Intersection Testing
= st = e Chapter 16

i 4 |b Tng'
","‘; 002120 /& i | l 09 59 00S conso
] '/\‘ L

-Jmﬂ?a ==

trace ray

screen-Pixels shadows

Department of Computer
Engineering

Chalmers University of
Technology

What for?

e A tool needed for the graphics people all the time...

o Very important components:
-~ Need to make them fast!

e Finding if (and where) a ray hits an object
- Picking

- Ray tracing and global illumination

e For speed-up techniques

e Collision detection (treated in a later lecture)

- E.g., NVIDIA PhysX used by: Unreal Engine, Unity, ...

e Games e.g.. The Witcher 3: Wild Hunt, Warframe, Killing Floor 2, Fallout 4, Batman:
Arkham Knight, Planetside 2, and Borderlands 2...

https://en.wikipedia.org/wiki/The_Witcher_3:_Wild_Hunt
https://en.wikipedia.org/wiki/Warframe
https://en.wikipedia.org/wiki/Killing_Floor_2
https://en.wikipedia.org/wiki/Fallout_4
https://en.wikipedia.org/wiki/Batman:_Arkham_Knight
https://en.wikipedia.org/wiki/Batman:_Arkham_Knight
https://en.wikipedia.org/wiki/Planetside_2
https://en.wikipedia.org/wiki/Borderlands_2

Example

Midtown Madness 3, DICE

Some basic geometrical primitives

e Ray:

e Sphere: Q

e Box
- Axis-aligned (AABB)

_ Oriented (OBB) &

e K-DOP +~
AN
<Y

N\
) 4
N

Some different technigues

e Analytical

- "Solve an equation system”

- E.g., ray/sphere, ray/plane, ray/triangle,
e Geometrical

—- “Uses spatial reasoning”. Method operates on geometric
entities like points, vectors, edges, surfaces, volumes...

- Ray/box, ray/polygon
—- Separating axis theorem (SAT)
- The Gilbert-Johnson-Keerthi (GJK) algorithm

e Not treated in this course

e Dynamic tests (to find time of collision)

e Given these, one can derive many tests quite easily
-~ However, often tricks are needed to make them fast

Analytical: :
Ray/sphere test

e Sphere center: ¢, and radius r °

e Ray function: r(t)=o0+tc
e Sphere equation: ||p-cl||=r
e Replace p by r(t), and square It:

(r(t)—c)-(r(t)—c)—-r*=0 a-b=(ab,+ab,+ ab,)
(0+td—c)-(0+td—c)—r* =0 X*X iS not X2

(td+ (0 -¢))< (td+ (0 -¢)) - 7° =C
(d-d)t? +2((o—c)-d)t + (0—C)- (0—C) — 2 =0

t24+2((0—c)-d)t+(0—c)-(0—c)—r2=0 | d|=1

Analytical, continued
t* +2((o—c)-d)t+(0o—c)-(o—C)—r
| aY J \ bY

J O O
e Check for quick rejectionW

? = O [

(O — C) : d > O ? Ellipic Fovaboreks Z
(0—C)-(0—C)—r° <0 ? A
e t0 save unnessesary G| ;L i
SR o

e Other shapes: MR}
(p,/@)*+(p,/b)*+(p,/c)
(p, /@)’ +(p,/b)>—p, =0F: =

Ray/Plane Intersections
eRay function: r(t)=o+td

P jon: ne =1} }
ePlane equation: nex + d = 0; pa//
eReplace x by r(t):

ne(o+td) +d = 0 /

neo+t(ned) +d =0

t = (—d —ne<0) / (ned)

Vec3f rayPlanelntersect(vec3f o,dir, n, d)

{

float t=(-d-n.dot(0)) / (n.dot(dir));
return o + dir*t;

Analytical tests — quick guide

e |f both objects are described as functions,
set them equal and solve
- See ray/triangle-test: tri(u,v) = r(t)

e |f function and equation, replace:

- See ray/sphere and ray/plane
e E.0.,
— plane eq: nex + d = 0; // x is the variable
— Ray function: r(t)=o+td // t is the parameter (variable)
— Replace x with r(t)

e |f two equations, find their common
solutions.

Geometrical:
Ray/Box Intersection

e Boxes and spheres often used as
bounding volumes

e A slab is the volume betvveeW
parallell planes: /
e A box Is the logical intersection of three
slabs (2 in 2D):

BOX

Geometrical:
Ray/Box Intersection (2)

e Intersect the 2 planes of each slab with
the ray

e Keep max of t™"and min of tmax,

PY i_e.’ tmin — max(txmin’ tymin’ tzmin)’ tmax — min(txmax’ tymax, tzmax)
o If t"" < tMaxthen we got an intersection
e Special case when ray parallell to slab

Separating Axis Theorem (SAT)
Page 947 in book

e Two convex polyhedrons, A and B, are
disjoint if any of the following axes
separate the objects’ projections:

- A face normal of A

- A face normal of B
- Any edge, X edgeg (X Is crossproduct)

axis

A and B overlaps on this axis

SAT example:
Triangle/Box

e E.g an axis-aligned box and a triangle

e 1) test the axes that are face normals of
the box:

- That is, x,y, and z

| %

Triangle/Box with SAT (2)

e Assume that they overlapped on Xx,y,z
e Must continue testing
e 2) the face normal of the triangle

axis

Triangle seen from side

/

Triangle/Box with SAT (3)

e |f still no separating axis has been found...

e 3) Test axes that are cross products of the
edgeS: t:ebox X etriangle

e Example:
— x-axis from box: e,,,=(1,0,0)
— Ctriangle= V1 Vo

e Test up to all such combinations

— If there Is at least one separating axis, then the
objects do not collide

- Else they do overlap

Rules of Thumb for
Intersection Testing

e Acceptance and rejection test
- Try them early on to make a fast exit

e Postpone expensive calculations if
possible

e Use dimension reduction

- E.g. several one-dimensional tests instead of
one complex 3D test, or 2D instead of 3D

e Share computations between objects Iif
possible

An Intersection Trick

Create new shape by sweeping object 1 as
close as possible outside object 2. The sweep
creates a new 3:rd object (red).

Now, It Is enough to test if the center point of
object 1 is outside object 3.

Works for all objects and all dimensions.
May be computationally expensive to create
the sweep, though.

Obj1 Obj2

Another analytical example:
Ray/Triangle in detail

Make 2 functions, for points along ray and inside triangle and set those 2

functions equal to each other. V2
e Ray: r(t)=o+td
e Triangle vertices: v,, vy, V, \ V,
e A pointin the triangle: V5 =V
t(u,v) = vo+ u(vy- Vo) +Vv(v,- Vo) /1_\/0
where [U,v=>=0, u+v<=1] is inside triangle V,

e Set t(u,v)=r(t), and solve fort, u, v:
Votu(Vy-Vy) +Vv(V,-Vvy) =o+td (3 eq., one in each of x,y,z dim.)
=>-td +u(vy-Vy) +V(V,-Vy) =0-V,
=> [-d, (v1-Vp), (V2-Vo)] [t u, v]" = 0-vq

BONUS

Ray/Triangle (1)

e Solve for t,u,v using Cramer’s rule for a system of n linear
equations with n unknowns: AX =D

Cramer’s rule;

I S
det(—d,e;,e,)

det(—d,s,e,)
det(—d,e,,s)

BONUS det(s,e,,e,)

1

t
U|=————|det(-d,s,e,)
Vv

Ray/Triangle (2) det(—d,e,.e,)

e To compute determinant
Use this fact : det(a,b,c) =(axb)-c=—(axc)-b

det(—d,e,,s)

This gives:

e Share factors to speed up computations:

e Compute as little as possible. Then test.

Compute [ERE(ES))

Then test valid bounds:
if (u<0 or u>l) exit;

Then also test v and u+v <=1

Misc

e There is an Advanced Computer
Graphics Seminar Course in sp 4, 7.5p

- 1-2 seminars every week
e Advanced CG techniques

- Do a project of your choice.

The Plane Equation [EeiRr s e

Ifn.-x+d =0, then X lies in the plane.

The function FA6IER &Y gives the signed
distance of x from the plane. (n should be normalized.)
e f(x)>0 means above the plane

e f(x)<0 means below the plane

-d Is signed distance

origin -
J of origin to plane

Plane: 7:n-p+d =0

Sphere/Plane Sphere: ¢
Box/Plane AABB: B T

e Sphere: compute

e f (C) Is the sighed distance

e abs(f(c))>r no collision

e abs(f(c))=r sphere touches the plane
e abs(f(c)) <r sphere intersects plane

2 2

e Box: insert all 8 corners

e If all f's have the same sign, then all
points are on the same side, and no
collision

Plane: 7:n-p+d =0

Sphere: ¢ r

e The smart way (shown in 2D)

e Find the two vertices that have the most
positive and most negative value when tested

againt the plane

bmax

Vpos.\. = (nx > O)7bmax‘
Need only test pymin v,. =(n,>0)%,, :
the red points v,, =(n.>0)?b, :

Vnegx = (nx < O)?bmaX\ :

Vi, = (M, <0)?b,

See page 970 for even faster version.
OBB almost as easy. Just first project
n on OBB’s axes — see p: 972

Ve =(0.<0)?b,,.:

Ray/Polygon: The Crossing Test
e Intersect ray with polygon plane

e Project from 3D to 2D
e How?

e Find max(|n,J,[ny[,[n,[)

e Skip that coordinate!
e Then, count crossing in 2D

The number of times this ray
intersects the polygon edges is

N
counted. If the number of
crossings is odd, the point is inside
the polygon. If even, the point is

—

outside.

Volume/Voelume tests

e Used in collision detection =

e Sphere/sphere

- Compute squared distance between sphere

- Test in 1D for x,y, and z

IfA,,

m

m

m
m

WwwX> >

Se

in_x > Bmax_x or
in_y > Bmax_y or
in_z > Bmax_z or
in_x > Amax_x or
in_y > Amax_y or

min_z > Ar_nax_z)
return no_Intersection

return intersection.

centers, and compare to (r,+r,):

llc1-Col| < (rytrp) =>

(C1-C2)*(C1-Cp) < (ry+r,)?

e Axis-Aligned Bounding Box (AABB)

Xmax1ymax

If Bmin_x >_ Amax_x (?I' Amin_x > Bmax_x
=> no intersection along x.
... same with y,z ...

A

Xmax’ymax

Xminlymin

e Oriented Bounding boxes

Use SAT [detalils in booK]

View frustum testing

e View frustum is 6 planes:

e Near, far, right, left, top,
bottom

e Get their plane equations from projection matrix
— Let all positive half spaces be outside frustum
— p. 983-984.

e Sphere/frustum common approach:

- Test sphere against each of the 6 frustum planes:

e If outside the plane => no intersection
e If intersecting the plane or inside, continue

— If not outside after all six planes, then conservatively
concider sphere as inside or intersecting

e Example follows...

View frustum testing example

outside
— frustum
\J

- <] —>

~— Intersecting

\ frustum
/

\

\

e Not exact test, but not incorrect

- A sphere that is reported to be inside, can actually be
outside

— Not vice versa
e Similar frustum test for boxes

Dynamic Intersection Testing
[In book: 620-628]

e Testing Is often done every rendered
frame, I.e., at discrete time intervals
e Therefore, you can get "quantum effects”
Frame n Frame n+1
e Dynamic testing deals with this

e |S more expensive

e Deals with a time Interval: time between
two frames

Dynamic intersection testing: SoNYS

Sphere/Plane

tzg@\v s. & S, are signed distances
*\\ n

S ———D—————————————————— b ST ——— o oo ——— Do ——————o———————o—=—==

. .

e No collision occur: LB

i:n+l
— If they are on the same side of the plane (s.s.>0)
e and: [s.|>r and [s |>r

e Otherwise, sphere can move |[s|-r
S.— I

e Time of collision: [#Ene

SRR S IS signed distance
e Response: reflect v around n, and move
(1-t.,,)r (r=refl vector)

BONUS

Dynamic Separating AxXiS Theorem
e SAT: tests one axis at a time for overlap

...........

Sia

e Same with DSAT, but:

- Use arelative system where B is fixed
- i.e., compute A's relative motion to B.

- Need to adjust A's projection on the axis so that the interval
moves on the axis as well

e Need to test same axes as with SAT
e Same criteria for overlap/disjoint:

- If no overlap on axis => disjoint
- If overlap on all axes => objects overlap

Exercises

e Create a function (by writing code on
paper) that tests for intersection between:
— two spheres
- aray and a sphere
- view frustum and a sphere

What you need to know

* Analytic test:
— Be able to compute ray vs sphere or other similar formula
— Rayftriangle, ray/plane
— Point/plane, Sphere/plane,
— Know expressions for ray, sphere, cylinder, plane, triangle

« Geometrical tests
— Ray/box with slab-test
— Ray/polygon (3D->2D)
— box/plane
— AABB/AABB

— View frustum vs spheres/AABB:s/BVHSs.
— Separating Axis Theorem (SAT)

« Know what a dynamic test is

s ONU

(/72

Set active edges to AB and AC
Fory=Ay, Ay-1,...,Cy

If y=B.y — exchange AB with
BC

Compute xstart and xend.
Interpolate color, depth, texcoords
etc for points (xstart,y) and
(xend,y)

For X = xstart, xstart+1, ...,xend

Compute color, depth etc for
(X,y) using interpolation.

By |

Cy

Scan Line Fill

Ayah_________ A

A

xstart xend

This is one way to
rasterize atriangle.
(Nowadays, stamp
rasterizion is typically
used - see web if you are
Interested)

ek
-,
7
L-
(/7

Using Interpolation

C, C, C;output by the vertex shader.
C,determined by interpolating between C; and C,
C: determined by interpolating between C, and C,
Interpolate between C, and C;along span

Cy

Cy

scan line

SONUS

Rasterizing a Trian

—Convex Polygons only

—Nonconvex polygons assumed to have been
tessellated

—Shader results (e.g. colors) have been
computed for the vertices. Depth occlusion
resolved with z-buffer.

* March across scan lines interpolating vertex
shader output parameters, as input to the
fragment shader.

e Incremental work small

Flood Fill

* Fill can be done recursively if we know a seed
point located inside (WHITE)

« Scan convert edges into buffer in edge/inside
color (BLACK)
flood fill(int x, int y) {
if (read pixel(x,y)= = WHITE) ({
write pixel (x,y,BLACK) ;
flood fill(x-1, y):
flood fill (x+1, y);
flood fill(x, y+1);
flood fill(x, y-1);

* DOT product

(0,1,0)

Tomas Akenine-Méller ©
2003

	Slide 1: Intersection Testing Chapter 16
	Slide 4: What for?
	Slide 5: Example
	Slide 6: Some basic geometrical primitives
	Slide 7: Some different techniques
	Slide 8: Analytical: Ray/sphere test
	Slide 9: Analytical, continued
	Slide 10: Ray/Plane Intersections
	Slide 11: Analytical tests – quick guide
	Slide 12: Geometrical: Ray/Box Intersection
	Slide 13: Geometrical: Ray/Box Intersection (2)
	Slide 14: Separating Axis Theorem (SAT) Page 947 in book
	Slide 15: SAT example: Triangle/Box
	Slide 16: Triangle/Box with SAT (2)
	Slide 17: Triangle/Box with SAT (3)
	Slide 18: Rules of Thumb for Intersection Testing
	Slide 19: An Intersection Trick
	Slide 20: Another analytical example: Ray/Triangle in detail
	Slide 21: Ray/Triangle (1)
	Slide 22: Ray/Triangle (2)
	Slide 24: Misc
	Slide 25: The Plane Equation
	Slide 27: Sphere/Plane Box/Plane
	Slide 28: AABB/plane
	Slide 29: Ray/Polygon: The Crossing Test
	Slide 30: Volume/Volume tests
	Slide 31: View frustum testing
	Slide 32: View frustum testing example
	Slide 33: Dynamic Intersection Testing [In book: 620-628]
	Slide 34: Dynamic intersection testing Sphere/Plane
	Slide 35: Dynamic Separating Axis Theorem
	Slide 36: Exercises
	Slide 37: What you need to know
	Slide 42: Scan Line Fill
	Slide 43: Using Interpolation
	Slide 44: Rasterizing a Triangle
	Slide 45: Flood Fill
	Slide 46

