
Intersection Testing
Chapter 16

Department of Computer

Engineering

Chalmers University of

Technology

What for?

⚫ A tool needed for the graphics people all the time…

⚫ Very important components:

– Need to make them fast!

⚫ Finding if (and where) a ray hits an object

– Picking

– Ray tracing and global illumination

⚫ For speed-up techniques

⚫ Collision detection (treated in a later lecture)
– E.g., NVIDIA PhysX used by: Unreal Engine, Unity, …

⚫ Games e.g.: The Witcher 3: Wild Hunt, Warframe, Killing Floor 2, Fallout 4, Batman:

Arkham Knight, Planetside 2, and Borderlands 2…

https://en.wikipedia.org/wiki/The_Witcher_3:_Wild_Hunt
https://en.wikipedia.org/wiki/Warframe
https://en.wikipedia.org/wiki/Killing_Floor_2
https://en.wikipedia.org/wiki/Fallout_4
https://en.wikipedia.org/wiki/Batman:_Arkham_Knight
https://en.wikipedia.org/wiki/Batman:_Arkham_Knight
https://en.wikipedia.org/wiki/Planetside_2
https://en.wikipedia.org/wiki/Borderlands_2

Example

Midtown Madness 3, DICE

Some basic geometrical primitives

⚫ Ray:

⚫ Sphere:

⚫ Box

– Axis-aligned (AABB)

– Oriented (OBB)

⚫ k-DOP

Some different techniques

⚫ Analytical

– ”Solve an equation system”

– E.g., ray/sphere, ray/plane, ray/triangle,

⚫ Geometrical

– ”Uses spatial reasoning”. Method operates on geometric

entities like points, vectors, edges, surfaces, volumes…

– Ray/box, ray/polygon

– Separating axis theorem (SAT)

– The Gilbert-Johnson-Keerthi (GJK) algorithm
⚫ Not treated in this course

⚫ Dynamic tests (to find time of collision)

⚫ Given these, one can derive many tests quite easily

– However, often tricks are needed to make them fast

Analytical:
Ray/sphere test

⚫ Sphere center: c, and radius r

⚫ Ray function: r(t)=o+td

⚫ Sphere equation: ||p-c||=r

⚫ Replace p by r(t), and square it:

0))(())((2 =−−− rtt crcr

1|||| 0)()())((2 22 ==−−−+−+ dcοcοdcο rtt

0)()(2 =−−+−+ rtt cdocdo

0)()())((2)(22 =−−−+−+ rtt cοcοdcοdd

o

d

c

r

(td+ (o -c))× (td+ (o -c)) - r2 = 0

x•x is not x2

()222 zyx ++=x

a ∙ 𝐛 = (𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧)

Analytical, continued

0)()())((2 22 =−−−+−+ rtt cοcοdcο

⚫ Check for quick rejection tests

? 0)(− dcο
c

o
d

? 0)()(2 −−− rcοcο

⚫ to save unnessesary computations

⚫ Other shapes:
222 rpp yx =+

1)/()/()/(222 =++ cpbpap zyx

0)/()/(22 =−+ zyx pbpap

a b

𝑡 =
−𝑎

2
+

𝑎

2

2

− 𝑏

>0 => o is outside sphere

<0 => o is inside

Ray/Plane Intersections

⚫Ray function: r(t)=o+td

⚫Plane equation: n•x + d = 0;

⚫Replace x by r(t):

n•(o+td) + d = 0

n•o+t(n•d) + d = 0

t = (–d –n•o) / (n•d)

n

o

d

p

Vec3f rayPlaneIntersect(vec3f o,dir, n, d)

{

float t=(-d-n.dot(o)) / (n.dot(dir));

return o + dir*t;

}

Analytical tests – quick guide

⚫ If both objects are described as functions,

set them equal and solve

– See ray/triangle-test: tri(u,v) = r(t)

⚫ If function and equation, replace:

– See ray/sphere and ray/plane
⚫ E.g.,

– plane eq: n•x + d = 0; // x is the variable

– Ray function: r(t)=o+td // t is the parameter (variable)

– Replace x with r(t)

⚫ If two equations, find their common

solutions.

Geometrical:
Ray/Box Intersection

⚫ Boxes and spheres often used as
bounding volumes

⚫ A slab is the volume between two
parallell planes:

⚫ A box is the logical intersection of three
slabs (2 in 2D):

BOX

Geometrical:
Ray/Box Intersection (2)

⚫ Intersect the 2 planes of each slab with

the ray

min

xt

max

xt
min

yt

max

yt

⚫ Keep max of tmin and min of tmax,
⚫ i.e., tmin = max(tx

min, ty
min, tz

min), tmax = min(tx
max, ty

max, tz
max)

⚫ If tmin < tmax then we got an intersection

⚫ Special case when ray parallell to slab

Separating Axis Theorem (SAT)
Page 947 in book

⚫ Two convex polyhedrons, A and B, are

disjoint if any of the following axes

separate the objects’ projections:

– A face normal of A

– A face normal of B

– Any edgeA × edgeB (× is crossproduct)

A and B overlaps on this axis

axis

SAT example:
Triangle/Box

⚫ E.g an axis-aligned box and a triangle

⚫ 1) test the axes that are face normals of

the box:

– That is, x,y, and z

Triangle/Box with SAT (2)

⚫ Assume that they overlapped on x,y,z

⚫ Must continue testing

⚫ 2) the face normal of the triangle

Triangle seen from side

axis

Triangle/Box with SAT (3)

⚫ If still no separating axis has been found…

⚫ 3) Test axes that are cross products of the

edges: t=ebox x etriangle

⚫ Example:

– x-axis from box: ebox=(1,0,0)

– etriangle=v1-v0

⚫ Test up to all such combinations

– If there is at least one separating axis, then the
objects do not collide

– Else they do overlap

Rules of Thumb for
Intersection Testing

⚫ Acceptance and rejection test
– Try them early on to make a fast exit

⚫ Postpone expensive calculations if
possible

⚫ Use dimension reduction
– E.g. several one-dimensional tests instead of

one complex 3D test, or 2D instead of 3D

⚫ Share computations between objects if
possible

An Intersection Trick

Create new shape by sweeping object 1 as

close as possible outside object 2. The sweep

creates a new 3:rd object (red).

Now, it is enough to test if the center point of

object 1 is outside object 3.

Works for all objects and all dimensions.

May be computationally expensive to create

the sweep, though.

Obj 2Obj 1

Another analytical example:
Ray/Triangle in detail

⚫ Ray: r(t)=o+td

⚫ Triangle vertices: v0, v1, v2

⚫ A point in the triangle:

t(u,v) = v0 + u(v1 - v0) + v(v2 - v0)

where [u,v>=0, u+v<=1] is inside triangle

⚫ Set t(u,v)=r(t), and solve for t, u, v:

v0+u(v1 - v0) +v(v2 - v0) = o+td (3 eq., one in each of x,y,z dim.)

=> -td + u(v1 - v0) + v(v2 - v0) = o-v0

=> [-d, (v1 - v0), (v2 - v0)] [t, u, v]T = o-v0

v2

v1

v0

v1 -v0

v2 -v0

−=

−−−

|

|

|||

|||

00201 vovvvvd

v

u

t Ax=b

x=A-1b

Make 2 functions, for points along ray and inside triangle and set those 2

functions equal to each other.

Ray/Triangle (1)
⚫ Solve for t,u,v using Cramer’s rule for a system of n linear

equations with n unknowns:

−=

−−−

|

|

|||

|||

00201 vovvvvd

v

u

t

−

−
−

=

),,det(

),,det(

),,det(

),,det(

1

1

2

21

21
sed

esd

ees

eed
v

u

t

| | |

-d e1 e2

| | |

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

t

u

v

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

=

|

s

|

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

A x = b

0022011 vosvvevve −=−=−=

Simplify our equation system by setting:

=>

=>

Cramer’s rule gives:

Cramer’s rule:

BONUS

Ray/Triangle (2)
⚫ To compute determinant

−

−
−

=

),,det(

),,det(

),,det(

),,det(

1

1

2

21

21
sed

esd

ees

eed
v

u

t

=

des

sed

ees

eed
)(

)(

)(

)(

1

1

2

21

12
v

u

t

⚫ Share factors to speed up computations:

bcacbacba −==)()()det(:fact thisUse ,,

This gives:

af

a

/1

1

2

=

=

=

ep

edp

)(sp = fu

Then test valid bounds:
if (u<0 or u>1) exit;

Then also test v and u+v <=1

⚫ Compute as little as possible. Then test.

Compute

BONUS

Misc

⚫ There is an Advanced Computer

Graphics Seminar Course in sp 4, 7.5p

– 1-2 seminars every week
⚫ Advanced CG techniques

– Do a project of your choice.

24

The Plane Equation

If 𝒏 ∙ 𝒙 + 𝑑 = 0, then x lies in the plane.

The function gives the signed

distance of x from the plane. (n should be normalized.)
⚫ f(x)>0 means above the plane

⚫ f(x)<0 means below the plane

0: :Plane =+ dpn

f (x) = n ×x+d

origin

-d

𝒙

n

-d is signed distance

of origin to plane

f(x)

Sphere/Plane
Box/Plane

⚫ Sphere: compute

0: :Plane =+ dpn

r :Sphere c

AABB: bmin bmax

df += cnc)(

⚫ f (c) is the signed distance

⚫ Box: insert all 8 corners

⚫ If all f ’s have the same sign, then all

points are on the same side, and no

collision

⚫ abs(f (c)) > r no collision

⚫ abs(f (c)) = r sphere touches the plane

⚫ abs(f (c)) < r sphere intersects plane

n

AABB/plane

⚫ The smart way (shown in 2D)

⚫ Find the two vertices that have the most

positive and most negative value when tested

againt the plane

See page 970 for even faster version.

OBB almost as easy. Just first project

n on OBB’s axes – see p: 972

Need only test

the red points

0: :Plane =+ dpn

r :Sphere c
maxmin :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx
:bminx

v posy = (ny > 0)?bmaxy
:bminy

v posz = (nz > 0)?bmax z :bminz

vnegx = (nx < 0)?bmaxx
:bminx

vnegy = (ny < 0)?bmaxy
:bminy

vnegz = (nz < 0)?bmax z :bminz

bmax

bmin

Tomas Akenine-Mőller © 2003

Ray/Polygon: The Crossing Test

⚫ Intersect ray with polygon plane

⚫ Project from 3D to 2D

⚫ How?

⚫ Find max(|nx|,|ny|,|nz|)

⚫ Skip that coordinate!

⚫ Then, count crossing in 2D

The number of times this ray

intersects the polygon edges is

counted. If the number of

crossings is odd, the point is inside

the polygon. If even, the point is

outside.

Volume/Volume tests

⚫ Used in collision detection

⚫ Sphere/sphere

– Compute squared distance between sphere

centers, and compare to (r1+r2)
2:

⚫ Axis-Aligned Bounding Box (AABB)

– Test in 1D for x,y, and z

⚫ Oriented Bounding boxes

– Use SAT [details in book]

xmax,ymax

xmin,ymin

If Amin_x > Bmax_x or

 Amin_y > Bmax_y or

 Amin_z > Bmax_z or

 Bmin_x > Amax_x or

 Bmin_y > Amax_y or

 Bmin_z > Amax_z

 return no_intersection

Else

 return intersection.

xmax,ymax

xmin,ymin

A

B

If Bmin_x > Amax_x or Amin_x > Bmax_x

 => no intersection along x.

… same with y,z …

||c1-c2|| ≤ (r1+r2) =>

(c1-c2)•(c1-c2) ≤ (r1+r2)
2

View frustum testing

⚫ View frustum is 6 planes:

⚫ Near, far, right, left, top,
bottom

⚫ Get their plane equations from projection matrix
– Let all positive half spaces be outside frustum

– p. 983-984.

⚫ Sphere/frustum common approach:
– Test sphere against each of the 6 frustum planes:

⚫ If outside the plane => no intersection

⚫ If intersecting the plane or inside, continue

– If not outside after all six planes, then conservatively
concider sphere as inside or intersecting

⚫ Example follows…

View frustum testing example

⚫ Not exact test, but not incorrect
– A sphere that is reported to be inside, can actually be

outside

– Not vice versa

⚫ Similar frustum test for boxes

outside

frustum

intersecting

frustum

Dynamic Intersection Testing
[In book: 620-628]

⚫ Testing is often done every rendered

frame, i.e., at discrete time intervals

⚫ Therefore, you can get ”quantum effects”

Frame n Frame n+1

⚫ Dynamic testing deals with this

⚫ Is more expensive

⚫ Deals with a time interval: time between

two frames

Dynamic intersection testing
Sphere/Plane

⚫ No collision occur:

– If they are on the same side of the plane (scse>0)
⚫ and: |sc|>r and |se|>r

⚫ Otherwise, sphere can move |sc|-r

⚫ Time of collision:

e

r

sc

se

sc & se are signed distancest=n

t=n+1

ec

c
cd

ss

rs
nt

−

−
+=

⚫ Response: reflect v around n, and move

(1-tcd)r (r=refl vector)

r
vc

n

se is signed distance

BONUS

Dynamic Separating Axis Theorem
⚫ SAT: tests one axis at a time for overlap

⚫ Same with DSAT, but:

– Use a relative system where B is fixed

– i.e., compute A’s relative motion to B.

– Need to adjust A’s projection on the axis so that the interval

moves on the axis as well

⚫ Need to test same axes as with SAT

⚫ Same criteria for overlap/disjoint:

– If no overlap on axis => disjoint

– If overlap on all axes => objects overlap

BONUS

Exercises

⚫ Create a function (by writing code on

paper) that tests for intersection between:

– two spheres

– a ray and a sphere

– view frustum and a sphere

What you need to know

• Analytic test:

– Be able to compute ray vs sphere or other similar formula

– Ray/triangle, ray/plane

– Point/plane, Sphere/plane,

– Know expressions for ray, sphere, cylinder, plane, triangle

• Geometrical tests

– Ray/box with slab-test

– Ray/polygon (3D->2D)

– box/plane

– AABB/AABB

– View frustum vs spheres/AABB:s/BVHs.

– Separating Axis Theorem (SAT)

• Know what a dynamic test is

Scan Line Fill

Set active edges to AB and AC

For y = A.y, A.y-1,...,C.y

 If y=B.y → exchange AB with

BC

 Compute xstart and xend.

Interpolate color, depth, texcoords

etc for points (xstart,y) and

(xend,y)

 For x = xstart, xstart+1, ...,xend

 Compute color, depth etc for

(x,y) using interpolation.

xend

This is one way to

rasterize a triangle.

(Nowadays, stamp

rasterizion is typically

used - see web if you are
interested)

BONUS

Using Interpolation

span

C1

C3

C2

C5

C4

scan line

C1 C2 C3 output by the vertex shader.
C4 determined by interpolating between C1 and C3

C5 determined by interpolating between C2 and C3

interpolate between C4 and C5 along span

BONUS

Rasterizing a Triangle

–Convex Polygons only

–Nonconvex polygons assumed to have been

tessellated

–Shader results (e.g. colors) have been

computed for the vertices. Depth occlusion

resolved with z-buffer.

• March across scan lines interpolating vertex

shader output parameters, as input to the

fragment shader.

• Incremental work small

BONUS

Flood Fill

• Fill can be done recursively if we know a seed

point located inside (WHITE)

• Scan convert edges into buffer in edge/inside

color (BLACK)
flood_fill(int x, int y) {

 if(read_pixel(x,y)= = WHITE) {

 write_pixel(x,y,BLACK);

 flood_fill(x-1, y);

 flood_fill(x+1, y);

 flood_fill(x, y+1);

 flood_fill(x, y-1);

} }

• DOT product

Tomas Akenine-Mőller ©

2003

(0,1,0)

(1,0,0)

(a,b,c)

	Slide 1: Intersection Testing Chapter 16
	Slide 4: What for?
	Slide 5: Example
	Slide 6: Some basic geometrical primitives
	Slide 7: Some different techniques
	Slide 8: Analytical: Ray/sphere test
	Slide 9: Analytical, continued
	Slide 10: Ray/Plane Intersections
	Slide 11: Analytical tests – quick guide
	Slide 12: Geometrical: Ray/Box Intersection
	Slide 13: Geometrical: Ray/Box Intersection (2)
	Slide 14: Separating Axis Theorem (SAT) Page 947 in book
	Slide 15: SAT example: Triangle/Box
	Slide 16: Triangle/Box with SAT (2)
	Slide 17: Triangle/Box with SAT (3)
	Slide 18: Rules of Thumb for Intersection Testing
	Slide 19: An Intersection Trick
	Slide 20: Another analytical example: Ray/Triangle in detail
	Slide 21: Ray/Triangle (1)
	Slide 22: Ray/Triangle (2)
	Slide 24: Misc
	Slide 25: The Plane Equation
	Slide 27: Sphere/Plane Box/Plane
	Slide 28: AABB/plane
	Slide 29: Ray/Polygon: The Crossing Test
	Slide 30: Volume/Volume tests
	Slide 31: View frustum testing
	Slide 32: View frustum testing example
	Slide 33: Dynamic Intersection Testing [In book: 620-628]
	Slide 34: Dynamic intersection testing Sphere/Plane
	Slide 35: Dynamic Separating Axis Theorem
	Slide 36: Exercises
	Slide 37: What you need to know
	Slide 42: Scan Line Fill
	Slide 43: Using Interpolation
	Slide 44: Rasterizing a Triangle
	Slide 45: Flood Fill
	Slide 46

