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Lecture 1

• Real-time Graphics pipeline
• Application-, geometry-, rasterization stage
• Modelspace, worldspace, viewspace, clip space, 

screen space
• Z-buffer
• Double buffering
• Screen tearing



Lecture 1: Real-time Rendering
The Graphics Rendering Pipeline

• Three conceptual stages of the pipeline:
– Application (executed on the CPU)

• logic, speed-up techniques, animation, etc…
– Geometry

• Executing vertex and geometry shader
• Vertex shader: 

– lighting computations per triangle vertex
– Project onto screen (3D to 2D)

– Rasterizer
• Executing fragment shader
• Interpolation of per-vertex parameters (colors, texcoords etc) over triangle
• Z-buffering, fragment merge (i.e., blending), stencil tests…

Application Geometry Rasterizer

3D
sceneinput

Image

output
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Rendering Pipeline and 
Hardware

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Appli-
cation 
Stage

CPU

Geometry Stage Rasterization Stage

GPU
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Hardware design

light

Geometry

blue

red green

Vertex shader:

•Lighting (colors)

•Screen space positions

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage
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Hardware design Geometry shader:

•One input primitive

•Many output primitives

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

or

Geometry Stage
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Hardware design Clips triangles against
the unit cube (i.e., 
”screen borders”)

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage
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Hardware design Maps window size to
unit cube

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Rasterizer Stage
Geometry stage always operates inside 
a unit cube [-1,-1,-1]-[1,1,1]
Next, the rasterization is made against a 
draw area corresponding to window 
dimensions.



Hardware design
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HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Collects three vertices
into one triangleRasterizer Stage



Hardware design
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HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Creates the 
fragments/pixels for the 
triangle

Rasterizer Stage



blue

red green
Rasterizer

Hardware design
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HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Pixel Shader:
Compute color 
using:
•Textures
•Interpolated data 
(e.g. Colors + 
normals) from 
vertex shader

Rasterizer Stage



Hardware design
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HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Frame buffer:
• Color buffers

• Depth buffer

• Stencil buffer

The merge units update
the frame buffer with the 
pixel’s color

Rasterizer Stage



Application Geometry Rasterizer

model space world space world space

e.g., compute lighting

camera space

Do projection
clip space

(or unit space)

clip map to screen
screen space

Done in vertex shader
Fixed hardware function

Per-vertex computations
GEOMETRY – transformation summary



Painter’s Algorithm
• Render polygons a back to front order so that polygons 

behind others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons 
first 

–O(n log n) calculation for ordering
–Not every polygon is either in 
front or behind all other polygons

I.e., : Sort all triangles and  
render them back-to-front. 



z-Buffer Algorithm
• Use a buffer called the z or depth buffer to store 
the depth of the closest object at each pixel found 
so far

• As we render each polygon, compare the depth 
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and 
update z buffer

Also know double buffering!



• We do not want to show
the image until its drawing
is finished.

• The front buffer is displayed
• The back buffer is rendered to
• When new image has been created in back buffer,

swap the Front-/Back-buffer pointers.
• Use vsynch or screen tearing will occur…

i.e., when the swap happens in the middle of the screen with respect to the screen refresh 
rate.

Application Geometry RasterizerThe RASTERIZER 
double-buffering

Front buffer
(rgb color buffer)

Back buffer
(rgb color buffer)

Last fully finished 
drawn frame.

Color buffer we draw to.
Not displayed yet.



Application Geometry RasterizerThe RASTERIZER 
double-buffering – screen tearing

Example if the swap happens here (w.r.t the screen refresh rate).

old

new



Screen Tearing
Swapping 
back/front buffers

Screen tearing is solved by using V-Sync.
V-Sync: swap front/back buffers during vertical blank (vblank) instead.

vblank



The default frame buffer:
Typically: Front + Back color buffers + Z buffer + (Stencil buffer)

Front buffer
(rgb color buffer)

Z buffer
(depth)

Stores rgb(a) value per pixel.
Default: 8 bits per r,g,b channel.

Stores fragment’s 
depth value per 
pixel, typically: (16), 
24, or 32 bits.

Back buffer
(rgb color buffer)

Stencil buffer

Stencil buffer can be 
asked for. 8-bits per 
pixel.

Last fully finished 
drawn frame.
Is displayed.

Color buffer we draw to.
Not displayed yet.

To resolve visibility
Used for masking rendering 
to only where pixel’s stencil 
value = some specific value.



Lecture 2: Transforms

• Homogeneous notation
• Rigid-body transform, Euler rotation (head,pitch,roll)
• Change of frames
• Quaternions

– Know what they are good for. Not knowing the mathematical rules. 

l Transformation pipeline: ModelViewProjection matrix
l Scaling, rotations, translations, projection
l Cannot use same matrix to transform normals

l …represents a rotation of 2f radians around axis
uq of point p

l Understand the simple DDA algorithm
l Bresenhams line-drawing algorithm

)cos,(sinˆ ff quq =

1ˆˆˆ -qpq

(M-1)T=M if rigid-body 
transform( ) MMN  of instead     :Use 1 T-=
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v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

l
l
l

object
space

View/Eye/
Camera
space

Unit-cube 
space /
Normalized

device coords

Window 
coords.
Screen 
space

Transformation
Pipeline

OpenGL | Geometry stage | done on GPU

Done by the vertex shader:

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

Homogeneous 
coord. space

Lecture 2:
Clip space: clipping is nowadays typically done in 
homogeneous space. However, it used to be done in 
unit-cube space. Both terminologies are still used.



cameraModel space World space View space

Model to World 
Matrix

World to View
Matrix

ModelViewMtx = ”Model to View Matrix”

ModelViewMtx * v = (MVçW * MWçM) * v

vview_space = ModelViewMtx * vmodel_space

Full projection:

Vclip_space = projectionMatrix * ModelViewMatrix * vmodel_space

Or simply: vclip_space = MModelViewProjection * v 

x

y

z

Projection
Matrix

, where MModelViewProjection = projectionMatrix * ModelViewMatrix
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Homogeneous notation
l A point:
l Translation becomes:

l A vector (direction):
l Translation of vector:
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02. Vectors and Transforms



Change of Frames
• How to get the Mmodel-to-world matrix:
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E.g.:  pworld = Mm®w pmodel = Mm®w (0,5,0,1)T = 5 b  (+ o) 

b
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world space

model space

(Both coordinate systems are right-handed)
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The basis vectors a,b,c
are expressed in the 
world coordinate system
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model space

Change of Frames
pmodelspace =(px,py,pz)

Let’s initially disregard the translation o. I.e., o=[0,0,0]
X: One step along a results in ax steps along world space axis x.

One step along b results in bx steps along world space axis x.
One step along c results in cx steps along world space axis x.

The x-coord for p in world space (instead of modelspace) is thus [ax bx cx]p.
The y-coord for p in world space is thus [ay by cy]p.
The z-coord for p in world space is thus [az bz cz]p.

With the translation o we get pworldspace= Mmodel-to-world pmodelspace

Same example, just explained differently:
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Projections
l Orthogonal (parallel) and Perspective

02. Vectors and Transforms
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Orthogonal projection
l Simple, just skip one coordinate

– Say, we’re looking along the z-axis
– Then drop z, and render
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02. Vectors and Transforms



DDA Algorithm
• Digital Differential Analyzer

–DDA was a mechanical device for numerical 
solution of differential equations

–Line y=kx+ m satisfies differential equation
        dy/dx = k = Dy/Dx = y2-y1/x2-x1

• Along scan line Dx = 1
y=y1;
For(x=x1; x<=x2,ix++) {
  write_pixel(x, round(y), line_color)
  y+=k;
}

02. Vectors and Transforms



Using Symmetry

•Use for 1 ³ k ³ 0
•For k > 1, swap role of x and y

–For each y, plot closest x

Otherwise we get 
problem for steep 
slopes

02. Vectors and Transforms



• The problem with DDA is that it uses floats
which was slow in the old days

• Bresenhams algorithm only uses integers

You do not need to know Bresenham’s algorithm
by heart. It is enough that you understand it if
you see it.

Very Important!

02. Vectors and Transforms



Lighting

Material:
•Ambient   (r,g,b,a) 

•Diffuse   (r,g,b,a)

•Specular (r,g,b,a)

•Emission   (r,g,b,a)  =”självlysande färg”

Light:
•Ambient   (r,g,b,a) 

•Diffuse   (r,g,b,a)

•Specular   (r,g,b,a)

DIFFUSE Base color
SPECULAR Highlight Color
AMBIENT Low-light Color
EMISSION Glow Color
SHININESS Surface Smoothness



The ambient/diffuse/specular/emission 
model

Amb + Diff + Spec + Em

l Summary of formulas:

Amb + Diff + SpecAmb + DiffAmbient

Ambient: iamb = mamb lamb

Diffuse: 𝒏 ⋅ 𝒍 mdiff ldiff

Specular: 
• Phong: 𝒓 ⋅ 𝒗 𝑠ℎ𝑖𝑛𝑖𝑛𝑒𝑠𝑠 mspec lspec

• Blinn: 𝒏 ⋅ 𝒉 𝑠ℎ𝑖𝑛𝑖𝑛𝑒𝑠𝑠 mspec lspec

Emission: memission

Lecture 3: Shading



The ambient/diffuse/specular/emission 
model
l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light:  incoming background light from all directions and spreads 
in all directions (view-independent and light-position independent color)

l Diffuse light: the part that spreads equally in all directions (view 
independent) due to that the surface is very rough on microscopic level

n

outColorrgb ~materialrgb ⊗ lightColorrgb

Light source

Amb + Diff

diffdiffdiff smlni Ä×= )(

l
Just scale light intensity 
with incoming angle

𝒏 ⋅ 𝒍 = 𝒄𝒐𝒔 𝝓
𝝓



The ambient/diffuse/specular/emission 
model

n

l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light:  incoming background light from all directions and spreads 
in all directions (view-independent and light-position independent color)

l Diffuse light:  the part that spreads equally in all directions (view 
independent) due to that the surface is very rough on microscopic level

l Specular light: the part that spreads mostly in the reflection direction 
(often same color as light source)

outColorrgb ~materialrgb ⊗ lightColorrgb

Amb + Diff + Spec



Specular: Phong’s model
l Phong specular highlight model
l Reflect l around n:

l)n2(nlr ×+-=

n

lr

-l
nln )( ×

ln ×

shishi mm
speci )(cos)( r=×= vr

€ 

ispec = ((n⋅ l) < 0) ?  0 :  max(0,(r⋅ v))mshimspec ⊗ sspec
l Next: Blinns highlight formula: (n.h)m

n must be unit 
vector



Specular: Blinn’s specular highlight model

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
h is halfway between l and v
If n, l, and v are coplanar:
    y = f/2
Must then adjust exponent
so that (n·h)e’ ≈ (r·v)e, (e’ ≈ 4e)

If the surface is rough, there is a probability distribution of the 
microscopic normals n. This means that the intensity of the 
reflection is decided by how many percent of the microscopic 
normals are aligned with h. And that probability often scales with 
how close h is to the macroscopic surface normal n. 

specspec
m

spec
shi smnhi Ä×= ))(,0max(
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Shading
l Flat, Goraud, and Phong shading:

l Flat shading: one normal per triangle. Lighting computed once for the whole
triangle. 

l Gouraud shading: the lighting is computed per triangle vertex and for each
pixel, the color is interpolated from the colors at the vertices.

l Phong Shading: the lighting is not computed per vertex. Instead the normal 
is interpolated per pixel from the normals defined at the vertices and full 
lighting is computed per pixel using this normal. This is of course more
expensive but looks better. 

Flat Gouraud Phong

Gouraud 
shading

Phong 
shading

Flat 
shading
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l Color of fog:         color of surface: fc sc

€ 

c p = fcs + (1− f )c f       f ∈[0,1]
l How to compute f ?
l E.g., linearly:

startend

pend

zz
zz

f
-

-
=
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Transparency and alpha
l Transparency

– Very simple in real-time contexts

l The tool: alpha blending (mix two colors)
l Alpha (a) is another component in the 

frame buffer, or on triangle
– Represents the opacity 
– 1.0 is totally opaque
– 0.0 is totally transparent

l The over operator: dso ccc )1( aa -+=
Rendered object

03. Shading:

(Blending)



Transparency
l Need to sort the transparent objects

– First, render all non-transparent triangles as 
usual. 

– Then, sort all transparent triangles and render
back-to-front with blending enabled.  (and using
standard depth test)
l The reason is to avoid problems with the depth test and 

because the blending operation (i.e., over operator) is order 
dependent.

03. Shading:

If we have high frame-to-frame coherency regarding the objects to be sorted
per frame, then Bubble-sort (or Insertion sort) are really good! Superior to 
Quicksort.
Because, they have expected runtime of resorting already almost sorted
input in O(n) instead of O(n log n), where n is number of elements.



Gamma correction
l Reasons for wanting gamma correction

(standard is 2.2):
1. Screen has non-linear color intensity

– We often want linear output (e.g. for correct antialiasing)

2. Also happens to give more efficient color space (when 
compressing intensity from 32-bit floats to 8-bits). Thus, often 
desired when storing textures.

Tomas Akenine-Mőller © 2002

Gamma of 2.2. Better 
distribution for humans. 
Perceived as linear.

Truly linear intensity 
increase.

A linear intensity output (bottom) has a large jump in perceived brightness between the 
intensity values 0.0 and 0.1, while the steps at the higher end of the scale are hardly 
perceptible. 
A nonlinearly-increasing intensity (upper), will show much more even steps in 
perceived brightness.

)/1( g
icc =
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Leture 3.2: Sampling, filtrering, and 
Antialiasing

l When does it occur?
– In 1) pixels, 2) time, 3) texturing

l Supersampling schemes
l Jittered sampling

– Why is it good?
l Supersampling vs 

multisampling vs coverage
sampling



04. Texturing
What is most important:
• Filtering: magnification, minification

– Mipmaps + their memory cost
– How compute bilinear/trilinear filtering
– Number of texel accesses for trilinear filtering
– Anisotropic filtering

• Environment mapping – cube maps, how compute lookup.
• Bump mapping
• 3D-textures – what is it?
• Sprites
• Billboards/Impostors, viewplane vs viewpoint oriented, axial 

billboards, how to handle depth buffer for fully transparent 
texels. 

• Particle systems
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FILTERING:
l For magnification: Nearest or Linear (box vs Tent 

filter)

l For minification: nearest, linear and…
– Bilinear – using mipmapping
– Trilinear – using mipmapping
– Anisotropic – up to 16 mipmap lookups along line of anisotropy

Filtering

Sinc filter not 
usable in real time. 
Why?...
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Interpolation

Minification

Magnification
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Bilinear filtering using Mipmapping



Mipmapping
l Image pyramid
l Half width and  

height when going
upwards

l Average over 4 ”parent texels” to form 
”child texel”

l Depending on amount of minification, 
determine which image to fetch from

l Compute d first, gives two images
– Bilinear interpolation in each

u
v

d
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Mipmapping
l Interpolate between those bilinear values

– Gives trilinear interpolation

l Constant time filtering: 8 texel accesses

v
u

d

Level n+1

Level n

(u0,v0,d0)
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Mipmapping:
Memory requirements
l Not twice the number of bytes…!

1/4
1/16

1/1

1/64

Modified by Ulf Assarsson 2004
l Rather 33% more – not that much



Anisotropic texture filtering

See page 
187-188
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Environment mapping

l Assumes the environment is infinitely far away
l E.g., sphere mapping, or cube mapping
l Cube mapping is the norm nowadays

Modified by Ulf Assarsson 2004
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x

y

z

Cube mapping

l Simple math: compute reflection vector, r
l Largest abs-value of component, determines which cube face.

– Example: r=(5,-1,2) gives POS_X face
l Divide r by abs(5) gives (u,v)=(-1/5,2/5)
l Also remap from [-1,1] to [0,1] by (u,v) = ((u,v)+vec2(1,1))*0.5;
l Your hardware does all the work for you. You just have to

compute the reflection vector. 

neye
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Bump mapping
l by Blinn in 1978
l Inexpensive way of simulating wrinkles

and bumps on geometry
– Expensive to model these geometrically

l Instead let a texture modify the normal at 
each pixel, and then use this normal to
compute lighting per pixel

geometry Bump map
Stores heights: can derive normals

+
Bump mapped geometry

=



Normal mapping in tangent vs object space

Tangent space:
lNormals are stored as distorsion of face orientation. The same bump map 
can be tiled/repeated and reused for many faces with different orientation54

Object space:
•Normals are stored directly in 
model space. I.e., as 
including both face orientation
plus distorsion. 

Normal map

Tangent space:



More...
l 3D textures:

– Texture filtering is no longer trilinear
– Rather quadlinear

l (trilinear interpolation in both 3D-mipmap levels + between mipmap levels)
– Enables new possibilities

l Can store light in a room, for example

l Displacement Mapping
– Like bump/normal maps but truly offsets the surface geometry 

(not just the lighting).
– Gfx hardware cannot offset the fragment’s position

l Offsetting per vertex is easy in vertex shader but requires a highly 
tessellated surface.

l Tesselation shaders are created to increase the tessellation of a 
triangle into many triangles over its surface. Highly efficient. 

l (Can also be done using Geometry Shader (e.g. Direct3D 10) by ray 
casting in the displacement map, but tessellation shaders are generally 
more efficient for this.)55

2D 3D



Sprites
GLbyte M[64]=
{ 127,0,0,127, 127,0,0,127, 

127,0,0,127, 127,0,0,127,
 0,127,0,0, 0,127,0,127, 

0,127,0,127, 0,127,0,0,
 0,0,127,0, 0,0,127,127, 

0,0,127,127, 0,0,127,0,
 127,127,0,0, 127,127,0,127, 

127,127,0,127, 127,127,0,0};

void display(void) {
 glClearColor(0.0,1.0,1.0,1.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glEnable (GL_BLEND);
 glBlendFunc (GL_SRC_ALPHA, 

GL_ONE_MINUS_SRC_ALPHA);
 glRasterPos2d(xpos1,ypos1);
 glPixelZoom(8.0,8.0);
 glDrawPixels(width,height,
  GL_RGBA, GL_BYTE, M);
 
 glPixelZoom(1.0,1.0);
 glutSwapBuffers();
}

Sprites (=älvor) was a technique
on older home computers, e.g. 
VIC64. As opposed to billboards
sprites does not use the frame
buffer. They are rasterized
directly to the screen using a 
special chip. (A special bit-
register also marked colliding
sprites.)

05. Texturing:
Just know what “sprites” is 
and that they are very 
similar to a billboard



Billboards
• 2D images used 

in 3D 
environments
– Common for 

trees, 
explosions, 
clouds, lens 
flares



• Rotate them towards viewer
– Either by rotation matrix, or
– by orthographic projection

Billboards

58

normal

View 
vector

Rotation 
axis

Rot 
angle

=> Rotation matrix for the 
billboard



• Fix correct transparency by 
blending AND using alpha-
test
– In fragment shader:

if (color.a < 0.1) discard;

Billboards
Color Buffer         Depth Buffer

With 
blending

With 
alpha test

If alpha value in texture
is lower than some small 
threshold value, the pixel 
is not rendered to. I.e., 
neither frame buffer nor 
z-buffer is updated,  
which is what we want to 
achieve.               
E.g. here, so that objects behind are visible through the hole



(Also called Impostors)

axial billboarding 
The rotation axis is fixed and 
disregarding the view position

n
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Lecture 5: OpenGL
l How to use OpenGL (or DirectX)

– Will not ask about syntax. Know how to use.
l I.e. functionality

– E.g. how to achieve
l Blending and transparency
l Fog – how would you implement in a fragment shader?

– pseudo code is enough
l Specify a material,  a triangle, how to translate or rotate an 

object.
l Triangle – vertex order and facing



62

Buffers
l Frame buffer

– Back/front/left/right – glDrawBuffers()
– Offscreen buffers (e.g., framebuffer objects, auxiliary buffers)

Frame buffers can consist of:
l Color buffer - rgb(a) 
l Depth buffer (z-buffer)

– For correct depth sorting
– Instead of BSP-algorithm or painters algorithm…

l Stencil buffer
– E.g., for shadow volumes or only render to frame buffer where

stencil = certain value (e.g., for masking).
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Lecture 6: Intersection Tests
l Some techniques to compute intersections:

– Analytically
– Geometrically – e.g. ray vs box (3 slabs)
– SAT (Separating Axis Theorem) for convex polyhedra

Test: 
1. face normals of A, 
2. face normals of B
3. All different axes formed by crossprod of one edge of A and one of B

– Dynamic tests – know what it means.
l E.g., describe an algorithm for intersection

between a ray and a
– Polygon, triangle, sphere and plane.

l Know equations for ray, sphere, cylinder, 
plane, triangle
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Analytical:
Ray/plane intersection

l Ray: r(t)=o+td
l Plane formula: n•p + d = 0

l Replace p by r(t) and solve for t: 
n•(o+td) + d = 0
n•o+tn•d + d = 0
t = (-d -n•o) / (n•d)

o d n

Here, one scalar 
equation and one 
unknown -> just solve 
for t.
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Analytical:
Ray/sphere test
l Sphere center: c, and radius r
l Ray: r(t)=o+td
l Sphere formula: ||p-c||=r
l Replace p by r(t): ||r(t)-c||=r

0))(())(( 2 =--×- rtt crcr

1||||     0)()())((2 22 ==--×-+×-+ dcοcοdcο rtt

0)()( 2 =--+×-+ rtt cdocdo

0)()())((2)( 22 =--×-+×-+× rtt cοcοdcοdd

o

d

c
r

This is a standard quadratic equation. Solve for t.
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Geometrical:
Ray/Box Intersection (2)
l Intersect the 2 planes of each slab with 

the ray

min
xt

max
xt

min
yt

max
yt

l Keep max of tmin and min of tmax

l If tmin < tmax then we got an intersection
l Special case when ray parallell to slab



The Plane Equation

If 𝒏 " 𝒙 + 𝑑 = 0, then x lies in the plane.
The function                          gives the signed 
distance of x from the plane. (n should be normalized.) 

l f(x)>0 means above the plane
l f(x)<0 means below the plane

0:    :Plane =+× dpnp

f (x) = n ⋅x+ d

origin

-d

𝒙

n

-d is how far the 
origin is behind the 
plane

f(x)



Sphere/Plane
Box/Plane
l Sphere: compute

0:    :Plane =+× dpnp
r            :Sphere c

AABB:    bmin    bmax

df +×= cnc)(
l f (c) is the signed distance (n normalized)

l Box: insert all 8 corners
l If all f ’s have the same sign, then all 

points are on the same side, and no 
collision

l abs( f (c)) > r      no collision
l abs( f (c)) = r      sphere touches the plane
l abs( f (c)) < r      sphere intersects plane



n

AABB/plane
l The smart way (shown in 2D)
l Find the two vertices that have the most 

positive and most negative value when tested 
againt the plane

Need only test
the red points

0:    :Plane =+× dpnp
r            :Sphere c

maxmin        :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx :bminx
v posy = (ny > 0)?bmaxy :bminy
v posz = (nz > 0)?bmax z :bminz
vnegx = (nx < 0)?bmaxx :bminx
vnegy = (ny < 0)?bmaxy :bminy
vnegz = (nz < 0)?bmax z :bminz

See page 970 for even faster version. 
OBB almost as easy. Just first project
n on OBB’s axes – see p: 972



Another analytical example: 
Ray/Triangle in detail

l Ray: r(t)=o+td
l Triangle vertices: v0, v1, v2

l A point in the triangle:
t(u,v) = v0 + u(v1 - v0 ) + v(v2 - v0 ) 

where [u,v>=0, u+v<=1] is inside triangle

l Set t(u,v)=r(t), and solve for t, u, v:
v0+u(v1 - v0 ) +v(v2 - v0 )  = o+td
=> -td + u(v1 - v0 ) + v(v2 - v0 ) = o-v0

=> [-d, (v1 - v0 ), (v2 - v0 )]  [t, u, v]T = o-v0

v2

v1

v0

v1 -v0

v2 -v0
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Ray/Polygon: very briefly
l Intersect ray with polygon plane
l Project from 3D to 2D
l How?
l Find max(|nx|,|ny|,|nz|)
l Skip that coordinate!
l Then, count crossing in 2D
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View frustum testing example

l Algorithm: 
– if sphere is outside any of the 6 frustum planes -> report ”outside”. 
– Else report intersect.

l Not exact test, but not incorrect, i.e.,
– A sphere that is reported to be inside, can be outside
– Not vice versa, so test is conservative

outside
frustum

intersecting
frustum
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Lecture 7.1: Spatial Data Structures
and Speed-Up Techniques

l Speed-up techniques
– Culling

l Backface
l View frustum (hierarchical)
l Portal
l Occlusion Culling
l Detail

– Levels-of-detail:
l How to construct and use the spatial data 

structures
l BVH, BSP-trees (polygon aligned + axis aligned)
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Axis Aligned Bounding Box 
Hierarchy - an example
l Assume we click on screen, and want to 

find which object we clicked on

click!
1) Test the root first
2) Descend recursively as needed
3) Terminate traversal when possible
In general: get O(log n) instead of O(n)



l Find minimal box, then split along longest axis

x is longest Find minimal
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
Works similarly for other BVs

75

Bounding-Volume Hierarchy
– TOP-DOWN construction:



Axis-aligned BSP tree
Rough sorting
l Test the planes, recursively from root, against the point of view. For each 

traversed node:
– If node is leaf, draw the node’s geometry
– else

l Continue traversal on the ”hither” side with respect to the eye to sort front to back
l Then, continue on the farther side.

eye

0

1a

A B

1b

C 2

D E

1

1a 1b

2

0

23
4 5

l Works in the same way for polygon-
aligned BSP trees --- but that gives 
exact sorting



Polygon-aligned BSP tree
l Allows exact sorting
l Very similar to axis-aligned BSP tree

– But the splitting plane are now located in the 
planes of the triangles

Know how to build it 
and how to traverse 
back-to-front or 
front-to-back with 
respect to the eye 
position (here: v)

Drawing Back-to-Front {
recurse on farther side of P;
Draw P;
Recurse on hither side of P;

}// farther/hither is with respect to eye pos.



Lecture 7.2: Collision Detection
l 3 types of algorithms:

– With rays
l Fast but not exact

– With BVH
l Slower but exact
l You should be able to write pseudo code for BVH/BVH test 

for coll det between two objects.

– For many many objects.
l Course pruning of ”obviously” non-colliding objects
l E.g., Use a grid with an object list per cell, storing the objects

that intersect that cell. For each cell with list length > 1, test 
those against each other with a more exact method.


