prep -> Prep -> A2V ;

Notice: categories V2S, V2V, V2Q are in v 1.0 treated just as synonyms of
V2, and the second argument is given as an adverb. Likewise AS, A2S, AV,

A2V are just A. V0 is just V.

V0, V2S, V2V, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

4.4.8 Norwegian

Aarne Ranta 2003

This is an API for the user of the resource grammar for adding lexical
items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs. It covers the bokm̊al variant of Norwegian.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.

The main difference with MorphoNor.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

87

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we
give a worst-case function mkC, which serves as an escape to construct the
most irregular words of type C. However, this function should only seldom
be needed: we have a separate module IrregNor, which covers irregularly
inflected verbs.

resource ParadigmsNor =

open

(Predef=Predef),

Prelude,

CommonScand,

ResNor,

MorphoNor,

CatNor in {

Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

masculine : Gender ;

feminine : Gender ;

neutrum : Gender ;

To abstract over number names, we define the following.

Number : Type ;

singular : Number ;

plural : Number ;

To abstract over case names, we define the following.

Case : Type ;

nominative : Case ;

genitive : Case ;

Prepositions used in many-argument functions are just strings.

88

mkPrep : Str -> Prep ;

noPrep : Prep ; -- empty string

Nouns

Worst case: give all four forms. The gender is computed from the last letter
of the second form (if n, then utrum, otherwise neutrum).

mkN : (dreng,drengen,drenger,drengene : Str) -> N ;

The regular function takes the singular indefinite form and computes the
other forms and the gender by a heuristic. The heuristic is that nouns ending
e are feminine like kvinne, all others are masculine like bil. If in doubt, use
the cc command to test!

regN : Str -> N ;

Giving gender manually makes the heuristic more reliable.

regGenN : Str -> Gender -> N ;

This function takes the singular indefinite and definite forms; the gender is
computed from the definite form.

mk2N : (bil,bilen : Str) -> N ;

Compound nouns

All the functions above work quite as well to form compound nouns, such
as fotboll.

Relational nouns

Relational nouns (datter til x) need a preposition.

mkN2 : N -> Prep -> N2 ;

The most common preposition is av, and the following is a shortcut for
regular, nonhuman relational nouns with av.

regN2 : Str -> Gender -> N2 ;

89

Use the function mkPrep or see the section on prepositions below to form
other prepositions.

Three-place relational nouns (forbindelse fra x til y) need two prepositions.

mkN3 : N -> Prep -> Prep -> N3 ;

Relational common noun phrases

In some cases, you may want to make a complex CN into a relational noun
(e.g. den gamle kongen av). However, N2 and N3 are purely lexical categories.
But you can use the AdvCN and PrepNP constructions to build phrases like
this.

Proper names and noun phrases

Proper names, with a regular genitive, are formed as follows

regPN : Str -> PN ; -- utrum

regGenPN : Str -> Gender -> PN ;

Sometimes you can reuse a common noun as a proper name, e.g. Bank.

nounPN : N -> PN ;

To form a noun phrase that can also be plural and have an irregular genitive,
you can use the worst-case function.

mkNP : Str -> Str -> Number -> Gender -> NP ;

Adjectives

Non-comparison one-place adjectives need three forms:

mkA : (galen,galet,galne : Str) -> A ;

For regular adjectives, the other forms are derived.

regA : Str -> A ;

In most cases, two forms are enough.

90

mk2A : (stor,stort : Str) -> A ;

Two-place adjectives

Two-place adjectives need a preposition for their second argument.

mkA2 : A -> Prep -> A2 ;

Comparison adjectives may need as many as five forms.

mkADeg : (stor,stort,store,storre,storst : Str) -> A ;

The regular pattern works for many adjectives, e.g. those ending with ig.

regADeg : Str -> A ;

Just the comparison forms can be irregular.

irregADeg : (tung,tyngre,tyngst : Str) -> A ;

Sometimes just the positive forms are irregular.

mk3ADeg : (galen,galet,galne : Str) -> A ;

mk2ADeg : (bred,bredt : Str) -> A ;

If comparison is formed by mer, mest, as in general for long adjective, the
following pattern is used:

compoundA : A -> A ; -- -/mer/mest norsk

Adverbs

Adverbs are not inflected. Most lexical ones have position after the verb.
Some follow the verb (e.g. altid).

mkAdv : Str -> Adv ; -- e.g. her

mkAdV : Str -> AdV ; -- e.g. altid

Adverbs modifying adjectives and sentences can also be formed.

91

mkAdA : Str -> AdA ;

Verbs

The worst case needs six forms.

mkV : (spise,spiser,spises,spiste,spist,spis : Str) -> V ;

The ’regular verb’ function is the first conjugation.

regV : (snakke : Str) -> V ;

The almost regular verb function needs the infinitive and the preteritum.

mk2V : (leve,levde : Str) -> V ;

There is an extensive list of irregular verbs in the module IrregNor. In
practice, it is enough to give three forms, as in school books.

irregV : (drikke, drakk, drukket : Str) -> V ;

Verbs with ’være’ as auxiliary

By default, the auxiliary is have. This function changes it to være.

vaereV : V -> V ;

Verbs with a particle.

The particle, such as in lukke opp, is given as a string.

partV : V -> Str -> V ;

Deponent verbs.

Some words are used in passive forms only, e.g. trives, some as reflexive e.g.
forestille seg.

depV : V -> V ;

reflV : V -> V ;

92

Two-place verbs

Two-place verbs need a preposition, except the special case with direct ob-
ject. (transitive verbs). Notice that a particle comes from the V.

mkV2 : V -> Prep -> V2 ;

dirV2 : V -> V2 ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

mkV3 : V -> Prep -> Prep -> V3 ; -- snakke, med, om

dirV3 : V -> Prep -> V3 ; -- gi,_,til

dirdirV3 : V -> V3 ; -- gi,_,_

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Prep -> V2S ;

mkVV : V -> VV ;

mkV2V : V -> Prep -> Prep -> V2V ;

mkVA : V -> VA ;

mkV2A : V -> Prep -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Prep -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Prep -> A2S ;

mkAV : A -> AV ;

mkA2V : A -> Prep -> A2V ;

Notice: categories V2S, V2V, V2A, V2Q are in v 1.0 treated just as syn-
onyms of V2, and the second argument is given as an adverb. Likewise AS,

A2S, AV, A2V are just A. V0 is just V.

V0, V2S, V2V, V2A, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

93

4.4.9 Russian

This is an API for the user of the resource grammar for adding lexical
items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

The main difference with MorphoRus.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we give
a worst-case function mkC, which serves as an escape to construct the most
irregular words of type C. words.

The following modules are presupposed:

resource ParadigmsRus = open

(Predef=Predef),

Prelude,

MorphoRus,

CatRus,

NounRus

in {

flags coding=utf8 ;

Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

masculine : Gender ;

feminine : Gender ;

neuter : Gender ;

To abstract over case names, we define the following.

Case : Type ;

94

nominative : Case ;

genitive : Case ;

dative : Case ;

accusative : Case ;

instructive : Case ;

prepositional : Case ;

In some (written in English) textbooks accusative case is put on the second
place. However, we follow the case order standard for Russian textbooks. To
abstract over number names, we define the following.

Number : Type ;

singular : Number ;

plural : Number ;

Animacy: Type ;

animate: Animacy;

inanimate: Animacy;

Nouns Best case: indeclinabe nouns: ������� , �	��
��� � , ����� .
mkIndeclinableNoun: Str -> Gender -> Animacy -> N ;

Worst case - give six singular forms: Nominative, Genetive, Dative, Ac-
cusative, Instructive and Prepositional; corresponding six plural forms and
the gender. May be the number of forms needed can be reduced, but this
requires a separate investigation. Animacy parameter (determining whether
the Accusative form is equal to the Nominative or the Genetive one) is ac-
tually of no help, since there are a lot of exceptions and the gain is just one
form less.

mkN : (nomSg, genSg, datSg, accSg, instSg, preposSg,

nomPl, genPl, datPl, accPl, instPl, preposPl: Str)

-> Gender -> Animacy -> N ;

(���������	����� �!���"������� �!���"�����#$�%�!���"�������&���������	�'�()� �!���"�����#
�!���"����*&� �!���"����)� ���+�"������,�-�%�!���"����)� �����������.�!���%�!���"������0/)

The regular function captures the variants for some popular nouns endings
from the list below:

95

regN : Str -> N ;

Here are some common patterns. The list is far from complete.

4.4.10 Feminine patterns

feminine, inanimate, ending with ”-a”, Inst -” 12�+354	6�7 ��8 ”:

nMashina : Str -> N ;

feminine, inanimate, ending with ”-a”, Inst -” �:9 4	6)4);)7 �,8 ”:

nEdinica : Str -> N ;

feminine, animate, ending with ”-a”:

nZhenchina : Str -> N ;

feminine, inanimate, ending with ” < � = 7>� ”:

nNoga : Str -> N ;

feminine, inanimate, ending with ”- 7?4�@ ”:

nMalyariya : Str -> N ;

feminine, animate, ending with ” 7A@ ”:

nTetya : Str -> N ;

feminine, inanimate, ending with ”- � ”(soft sign):

nBol : Str -> N ;

4.4.11 Neuter patterns

neutral, inanimate, ending with ”-ee”:

nObezbolivauchee : Str -> N ;

96

neutral, inanimate, ending with ”-e”:

nProizvedenie : Str -> N ;

neutral, inanimate, ending with ”-o”:

nChislo : Str -> N ;

neutral, inanimate, ending with ”- ��� ”:

nZhivotnoe : Str -> N ;

4.4.12 Masculine patterns

Ending with consonant:

masculine, inanimate, ending with ”- �
 ”- ” � � ��7A
�� ”:

nPepel : Str -> N ;

animate, ” B�C	����7A�+@ ”:

nBrat : Str -> N ;

same as above, but inanimate:

nStul : Str -> N ;

” 12��
DE3 �.8 ”:

nMalush : Str -> N ;

” � � � �
	7 ���GF � � � �
	7 � � ”

nPotolok : Str -> N ;

the next four differ in plural nominative and/or accusative form(s):

B���6 � 7A4 (Nom=Acc):

nBank : Str -> N ;

97

same as above, but animate:

nStomatolog : Str -> N ;

” � 9 C �.H 7>� ” (Nom=Acc):

nAdres : Str -> N ;

” � �
 �.��� 6)D ” (Nom=Acc):

nTelefon : Str -> N ;

masculine, inanimate, ending with ” � ” (soft sign):

nNol : Str -> N ;

masculine, inanimate, ending with ” 7 � 6	� ”:

nUroven : Str -> N ;

Nouns used as functions need a preposition. The most common is with Gen-
itive.

mkFun : N -> Prep -> N2 ;

mkN2 : N -> N2 ;

mkN3 : N -> Prep -> Prep -> N3 ;

4.4.13 Proper names

I�J �+6 FLK ��3M� :

mkPN : Str -> Gender -> Animacy -> PN ;

nounPN : N -> PN ;

On the top level, it is maybe CN that is used rather than N, and NP rather
than PN.

mkCN : N -> CN ;

mkNP : Str -> Gender -> Animacy -> NP ;

98

Adjectives Non-comparison (only positive degree) one-place adjectives need
28 (4 by 7) forms in the worst case: (Masculine — Feminine — Neutral —
Plural) * (Nominative — Genitive — Dative — Accusative Inanimate —
Accusative Animate — Instructive — Prepositional). Notice that 4 short
forms, which exist for some adjectives are not included in the current de-
scription, otherwise there would be 32 forms for positive degree.

The regular function captures the variants for some popular adjective end-
ings below. The first string agrument is the masculine singular form, the
second is comparative:

regA : Str -> Str -> A ;

Invariable adjective is a special case: = � � 4 F 1N4)6	4 F)= 4)6 9 4 F 6 � �+� � :

adjInvar : Str -> A ;

Some regular patterns depending on the ending.

ending with ” D 8 ”:

AStaruyj : Str -> Str -> A ;

ending with ” 4 8 ”, Gen - ” 12��
 � 6	� � 7 � < � ”:

AMalenkij : Str -> Str -> A ;

ending with ” 4 8 ”, Gen - ” =�� C � 3O7 � < � ”:

AKhoroshij : Str -> Str -> A ;

ending with ” ��8 ”, plural - ” 1 �
 �09 7?D � ”:

AMolodoj : Str -> Str -> A ;

ending with ” ��8 ”, plural - ” � � � 7?4 � ”:

AKakoj_Nibud : Str -> Str -> Str -> A ;

Two-place adjectives need a preposition and a case as extra arguments.

” 9�
	41P6� ”:

99

mkA2 : A -> Str -> Case -> A2 ;

Comparison adjectives need a positive adjective (28 forms without short
forms). Taking only one comparative form (non-syntactic) and only one
superlative form (syntactic) we can produce the comparison adjective with
only one extra argument - non-syntactic comparative form. Syntactic forms
are based on the positive forms.

mkADeg : A -> Str -> ADeg ;

On top level, there are adjectival phrases. The most common case is just to
use a one-place adjective.

ap : A -> IsPostfixAdj -> AP ;

Adverbs Adverbs are not inflected.

mkAdv : Str -> Adv ;

Verbs

In our lexicon description (Verbum) there are 62 forms: 2 (Voice) by 1 (in-
finitive) + [2(number) by 3 (person)](imperative) + [[2(Number) by 3(Per-
son)](present) + [2(Number) by 3(Person)](future) + 4(GenNum)(past)](in-
dicative)+ 4 (GenNum) (subjunctive) Participles (Present and Past) and
Gerund forms are not included, since they fuction more like Adjectives and
Adverbs correspondingly rather than verbs. Aspect is regarded as an inher-
ent parameter of a verb. Notice, that some forms are never used for some
verbs.

Voice: Type;

Aspect: Type;

Tense : Type;

Bool: Type;

Conjugation: Type ;

” <,Q�
	@�7?RS35� F <.Q0
	@�7>RT1 ”:

first: Conjugation;

Verbs with vowel ” U ”: ”9 �+U.35� ” (give), ” �)��U.35� ” (drink):

100

firstE: Conjugation;

”
J 4 9 7 I 35� F J 4 9 7 I 1 ”:

second: Conjugation;

” =���V 7>RS35� F�=�� ��7 I 1 ”:

mixed: Conjugation;

irregular:

dolzhen: Conjugation;

true: Bool;

false: Bool;

active: Voice ;

passive: Voice ;

imperfective: Aspect;

perfective: Aspect ;

The worst case need 6 forms of the present tense in indicative mood (@WB � <.Q ,
�+DXB �:Y 4	35� , � 6ZB �,Y 4)� , 1ND[B �,Y 41 ,

J D\B �,Y 4	� � , � 6	4ZB � <,QL�), a past form
(singular, masculine: @5B �,Y ��
), an imperative form (singular, second person:
B � <.4), an infinitive (B �:Y �+�+�). Inherent aspect should also be specified.

mkVerbum : Aspect -> (presentSgP1,presentSgP2,presentSgP3,

presentPlP1,presentPlP2,presentPlP3,

pastSgMasculine,imperative,infinitive: Str) -> V ;

Common conjugation patterns are two conjugations: first - verbs ending with
7>�+�+��]�7^@)�+� and second - 7?4	���)]07 � �+� . Instead of 6 present forms of the worst
case, we only need a present stem and one ending (singular, first person):
@Z
_`B+
_ , @ YW9 Q , etc. To determine where the border between stem and
ending lies it is sufficient to compare first person from with second person
form: @5
	_aB+
_ , �+Db
	_aB�4)3M� . Stems should be the same. So the definition for
verb
_`B�4	�+� looks like: regV Imperfective Second ”
	_aB ” ”
_ ” ”
_`B�4)
 ”
”
	_aB�4 ” ”
	_`B�4)�+� ”;

regV : Aspect -> Conjugation -> (stemPresentSgP1,

endingPresentSgP1,pastSgP1,imperative,infinitive: Str) -> V ;

101

For writing an application grammar one usually doesn’t need the whole in-
flection table, since each verb is used in a particular context that determines
some of the parameters (Tense and Voice while Aspect is fixed from the be-
ginning) for certain usage. The V type, that have these parameters fixed.
We can extract the V from the lexicon.

mkV : Verbum -> Voice -> V ;

mkPresentV : Verbum -> Voice -> V ;

Two-place verbs, and the special case with direct object. Notice that a par-
ticle can be included in a V.

”
J ��8 ��4 J 9� 1 ”, ”

J
”, accusative:

mkV2 : V -> Str -> Case -> V2 ;

H
 ��Y 4	�+�c�)4	;)��1 � J ��� 6 J � C)� :

mkV3 : V -> Str -> Str -> Case -> Case -> V3 ;

”
J 4 9�� �+� ”, ”
	_aB�4)�+� ”:

dirV2 : V -> V2 ;

tvDirDir : V -> V3 ;

The definitions should not bother the user of the API. So they are hidden
from the document.

4.4.14 Spanish

Aarne Ranta 2004 - 2006

This is an API for the user of the resource grammar for adding lexical
items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

The main difference with MorphoSpa.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

102

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we give
a worst-case function mkC, which serves as an escape to construct the most
irregular words of type C. For verbs, there is a fairly complete list of irregular
verbs in IrregSpa.

resource ParadigmsSpa =

open

(Predef=Predef),

Prelude,

CommonRomance,

ResSpa,

MorphoSpa,

BeschSpa,

CatSpa in {

flags optimize=all ;

Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

masculine : Gender ;

feminine : Gender ;

To abstract over number names, we define the following.

Number : Type ;

singular : Number ;

plural : Number ;

Prepositions used in many-argument functions are either strings (including
the ’accusative’ empty string) or strings that amalgamate with the following
word (the ’genitive’ de and the ’dative’ a).

Prep : Type ;

103

file:../../spanish/IrregSpa.gf

accusative : Prep ;

genitive : Prep ;

dative : Prep ;

mkPrep : Str -> Prep ;

Nouns

Worst case: two forms (singular + plural), and the gender.

mkN : (_,_ : Str) -> Gender -> N ; -- bastón, bastones, masculine

The regular function takes the singular form and the gender, and computes
the plural and the gender by a heuristic. The heuristic says that the gender
is feminine for nouns ending with a or z, and masculine for all other words.
Nouns ending with a, o, e have the plural with s, those ending with z have
ces in plural; all other nouns have es as plural ending. The accent is not
dealt with.

regN : Str -> N ;

To force a different gender, use one of the following functions.

mascN : N -> N ;

femN : N -> N ;

Compound nouns

Some nouns are ones where the first part is inflected as a noun but the
second part is not inflected. e.g. número de teléfono. They could be formed
in syntax, but we give a shortcut here since they are frequent in lexica.

compN : N -> Str -> N ;

Relational nouns

Relational nouns (fille de x) need a case and a preposition.

mkN2 : N -> Prep -> N2 ;

The most common cases are the genitive de and the dative a, with the empty
preposition.

104

deN2 : N -> N2 ;

aN2 : N -> N2 ;

Three-place relational nouns (la connessione di x a y) need two prepositions.

mkN3 : N -> Prep -> Prep -> N3 ;

Relational common noun phrases

In some cases, you may want to make a complex CN into a relational noun
(e.g. the old town hall of). However, N2 and N3 are purely lexical categories.
But you can use the AdvCN and PrepNP constructions to build phrases like
this.

Proper names and noun phrases

Proper names need a string and a gender.

mkPN : Str -> Gender -> PN ; -- Juan

regPN : Str -> PN ; -- feminine for "-a", otherwise masculine

To form a noun phrase that can also be plural, you can use the worst-case
function.

mkNP : Str -> Gender -> Number -> NP ;

Adjectives

Non-comparison one-place adjectives need five forms in the worst case (masc
and fem singular, masc plural, adverbial).

mkA : (solo,sola,solos,solas, solamiento : Str) -> A ;

For regular adjectives, all other forms are derived from the masculine singu-
lar. The types of adjectives that are recognized are alto, fuerte, util.

regA : Str -> A ;

These functions create postfix adjectives. To switch them to prefix ones (i.e.
ones placed before the noun in modification, as in bueno vino), the following
function is provided.

105

prefA : A -> A ;

Two-place adjectives

Two-place adjectives need a preposition for their second argument.

mkA2 : A -> Prep -> A2 ;

Comparison adjectives

Comparison adjectives are in the worst case put up from two adjectives: the
positive (bueno), and the comparative (mejor).

mkADeg : A -> A -> A ;

If comparison is formed by mas, as usual in Spanish, the following pattern
is used:

compADeg : A -> A ;

The regular pattern is the same as regA for plain adjectives, with comparison
by mas.

regADeg : Str -> A ;

Adverbs

Adverbs are not inflected. Most lexical ones have position after the verb.

mkAdv : Str -> Adv ;

Some appear next to the verb (e.g. siempre).

mkAdV : Str -> AdV ;

Adverbs modifying adjectives and sentences can also be formed.

mkAdA : Str -> AdA ;

106

Verbs

Regular verbs are ones inflected like cortar, deber, or vivir. The regular verb
function is the first conjugation (ar) recognizes the variations corresponding
to the patterns actuar, cazar, guiar, pagar, sacar. The module BeschSpa

gives the complete set of Bescherelle conjugations.

regV : Str -> V ;

The module BeschSpa gives all the patterns of the Bescherelle book. To use
them in the category V, wrap them with the function

verboV : Verbum -> V ;

To form reflexive verbs:

reflV : V -> V ;

Verbs with a deviant passive participle: just give the participle in masculine
singular form as second argument.

special_ppV : V -> Str -> V ;

Two-place verbs

Two-place verbs need a preposition, except the special case with direct ob-
ject. (transitive verbs). Notice that a particle comes from the V.

mkV2 : V -> Prep -> V2 ;

dirV2 : V -> V2 ;

You can reuse a V2 verb in V.

v2V : V2 -> V ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

107

mkV3 : V -> Prep -> Prep -> V3 ; -- hablar, a, di

dirV3 : V -> Prep -> V3 ; -- dar,(accusative),a

dirdirV3 : V -> V3 ; -- dar,(dative),(accusative)

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Prep -> V2S ;

mkVV : V -> VV ; -- plain infinitive: "quiero hablar"

deVV : V -> VV ; -- "terminar de hablar"

aVV : V -> VV ; -- "aprender a hablar"

mkV2V : V -> Prep -> Prep -> V2V ;

mkVA : V -> VA ;

mkV2A : V -> Prep -> Prep -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Prep -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Prep -> A2S ;

mkAV : A -> Prep -> AV ;

mkA2V : A -> Prep -> Prep -> A2V ;

Notice: categories V2S, V2V, V2Q are in v 1.0 treated just as synonyms of
V2, and the second argument is given as an adverb. Likewise AS, A2S, AV,

A2V are just A. V0 is just V.

V0, V2S, V2V, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

4.4.15 Swedish

Aarne Ranta 2001 - 2006

This is an API for the user of the resource grammar for adding lexical
items. It gives functions for forming expressions of open categories: nouns,
adjectives, verbs.

Closed categories (determiners, pronouns, conjunctions) are accessed through
the resource syntax API, Structural.gf.

108

The main difference with MorphoSwe.gf is that the types referred to are
compiled resource grammar types. We have moreover had the design princi-
ple of always having existing forms, rather than stems, as string arguments
of the paradigms.

The structure of functions for each word class C is the following: first we
give a handful of patterns that aim to cover all regular cases. Then we give
a worst-case function mkC, which serves as an escape to construct the most
irregular words of type C. However, this function should only seldom be
needed: we have a separate module IrregSwe, which covers many irregular
verbs.

resource ParadigmsSwe =

open

(Predef=Predef),

Prelude,

CommonScand,

ResSwe,

MorphoSwe,

CatSwe in {

Parameters

To abstract over gender names, we define the following identifiers.

oper

Gender : Type ;

utrum : Gender ;

neutrum : Gender ;

To abstract over number names, we define the following.

Number : Type ;

singular : Number ;

plural : Number ;

To abstract over case names, we define the following.

Case : Type ;

nominative : Case ;

genitive : Case ;

109

Prepositions used in many-argument functions are just strings.

mkPrep : Str -> Prep ;

noPrep : Prep ; -- empty string

Nouns

Worst case: give all four forms. The gender is computed from the last letter
of the second form (if n, then utrum, otherwise neutrum).

mkN : (apa,apan,apor,aporna : Str) -> N ;

The regular function takes the singular indefinite form and computes the
other forms and the gender by a heuristic. The heuristic is currently to treat
all words ending with a like flicka, with e like rike, and otherwise like bil. If
in doubt, use the cc command to test!

regN : Str -> N ;

Adding the gender manually greatly improves the correction of regN.

regGenN : Str -> Gender -> N ;

In practice the worst case is often just: give singular and plural indefinite.

mk2N : (nyckel,nycklar : Str) -> N ;

This heuristic takes just the plural definite form and infers the others. It
does not work if there are changes in the stem.

mk1N : (bilarna : Str) -> N ;

Compound nouns

All the functions above work quite as well to form compound nouns, such
as fotboll.

Relational nouns

Relational nouns (dotter till x) need a preposition.

110

mkN2 : N -> Prep -> N2 ;

The most common preposition is av, and the following is a shortcut for
regular, nonhuman relational nouns with av.

regN2 : Str -> Gender -> N2 ;

Use the function mkPreposition or see the section on prepositions below to
form other prepositions.

Three-place relational nouns (förbindelse fr̊an x till y) need two prepositions.

mkN3 : N -> Prep -> Prep -> N3 ;

Relational common noun phrases

In some cases, you may want to make a complex CN into a relational noun
(e.g. den före detta maken till). However, N2 and N3 are purely lexical cate-
gories. But you can use the AdvCN and PrepNP constructions to build phrases
like this.

Proper names and noun phrases

Proper names, with a regular genitive, are formed as follows

regGenPN : Str -> Gender -> PN ;

regPN : Str -> PN ; -- utrum

Sometimes you can reuse a common noun as a proper name, e.g. Bank.

nounPN : N -> PN ;

To form a noun phrase that can also be plural and have an irregular genitive,
you can use the worst-case function.

mkNP : Str -> Str -> Number -> Gender -> NP ;

Adjectives

Adjectives may need as many as seven forms.

111

mkA : (liten, litet, lilla, sma, mindre, minst, minsta : Str) -> A ;

The regular pattern works for many adjectives, e.g. those ending with ig.

regA : Str -> A ;

Just the comparison forms can be irregular.

irregA : (tung,tyngre,tyngst : Str) -> A ;

Sometimes just the positive forms are irregular.

mk3A : (galen,galet,galna : Str) -> A ;

mk2A : (bred,brett : Str) -> A ;

Comparison forms may be compound (mera svensk - mest svensk).

compoundA : A -> A ;

Two-place adjectives

Two-place adjectives need a preposition for their second argument.

mkA2 : A -> Prep -> A2 ;

Adverbs

Adverbs are not inflected. Most lexical ones have position after the verb.
Some can be preverbal in subordinate position (e.g. alltid).

mkAdv : Str -> Adv ; -- här

mkAdV : Str -> AdV ; -- alltid

Adverbs modifying adjectives and sentences can also be formed.

mkAdA : Str -> AdA ;

Verbs

The worst case needs five forms.

112

mkV : (supa,super,sup,söp,supit,supen : Str) -> V ;

The ’regular verb’ function is inspired by Lexin. It uses the present tense
indicative form. The value is the first conjugation if the argument ends with
ar (tala - talar - talade - talat), the second with er (leka - leker - lekte -
lekt, with the variations like gräva, vända, tyda, hyra), and the third in other
cases (bo - bor - bodde - bott).

regV : (talar : Str) -> V ;

The almost regular verb function needs the infinitive and the preteritum. It
is not really more powerful than the new implementation of regV based on
the indicative form.

mk2V : (leka,lekte : Str) -> V ;

There is an extensive list of irregular verbs in the module IrregSwe. In
practice, it is enough to give three forms, as in school books.

irregV : (dricka, drack, druckit : Str) -> V ;

Verbs with a particle.

The particle, such as in passa p̊a, is given as a string.

partV : V -> Str -> V ;

Deponent verbs.

Some words are used in passive forms only, e.g. hoppas, some as reflexive
e.g. ångra sig.

depV : V -> V ;

reflV : V -> V ;

Two-place verbs

Two-place verbs need a preposition, except the special case with direct ob-
ject. (transitive verbs). Notice that a particle comes from the V.

113

mkV2 : V -> Prep -> V2 ;

dirV2 : V -> V2 ;

Three-place verbs

Three-place (ditransitive) verbs need two prepositions, of which the first one
or both can be absent.

mkV3 : V -> Prep -> Prep -> V3 ; -- tala, med, om

dirV3 : V -> Prep -> V3 ; -- ge, (acc),till

dirdirV3 : V -> V3 ; -- ge, (dat), (acc)

Other complement patterns

Verbs and adjectives can take complements such as sentences, questions,
verb phrases, and adjectives.

mkV0 : V -> V0 ;

mkVS : V -> VS ;

mkV2S : V -> Prep -> V2S ;

mkVV : V -> VV ;

mkV2V : V -> Prep -> Prep -> V2V ;

mkVA : V -> VA ;

mkV2A : V -> Prep -> V2A ;

mkVQ : V -> VQ ;

mkV2Q : V -> Prep -> V2Q ;

mkAS : A -> AS ;

mkA2S : A -> Prep -> A2S ;

mkAV : A -> AV ;

mkA2V : A -> Prep -> A2V ;

Notice: categories V2S, V2V, V2A, V2Q are in v 1.0 treated just as syn-
onyms of V2, and the second argument is given as an adverb. Likewise AS,

A2S, AV, A2V are just A. V0 is just V.

V0, V2S, V2V, V2A, V2Q : Type ;

AS, A2S, AV, A2V : Type ;

114

5 Summary of Categories and Functions

These tables show all categories and functions in Grammar, except the func-
tions in Structural. All example strings can be parsed in LangEng and
therefore translated to the other Lang languages.

5.1 Categories

Category Module Explanation Example

A2 Cat two place adjective ”married”
A Cat one place adjective ”old”
AdA Common adjective modifying adverb, ”very”
AdN Common numeral modifying adverb, ”more than”
AdV Common adverb directly attached to verb ”always”
Adv Common verb phrase modifying adverb, ”in the house”
Ant Common anteriority simultaneous
AP Cat adjectival phrase ”very old”
CAdv Common comparative adverb ”more”
Cl Cat declarative clause, with all tenses ”she walks”
CN Cat common noun (without determiner) ”red house”
Comp Cat complement of copula, such as AP ”very warm”
Conj Cat conjunction, ”and”
DConj Cat distributed conj. ”both” - ”and”
Det Cat determiner phrase ”these seven”
Digit Numeral digit from 2 to 9 ”4”
IAdv Common interrogative adverb ”why”
IComp Cat interrogative complement of copula ”where”
IDet Cat interrogative determiner ”which”
Imp Cat imperative ”look at this”
IP Cat interrogative pronoun ”who”
N2 Cat relational noun ”brother”
N3 Cat three place relational noun ”connection”
N Cat common noun ”house”
NP Cat noun phrase (subject or object) ”the red house”
Num Cat cardinal number (used with QuantPl) ”seven”
Numeral Cat cardinal or ordinal, ”five” / ”fifth”
Ord Cat ordinal number (used in Det) ”seventh”
PConj Common phrase beginning conj. ”therefore”
Phr Common phrase in a text ”but look at this please”
PN Cat proper name ”Paris”
Pol Common polarity positive
Predet Cat predeterminer (prefixed Quant) ”all”
Prep Cat preposition, or just case ”in”
Pron Cat personal pronoun ”she”
QCl Cat question clause, with all tenses ”why does she walk”
QS Cat question ”where did she walk”
Quant Cat quantifier with both sg and pl ”this”/”these”
QuantPl Cat quantifier (’nucleus’ of plur. Det) ”many”
QuantSg Cat quantifier (’nucleus’ of sing. Det) ”every”
RCl Cat relative clause, with all tenses ”in which she walks”
RP Cat relative pronoun ”in which”
RS Cat relative ”that she loves”
S Cat declarative sentence ”she was here”
SC Common embedded sentence or question ”that it rains”
Slash Cat clause missing NP (S/NP in GPSG) ”she loves”

115

Category Module Explanation Example

Sub10 Numeral numeral under 10 ”9”
Sub100 Numeral numeral under 100 ”99”
Sub1000 Numeral numeral under 1000 ”999”
Sub1000000 Numeral numeral under million 123456
Subj Cat subjunction, ”if”
Tense Common tense present
Text Common text consisting of several phrases ”He is here. Why?”
Utt Common sentence, question, word... ”be quiet”
V2A Cat verb with NP and AP complement ”paint”
V2 Cat two place verb ”love”
V3 Cat three place verb ”show”
VA Cat adjective complement verb ”look”
V Cat one place verb ”sleep”
Voc Common vocative or ”please” ”my darling”
VP Cat verb phrase ”is very warm”
VQ Cat question complement verb ”ask”
VS Cat sentence complement verb ”claim”
VV Cat verb phrase complement verb ”want”
[Adv] Conjunction adverb list ”here, oddly”
[AP] Conjunction adjectival phrase list ”even, very odd”
[NP] Conjunction noun phrase list ”John, all women”
[S] Conjunction sentence list ”I walk, you run”

5.2 Functions

Function Module Type Example

AAnter Common Ant ””
ASimul Common Ant ””
AdAdv Adverb AdA -> Adv -> Adv ”very”
AdAP Adjective AdA -> AP -> AP ”very old”
AdjCN Noun AP -> CN -> CN ”big house”
AdnCAdv Adverb CAdv -> AdN ”more than”
AdNum Noun AdN -> Num -> Num ”almost ten”
AdvCN Noun CN -> Adv -> CN ”house on the mountain”
AdvIP Question IP -> Adv -> IP ”who in Paris”
AdvNP Noun NP -> Adv -> NP ”Paris without wine”
AdvSC Adverb SC -> Adv ”that he sleeps”
AdvSlash Sentence Slash -> Adv -> Slash ”she sees here”
AdVVP Verb AdV -> VP -> VP ”always sleep”
AdvVP Verb VP -> Adv -> VP ”sleep here”
ApposCN Noun CN -> NP -> CN ”number x”
BaseAdv Conjunction Adv -> Adv -> [Adv] ”here” - ”today”
BaseAP Conjunction AP -> AP -> [AP] ”even” - ”odd”
BaseNP Conjunction NP -> NP -> [NP] ”the car” - ”the house”
BaseS Conjunction S -> S -> [S] ”I walk” - ”you run”
CleftAdv Idiom Adv -> S -> Cl ”it is here that she sleeps”
CleftNP Idiom NP -> RS -> Cl ”it is she who sleeps”
CompAdv Verb Adv -> Comp ”here”
CompAP Verb AP -> Comp ”old”
ComparA Adjective A -> NP -> AP ”warmer than the house”
ComparAdvAdj Adverb CAdv -> A -> NP -> Adv ”more heavily than Paris”
ComparAdvAdjS Adverb CAdv -> A -> S -> Adv ”more heavily than she sleeps”

116

Function Module Type Example

CompIAdv Question IAdv -> IComp ”where”
ComplA2 Adjective A2 -> NP -> AP ”married to her”
ComplN2 Noun N2 -> NP -> CN ”brother of the woman”
ComplN3 Noun N3 -> NP -> N2 ”connection from that city to Paris”
ComplV2A Verb V2A -> NP -> AP -> VP ”paint the house red”
ComplV2 Verb V2 -> NP -> VP ”love it”
ComplV3 Verb V3 -> NP -> NP -> VP ”send flowers to us”
ComplVA Verb VA -> AP -> VP ”become red”
ComplVQ Verb VQ -> QS -> VP ”ask if she runs”
ComplVS Verb VS -> S -> VP ”say that she runs”
ComplVV Verb VV -> VP -> VP ”want to run”
CompNP Verb NP -> Comp ”a man”
ConjAdv Conjunction Conj -> [Adv] -> Adv ”here or in the car”
ConjAP Conjunction Conj -> [AP] -> AP ”warm or cold”
ConjNP Conjunction Conj -> [NP] -> NP ”the man or the woman”
ConjS Conjunction Conj -> [S] -> S ”he walks or she runs”
ConsAdv Conjunction Adv -> [Adv] -> [Adv] ”here” - ”without them, with us”
ConsAP Conjunction AP -> [AP] -> [AP] ”warm” - ”red, old”
ConsNP Conjunction NP -> [NP] -> [NP] ”she” - ”you, I”
ConsS Conjunction S -> [S] -> [S] ”I walk” - ”she runs, he sleeps”
DConjAdv Conjunction DConj -> [Adv] -> Adv ”either here or there”
DConjAP Conjunction DConj -> [AP] -> AP ”either warm or cold”
DConjNP Conjunction DConj -> [NP] -> NP ”either the man or the woman”
DConjS Conjunction DConj -> [S] -> S ”either he walks or she runs”
DefArt Noun Quant ”the”
DetCN Noun Det -> CN -> NP ”the man”
DetPl Noun QuantPl -> Num -> Ord -> Det ”the five best”
DetSg Noun QuantSg -> Ord -> Det ”this”
EmbedQS Sentence QS -> SC ”whom she loves”
EmbedS Sentence S -> SC ”that you go”
EmbedVP Sentence VP -> SC ”to love it”
ExistIP Idiom IP -> QCl ”which cars are there”
ExistNP Idiom NP -> Cl ”there is a car”
FunRP Relative Prep -> NP -> RP -> RP ”all houses in which”
GenericCl Idiom VP -> Cl ”one sleeps”
IDetCN Question IDet -> Num -> Ord -> CN -> IP ”which five hottest songs”
IdRP Relative RP ”which”
ImpersCl Idiom VP -> Cl ”it rains”
ImpPl1 Idiom VP -> Utt ”let’s go”
ImpVP Sentence VP -> Imp ”go to the house”
IndefArt Noun Quant ”a”
MassDet Noun QuantSg (”beer”)
NoNum Noun Num ””
NoOrd Noun Ord ””
NoPConj Phrase PConj ””
NoVoc Phrase Voc ””
NumInt Noun Int -> Num ”51”
NumNumeral Noun Numeral -> Num ”five hundred”
OrdInt Noun Int -> Ord ”13 th”
OrdNumeral Noun Numeral -> Ord ”thirteenth”
OrdSuperl Noun A -> Ord ”hottest”
PassV2 Verb V2 -> VP ”be seen”
PConjConj Phrase Conj -> PConj ”and”
PhrUtt Phrase PConj -> Utt -> Voc -> Phr ”but come here please”
PlQuant Noun Quant -> QuantPl ”these”
PositA Adjective A -> AP ”warm”
PositAdvAdj Adverb A -> Adv ”warmly”

117

Function Module Type Example

PossPron Noun Pron -> Quant ”my”
PPartNP Noun NP -> V2 -> NP ”the city seen”
PNeg Common Pol ””
PPos Common Pol ””
PredetNP Noun Predet -> NP -> NP ”only the man”
PredSCVP Sentence SC -> VP -> Cl ”that she sleeps is good”
PredVP Sentence NP -> VP -> Cl ”she walks”
PrepIP Question Prep -> IP -> IAdv ”with whom”
PrepNP Adverb Prep -> NP -> Adv ”in the house”
ProgrVP Idiom VP -> VP ”be sleeping”
QuestCl Question Cl -> QCl ”does she walk”
QuestIAdv Question IAdv -> Cl -> QCl ”why does she walk”
QuestIComp Question IComp -> NP -> QCl ”where is she”
QuestSlash Question IP -> Slash -> QCl ”whom does she love”
QuestVP Question IP -> VP -> QCl ”who walks”
ReflA2 Adjective A2 -> AP ”married to itself”
ReflV2 Verb V2 -> VP ”see himself”
RelCl Relative Cl -> RCl ”such that she loves him”
RelCN Noun CN -> RS -> CN ”house that she buys”
RelSlash Relative RP -> Slash -> RCl ”that she loves”
RelVP Relative RP -> VP -> RCl ”that loves her”
SentAP Adjective AP -> SC -> AP ”good that she came”
SentCN Noun CN -> SC -> CN ”fact that she smokes”
SgQuant Noun Quant -> QuantSg ”this”
SlashPrep Sentence Cl -> Prep -> Slash (with whom) ”he walks”
SlashV2 Sentence NP -> V2 -> Slash (whom) ”he sees”
SlashVVV2 Sentence NP -> VV -> V2 -> Slash (whom) ”he wants to see”
SubjS Adverb Subj -> S -> Adv ”when he came”
TCond Common Tense ””
TEmpty Text Text ””
TFut Common Tense ””
TExclMark Text Phr -> Text -> Text ”She walks!”
TFullStop Text Phr -> Text -> Text ”She walks.”
TPast Common Tense ””
TPres Common Tense ””
TQuestMark Text Phr -> Text -> Text ”Does she walk?”
UseA2 Adjective A2 -> A ”married”
UseCl Sentence Tense -> Ant -> Pol -> Cl -> S ”she wouldn’t have walked”
UseComp Verb Comp -> VP ”be warm”
UseN2 Noun N2 -> CN ”brother”
UseN3 Noun N3 -> CN ”connection”
UseN Noun N -> CN ”house”
UsePN Noun PN -> NP ”Paris”
UsePron Noun Pron -> NP ”she”
UseQCl Sentence Tense -> Ant -> Pol -> QCl -> QS ”where hadn’t she walked”
UseRCl Sentence Tense -> Ant -> Pol -> RCl -> RS ”that she hadn’t seen”
UseVQ Verb VQ -> V2 ”ask” (a question)
UseVS Verb VS -> V2 ”know” (a secret)
UseV Verb V -> VP ”sleep”
UttAdv Phrase Adv -> Utt ”here”
UttIAdv Phrase IAdv -> Utt ”why”
UttImpPl Phrase Pol -> Imp -> Utt ”love yourselves”
UttImpSg Phrase Pol -> Imp -> Utt ”love yourself”
UttIP Phrase IP -> Utt ”who”
UttNP Phrase NP -> Utt ”this man”
UttQS Phrase QS -> Utt ”is it good”
UttS Phrase S -> Utt ”she walks”
UttVP Phrase VP -> Utt ”to sleep”
VocNP Phrase NP -> Voc ”my brother”

118

Function Module Type Example

num Numeral Sub1000000 -> Numeral ”2”
n2 Numeral Digit ”2”
n3 Numeral Digit ”3”
n4 Numeral Digit ”4”
n5 Numeral Digit ”5”
n6 Numeral Digit ”6”
n7 Numeral Digit ”7”
n8 Numeral Digit ”8”
n9 Numeral Digit ”9”
pot01 Numeral Sub10 ”1”
pot0 Numeral Digit -> Sub10 ”3”
pot110 Numeral Sub100 ”10”
pot111 Numeral Sub100 ”11”
pot1to19 Numeral Digit -> Sub100 ”18”
pot0as1 Numeral Sub10 -> Sub100 ”3”
pot1 Numeral Digit -> Sub100 ”50”
pot1plus Numeral Digit -> Sub10 -> Sub100 ”54”
pot1as2 Numeral Sub100 -> Sub1000 ”99”
pot2 Numeral Sub10 -> Sub1000 ”600”
pot2plus Numeral Sub10 -> Sub100 -> Sub1000 ”623”
pot2as3 Numeral Sub1000 -> Sub1000000 ”999”
pot3 Numeral Sub1000 -> Sub1000000 ”53000”
pot3plus Numeral Sub1000 -> Sub1000 -> Sub1000000 ”53201”

119

	Motivation
	A complete example
	Lock fields
	Parsing with resource grammars?

	To find rules in the resource grammar library
	Inflection paradigms
	Syntax rules
	Example-based grammar writing
	Special-purpose APIs

	Overview of syntactic structures
	Texts. phrases, and utterances
	Sentences and clauses
	Parts of sentences
	Modules and their names
	Top-level grammar and lexicon
	Language-specific syntactic structures

	API Documentation
	Top-level modules
	Grammar: the Main Module of the Resource Grammar
	Lang: a Test Module for the Resource Grammar

	Type system
	Cat: the Category System
	Common: Structures with Common Implementations

	Syntax rule modules
	Adjective: Adjectives and Adjectival Phrases
	Adverb: Adverbs and Adverbial Phrases
	Conjunction: Coordination
	Idiom: Idiomatic Expressions
	Noun: Nouns, Noun Phrases, and Determiners
	Numeral: Cardinal and Ordinal Numerals
	Phrase: Phrases and Utterances
	Question: Questions and Interrogative Pronouns
	Relative: Relative Clauses and Relative Pronouns
	Sentence: Sentences, Clauses, and Imperatives
	Structural: Structural Words
	Text: Texts
	Verb: Verb Phrases

	Inflectional paradigms
	Arabic
	Danish
	English
	Finnish
	French
	German
	Italian
	Norwegian
	Russian
	Feminine patterns
	Neuter patterns
	Masculine patterns
	Proper names
	Spanish
	Swedish

	Summary of Categories and Functions
	Categories
	Functions

