
Declarative Language Definitions and Code
Generation as Linearization

Aarne Ranta
Department of Computing Science

Chalmers University of Technology and the University of Gothenburg
aarne@cs.chalmers.se

November 8, 2004

Abstract

This paper presents a compiler for a fragment of the C programming language, with
JVM (Java Virtual Machine) as target language. The compiler is implemented in a
purely declarative way: its definition consists of an abstract syntax of program structures
and two concrete syntaxes matching the abstract syntax: one for C and one for JVM.
From these grammar components, the compiler is derived by using the GF (Grammatical
Framework) grammat tool: the front end consists of parsing and semantic checking in
accordance to the C grammar, and the back end consists of linearization in accordance to
the JVM grammar. The tool provides other functionalities as well, such as decompilation
and interactive editing.

1 Introduction

The experiment reported in this paper was prompted by a challenge posted by Lennart
Augustsson to the participants of the workshop on Dependent Types in Programming
held at Dagstuhl in September 2004. The challenge was to use dependent types to write
a compiler from C to bytecode. This paper does not meet the challenge quite literally,
since our compiler is for a different subset of C than Augustsson’s specification, and since
the bytecode that we generate is JVM instead of his format. But it definitely makes use
of dependent types.

Augustsson’s challenge did not specify how dependent types are to be used, and the
first of the two points we make in this paper (and its title) reflects our interpretation:
we use dependent types, in combination with higher-order abstract syntax (HOAS), to
define the grammar of the source language (here, the fragment of C). The grammar
constitutes the single, declarative source from which the compiler front end is derived,
comprising both parser and type checker.

The second point, code generation by linearization, means that the back end is like-
wise implemented by a grammar of the target language (in this case, a fragment of JVM).
This grammar is the declarative source from which the compiler back end is derived. In

1

addition, some postprocessing is needed to make the code conform to Jasmin assembler
requirements.

The complete code of the compiler is 300 lines: 250 lines for the grammars, 50 lines
for the postprocessor. The code is presented in the appendices of this paper.

2 The Grammatical Framework

The tool we have used for implementing the compiler is GF, the Grammatical Framework
[16]. GF is similar to a Logical Framework (LF) [4] extended with a notation for defining
concrete syntax. GF was originally designed to help building multilingual translation
systems for natural languages and also between formal and natural languages. The
translation model implemented by GF is very simple:

parsing linearization

------------> ------------>

Language_1 Abstract Syntax Language_2

<------------ <------------

linearization parsing

An abstract syntax is similar to a theory, or a signature in a logical framework. A concrete
syntax defines, in a declarative way, a translation of abstract syntax trees (well-formed
terms) into concrete language structures, and from this definition, one can derive both
linearization and parsing.

To give an example, a (somewhat simplified) translator for addition expressions con-
sists of the abstract syntax rule

fun EAdd : (A : Typ) -> Exp A -> Exp A -> Exp A ;

the C concrete syntax rule

lin EAdd _ x y = {s = x.s ++ "+" ++ y.s ; prec = 2} ;

and the JVM concrete syntax rule

lin EAdd t x y = {s = x.s ++ y.s ++ t.s ++ "_add"} ;

The abstract syntax rule uses a type argument to capture the fact that addition is
polymorphic (which is a simplification, because we will restrict the rule to numeric types
only) and that both operands have the same type as the value. The C rule shows that the
type information is suppressed, and that the expression has precedence level 2 (which is a
simplification, since we will also treat associativity). The JVM rule shows how addition
is translated to stack machine instructions, where the type of the postfixed addition
instruction has to be made explicit. Our compiler, like any GF translation system, will
consist of rules like these.

The number of languages related to one abstract syntax in a translation system is
of course not limited to two. Sometimes just one language is involved; GF then works
much the same way as any grammar formalism or parser generator. The largest number
of languages in an application known to us is 88; its domain are numeral expressions
from 1 to 999,999 [15].

2

In addition to linearization and parsing, GF supports grammar-based multilingual
authoring [6]: interactive editing of abstract syntax trees with immediate feedback as
linearized texts, and the possibility to textual through the parsers.

From the GF point of view, the goal of the compiler experiment is to investigate if GF
is capable of implementing compilers using the ideas of single-source language definition
and code generation as linearization. The working hypothesis was that it is capable but
inconvenient, and that, working out a complete example, we would find out what should
be done to extend GF into a compiler construction tool.

2.1 Advantages and disadvantages

Due to the way in which it is built, our compiler has a number of unusual, yet attractive
features:

The front end is defined by a grammar of C as its single source.

The grammar defines both abstract and concrete syntax, and also semantic
well-formedness (types, variable scopes).

The back end is implemented by means of a grammar of JVM providing
another concrete syntax to the abstract syntax of C.

As a result of the way JVM is defined, only semantically well formed JVM
programs are generated.

The JVM grammar can also be used as a decompiler, which translates JVM
code back into C code.

The language has an interactive editor that also supports incremental com-
pilation.

The problems that we encountered and their causes will be explained in the relevant
sections of this report. To summarize,

The scoping conditions resulting from higher-order abstract syntax are slightly
different from the standard ones of C.

Our JVM syntax is slightly different from the specification, and hence needs
some postprocessing.

Using higher-order abstract syntax to encode all bindings is sometimes cum-
bersome.

The first shortcoming seems to be inevitable with the technique we use: just like lambda
calculus, our C semantics allows overshadowing of earlier bindings by later ones. The
second problem is systematically solved by using an intermediate JVM format, where
symbolic variable addresses are used instead of numeric stack addresses. The last short-
coming is partly inherent in the problem of binding: to spell out, in any formal notation,
what happens in complex binding structures is complicated. But it also suggests ways
in which GF could be tuned to give better support to compiler construction, which, after
all, is not an intended use of GF as it is now.

3

3 The abstract syntax

An abstract syntax in GF consists of cat judgements

cat C Γ

declaring basic types (depending on a context Γ), and fun judgements

fun f : A

declaring functions f of any type A, which can be a basic type or a function type. Syntax
trees are well-formed terms of basic types, in η-long normal form.

As for notation, each judgement form is recognized by its keyword (cat, fun, etc),
and the same keyword governs all judgements until the next keyword is encountered.

The abstract syntax that we will present is no doubt closer to C than to JVM. One
reason is that what we are building is a C compiler, and match with the target language
is a secondary consideration. Another, more general reason is that C is a higher-level
language and JVM which means, among other things, that C makes more semantic
distinctions. In general, the abstract syntax of a translation system must reflect all
semantic distinctions that can be made in the languages involved, and then it is a good
idea to start with looking at what the most distinctive language needs.

3.1 Statements

Statements in C may involve variables, expressions, and other statements. The follow-
ing cat judgements of GF define the syntactic categories that are needed to construct
statements

cat

Stm ;

Typ ;

Exp Typ ;

Var Typ ;

The type Typ is the type of C’s datatypes. The type of expressions is a dependent type,
since it has a nonempty context, indicating that Exp takes a Typ as argument. The rules
for Exp will thus be rules to construct well-typed expressions of a given type. Var is the
type of variables, of a given type, that get bound in C’s variable declarations.

Let us start with the simplest kind of statements: declarations and assignments. The
following fun rules define their abstract syntax:

fun

Decl : (A : Typ) -> (Var A -> Stm) -> Stm ;

Assign : (A : Typ) -> Var A -> Exp A -> Stm -> Stm ;

The Decl function captures the rule that a variable must be declared before it can be
used or assigned to: its second argument is a continuation, which is the sequence of
statements that depend on (= may refer to) the declared variable. The Assign function
uses dependent types to control that a variable is always assigned a value of proper type.

We will treat all statements, except returns, in terms of continuations. A sequence of
statements (which always has the type Stm) thus always ends in a return, or, abruptly,
in an empty statement, End. Here are rules for some other statement forms:

4

While : Exp TInt -> Stm -> Stm -> Stm ;

IfElse : Exp TInt -> Stm -> Stm -> Stm -> Stm ;

Block : Stm -> Stm -> Stm ;

Return : (A : Typ) -> Exp A -> Stm ;

End : Stm ;

Here is an example of a piece of code and its abstract syntax.

int x ; Decl (TNum TInt) (\x ->

x = 5 ; Assign (TNum TInt) x (EInt 5) (

return x ; Return (TNum TInt) (EVar (TNum TInt) x)))

The details of expression and type syntax will be explained in the next section.
Our binding syntax is more liberal than C’s in two ways. First, lambda calculus per-

mits overshadowing previous bindings by new ones, e.g. to write \x -> (\x -> f x).
The corresponding overshadowing of declarations is not legal in C, within one and the
same block. Secondly, we allow declarations anywhere in a block, not just in the begin-
ning. The second deviation would be easy to mend, whereas the first one is inherent to
the method of higher-order abstract syntax.

3.2 Types and expressions

Our fragment of C has two types: integers and floats. Many operators of C are overloaded
so that they can be used for both of these types, as well as for some other numeric
types—but not for e.g. arrays and structures. We capture this distinction by a notion
reminiscent of type classes: we introduce a special category of numeric types, and a
coercion of numeric types into types in general.

cat

NumTyp ;

fun

TInt, TFloat : NumTyp ;

TNum : NumTyp -> Typ ;

Well-typed expressions are built from constants, from variables, and by means of binary
operations.

EVar : (A : Typ) -> Var A -> Exp A ;

EInt : Int -> Exp (TNum TInt) ;

EFloat : Int -> Int -> Exp (TNum TFloat) ;

ELt : (n : NumTyp) -> let Ex = Exp (TNum n) in

Ex -> Ex -> Exp (TNum TInt) ;

EAdd, EMul, ESub : (n : NumTyp) -> let Ex = Exp (TNum n) in

Ex -> Ex -> Ex ;

Notice that the category Var has no constructors, but its expressions are only created
by variable bindings in higher-order abstract syntax. Notice also that GF has a built-in
type Int of integer literals, but floats are constructed by hand.

Yet another expression form are function calls. To this end, we need a notion of (user-
defined) functions and argument lists. The type of functions depends on an argument
type list and a value type. Expression lists are formed to match type lists.

5

cat

ListTyp ;

Fun ListTyp Typ ;

ListExp ListTyp ;

fun

EAppNil : (V : Typ) -> Fun NilTyp V -> Exp V ;

EApp : (AS : ListTyp) -> (V : Typ) ->

Fun AS V -> ListExp AS -> Exp V ;

NilTyp : ListTyp ;

ConsTyp : Typ -> ListTyp -> ListTyp ;

OneExp : (A : Typ) -> Exp A -> ListExp (ConsTyp A NilTyp) ;

ConsExp : (A : Typ) -> (AS : ListTyp) ->

Exp A -> ListExp AS -> ListExp (ConsExp A AS) ;

The separation between zero-element applications and other applications is a concession
to the concrete syntax of C: it in this way that we can control the use of commas so that
they appear between arguments ((x,y,z)) but not after the last argument ((x,y,z,)).
The compositionality of linearization (Section 4 below) forbids case analysis on the length
of the lists.

3.3 Functions

On the top level, a program is a sequence of functions. Each function may refer to
functions defined earlier in the program. The idea to express the binding of function
symbols with higher-order abstract syntax is analogous to the binding of variables in
statements, using a continuation. As with variables, the principal way to build function
symbols is as bound variables (in addition, there can be some built-in functions, unlike in
the case of variables). The continuation of can be recursive, which we express by making
the function body into a part of the continuation; the category Rec is the combination
of a function body and the subsequent function definitions.

cat

Program ;

Rec ListTyp ;

fun

Empty : Program ;

Funct : (AS : ListTyp) -> (V : Typ) ->

(Fun AS V -> Rec AS) -> Program ;

FunctNil : (V : Typ) ->

Stm -> (Fun NilTyp V -> Program) -> Program ;

For syntactic reasons similar to function application expressions in the previous section,
we have distinguished between empty and non-empty argument lists.

The tricky problem with function definitions is that they involve two nested binding
constructions: the outer binding of the function symbol and the inner binding of the

6

function parameter lists. For the latter, we could use vectors of variables, in the same
way as vectors of expressions are used to give arguments to functions. However, this
would lead to the need of cumbersome projection functions when using the parameters
in the function body. A more elegant solution is to use higher-order abstract syntax to
build function bodies:

RecOne : (A : Typ) ->

(Var A -> Stm) -> Program -> Rec (ConsTyp A NilTyp) ;

RecCons : (A : Typ) -> (AS : ListTyp) ->

(Var A -> Rec AS) -> Program -> Rec (ConsTyp A AS) ;

The end result is an abstract syntax whose relation to concrete syntax is somewhat
remote. Here is an example of the code of a function and its abstract syntax:

let int = TNum TInt in

int fact Funct (ConsTyp int NilTyp) int (\fact ->

(int n) { RecOne int (\n ->

int f ; Decl int (\f ->

f = 1 ; Assign int f (EInt 1) (

while (1 < n) { While (ELt int (EInt 1) (EVar int n)) (Block (

f = n * f ; Assign int f (EMul int (EVar int n) (EVar int f)) (

n = n - 1 ; Assign int n (ESub int (EVar int n) (EInt 1))

} End))

return f ; (Return int (EVar int f))) End)))

} ; Empty)

3.4 The printf function

To give a valid type to the C function printf is one of the things that can be done with
dependent types [2]. We have not defined printf in its full strength, partly because of
the difficulties to compile it into JVM. But we use special cases of printf as statements,
to be able to print values of different types.

Printf : (A : Typ) -> Exp A -> Stm -> Stm ;

4 The concrete syntax of C

A concrete syntax, for a given abstract syntax, consists of lincat judgements

lincat C = T

defining the linearization types T of each category C, and lin judgements

lin f = t

defining the linearization functions t of each function f in the abstract syntax. The
linearization functions are checked to be well-typed with respect the lincat definitions,
and the syntax of GF forces them to be compositional in the sense that the linearization

7

of a complex tree is always a function of the linearizations of the subtrees. Schematically,
if

f :A1 → · · · → An → A

then
f o:Ao

1 → · · · → Ao
n → Ao

and the linearization algorithm is simply

(f a1 . . . an)o = f o ao
1 . . . a

o
n

using the o notation for both linearization types, linearization functions, and lineariza-
tions of trees.

Because of compositionality, no case analysis on expressions is possible in linearization
rules. The values of linearization therefore have to carry information on how they are
used in different situations. Therefore linearization types are generally record types
instead of just the string type. The simplest record type that is used in GF is

{s : Str}

If the linearization type of a category is not explicitly given by a lincat judgement, this
type is used by default.

With higher-order abstract syntax, a syntax tree can have variable-bindings in its
constituents. The linearization of such a constituent is compositionally defined to be the
record linearizing the body extended with fields for each of the variable symbols:

(λx0 → · · · → λxn → b)o = bo ∗∗{$0 = xo
0; . . . ; $n = xo

n}
Notice that the variable symbols can always be found because linearizable trees are in
η-long normal form. Also notice that we are here using the o notation in yet another
way, to denote the magic operation that converts variable symbols into strings.

4.1 Resource modules

Resource modules define auxiliary notions that can be used in concrete syntax. These
notions include parameter types defined by param judgements

param P = C1 Γ1 | · · · | Cn Γn

and operations defined by oper judgements

oper f : T = t

These judgements are similar to datatype and function definitions in functional program-
ming, with the restriction that parameter types must be finite and operations may not
be recursive. It is due to these restrictions that we can always derive a parsing algorithm
from a set of linearization rules.

In addition to types defined in param judgements, initial segments of natural numbers,
Ints n, can be used as parameter types. This is the most important parameter type we
use in the syntax of C, to represent precedence.

The following string operations are useful in almost all grammars. They are actually
included in a GF Prelude, but are here defined from scratch to make the code shown in
the Appendices complete.

8

oper

SS : Type = {s : Str} ;

ss : Str -> SS = \s -> {s = s} ;

cc2 : (_,_ : SS) -> SS = \x,y -> ss (x.s ++ y.s) ;

paren : Str -> Str = \str -> "(" ++ str ++ ")" ;

4.2 Precedence

We want to be able to recognize and generate one and the same expression with or
without parentheses, depending on whether its precedence level is lower or higher than
expected. For instance, a sum used as an operand of multiplication must be in paren-
theses. We capture this by defining a parameter type of precedence levels. Five levels
are enough for the present fragment of C, so we use the enumeration type of integers
from 0 to 4 to define the inherent precedence level of an expression

oper

Prec : PType = Predef.Ints 4 ;

PrecExp : Type = {s : Str ; p : Prec} ;

in a resource module (see Appendix D), and

lincat Exp = PrecExp ;

in the concrete syntax of C itself.
To build an expression that has a certain inherent precedence level, we use the oper-

ation

mkPrec : Prec -> Str -> PrecExp = \p,s -> {s = s ; p = p} ;

To use an expression of a given inherent level at some expected level, we define a function
that says that, if the inherent level is lower than the expected level, parentheses are
required.

usePrec : PrecExp -> Prec -> Str = \x,p ->

ifThenStr

(less x.p p)

(paren x.s)

x.s ;

(The code shown in Appendix D is at the moment more cumbersome, due to holes in
the support for integer arithmetic in GF.)

With the help of mkPrec and usePrec, we can now define the main high-level
operations that are used in the concrete syntax itself—constants (highest level), non-
associative infixes, and left associative infixes:

constant : Str -> PrecExp = mkPrec 4 ;

infixN : Prec -> Str -> (_,_ : PrecExp) -> PrecExp = \p,f,x,y ->

mkPrec p (usePrec x (nextPrec p) ++ f ++ usePrec y (nextPrec p)) ;

infixL : Prec -> Str -> (_,_ : PrecExp) -> PrecExp = \p,f,x,y ->

mkPrec p (usePrec x p ++ f ++ usePrec y (nextPrec p)) ;

(The code in Appendix D adds to this an associativity parameter, which is redundant
in GF, but which we use to instruct the Happy parser generator.)

9

4.3 Expressions

With the machinery introduced, the linearization rules of expressions are simple and
concise:

EVar _ x = constant x.s ;

EInt n = constant n.s ;

EFloat a b = constant (a.s ++ "." ++ b.s) ;

EMul _ = infixL 3 "*" ;

EAdd _ = infixL 2 "+" ;

ESub _ = infixL 2 "-" ;

ELt _ = infixN 1 "<" ;

EAppNil val f = constant (f.s ++ paren []) ;

EApp args val f exps = constant (f.s ++ paren exps.s) ;

4.4 Types

Types are expressed in two different ways: in declarations, we have int and float, but
as formatting arguments to printf, we have "%d" and "%f", with the quotes belonging
to the names. The simplest solution in GF is to linearize types to records with two string
fields.

lincat

Typ, NumTyp = {s,s2 : Str} ;

lin

TInt = {s = "int" ; s2 = "\"%d\""} ;

TFloat = {s = "float" ; s2 = "\"%f\""} ;

4.5 Statements

Statements in C have the simplest linearization type, {s : Str}. We use a handful of
auxiliary operations to regulate the use of semicolons on a high level.

oper

continues : Str -> SS -> SS = \s,t -> ss (s ++ ";" ++ t.s) ;

continue : Str -> SS -> SS = \s,t -> ss (s ++ t.s) ;

statement : Str -> SS = \s -> ss (s ++ ";");

As for declarations, which bind variables, we notice the projection .$0 to refer to the
bound variable. Also notice the use of the s2 field of the type in printf.

lin

Decl typ cont = continues (typ.s ++ cont.$0) cont ;

Assign _ x exp = continues (x.s ++ "=" ++ exp.s) ;

While exp loop = continue ("while" ++ paren exp.s ++ loop.s) ;

IfElse exp t f = continue ("if" ++ paren exp.s ++ t.s ++ "else" ++ f.s) ;

Block stm = continue ("{" ++ stm.s ++ "}") ;

Printf t e = continues ("printf" ++ paren (t.s2 ++ "," ++ e.s)) ;

10

Return _ exp = statement ("return" ++ exp.s) ;

Returnv = statement "return" ;

End = ss [] ;

4.6 Functions and programs

The category Rec of recursive function bodies with continuations has three components:
the function body itself, the parameter list, and the program that follows. We express
this by a linearization type that contains three strings:

lincat Rec = {s,s2,s3 : Str} ;

The body construction rules accumulate the parameter list independently of the two
other components:

lin

RecOne typ stm prg = stm ** {

s2 = typ.s ++ stm.$0 ;

s3 = prg.s

} ;

RecCons typ _ body prg = {

s = body.s ;

s2 = typ.s ++ body.$0 ++ "," ++ body.s2 ;

s3 = prg.s

} ;

The top-level program construction rules rearrange the three components into a linear
structure:

FunctNil val stm cont = ss (

val.s ++ cont.$0 ++ paren [] ++ "{" ++

stm.s ++ "}" ++ ";" ++ cont.s) ;

Funct args val rec = ss (

val.s ++ rec.$0 ++ paren rec.s2 ++ "{" ++

rec.s ++ "}" ++ ";" ++ rec.s3) ;

5 The concrete syntax of JVM

JVM syntax is, linguistically, more straightforward than the syntax of C, and could even
be defined by a regular expression. However, the JVM syntax that our compiler generates
does not comprise full JVM, but only the fragment that corresponds to well-formed C
programs.

The JVM syntax we use is a symbolic variant of the Jasmin assembler [11]. The
main deviation from Jasmin are variable addresses, as described in Section 5.1. The
other deviations have to do with spacing: the normal unlexer of GF puts spaces be-
tween constituents, whereas in JVM, type names are integral parts of instruction names.
We indicate gluing uniformly by generating an underscore on the side from which the
adjacent element is glued. Thus e.g. i _load becomes iload.

11

5.1 Symbolic JVM

What makes the translation from our abstract syntax to JVM tricky is that variables
must be replaced by numeric addresses (relative to the frame pointer). Code generation
must therefore maintain a symbol table that permits the lookup of variable addresses.
As shown in the code in Appendix C, we do not treat symbol tables in linearization, but
instead generated code in Symbolic JVM—that is, JVM with symbolic addresses. There-
fore we need a postprocessor that resolves the symbolic addresses, shown in Appendix
E.

To make the postprocessor straightforward, Symbolic JVM has special alloc instruc-
tions, which are not present in real JVM. Our compiler generates alloc instructions from
variable declarations. The postprocessor comments out the alloc instructions, but we
found it a good idea not to erase them completely, since they make the code more
readable.

The following example shows how the three representations (C, Symbolic JVM, JVM)
look like for a piece of code.

int x ; alloc i x ; x gets address 0

int y ; alloc i y ; y gets address 1

x = 5 ; ldc 5 ldc 5

i _store x istore 0

y = x ; i _load x iload 0

i _store y istore 1

5.2 Labels and jumps

A problem related to variable addresses is the generation of fresh labels for jumps.
We solve this in linearization by maintaining a growing label suffix as a field of the
linearization of statements into instructions. The problem remains that statements on
the same nesting level, e.g. the two branches of an if-else statement can use the same
labels. Making them unique must be added to the post-processing pass. This is always
possible, because labels are nested in a disciplined way, and jumps can never go to remote
labels.

As it turned out laborious to thread the label counter to expressions, we decided to
compile comparison expressions (x < y) into function calls, and provide the functions in
a run-time library. This will no more work for the conjunction (x && y) and disjunction
(x || y), if we want to keep their semantics lazy, since function calls are strict in their
arguments.

5.3 How to restore code generation by linearization

Since postprocessing is needed, we have not quite achieved the goal of code generation
as linearization—if linearization is understood in the sense of GF. In GF, linearization
can only depend on parameters from finite parameter sets. Since the size of a symbol
table can grow indefinitely, it is not possible to encode linearization with updates to and
lookups from a symbol table, as is usual in code generation.

One attempt we made to achieve JVM linearization with numeric addresses was to
alpha-convert abstract syntax syntax trees so that variables get indexed with integers

12

that indicate their depths in the tree. This hack works in the present fragment of C
because all variables need the same amount of memory (one word), but would break
down if we added double-precision floats. Therefore we have used the less pure (from
the point of view of code generation as linearization) method of symbolic addresses.

It would certainly be possible to generate variable addresses directly in the syntax
trees by using dependent types; but this would clutter the abstract syntax in a way
that is hard to motivate when we are in the business of describing the syntax of C. The
abstract syntax would have to, so to say, anticipate all demands of the compiler’s target
languages.

5.4 Problems with the JVM bytecode verifier

An inherent restriction for linearization in GF is compositionality. This prevents opti-
mizations during linearization by clever instruction selection, elimination of superfluous
labels and jumps, etc. One such optimization, the removal of unreachable code (i.e.
code after a return instruction) is actually required by the JVM byte code verifier. The
solution is, again, to perform this optimization in postprocessing. What we currently
do, however, is to be careful and write C programs so that they always end with a return
statement in the outermost block.

Another problem related to return instructions is that both C and JVM programs
have a designated main function. This function must have a certain type, which is
different in C and JVM. In C, main returns an integer encoding what errors may have
happend during execution. The JVM main, on the other hand, returns a void, i.e. no
value at all. A main program returning an integer therefore provokes a JVM bytecode
verifier error. The postprocessor could take care of this; but currently we just write
programs with void returns in the main functions.

The parameter list of main is also different in C (empty list) and JVM (a string array
args). We handle this problem with an ad hoc postprocessor rule.

Every function prelude in JVM must indicate the maximum space for local variables,
and the maximum evaluation stack space (within the function’s own stack frame). The
locals limit is computed in linearization by maintaining a counter field. The stack limit
is blindly set to 1000; it would be possible to set an accurate limit in the postprocessing
phase.

6 Translation as linearization vs. transfer

Many of the problems we have encountered in code generation by linearization are famil-
iar from translation systems for natural languages. For instance, to translate the English
pronoun you to German, you have to choose between du, ihr, Sie; for Italian, there are
four variants, and so on. To deal with this by linearization, all semantic distinctions
made in any of the involved languages have to be present in the common abstract syn-
tax. The usual solution to this problem is not a universal abstract syntax, but transfer:
translation does not just linearize the same syntax trees to another language, but uses a
noncompositional function that translates trees of one language into trees of another.

Using transfer in the back end is precisely what traditional compilers do. The transfer
function in our case would be a noncompositional function from the abstract syntax of C

13

to a different abstract syntax of JVM. The abstract syntax notation of GF permits defi-
nitions of functions, and the GF interpreter can be used for evaluating terms into normal
form. Thus one could write the code generator just like in any functional language: by
sending in an environment and a syntax tree, and returning a new environment with an
instruction list:

fun

transStm : Env -> Stm -> EnvInstr ;

def

transStm env (Decl typ cont) = ...

transStm env (While (ELt a b) stm cont) = ...

transStm env (While exp stm cont) = ...

This would be cumbersome in practice, because GF does not have programming-language
facilities like built-in lists and tuples, or monads. Moreover, the compiler could no longer
be inverted into a decompiler, in the way true linearization can be inverted into a parser.

7 Parser generation

The whole GF part of the compiler (parser, type checker, Symbolic JVM generator) can
be run in the GF interpreter. The weakest point of the resulting compiler, by current
standards, is the parser. GF is a powerful grammar formalism, which needs a very
general parser, taking care of ambiguities and other problems that are typical of natural
languages but should be overcome in programming languages by design. The parser is
moreover run in an interpreter that takes the grammar (in a suitably compiled form) as
an argument.

Fortunately, it is easy to replace the generic, interpreting GF parser by a compiled
LR(1) parser. GF supports the translation of a concrete syntax into the Labelled BNF
(LBNF) format, which in turn can be translated to parser generator code (Happy, Bison,
or JavaCUP), by the BNF Converter [3]. The parser we are therefore using in the
compiler is a Haskell program generated by Happy [10].

We regard parser generation as a first step towards developing GF into a production-
quality compiler compiler. The efficiency of the parser is not the only relevant thing.
Another advantage of an LR(1) parser generator is that it performs an analysis on the
grammar finding conflicts, and provides a debugger. It may be difficult for a human
to predict how a context-free grammar performs at parsing; it is much more difficult to
do this for a grammar written in the abstract way that GF permits (cf. the example in
Appendix B).

The current version of the C grammar is ambiguous. GF’s own parser returns all
alternatives, whereas the parser generated by Happy rules out some of them by its normal
conflict handling policy. This means, in practice, that extra brackets are sometimes
needed to group staments together.

7.1 Another notation for higher-order abstract syntax

Describing variable bindings with higher-order abstract syntax is sometimes considered
unintuitive. Let us consider the declaration rule of C (without type dependencies for
simplicity):

14

fun Decl : Typ -> (Var -> Stm) -> Stm ;

lin Decl typ stm = {s = typ.s ++ stm.$0 ++ ";" ++stm.s} ;

Compare this with a corresponding LBNF rule (also using a continuation):

Decl. Stm ::= Typ Ident ";" Stm ;

To explain bindings attached to this rule, one can say, in natural language, that the iden-
tifier gets bound in the statement that follows. This means that syntax trees formed by
this rule do not have the form (Decl typ x stm), but the form (Decl typ (\x -> stm)).

One way to formalize the informal binding rules stated beside BNF rules is to use
profiles: data structures describing the way in which the logical arguments of the syntax
tree are represented by the linearized form. The declaration rule can be written using a
profile notation as follows:

Decl [1,(2)3]. Stm ::= Typ Ident ";" Stm ;

When compiling GF grammars into LBNF, we were forced to enrich LBNF by a (more
general) profile notation (cf. [16], Section 3.3). This suggested at the same time that
profiles could provide a user-fiendly notation for higher-order abstract syntax avoiding
the explicit use of lambda calculus.

8 Using the compiler

Our compiler is invoked, of course, by the command gfcc. It produces a JVM .class

file, by running the Jasmin bytecode assembler [11] on a Jasmin (.j) file:

% gfcc factorial.c

> > wrote file factorial.j

Generated: factorial.class

The Jasmin code is produced by a postprocessor, written in Haskell (Appendix E), from
the Symbolic JVM format that is produced by linearization. The reasons why actual
Jasmin is not generated by linearization are explained in Section 5.1 above.

In addition to the batch compiler, GF provides an interactive syntax editor, in which
C programs can be constructed by stepwise refinements, local changes, etc. [6]. The
user of the editor can work simultaneously on all languages involved. In our case, this
means that changes can be done both to the C code and to the JVM code, and they are
automatically carried over from one language to the other.

9 Related work

The theoretical ideas behind our compiler experiment are familiar from various sources.
Single-source language and compiler definitions can be built using attribute grammars
[7]. The use of dependent types in combination with higher-order abstract syntax has
been studied in various logical frameworks [4, 9, 14]. The addition of linearization rules
to type-theoretical abstract syntax is studied in [12], which also compares the method
with attribute grammars.

15

The idea of using a common abstract syntax for different languages was clearly ex-
posed by Landin [8]. The view of code generation as linearization is a central aspect of
the classic compiler textbook by Aho, Sethi, and Ullman [1]. The use of one and the
same grammar both for parsing and linearization is a guiding principle of unification-
based linguistic grammar formalisms [13]. Interactive editors derived from grammars
have been developed in various programming and proof assistants [17, 5, 9].

Even though the different ideas are well-known, we have not seen them used to-
gether to construct a complete compiler. In our view, putting these ideas together is
an attractive approach to compiling, since a compiler written in this way is completely
declarative, hence concise, and therefore easy to modify and extend. What is more, if
a new language construct is added, the GF type checker verifies that the addition is
propagated to all components of the compiler. As the implementation is declarative, it
is also self-documenting, since a human-readable grammar defines the syntax and static
semantics that is actually used in the implementation.

10 Conclusion

The gfcc compiler translates a representative fragment of C to JVM, and growing the
fragment does not necessarily pose any new kinds of problems. Using higher-order ab-
stract syntax and dependent types to describe the abstract syntax of C works fine, and
defining the concrete syntax of C on top of this using GF linearization machinery is
possible. To build a parser that is more efficient than GF’s generic one, GF offers code
generation for standard parser tools.

One result of the experiment is the beginning of a library for dealing with typical
programming language structures such as precedence. This library is exploited in the
parser generator, which maps certain parameters used into GF grammars into precedence
directives in labelled BNF grammars.

The most serious difficulty with JVM code generation by linearization is to maintain
a symbol table mapping variables to addresses. The solution we have chosen is to gen-
erate Symbolic JVM, that is, JVM with symbolic addresses, and translate the symbolic
addresses to (relative) memory locations by a postprocessor.

Since the postprocessor works uniformly for the whole Symbolic JVM, building a new
compiler to generate JVM should now be possible by just writing GF grammars. The
most immediate idea for developing GF as a compiler tool is to define a similar symbolic
format for an intermediate language, which uses three-operand code and virtual registers.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1988.

[2] L. Augustsson. Cayenne—a language with dependent types. In Proc. of ICFP’98.
ACM Press, September 1998.

[3] M. Forsberg and A. Ranta. BNF Converter Homepage.
http://www.cs.chalmers.se/~markus/BNFC/, 2002–2004.

16

[4] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. JACM,
40(1):143–184, 1993.

[5] G. Kahn, B. Lang, B. Mélèse, and E. Morcos. Metal: a formalism to specify for-
malisms. Science of Computer Programming, 3:151–188, 1983.

[6] J. Khegai, B. Nordström, and A. Ranta. Multilingual Syntax Editing in GF.
In A. Gelbukh, editor, Intelligent Text Processing and Computational Linguistics
(CICLing-2003), Mexico City, February 2003, volume 2588 of LNCS, pages 453–
464. Springer-Verlag, 2003.

[7] D. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2:127–145, 1968.

[8] P. Landin. The next 700 programming languages. Communications of the ACM,
9:157–166, 1966.

[9] L. Magnusson and B. Nordström. The ALF proof editor and its proof engine. In
Types for Proofs and Programs, LNCS 806, pages 213–237. Springer, 1994.

[10] S. Marlow. Happy, The Parser Generator for Haskell, 2001.
http://www.haskell.org/happy/.

[11] J. Meyer and T. Downing. Java Virtual Machine. O’Reilly, 1997.

[12] P. Mäenpää. Semantic BNF. In E. Gimenez and C. Paulin-Mohring, editors,
Types for Proofs and Programs, TYPES’96, volume 1512 of LNCS, pages 196–215.
Springer-Verlag, 1998.

[13] F. Pereira and S. Shieber. Prolog and Natural-Language Analysis. CSLI, Stanford,
1987.

[14] F. Pfenning. The Twelf Project. http://www-2.cs.cmu.edu/~twelf, 2002.

[15] A. Ranta. Grammatical Framework Homepage, 2002.
www.cs.chalmers.se/~aarne/GF/.

[16] A. Ranta. Grammatical Framework: A Type-theoretical Grammar Formalism. The
Journal of Functional Programming, 14(2):145–189, 2004.

[17] T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: a syntax-directed
programming environment. Commun. ACM, 24(9):563–573, 1981.

17

Appendix A: The abstract syntax

abstract Imper = PredefAbs ** {

cat

Program ;

Rec ListTyp ;

Typ ;

NumTyp ;

ListTyp ;

Fun ListTyp Typ ;

Body ListTyp ;

Stm ;

Exp Typ ;

Var Typ ;

ListExp ListTyp ;

fun

Empty : Program ;

Funct : (AS : ListTyp) -> (V : Typ) -> (Fun AS V -> Rec AS) -> Program ;

FunctNil : (V : Typ) -> Stm -> (Fun NilTyp V -> Program) -> Program ;

RecOne : (A : Typ) -> (Var A -> Stm) -> Program -> Rec (ConsTyp A NilTyp) ;

RecCons : (A : Typ) -> (AS : ListTyp) ->

(Var A -> Rec AS) -> Program -> Rec (ConsTyp A AS) ;

Decl : (A : Typ) -> (Var A -> Stm) -> Stm ;

Assign : (A : Typ) -> Var A -> Exp A -> Stm -> Stm ;

While : Exp (TNum TInt) -> Stm -> Stm -> Stm ;

IfElse : Exp (TNum TInt) -> Stm -> Stm -> Stm -> Stm ;

Block : Stm -> Stm -> Stm ;

Printf : (A : Typ) -> Exp A -> Stm -> Stm ;

Return : (A : Typ) -> Exp A -> Stm ;

Returnv : Stm ;

End : Stm ;

EVar : (A : Typ) -> Var A -> Exp A ;

EInt : Int -> Exp (TNum TInt) ;

EFloat : Int -> Int -> Exp (TNum TFloat) ;

ELt : (n : NumTyp) -> let Ex = Exp (TNum n) in Ex -> Ex -> Exp (TNum TInt) ;

EAdd, EMul, ESub : (n : NumTyp) -> let Ex = Exp (TNum n) in Ex -> Ex -> Ex ;

EAppNil : (V : Typ) -> Fun NilTyp V -> Exp V ;

EApp : (AS : ListTyp) -> (V : Typ) -> Fun AS V -> ListExp AS -> Exp V ;

TNum : NumTyp -> Typ ;

TInt, TFloat : NumTyp ;

NilTyp : ListTyp ;

ConsTyp : Typ -> ListTyp -> ListTyp ;

OneExp : (A : Typ) -> Exp A -> ListExp (ConsTyp A NilTyp) ;

ConsExp : (A : Typ) -> (AS : ListTyp) ->

Exp A -> ListExp AS -> ListExp (ConsTyp A AS) ;

}

18

Appendix B: The concrete syntax of C

concrete ImperC of Imper = open ResImper in {

flags lexer=codevars ; unlexer=code ; startcat=Program ;

lincat

Exp = PrecExp ;

Typ, NumTyp = {s,s2 : Str} ;

Rec = {s,s2,s3 : Str} ;

lin

Empty = ss [] ;

FunctNil val stm cont = ss (

val.s ++ cont.$0 ++ paren [] ++ "{" ++ stm.s ++ "}" ++ ";" ++ cont.s) ;

Funct args val rec = ss (

val.s ++ rec.$0 ++ paren rec.s2 ++ "{" ++ rec.s ++ "}" ++ ";" ++ rec.s3) ;

RecOne typ stm prg = stm ** {

s2 = typ.s ++ stm.$0 ;

s3 = prg.s

} ;

RecCons typ _ body prg = {

s = body.s ;

s2 = typ.s ++ body.$0 ++ "," ++ body.s2 ;

s3 = prg.s

} ;

Decl typ cont = continues (typ.s ++ cont.$0) cont ;

Assign _ x exp = continues (x.s ++ "=" ++ exp.s) ;

While exp loop = continue ("while" ++ paren exp.s ++ loop.s) ;

IfElse exp t f = continue ("if" ++ paren exp.s ++ t.s ++ "else" ++ f.s) ;

Block stm = continue ("{" ++ stm.s ++ "}") ;

Printf t e = continues ("printf" ++ paren (t.s2 ++ "," ++ e.s)) ;

Return _ exp = statement ("return" ++ exp.s) ;

Returnv = statement "return" ;

End = ss [] ;

EVar _ x = constant x.s ;

EInt n = constant n.s ;

EFloat a b = constant (a.s ++ "." ++ b.s) ;

EMul _ = infixL 3 "*" ;

EAdd _ = infixL 2 "+" ;

ESub _ = infixL 2 "-" ;

ELt _ = infixN 1 "<" ;

EAppNil val f = constant (f.s ++ paren []) ;

EApp args val f exps = constant (f.s ++ paren exps.s) ;

TNum t = t ;

TInt = {s = "int" ; s2 = "\"%d\""} ; TFloat = {s = "float" ; s2 = "\"%f\""} ;

NilTyp = ss [] ; ConsTyp = cc2 ;

OneExp _ e = e ; ConsExp _ _ e es = ss (e.s ++ "," ++ es.s) ;

}

19

Appendix C: The concrete syntax of JVM

concrete ImperJVM of Imper = open ResImper in {

flags lexer=codevars ; unlexer=code ; startcat=Program ;

lincat

Rec = {s,s2,s3 : Str} ; -- code, storage for locals, continuation

Stm = Instr ;

lin

Empty = ss [] ;

FunctNil val stm cont = ss (

".method" ++ "public" ++ "static" ++ cont.$0 ++ paren [] ++ val.s ++ ";" ++

".limit" ++ "locals" ++ stm.s2 ++ ";" ++

".limit" ++ "stack" ++ "1000" ++ ";" ++

stm.s ++

".end" ++ "method" ++ ";" ++ ";" ++

cont.s

) ;

Funct args val rec = ss (

".method" ++ "public" ++ "static" ++ rec.$0 ++ paren args.s ++ val.s ++ ";" ++

".limit" ++ "locals" ++ rec.s2 ++ ";" ++

".limit" ++ "stack" ++ "1000" ++ ";" ++

rec.s ++

".end" ++ "method" ++ ";" ++ ";" ++

rec.s3

) ;

RecOne typ stm prg = instrb typ.s (

["alloc"] ++ typ.s ++ stm.$0 ++ stm.s2) {s = stm.s ; s2 = stm.s2 ; s3 = prg.s};

RecCons typ _ body prg = instrb typ.s (

["alloc"] ++ typ.s ++ body.$0 ++ body.s2)

{s = body.s ; s2 = body.s2 ; s3 = prg.s};

Decl typ cont = instrb typ.s (

["alloc"] ++ typ.s ++ cont.$0

) cont ;

Assign t x exp = instrc (exp.s ++ t.s ++ "_store" ++ x.s) ;

While exp loop =

let

test = "TEST_" ++ loop.s2 ;

end = "END_" ++ loop.s2

in instrl (

"label" ++ test ++ ";" ++

exp.s ++

"ifeq" ++ end ++ ";" ++

loop.s ++

"goto" ++ test ++ ";" ++

"label" ++ end

20

) ;

IfElse exp t f =

let

false = "FALSE_" ++ t.s2 ++ f.s2 ;

true = "TRUE_" ++ t.s2 ++ f.s2

in instrl (

exp.s ++

"ifeq" ++ false ++ ";" ++

t.s ++

"goto" ++ true ++ ";" ++

"label" ++ false ++ ";" ++

f.s ++

"label" ++ true

) ;

Block stm = instrc stm.s ;

Printf t e = instrc (e.s ++ "invokestatic" ++ t.s ++ "runtime/printf" ++ paren (t.s) ++ "v") ;

Return t exp = instr (exp.s ++ t.s ++ "_return") ;

Returnv = instr "return" ;

End = ss [] ** {s2,s3 = []} ;

EVar t x = instr (t.s ++ "_load" ++ x.s) ;

EInt n = instr ("ldc" ++ n.s) ;

EFloat a b = instr ("ldc" ++ a.s ++ "." ++ b.s) ;

EAdd = binopt "_add" ;

ESub = binopt "_sub" ;

EMul = binopt "_mul" ;

ELt t = binop ("invokestatic" ++ t.s ++ "runtime/lt" ++ paren (t.s ++ t.s) ++ "i") ;

EAppNil val f = instr (

"invokestatic" ++ f.s ++ paren [] ++ val.s

) ;

EApp args val f exps = instr (

exps.s ++

"invokestatic" ++ f.s ++ paren args.s ++ val.s

) ;

TNum t = t ;

TInt = ss "i" ;

TFloat = ss "f" ;

NilTyp = ss [] ;

ConsTyp = cc2 ;

OneExp _ e = e ;

ConsExp _ _ = cc2 ;

}

21

Appendix D: Auxiliary operations for concrete syntax

resource ResImper = open Predef in {

-- precedence

param PAssoc = PN | PL | PR ;

oper

Prec : PType = Predef.Ints 4 ;

PrecExp : Type = {s : Str ; p : Prec ; a : PAssoc} ;

mkPrec : Prec -> PAssoc -> Str -> PrecExp = \p,a,f ->

{s = f ; p = p ; a = a} ;

usePrec : PrecExp -> Prec -> Str = \x,p ->

case <<x.p,p> : Prec * Prec> of {

<3,4> | <2,3> | <2,4> => paren x.s ;

<1,1> | <1,0> | <0,0> => x.s ;

<1,_> | <0,_> => paren x.s ;

_ => x.s

} ;

constant : Str -> PrecExp = mkPrec 4 PN ;

infixN : Prec -> Str -> (_,_ : PrecExp) -> PrecExp = \p,f,x,y ->

mkPrec p PN (usePrec x (nextPrec p) ++ f ++ usePrec y (nextPrec p)) ;

infixL : Prec -> Str -> (_,_ : PrecExp) -> PrecExp = \p,f,x,y ->

mkPrec p PL (usePrec x p ++ f ++ usePrec y (nextPrec p)) ;

infixR : Prec -> Str -> (_,_ : PrecExp) -> PrecExp = \p,f,x,y ->

mkPrec p PR (usePrec x (nextPrec p) ++ f ++ usePrec y p) ;

nextPrec : Prec -> Prec = \p -> case <p : Prec> of {

4 => 4 ;

n => Predef.plus n 1

} ;

-- string operations

SS : Type = {s : Str} ;

ss : Str -> SS = \s -> {s = s} ;

cc2 : (_,_ : SS) -> SS = \x,y -> ss (x.s ++ y.s) ;

paren : Str -> Str = \str -> "(" ++ str ++ ")" ;

continues : Str -> SS -> SS = \s,t -> ss (s ++ ";" ++ t.s) ;

continue : Str -> SS -> SS = \s,t -> ss (s ++ t.s) ;

statement : Str -> SS = \s -> ss (s ++ ";");

-- operations for JVM

22

Instr : Type = {s,s2,s3 : Str} ; -- code, variables, labels

instr : Str -> Instr = \s ->

statement s ** {s2,s3 = []} ;

instrc : Str -> Instr -> Instr = \s,i ->

ss (s ++ ";" ++ i.s) ** {s2 = i.s2 ; s3 = i.s3} ;

instrl : Str -> Instr -> Instr = \s,i ->

ss (s ++ ";" ++ i.s) ** {s2 = i.s2 ; s3 = "L" ++ i.s3} ;

instrb : Str -> Str -> Instr -> Instr = \v,s,i ->

ss (s ++ ";" ++ i.s) ** {s2 = v ++ i.s2 ; s3 = i.s3} ;

binop : Str -> SS -> SS -> SS = \op, x, y ->

ss (x.s ++ y.s ++ op ++ ";") ;

binopt : Str -> SS -> SS -> SS -> SS = \op, t ->

binop (t.s ++ op) ;

}

23

Appendix E: Translation of Symbolic JVM to Jasmin

module Main where

import Char

import System

main :: IO ()

main = do

jvm:src:_ <- getArgs

s <- readFile jvm

let cls = takeWhile (/=’.’) src

let obj = cls ++ ".j"

writeFile obj $ boilerplate cls

appendFile obj $ mkJVM cls s

putStrLn $ "wrote file " ++ obj

mkJVM :: String -> String -> String

mkJVM cls = unlines . reverse . fst . foldl trans ([],([],0)) . lines where

trans (code,(env,v)) s = case words s of

".method":p:s:f:ns

| f == "main" -> (".method public static main([Ljava/lang/String;)V":code,([],1))

| otherwise -> (unwords [".method",p,s, f ++ typesig ns] : code,([],0))

"alloc":t:x:_ -> (("; " ++ s):code, ((x,v):env, v + size t))

".limit":"locals":ns -> chCode (".limit locals " ++ show (length ns))

"invokestatic":t:f:ns | take 8 f == "runtime/" ->

chCode $ "invokestatic " ++ "runtime/" ++ t ++ drop 8 f ++ typesig ns

"invokestatic":f:ns -> chCode $ "invokestatic " ++ cls ++ "/" ++ f ++ typesig ns

"alloc":ns -> chCode $ "; " ++ s

t:(’_’:instr):[";"] -> chCode $ t ++ instr

t:(’_’:instr):x:_ -> chCode $ t ++ instr ++ " " ++ look x

"goto":ns -> chCode $ "goto " ++ label ns

"ifeq":ns -> chCode $ "ifeq " ++ label ns

"label":ns -> chCode $ label ns ++ ":"

";":[] -> chCode ""

_ -> chCode s

where

chCode c = (c:code,(env,v))

look x = maybe (error $ x ++ show env) show $ lookup x env

typesig = init . map toUpper . concat

label = init . concat

size t = case t of

"d" -> 2

_ -> 1

boilerplate :: String -> String

boilerplate cls = unlines [

".class public " ++ cls, ".super java/lang/Object",

".method public <init>()V","aload_0",

"invokenonvirtual java/lang/Object/<init>()V","return",

".end method"]

24

