
Tutorial Shadow Algorithms for Real-time Rendering

Basic Shadow and Reflection
Techniques in Real-Time
Shadow Maps and Shadow Volumes

Ulf Assarsson

1

Why shadows?
 More realism and atmosphere

2 Doom Eternal – shadow maps

Another example

Blade of Darkness

Doom 3 – Shadow volumes3

Tutorial Shadow Algorithms for Real-time Rendering
4

Tutorial Shadow Algorithms for Real-time Rendering

Why shadows?

 More clues about spatial relationships

 Orientation & gameplay

5

Receiver

⚫ Light sources

⚫ Shadow creators and receivers

Light source

Creator

Creator and

receiver

Definitions

6

⚫ Light source types

point source

umbra

area source

umbrapenumbra

Definitions

7

Example: hard vs soft shadows

8

Store precomputed shadows in
textures

Images courtesy of Kasper Høy Nielsen.
9

Tutorial Shadow Algorithms for Real-time Rendering

 As separate objects (like Peter Pan's shadow)

 E.g., a drop shadow:

 As volumes of space that are dark

 Shadow Volumes [Franklin Crow 77]

 As places not seen by a light source looking at the scene

 Shadow Maps [Lance Williams 78]

Ways of thinking about shadows

10

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps

Basic Algorithm – the simple explanation:

Idea:

 Render image from light source

 Represents geometry in light

 Render from camera

 Test if rendered point is

 visible in the light’s view

 If so -> point in light

 Else -> point in shadow

Shadow Map (light’s view)
11

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps

Light’s view
(Shadow Map)

Camera’s view

Point not
represented in
shadow map (point is
behind box)

12

Tutorial Shadow Algorithms for Real-time Rendering

Depth Comparison

Shadow Map

Camera’s view

A fragment is in shadow if
its depth is greater than
the corresponding depth
value in the shadow map

Render depth image from light

13

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps

 Pros

 Very efficient: “This is as fast as it gets”

 Cons…

14

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps - Problems

 Low Shadow Map resolution results in jagged shadows

from viewpoint from light

15

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps - Problems

In addition:

 A tolerance threshold (bias) needs to be tuned for each
scene for the depth comparison

16

Tutorial Shadow Algorithms for Real-time Rendering

Bias

 Need a tolerance threshold
(depth bias) when comparing
depths to avoid surface self
shadowing

Shadow map sample

Shadow map

Surface

View sample
bias

17

Tutorial Shadow Algorithms for Real-time Rendering

Bias

 Need a tolerance threshold
(depth bias) when comparing
depths to avoid surface self
shadowing

Shadow map sample

Shadow map

Surface

View sample
bias

18

Tutorial Shadow Algorithms for Real-time Rendering

Bias

 Need a tolerance threshold
(depth bias) when comparing
depths to avoid surface self
shadowing

Shadow map sample

Shadow map

Surface

View samplebias

Surface that
should be in
shadow

19

Ameliorating the Bias
 Midpoint Shadow Maps [Woo 92]

 For closed objects, just 1 pass is needed

 http://www.codersnotes.com/notes/midpoint/

Shadow map sample

Shadow map

View sample

Further methods (even more accurate):

 Second Depth Shadow Mapping [Wang
and Molnar94]

 Dual Depth Layer [Weiskopf and Ertl 04]

 Neither solves the problem completely
but both improve a lot!

 But need depth peeling of 1st & 2nd layer!

midpoint

20

http://www.codersnotes.com/notes/midpoint/

Ameliorating the Bias
 Midpoint Shadow Maps [Woo 92]

 For closed objects, just 1 pass is needed

 http://www.codersnotes.com/notes/midpoint/

Shadow map sample

Shadow map

View sample

Further methods (even more accurate):

 Second Depth Shadow Mapping [Wang
and Molnar94]

 Dual Depth Layer [Weiskopf and Ertl 04]

 Neither solves the problem completely
but both improve a lot!

 But need depth peeling of 1st & 2nd layer!

midpoint

21

http://www.codersnotes.com/notes/midpoint/

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps
shadowmapexample2.TIF

22

file://Users/ulfassarsson/Desktop/Shadow Course/Slides/HWShadowmapsSimple.jnlp

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps - Summary

Shadow Map Algorithm:

 Render a z-buffer from the light source

 Represents geometry in light

 Render from camera

 For every fragment:

 transform its 3D-pos into
shadow map (light space)

 If depth greater-> point in shadow

 Else -> point in light

 Use a bias at the comparison
Shadow Map (=depth buffer)

23

Tutorial Shadow Algorithms for Real-time Rendering

Percentage Closer Filtering

24

Cascaded Shadow Maps

25

To hide discrete resolution
changes, let SMs overlap a bit and
blend result from both at overlap.

Aligned SMs allow resuse
between frames for small

cam movements...

 You need high SM resolution close
to the camera and can use lower
further away. So create a separate
SMs per depth region of the view
frustum, with higher spatial
resolution closer to camera.

 Optionally:

... as opposed to non-aligned
SM (if the scene is static).

26

Super high resolution shadow maps and fast 9x9 tap (pcf) filtering using Sparse
Voxel DAGs:

SM, 165 lights, 4ms/frame, ~300x lossless
compression

27

Or using Sparse Voxel Quadtrees:
• see “Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows”, by Leonardo

Scandolo, Pablo Bauszat, and Elmar Eisemann

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes

 Concept

 Create volumes of “space in shadow” from each triangle

 Each triangle creates 3 quads that extends to infinity

28

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes

 To test a point, count how many shadow volumes it is
located within. One or more means the point is in
shadow

29

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes

 To test a point, count how many shadow volumes it is
located within. One or more means the point is in
shadow

30

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes

 To test a point, count how many shadow volumes it is
located within. One or more means the point is in
shadow

0
+2

31

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes - concept

 A counter per pixel

 If we go through more frontfacing than backfacing
polygons, then the point is in shadow

0
+2

+ + - -

32

Tutorial Shadow Algorithms for Real-time Rendering

Shadow volume algorithm uses
stencil buffer

 Stencil what?

 Is just another buffer (often 8 bits per pixel)

 When rendering to it, we can add, subtract, etc

 Then, the resulting image can be used to mask off
subsequent rendering

Stencil

Buffer

Mask

re
su

ltRendered

image

33

To use stencil buffer as mask:
glStencilFunc(GL_GREATER, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP):

To create stencil values:
glStencilFunc(GL_ALWAYS, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR):

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes - concept

 Perform counting with the stencil buffer

 Render front facing shadow quads to the stencil buffer

 Inc stencil value, since those represents entering shadow volume

 Render back facing shadow quads to the stencil buffer

 Dec stencil value, since those represents exiting shadow volume

0
0

34

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes - concept

 Perform counting with the stencil buffer

 Render front facing shadow quads to the stencil buffer

 Inc stencil value, since those represents entering shadow volume

 Render back facing shadow quads to the stencil buffer

 Dec stencil value, since those represents exiting shadow volume

+1
+1

+

• No updating of z-buffer

35

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes - concept

 Perform counting with the stencil buffer

 Render front facing shadow quads to the stencil buffer

 Inc stencil value, since those represents entering shadow volume

 Render back facing shadow quads to the stencil buffer

 Dec stencil value, since those represents exiting shadow volume

+2
+2

+ +

• No updating of z-buffer

36

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes - concept

 Perform counting with the stencil buffer

 Render front facing shadow quads to the stencil buffer

 Inc stencil value, since those represents entering shadow volume

 Render back facing shadow quads to the stencil buffer

 Dec stencil value, since those represents exiting shadow volume

+1
+2

+
-

• No updating of z-buffer
• Z-test is enabled as usual

37

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes - concept

 Perform counting with the stencil buffer

 Render front facing shadow quads to the stencil buffer

 Inc stencil value, since those represents entering shadow volume

 Render back facing shadow quads to the stencil buffer

 Dec stencil value, since those represents exiting shadow volume

0
+2

+ +
- -

• No updating of z-buffer
• Z-test is enabled as usual

38

Tutorial Shadow Algorithms for Real-time Rendering
39

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes with the Stencil Buffer

 A three pass process:
 1st pass: Render ambient lighting

 2nd pass:

 Draw to stencil buffer only
– Turn off updating of z-buffer and writing to color buffer but still

use standard depth test

– Set stencil operation to

» incrementing stencil buffer count for frontfacing shadow
volume quads, and

» decrementing stencil buffer count for backfacing shadow
volume quads

 use glStencilOpSeparate(…)

 3rd pass: Render diffuse and specular where stencil buffer is 0.

40

Tutorial Shadow Algorithms for Real-time Rendering

Eye Location Problem

 If the eye is located inside one or more shadow
volumes, then the count will be wrong

 Solution:

 Offset stencil buffer with the #shadow volumes that the eye is
located within

 Or modify the way we do the counting…

+1
-10 0

41

Tutorial Shadow Algorithms for Real-time Rendering

The Z-fail Algorithm
 By [Carmack00] and [Bilodeau and Songy 99]

 “Carmacks Reverse”

 Count to infinity instead of to the eye

 We can choose any reference location for the counting

 A point in light avoids any offset

 Infinity is always in light – if we cap the shadow volumes at
infinity

+2
0

Simply invert z-test and
invert stencil inc/dec

Near capping

Far capping 42

Tutorial Shadow Algorithms for Real-time Rendering

Compared to Z-pass:

Invert z-test

Invert stencil inc/dec

I.e., count to infinity instead of from eye.

43

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes from Silhouette Edges

Merging shadow volumes:

 An interior edge (non-silhouette edge as seen from the light
position) creates two shadow quads that cancel each other out:

44

This interior edge makes
two quads, which cancel out

Shadow Volumes from Silhouette Edges

45

Merging shadow volumes:

 An interior edge (non-silhouette edge as seen from the light
position) creates two shadow quads that cancel out each other:

 Thus, popular to create a shadow quad only per silhouette edge
as seen from the light source.

 (Slightly more care needed for non-closed objects…)

 Avoids rendering of many useless shadow quads

Example of silhouettes from light position

Shadow Volumes from Silhouette Edges

47

This works like a
charm for closed
objects.
What about non-
closed objects?

Merging shadow volumes:

 An interior edge (non-silhouette edge as seen from the light
position) creates two shadow quads that cancel out each other:

 Thus, popular to create a shadow quad only per silhouette edge
as seen from the light source.

 (Slightly more care needed for non-closed objects…)

 Avoids rendering of many useless shadow quads

 A real example:

Shadow Volumes from Silhouette Edges

It is a misconception that objects need to be closed to
remove non-silhouette edges.

+1 0

closed object

48

Shadow Volumes from Silhouette Edges

It is a misconception that objects need to be closed to
remove non-silhouette edges.

0 -1
+1

Non-closed object

49

Shadow Volumes from Silhouette Edges

It is a misconception that objects need to be closed to
remove non-silhouette edges.

Fixed by [Bergeron 86]

Observation:

 Silhouette edges with two adjacent
triangles should actually create shadow
quads that inc/dec count by 2

 Open silhouette edges create shadow
quads that inc/dec count by one

+2

-1 -1

+1 0
+2

Works identically
for Z-fail

50

Stencil value >0
means shadow

Shadow Volumes from Silhouette Edges

For general objects with edges that can be shared by
many triangles: Preprocess (or in geometry shader):

 For each triangle edge e in scene:

 Choose edge e’s direction

 Create e’s shadow volume quad

 Let e have a counter ce = 0

 For each adjacent triangle, t:

 Inc/dec ce depending on if triangle t’s created
shadow volume quad would have same/opposite
facing of e’s quad.

 Add quad {e, ce} to list L, if ce != 0.

At rendering:

 Render all quads in L, and inc/dec stencil by the quad’s ce
depending on if quad is front/back-facing eye.

 For 100% robustness, see our book Real-Time Shadows

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes - Summary

 Pros:

 High quality

 Cons:

 OVERDRAW

52

Tutorial Shadow Algorithms for Real-time Rendering

Culling and Clamping

 Culling of Shadow Volumes [Lloyd et al. 2004][Stich et
al. 2007]

 Culling of Shadow Casters if it is located totally within shadow

 Tested against a shadow depth map

53

Bonus

Tutorial Shadow Algorithms for Real-time Rendering

Culling and Clamping

 Clamping of Shadow Volumes [Lloyd et al.
2004][Eisemann and Decoret 2006]
 Idea: Only render parts of shadow quads that affects a

shadow receiver
 Tested against AABB around shadow receivers

54

Bonus

Tutorial Shadow Algorithms for Real-time Rendering

Culling and Clamping

 Culling of Shadow Volumes [Lloyd et al.
2004][Eisemann and Decoret 2006]

 Receiver Culling

▪ Idea: Cull part of shadow volumes where shadow receivers
are not visible from the eye

55

Bonus

Tutorial Shadow Algorithms for Real-time Rendering

Culling and Clamping

Illustrates reduced depth complexity when using
Culling and Clamping

56

Bonus

Volumetric Lighting

57

+ +- -

 Shadow volumes can be used for “God
rays”/Shafts of light/volumetric
lighting/participating media.
 Volumetric Shadows using Polygonal Light Volumes,

Billeter et al, 2010.

 Part of NVIDIA Volumetric Lighting SDK

Fallout 4

 For correctness, extrude light
volumes from the shadow map, to
avoid overlapping volumes:

Correct air-light
integration

- +

Extruding: connect shadow map
samples with triangles and cap with the
left+right+top+bottom frustum planes
 → encloses volume in light

Fallout 4

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps vs Shadow Volumes

Shadow Maps Shadow Volumes

 Good: shadows are sharp. Handles omni-
directional lights.

 Bad: 3 passes, shadow polygons must be
generated and rendered → lots of
polygons & fill

 Solution: culling & clamping (or per-
triangle SV using hierarchical
shadow buffer)

 Good: Handles any rasterizable geometry,
constant cost regardless of complexity, map
can sometimes be reused. Very fast.

 Bad: Frustum limited. Jagged shadows if res
too low, biasing headaches.

 Solution:

 6 SM (cube map), high res., use
filtering (huge topic)

59

 Shadow volumes: popular in games up to ~2005,
e.g.,
 DOOM 3, 2004.

 Far Cry (shadow volumes are used indoors, shadow maps -
outdoors), 2004.

 The Chronicles of Riddick: Escape from Butcher Bay. 2004.

 Spiderman 3 (Activision), 2007.

 Shadow maps are more popular today due to speed and
ease of filtering for soft-shadows.
 E.g., DOOM (5) Eternal, 2020. 4096x8196px 24-bit shadow

map.

60

Shadow Maps vs Shadow Volumes

61

The future – ray traced shadows?
 For only few point lights, shadow maps are attractive due to speed.

 For many lights or area/volumetric lights, tracing shadow rays + AI denoising is attractive.
 E.g., for thousands/millions of lights with a few shadow rays per pixel, see versions of the “ReSTIR”

method. Trick: weight shadow-ray samples smarter (importance sampling), incl. for adjacent pixels and
frames. See for instance: https://www.youtube.com/watch?v=gsZiJeaMO48&list=LL&index=1

 But GPU ray tracing is still expensive for real time, so…

https://www.youtube.com/watch?v=gsZiJeaMO48&list=LL&index=1

Reflections

62

Misc

⚫ Clamp the minimum (finest) lod level to the

amount of blur you need.

E.g., via

• glTexParameterf(GL_TEXTURE_CUBE_MAP_ARB,

GL_TEXTURE_MIN_LOD, lambda);

• or control it manually in your shader:

• lod=max(min_lod, lod_level);

• textureLod(tex, uv, lod);

63

Planar reflections

⚫ We’ve already done reflections in curved surfaces with environment

mapping. But the env.map is assumed to have an infinite radius, such

that only the reflection ray’s direction (not origin) matters. Hence…

⚫ …Environment maps does not work well for reflections in planar surfaces:

⚫ Parallax corrected cube maps fix this, but has its own problems. Ray

tracing solves all but is slower. Purely planar reflections are actually easy
to get by reflecting the geometry or camera as we will see on the next

slide… 64

Standard

cube map

Parallax

corrected

For two

adjacent

screen pixels,

the cube map

returns a too

small uv

change.

Hence the

reflection will

be smeared

out.

(smear in xy) (no smear)

Planar reflections

⚫ Assume plane is z=0

⚫ Then apply a scaling matrix S(1,1,-1);

⚫ Effect:

z

65

Planar reflections

⚫ Backfacing becomes front facing!

⚫ Lights should be reflected as well

⚫ (May need to clip using stencil buffer)

⚫ See example on clipping:

66

Planar reflections

⚫ How should you render?

⚫ 1) the reflective ground plane polygons

into the stencil buffer

⚫ 2) the scaled (1,1,-1) model, but mask

with stencil buffer

– Reflect light pos as well

– Use front face culling

⚫ 3) the ground plane (semi-transparent)

⚫ 4) the unscaled model

67

Important:

• render scaled (1,1,-1)

model

• with reflected ligh pos.

• using front face culling

68

Or reflect camera position
instead of the object:

• Render reflection:

1. Render reflective plane to stencil buffer

2. Reflect camera including camera axes  The important part!

3. Set user clip plane in mirror plane to cull anything between mirror and

reflected camera

4. Render scene from reflected camera.

• Render scene as normal from original camera

R
ig

h
t-h

a
n

d
 s

id
e

d

c
o

o
rd

in
a

te
 s

y
s
te

m

L
e

ft
-h

a
n

d
 s

id
e

d

c
o

o
rd

in
a

te
 s

y
s
te

m

Im
ag

e
co

u
rt

es
y
 o

f
K

as
p
er

 H
o
ey

 N
ie

ls
e
n

1. Render mirror to

stencil buffer

2. Reflect camera

(including cam axes)

3. Set user clip plane in

mirror plane to cull

anything between

mirror and reflected

camera

4. Render scene to

screen.

69

A real example:

Study Questions

⚫ What is “Planar shadows”

– Answer: you project the objects’ triangles onto the

plane and draw them with dark color.

⚫ Explain shadow maps

⚫ Explain shadow volumes

– Both z-pass and z-fail

⚫ What are the pros and cons of shadow maps

vs. shadow volumes?

⚫ Why are environment maps problematic for

planar reflections?

⚫ How can you render planar reflections?
70

Bonus slides…

71

Screen-space Ambient Occlusion

72

Without SSAO With SSAO

Use the z buffer to, for each pixel,

estimate how much of the hemisphere

that is non-blocked for incoming light.

(See Labs – SSAO Project)

Screen-space Ambient Occlusion

73

Beyond Programmable Shading 74

Deep Shadow Maps

▪ Pixar

– Lokovic and Veach,
Siggraph 2000.

– Minutes per frame

– Monster’s Inc, 2001

depth

v
is

ib
il

it
y

Each shadow-map texel holds a
shadow/visibility function of depth from light.

Beyond Programmable Shading 75

Images from: Tom Lokovic and Erich Veach, “Deep Shadow

Maps”, pp 385-392, Siggraph 2000.

Importance of Shadows

Beyond Programmable Shading 76

Importance of Shadows

With hair self shadowing

Without hair self shadowing

Beyond Programmable Shading 77

Deep shadow maps
More examples

77

Beyond Programmable Shading 78

Red Dead Redemption 2 (2018)

Beyond Programmable Shading 79

Real time hair rendering

Two main challenges

Self shadowing

• Standard shadowing techniques fail
• Shadow Maps => aliasing at sillhouette edges

• Shadow Volumes => overdraw proportional to the number

of sillhouette edges

• Hair is ALL sillhouette edges

• Neither technique handles transparency

Transparency
• Each strand should contribute very little to a pixel

(~1%)

• Hair strands are actually refractive and at least some

transparency effect is required

• Alpha blending works very well to handle this

Beyond Programmable Shading 80

Hair rendered without alpha blending. Hair rendered with alpha blending (=

0.2).

Importance of Transparency

Beyond Programmable Shading 81

Real time hair rendering

The two problems are quite similar

For shadows, we want to

know how much the hair

fragments, in front, blocks the

light

- Can be solved by sorting

For alpha blending, we need

the hair strands sorted in

back-to-front order

Transparent solid objects:

▪ Shadow Volumes:

- constant transparency per object [Kim and Turk ‘08]

- Textured transparency: Per-triangle shadow volumes [Sintorn et al. ‘11]

▪ Shadow Maps

- Layered Shadow Maps

- Stochastic transparency [Sintorn et al.]

Hair and Smoke:

▪ Deep Shadow Maps [Lokovic and Veach 2000]

- Opacity Shadow Maps [Kim and Neumann ‘01]

- Occupancy Maps [Sintorn and Assarsson, ‘09]

- Slice Maps [Dong ‘04, Eisemann ‘06,’08]

- Adaptive Volumetric Shadow Maps [Salvi ’10]

- Fourier Opacity Mapping [Jansen and Bavoil ‘10]

Shadows from scattering in Participating Media

▪ Real-Time Single Scattering in Homogeneous Participating Media

- Ray-Marching based approaches

- Shadow-Volume based approaches

▪ Real-Time Multiple Scattering in Homogeneous Participating Media

Transparent Media

(“Volumetric Shadows”):depth

v
is

ib
il

it
y

Deep Shadow Maps [Lokovic and Veach 2000]

• Draw all hair strands

from lights viewpoint

• Compute and store a

visibility function per

shadow map pixel.

• The visibility function

represents how much

the shadow increases

with distance from light

• …and is compressed to

a piecewise linear

function of depth

Beyond Programmable Shading 83

Opacity Maps

▪ Build a 3d texture (=3D grid = 3D lookup table)
where each cell represents the amount of shadow
at a certain distance from light

Essentially a 3D-grid with shadow

values.

Each slice: 512x512 texels

256 slices

• Sort hair into 256 slices.

• Render each slice as

 512x512 texels

• For each texel -> count

 shadowing strands in front

 of light source

Beyond Programmable Shading 84

Demo

▪ Particle Shadow Mapping

▪ by Jansen and Bavoil, GDC March 2013

▪ Using SV_RenderTargetArrayIndex

Shadows from semi-transparent objects
Particle Shadow Mapping

depth

v
is

ib
il

it
y

1 2 3 4

Render target layer

Per SM texel, precompute a visibility-function on depth

(in separate real-time rendering pass). Then query this

function when adding shadow-value for fragment.

Transparent solid objects:

▪ Shadow Volumes:

- constant transparency per object [Kim and Turk ‘08]

- Textured transparency: Per-triangle shadow volumes [Sintorn et al. ‘11]

▪ Shadow Maps

- Layered Shadow Maps

- Stochastic transparency [Sintorn et al.]

Hair and Smoke:

▪ Deep Shadow Maps [Lokovic and Veach 2000]

- Opacity Shadow Maps [Kim and Neumann ‘01]

- Occupancy Maps [Sintorn and Assarsson, ‘09]

- Slice Maps [Dong ‘04, Eisemann ‘06,’08]

- Adaptive Volumetric Shadow Maps [Salvi ’10]

- Fourier Opacity Mapping [Jansen and Bavoil ‘10]

Shadows from scattering in Participating Media

▪ Real-Time Single Scattering in Homogeneous Participating Media

- Ray-Marching based approaches

- Shadow-Volume based approaches

▪ Real-Time Multiple Scattering in Homogeneous Participating Media

Transparent Media – Fourier Opacity Maps

(“Volumetric Shadows”):

E.g., one method for all:

⚫ Moment Shadow Maps for Single Scattering, Soft Shadows and

Translucent Occluders, Christoph Peters et al., 2016.

Or more streamlined methods:
Transparent solid objects:

▪ Shadow Volumes:

- Textured transparency: Per-triangle shadow volumes [Sintorn et al. ‘11]

– Shadow Maps

- Layered Shadow Maps

- Stochastic transparency [Sintorn et al.]

 Hair and Smoke:
– Deep Shadow Maps [Lokovic and Veach 2000]

- Opacity Shadow Maps [Kim and Neumann ‘01]

- Occupancy Maps [Sintorn and Assarsson, ‘09]

- Fourier Opacity Mapping [Jansen and Bavoil ‘10]

 Shadows from scattering in Participating Media
▪ Real-Time Single Scattering in Homogeneous Participating Media

- Ray-Marching based approaches

- Shadow-Volume based approaches

- Our version is part of NVIDIA SDK

▪ Real-Time Multiple Scattering in Homogeneous Participating Media

But AI is rapidly approaching for most of these tasks

and there is lot’s of new cool things to do!

Transparent Media

Volumetric Shadows:

E.g., one method for all:

⚫ Moment Shadow Maps for Single Scattering, Soft Shadows and

Translucent Occluders, Christoph Peters et al., 2016.

Or more streamlined methods:
Transparent solid objects:

▪ Shadow Volumes:

- Textured transparency: Per-triangle shadow volumes [Sintorn et al. ‘11]

– Shadow Maps

- Layered Shadow Maps

- Stochastic transparency [Sintorn et al.]

 Hair and Smoke:
– Deep Shadow Maps [Lokovic and Veach 2000]

- Opacity Shadow Maps [Kim and Neumann ‘01]

- Occupancy Maps [Sintorn and Assarsson, ‘09]

- Fourier Opacity Mapping [Jansen and Bavoil ‘10]

 Shadows from scattering in Participating Media
▪ Real-Time Single Scattering in Homogeneous Participating Media

- Ray-Marching based approaches

- Shadow-Volume based approaches

- Our version is part of NVIDIA SDK

▪ Real-Time Multiple Scattering in Homogeneous Participating Media

But AI is rapidly approaching for most of these tasks

and there is lot’s of new cool things to do!

Transparent Media

Volumetric Shadows:

However, several of these methods are relatively old, and there is

an apparent lack of newer faster more general real-time

methods.

RTX ray tracing can be made general but is still expensive.

AI methods can be made fast, but they tend to be specialized on

individual effects, to be both fast and accurate.

Real-time Hair using AI

Stochastic
transparency +
stochastic shadow
map

Our real-time DNN “Ground truth”

Stochastic sampling resembles dithering in
a way. Transparency or depth is sampled
stochastically, storing 1 sample per pixel,

where probability is proportional to the
sample’s occlusion by closer semi-
transparent layers.

	Standardabschnitt
	Slide 1: Basic Shadow and Reflection Techniques in Real-Time
	Slide 2: Why shadows?
	Slide 3: Another example
	Slide 4
	Slide 5: Why shadows?
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Store precomputed shadows in textures
	Slide 10
	Slide 11: Shadow Maps
	Slide 12: Shadow Maps
	Slide 13: Depth Comparison
	Slide 14: Shadow Maps
	Slide 15: Shadow Maps - Problems
	Slide 16: Shadow Maps - Problems
	Slide 17: Bias
	Slide 18: Bias
	Slide 19: Bias
	Slide 20: Ameliorating the Bias
	Slide 21: Ameliorating the Bias
	Slide 22: Shadow Maps
	Slide 23: Shadow Maps - Summary
	Slide 24: Percentage Closer Filtering
	Slide 25: Cascaded Shadow Maps
	Slide 26
	Slide 27: SM, 165 lights, 4ms/frame, ~300x lossless compression
	Slide 28: Shadow Volumes
	Slide 29: Shadow Volumes
	Slide 30: Shadow Volumes
	Slide 31: Shadow Volumes
	Slide 32: Shadow Volumes - concept
	Slide 33: Shadow volume algorithm uses stencil buffer
	Slide 34: Shadow Volumes - concept
	Slide 35: Shadow Volumes - concept
	Slide 36: Shadow Volumes - concept
	Slide 37: Shadow Volumes - concept
	Slide 38: Shadow Volumes - concept
	Slide 39
	Slide 40: Shadow Volumes with the Stencil Buffer
	Slide 41: Eye Location Problem
	Slide 42: The Z-fail Algorithm
	Slide 43
	Slide 44: Shadow Volumes from Silhouette Edges
	Slide 45: Shadow Volumes from Silhouette Edges
	Slide 46: Example of silhouettes from light position
	Slide 47: Shadow Volumes from Silhouette Edges
	Slide 48: Shadow Volumes from Silhouette Edges
	Slide 49: Shadow Volumes from Silhouette Edges
	Slide 50: Shadow Volumes from Silhouette Edges
	Slide 51: Shadow Volumes from Silhouette Edges
	Slide 52: Shadow Volumes - Summary
	Slide 53: Culling and Clamping
	Slide 54: Culling and Clamping
	Slide 55: Culling and Clamping
	Slide 56: Culling and Clamping
	Slide 57: Volumetric Lighting
	Slide 58
	Slide 59: Shadow Maps vs Shadow Volumes
	Slide 60: Shadow Maps vs Shadow Volumes
	Slide 61: The future – ray traced shadows?
	Slide 62: Reflections
	Slide 63: Misc
	Slide 64: Planar reflections
	Slide 65: Planar reflections
	Slide 66: Planar reflections
	Slide 67: Planar reflections
	Slide 68: Or reflect camera position instead of the object:
	Slide 69
	Slide 70: Study Questions
	Slide 71: Bonus slides…
	Slide 72: Screen-space Ambient Occlusion
	Slide 73: Screen-space Ambient Occlusion
	Slide 74: Deep Shadow Maps
	Slide 75: Importance of Shadows
	Slide 76: Importance of Shadows
	Slide 77: Deep shadow maps More examples
	Slide 78: Red Dead Redemption 2 (2018)
	Slide 79: Real time hair rendering
	Slide 80: Importance of Transparency
	Slide 81: Real time hair rendering
	Slide 82: Transparent Media
	Slide 83: Opacity Maps
	Slide 84: Demo
	Slide 85: Shadows from semi-transparent objects Particle Shadow Mapping
	Slide 86: Transparent Media – Fourier Opacity Maps
	Slide 87: Transparent Media
	Slide 88: Transparent Media
	Slide 89: Real-time Hair using AI

