
Half Time Wrapup Slides

Lecture 1

• Real-time Graphics pipeline
• Application-, geometry-, rasterization stage
• Modelspace, worldspace, viewspace, clip space,

screen space
• Z-buffer
• Double buffering
• Screen tearing

Lecture 1: Real-time Rendering
The Graphics Rendering Pipeline

• Three conceptual stages of the pipeline:
– Application (executed on the CPU)

• logic, speed-up techniques, animation, etc…
– Geometry

• Executing vertex and geometry shader
• Vertex shader:

– lighting computations per triangle vertex
– Project onto screen (3D to 2D)

– Rasterizer
• Executing fragment shader
• Interpolation of per-vertex parameters (colors, texcoords etc) over triangle
• Z-buffering, fragment merge (i.e., blending), stencil tests…

Application Geometry Rasterizer

3D
sceneinput

Image

output

Tomas Akenine-Mőller © 20034

Rendering Pipeline and
Hardware

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Appli-
cation
Stage

CPU

Geometry Stage Rasterization Stage

GPU

Tomas Akenine-Mőller © 20035

Hardware design

light

Geometry

blue

red green

Vertex shader:

•Lighting (colors)

•Screen space positions

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage

Tomas Akenine-Mőller © 20036

Hardware design Geometry shader:

•One input primitive

•Many output primitives

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

or

Geometry Stage

Tomas Akenine-Mőller © 20037

Hardware design Clips triangles against
the unit cube (i.e.,
”screen borders”)

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage

Tomas Akenine-Mőller © 20038

Hardware design Maps window size to
unit cube

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Rasterizer Stage
Geometry stage always operates inside
a unit cube [-1,-1,-1]-[1,1,1]
Next, the rasterization is made against a
draw area corresponding to window
dimensions.

Hardware design

Tomas Akenine-Mőller © 20039

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Collects three vertices
into one triangleRasterizer Stage

Hardware design

Tomas Akenine-Mőller © 200310

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Creates the
fragments/pixels for the
triangle

Rasterizer Stage

blue

red green
Rasterizer

Hardware design

Tomas Akenine-Mőller © 200311

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Pixel Shader:
Compute color
using:
•Textures
•Interpolated data
(e.g. Colors +
normals) from
vertex shader

Rasterizer Stage

Hardware design

Tomas Akenine-Mőller © 200312

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Frame buffer:
• Color buffers

• Depth buffer

• Stencil buffer

The merge units update
the frame buffer with the
pixel’s color

Rasterizer Stage

Application Geometry Rasterizer

model space world space world space

e.g., compute lighting

camera space

Do projection
clip space

(or unit space)

clip map to screen
screen space

Done in vertex shader
Fixed hardware function

Per-vertex computations
GEOMETRY – transformation summary

Painter’s Algorithm
• Render polygons a back to front order so that polygons

behind others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons
first

–O(n log n) calculation for ordering
–Not every polygon is either in
front or behind all other polygons

I.e., : Sort all triangles and
render them back-to-front.

z-Buffer Algorithm
• Use a buffer called the z or depth buffer to store
the depth of the closest object at each pixel found
so far

• As we render each polygon, compare the depth
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and
update z buffer

Also know double buffering!

• We do not want to show
the image until its drawing
is finished.

• The front buffer is displayed
• The back buffer is rendered to
• When new image has been created in back buffer,

swap the Front-/Back-buffer pointers.
• Use vsynch or screen tearing will occur…

i.e., when the swap happens in the middle of the screen with respect to the screen refresh
rate.

Application Geometry RasterizerThe RASTERIZER
double-buffering

Front buffer
(rgb color buffer)

Back buffer
(rgb color buffer)

Last fully finished
drawn frame.

Color buffer we draw to.
Not displayed yet.

Application Geometry RasterizerThe RASTERIZER
double-buffering – screen tearing

Example if the swap happens here (w.r.t the screen refresh rate).

old

new

Screen Tearing
Swapping
back/front buffers

Screen tearing is solved by using V-Sync.
V-Sync: swap front/back buffers during vertical blank (vblank) instead.

vblank

The default frame buffer:
Typically: Front + Back color buffers + Z buffer + (Stencil buffer)

Front buffer
(rgb color buffer)

Z buffer
(depth)

Stores rgb(a) value per pixel.
Default: 8 bits per r,g,b channel.

Stores fragment’s
depth value per
pixel, typically: (16),
24, or 32 bits.

Back buffer
(rgb color buffer)

Stencil buffer

Stencil buffer can be
asked for. 8-bits per
pixel.

Last fully finished
drawn frame.
Is displayed.

Color buffer we draw to.
Not displayed yet.

To resolve visibility
Used for masking rendering
to only where pixel’s stencil
value = some specific value.

Lecture 2: Transforms

• Homogeneous notation
• Rigid-body transform, Euler rotation (head,pitch,roll)
• Change of frames
• Quaternions

– Know what they are good for. Not knowing the mathematical rules.

l Transformation pipeline: ModelViewProjection matrix
l Scaling, rotations, translations, projection
l Cannot use same matrix to transform normals

l …represents a rotation of 2f radians around axis
uq of point p

l Understand the simple DDA algorithm
l Bresenhams line-drawing algorithm

)cos,(sinˆ ff quq =

1ˆˆˆ -qpq

(M-1)T=M if rigid-body
transform() MMN of instead :Use 1 T-=

Ulf Assarsson© 2007

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

l
l
l

object
space

View/Eye/
Camera
space

Unit-cube
space /
Normalized

device coords

Window
coords.
Screen
space

Transformation
Pipeline

OpenGL | Geometry stage | done on GPU

Done by the vertex shader:

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

Homogeneous
coord. space

Lecture 2:
Clip space: clipping is nowadays typically done in
homogeneous space. However, it used to be done in
unit-cube space. Both terminologies are still used.

cameraModel space World space View space

Model to World
Matrix

World to View
Matrix

ModelViewMtx = ”Model to View Matrix”

ModelViewMtx * v = (MVçW * MWçM) * v

vview_space = ModelViewMtx * vmodel_space

Full projection:

Vclip_space = projectionMatrix * ModelViewMatrix * vmodel_space

Or simply: vclip_space = MModelViewProjection * v

x

y

z

Projection
Matrix

, where MModelViewProjection = projectionMatrix * ModelViewMatrix

Tomas Akenine-Mőller © 2002

Homogeneous notation
l A point:
l Translation becomes:

l A vector (direction):
l Translation of vector:

1

1
)(

1000
100
010
001

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

+
+
+

=

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

zz

yy

xx

z

y

x

z

y

x

tp
tp
tp

p
p
p

t
t
t

  

tT

()Tzyx ppp 1=p

()Tzyx ddd 0=d
dTd =

Translation part

Rotation
part

02. Vectors and Transforms

Change of Frames
• How to get the Mmodel-to-world matrix:

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

1000

M world-to-model
zzzz

yyyy

xxxx

ocba
ocba
ocba

(0,5,0,1)

E.g.: pworld = Mm®w pmodel = Mm®w (0,5,0,1)T = 5 b (+ o)

b

x

y

z

c

a

o

world space

model space

(Both coordinate systems are right-handed)

P=

0
5
0
1

!

"

#
#
#
#

$

%

&
&
&
&

The basis vectors a,b,c
are expressed in the
world coordinate system

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

1000

M world-to-model
zzzz

yyyy

xxxx

ocba
ocba
ocba

b

x

y

z

a

c

o

world space

model space

Change of Frames
pmodelspace =(px,py,pz)

Let’s initially disregard the translation o. I.e., o=[0,0,0]
X: One step along a results in ax steps along world space axis x.

One step along b results in bx steps along world space axis x.
One step along c results in cx steps along world space axis x.

The x-coord for p in world space (instead of modelspace) is thus [ax bx cx]p.
The y-coord for p in world space is thus [ay by cy]p.
The z-coord for p in world space is thus [az bz cz]p.

With the translation o we get pworldspace= Mmodel-to-world pmodelspace

Same example, just explained differently:

Tomas Akenine-Mőller © 2002

Projections
l Orthogonal (parallel) and Perspective

02. Vectors and Transforms

Tomas Akenine-Mőller © 2002

Orthogonal projection
l Simple, just skip one coordinate

– Say, we’re looking along the z-axis
– Then drop z, and render

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

Þ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

1
0

1

1000
0000
0010
0001

y

x

z

y

x

orthoortho

p
p

p
p
p

MM

z z

02. Vectors and Transforms

DDA Algorithm
• Digital Differential Analyzer

–DDA was a mechanical device for numerical
solution of differential equations

–Line y=kx+ m satisfies differential equation
 dy/dx = k = Dy/Dx = y2-y1/x2-x1

• Along scan line Dx = 1
y=y1;
For(x=x1; x<=x2,ix++) {
 write_pixel(x, round(y), line_color)
 y+=k;
}

02. Vectors and Transforms

Using Symmetry

•Use for 1 ³ k ³ 0
•For k > 1, swap role of x and y

–For each y, plot closest x

Otherwise we get
problem for steep
slopes

02. Vectors and Transforms

• The problem with DDA is that it uses floats
which was slow in the old days

• Bresenhams algorithm only uses integers

You do not need to know Bresenham’s algorithm
by heart. It is enough that you understand it if
you see it.

Very Important!

02. Vectors and Transforms

Lighting

Material:
•Ambient (r,g,b,a)

•Diffuse (r,g,b,a)

•Specular (r,g,b,a)

•Emission (r,g,b,a) =”självlysande färg”

Light:
•Ambient (r,g,b,a)

•Diffuse (r,g,b,a)

•Specular (r,g,b,a)

DIFFUSE Base color
SPECULAR Highlight Color
AMBIENT Low-light Color
EMISSION Glow Color
SHININESS Surface Smoothness

The ambient/diffuse/specular/emission
model

Amb + Diff + Spec + Em

l Summary of formulas:

Amb + Diff + SpecAmb + DiffAmbient

Ambient: iamb = mamb lamb

Diffuse: 𝒏 ⋅ 𝒍 mdiff ldiff

Specular:
• Phong: 𝒓 ⋅ 𝒗 𝑠ℎ𝑖𝑛𝑖𝑛𝑒𝑠𝑠 mspec lspec

• Blinn: 𝒏 ⋅ 𝒉 𝑠ℎ𝑖𝑛𝑖𝑛𝑒𝑠𝑠 mspec lspec

Emission: memission

Lecture 3: Shading

The ambient/diffuse/specular/emission
model
l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads
in all directions (view-independent and light-position independent color)

l Diffuse light: the part that spreads equally in all directions (view
independent) due to that the surface is very rough on microscopic level

n

outColorrgb ~materialrgb ⊗ lightColorrgb

Light source

Amb + Diff

diffdiffdiff smlni Ä×=)(

l
Just scale light intensity
with incoming angle

𝒏 ⋅ 𝒍 = 𝒄𝒐𝒔 𝝓
𝝓

The ambient/diffuse/specular/emission
model

n

l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads
in all directions (view-independent and light-position independent color)

l Diffuse light: the part that spreads equally in all directions (view
independent) due to that the surface is very rough on microscopic level

l Specular light: the part that spreads mostly in the reflection direction
(often same color as light source)

outColorrgb ~materialrgb ⊗ lightColorrgb

Amb + Diff + Spec

Specular: Phong’s model
l Phong specular highlight model
l Reflect l around n:

l)n2(nlr ×+-=

n

lr

-l
nln)(×

ln ×

shishi mm
speci)(cos)(r=×= vr

€

ispec = ((n⋅ l) < 0) ? 0 : max(0,(r⋅ v))mshimspec ⊗ sspec
l Next: Blinns highlight formula: (n.h)m

n must be unit
vector

Specular: Blinn’s specular highlight model

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
h is halfway between l and v
If n, l, and v are coplanar:
 y = f/2
Must then adjust exponent
so that (n·h)e’ ≈ (r·v)e, (e’ ≈ 4e)

If the surface is rough, there is a probability distribution of the
microscopic normals n. This means that the intensity of the
reflection is decided by how many percent of the microscopic
normals are aligned with h. And that probability often scales with
how close h is to the macroscopic surface normal n.

specspec
m

spec
shi smnhi Ä×=))(,0max(

Tomas Akenine-Mőller © 2002

Shading
l Flat, Goraud, and Phong shading:

l Flat shading: one normal per triangle. Lighting computed once for the whole
triangle.

l Gouraud shading: the lighting is computed per triangle vertex and for each
pixel, the color is interpolated from the colors at the vertices.

l Phong Shading: the lighting is not computed per vertex. Instead the normal
is interpolated per pixel from the normals defined at the vertices and full
lighting is computed per pixel using this normal. This is of course more
expensive but looks better.

Flat Gouraud Phong

Gouraud
shading

Phong
shading

Flat
shading

Tomas Akenine-Mőller © 2002

l Color of fog: color of surface: fc sc

€

c p = fcs + (1− f)c f f ∈[0,1]
l How to compute f ?
l E.g., linearly:

startend

pend

zz
zz

f
-

-
=

Tomas Akenine-Mőller © 2002

Transparency and alpha
l Transparency

– Very simple in real-time contexts

l The tool: alpha blending (mix two colors)
l Alpha (a) is another component in the

frame buffer, or on triangle
– Represents the opacity
– 1.0 is totally opaque
– 0.0 is totally transparent

l The over operator: dso ccc)1(aa -+=
Rendered object

03. Shading:

(Blending)

Transparency
l Need to sort the transparent objects

– First, render all non-transparent triangles as
usual.

– Then, sort all transparent triangles and render
back-to-front with blending enabled. (and using
standard depth test)
l The reason is to avoid problems with the depth test and

because the blending operation (i.e., over operator) is order
dependent.

03. Shading:

If we have high frame-to-frame coherency regarding the objects to be sorted
per frame, then Bubble-sort (or Insertion sort) are really good! Superior to
Quicksort.
Because, they have expected runtime of resorting already almost sorted
input in O(n) instead of O(n log n), where n is number of elements.

Gamma correction
l Reasons for wanting gamma correction

(standard is 2.2):
1. Screen has non-linear color intensity

– We often want linear output (e.g. for correct antialiasing)

2. Also happens to give more efficient color space (when
compressing intensity from 32-bit floats to 8-bits). Thus, often
desired when storing textures.

Tomas Akenine-Mőller © 2002

Gamma of 2.2. Better
distribution for humans.
Perceived as linear.

Truly linear intensity
increase.

A linear intensity output (bottom) has a large jump in perceived brightness between the
intensity values 0.0 and 0.1, while the steps at the higher end of the scale are hardly
perceptible.
A nonlinearly-increasing intensity (upper), will show much more even steps in
perceived brightness.

)/1(g
icc =

Ulf Assarsson © 2004

Leture 3.2: Sampling, filtrering, and
Antialiasing

l When does it occur?
– In 1) pixels, 2) time, 3) texturing

l Supersampling schemes
l Jittered sampling

– Why is it good?
l Supersampling vs

multisampling vs coverage
sampling

04. Texturing
What is most important:
• Filtering: magnification, minification

– Mipmaps + their memory cost
– How compute bilinear/trilinear filtering
– Number of texel accesses for trilinear filtering
– Anisotropic filtering

• Environment mapping – cube maps, how compute lookup.
• Bump mapping
• 3D-textures – what is it?
• Sprites
• Billboards/Impostors, viewplane vs viewpoint oriented, axial

billboards, how to handle depth buffer for fully transparent
texels.

• Particle systems

Ulf Assarsson © 2004

FILTERING:
l For magnification: Nearest or Linear (box vs Tent

filter)

l For minification: nearest, linear and…
– Bilinear – using mipmapping
– Trilinear – using mipmapping
– Anisotropic – up to 16 mipmap lookups along line of anisotropy

Filtering

Sinc filter not
usable in real time.
Why?...

Ulf Assarsson © 2004

Interpolation

Minification

Magnification

Ulf Assarsson © 2004

Bilinear filtering using Mipmapping

Mipmapping
l Image pyramid
l Half width and

height when going
upwards

l Average over 4 ”parent texels” to form
”child texel”

l Depending on amount of minification,
determine which image to fetch from

l Compute d first, gives two images
– Bilinear interpolation in each

u
v

d

Tomas Akenine-Mőller © 2002

Mipmapping
l Interpolate between those bilinear values

– Gives trilinear interpolation

l Constant time filtering: 8 texel accesses

v
u

d

Level n+1

Level n

(u0,v0,d0)

Tomas Akenine-Mőller © 2002

Mipmapping:
Memory requirements
l Not twice the number of bytes…!

1/4
1/16

1/1

1/64

Modified by Ulf Assarsson 2004
l Rather 33% more – not that much

Anisotropic texture filtering

See page
187-188

Tomas Akenine-Mőller © 2002

Environment mapping

l Assumes the environment is infinitely far away
l E.g., sphere mapping, or cube mapping
l Cube mapping is the norm nowadays

Modified by Ulf Assarsson 2004

Tomas Akenine-Mőller © 2002

x

y

z

Cube mapping

l Simple math: compute reflection vector, r
l Largest abs-value of component, determines which cube face.

– Example: r=(5,-1,2) gives POS_X face
l Divide r by abs(5) gives (u,v)=(-1/5,2/5)
l Also remap from [-1,1] to [0,1] by (u,v) = ((u,v)+vec2(1,1))*0.5;
l Your hardware does all the work for you. You just have to

compute the reflection vector.

neye

Tomas Akenine-Mőller © 2002

Bump mapping
l by Blinn in 1978
l Inexpensive way of simulating wrinkles

and bumps on geometry
– Expensive to model these geometrically

l Instead let a texture modify the normal at
each pixel, and then use this normal to
compute lighting per pixel

geometry Bump map
Stores heights: can derive normals

+
Bump mapped geometry

=

Normal mapping in tangent vs object space

Tangent space:
lNormals are stored as distorsion of face orientation. The same bump map
can be tiled/repeated and reused for many faces with different orientation54

Object space:
•Normals are stored directly in
model space. I.e., as
including both face orientation
plus distorsion.

Normal map

Tangent space:

More...
l 3D textures:

– Texture filtering is no longer trilinear
– Rather quadlinear

l (trilinear interpolation in both 3D-mipmap levels + between mipmap levels)
– Enables new possibilities

l Can store light in a room, for example

l Displacement Mapping
– Like bump/normal maps but truly offsets the surface geometry

(not just the lighting).
– Gfx hardware cannot offset the fragment’s position

l Offsetting per vertex is easy in vertex shader but requires a highly
tessellated surface.

l Tesselation shaders are created to increase the tessellation of a
triangle into many triangles over its surface. Highly efficient.

l (Can also be done using Geometry Shader (e.g. Direct3D 10) by ray
casting in the displacement map, but tessellation shaders are generally
more efficient for this.)55

2D 3D

Sprites
GLbyte M[64]=
{ 127,0,0,127, 127,0,0,127,

127,0,0,127, 127,0,0,127,
 0,127,0,0, 0,127,0,127,

0,127,0,127, 0,127,0,0,
 0,0,127,0, 0,0,127,127,

0,0,127,127, 0,0,127,0,
 127,127,0,0, 127,127,0,127,

127,127,0,127, 127,127,0,0};

void display(void) {
 glClearColor(0.0,1.0,1.0,1.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glEnable (GL_BLEND);
 glBlendFunc (GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);
 glRasterPos2d(xpos1,ypos1);
 glPixelZoom(8.0,8.0);
 glDrawPixels(width,height,
 GL_RGBA, GL_BYTE, M);

 glPixelZoom(1.0,1.0);
 glutSwapBuffers();
}

Sprites (=älvor) was a technique
on older home computers, e.g.
VIC64. As opposed to billboards
sprites does not use the frame
buffer. They are rasterized
directly to the screen using a
special chip. (A special bit-
register also marked colliding
sprites.)

05. Texturing:
Just know what “sprites” is
and that they are very
similar to a billboard

Billboards
• 2D images used

in 3D
environments
– Common for

trees,
explosions,
clouds, lens
flares

• Rotate them towards viewer
– Either by rotation matrix, or
– by orthographic projection

Billboards

58

normal

View
vector

Rotation
axis

Rot
angle

=> Rotation matrix for the
billboard

• Fix correct transparency by
blending AND using alpha-
test
– In fragment shader:

if (color.a < 0.1) discard;

Billboards
Color Buffer Depth Buffer

With
blending

With
alpha test

If alpha value in texture
is lower than some small
threshold value, the pixel
is not rendered to. I.e.,
neither frame buffer nor
z-buffer is updated,
which is what we want to
achieve.
E.g. here, so that objects behind are visible through the hole

(Also called Impostors)

axial billboarding
The rotation axis is fixed and
disregarding the view position

n

Ulf Assarsson © 2004

Lecture 5: OpenGL
l How to use OpenGL (or DirectX)

– Will not ask about syntax. Know how to use.
l I.e. functionality

– E.g. how to achieve
l Blending and transparency
l Fog – how would you implement in a fragment shader?

– pseudo code is enough
l Specify a material, a triangle, how to translate or rotate an

object.
l Triangle – vertex order and facing

62

Buffers
l Frame buffer

– Back/front/left/right – glDrawBuffers()
– Offscreen buffers (e.g., framebuffer objects, auxiliary buffers)

Frame buffers can consist of:
l Color buffer - rgb(a)
l Depth buffer (z-buffer)

– For correct depth sorting
– Instead of BSP-algorithm or painters algorithm…

l Stencil buffer
– E.g., for shadow volumes or only render to frame buffer where

stencil = certain value (e.g., for masking).

Ulf Assarsson © 2004

Lecture 6: Intersection Tests
l Some techniques to compute intersections:

– Analytically
– Geometrically – e.g. ray vs box (3 slabs)
– SAT (Separating Axis Theorem) for convex polyhedra

Test:
1. face normals of A,
2. face normals of B
3. All different axes formed by crossprod of one edge of A and one of B

– Dynamic tests – know what it means.
l E.g., describe an algorithm for intersection

between a ray and a
– Polygon, triangle, sphere and plane.

l Know equations for ray, sphere, cylinder,
plane, triangle

Tomas Akenine-Mőller © 2003

Analytical:
Ray/plane intersection

l Ray: r(t)=o+td
l Plane formula: n•p + d = 0

l Replace p by r(t) and solve for t:
n•(o+td) + d = 0
n•o+tn•d + d = 0
t = (-d -n•o) / (n•d)

o d n

Here, one scalar
equation and one
unknown -> just solve
for t.

Tomas Akenine-Mőller © 2003

Analytical:
Ray/sphere test
l Sphere center: c, and radius r
l Ray: r(t)=o+td
l Sphere formula: ||p-c||=r
l Replace p by r(t): ||r(t)-c||=r

0))(())((2 =--×- rtt crcr

1|||| 0)()())((2 22 ==--×-+×-+ dcοcοdcο rtt

0)()(2 =--+×-+ rtt cdocdo

0)()())((2)(22 =--×-+×-+× rtt cοcοdcοdd

o

d

c
r

This is a standard quadratic equation. Solve for t.

Tomas Akenine-Mőller © 2003

Geometrical:
Ray/Box Intersection (2)
l Intersect the 2 planes of each slab with

the ray

min
xt

max
xt

min
yt

max
yt

l Keep max of tmin and min of tmax

l If tmin < tmax then we got an intersection
l Special case when ray parallell to slab

The Plane Equation

If 𝒏 " 𝒙 + 𝑑 = 0, then x lies in the plane.
The function gives the signed
distance of x from the plane. (n should be normalized.)

l f(x)>0 means above the plane
l f(x)<0 means below the plane

0: :Plane =+× dpnp

f (x) = n ⋅x+ d

origin

-d

𝒙

n

-d is how far the
origin is behind the
plane

f(x)

Sphere/Plane
Box/Plane
l Sphere: compute

0: :Plane =+× dpnp
r :Sphere c

AABB: bmin bmax

df +×= cnc)(
l f (c) is the signed distance (n normalized)

l Box: insert all 8 corners
l If all f ’s have the same sign, then all

points are on the same side, and no
collision

l abs(f (c)) > r no collision
l abs(f (c)) = r sphere touches the plane
l abs(f (c)) < r sphere intersects plane

n

AABB/plane
l The smart way (shown in 2D)
l Find the two vertices that have the most

positive and most negative value when tested
againt the plane

Need only test
the red points

0: :Plane =+× dpnp
r :Sphere c

maxmin :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx :bminx
v posy = (ny > 0)?bmaxy :bminy
v posz = (nz > 0)?bmax z :bminz
vnegx = (nx < 0)?bmaxx :bminx
vnegy = (ny < 0)?bmaxy :bminy
vnegz = (nz < 0)?bmax z :bminz

See page 970 for even faster version.
OBB almost as easy. Just first project
n on OBB’s axes – see p: 972

Another analytical example:
Ray/Triangle in detail

l Ray: r(t)=o+td
l Triangle vertices: v0, v1, v2

l A point in the triangle:
t(u,v) = v0 + u(v1 - v0) + v(v2 - v0)

where [u,v>=0, u+v<=1] is inside triangle

l Set t(u,v)=r(t), and solve for t, u, v:
v0+u(v1 - v0) +v(v2 - v0) = o+td
=> -td + u(v1 - v0) + v(v2 - v0) = o-v0

=> [-d, (v1 - v0), (v2 - v0)] [t, u, v]T = o-v0

v2

v1

v0

v1 -v0

v2 -v0

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
-=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

|

|

|||

|||

00201 vovvvvd
v
u
t Ax=b

x=A-1b

Tomas Akenine-Mőller © 2003

Ray/Polygon: very briefly
l Intersect ray with polygon plane
l Project from 3D to 2D
l How?
l Find max(|nx|,|ny|,|nz|)
l Skip that coordinate!
l Then, count crossing in 2D

Tomas Akenine-Mőller © 2003

View frustum testing example

l Algorithm:
– if sphere is outside any of the 6 frustum planes -> report ”outside”.
– Else report intersect.

l Not exact test, but not incorrect, i.e.,
– A sphere that is reported to be inside, can be outside
– Not vice versa, so test is conservative

outside
frustum

intersecting
frustum

Ulf Assarsson © 2004

Lecture 7.1: Spatial Data Structures
and Speed-Up Techniques

l Speed-up techniques
– Culling

l Backface
l View frustum (hierarchical)
l Portal
l Occlusion Culling
l Detail

– Levels-of-detail:
l How to construct and use the spatial data

structures
l BVH, BSP-trees (polygon aligned + axis aligned)

Tomas Akenine-Mőller © 2002

Axis Aligned Bounding Box
Hierarchy - an example
l Assume we click on screen, and want to

find which object we clicked on

click!
1) Test the root first
2) Descend recursively as needed
3) Terminate traversal when possible
In general: get O(log n) instead of O(n)

l Find minimal box, then split along longest axis

x is longest Find minimal
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
Works similarly for other BVs

75

Bounding-Volume Hierarchy
– TOP-DOWN construction:

Axis-aligned BSP tree
Rough sorting
l Test the planes, recursively from root, against the point of view. For each

traversed node:
– If node is leaf, draw the node’s geometry
– else

l Continue traversal on the ”hither” side with respect to the eye to sort front to back
l Then, continue on the farther side.

eye

0

1a

A B

1b

C 2

D E

1

1a 1b

2

0

23
4 5

l Works in the same way for polygon-
aligned BSP trees --- but that gives
exact sorting

Polygon-aligned BSP tree
l Allows exact sorting
l Very similar to axis-aligned BSP tree

– But the splitting plane are now located in the
planes of the triangles

Know how to build it
and how to traverse
back-to-front or
front-to-back with
respect to the eye
position (here: v)

Drawing Back-to-Front {
recurse on farther side of P;
Draw P;
Recurse on hither side of P;

}// farther/hither is with respect to eye pos.

Lecture 7.2: Collision Detection
l 3 types of algorithms:

– With rays
l Fast but not exact

– With BVH
l Slower but exact
l You should be able to write pseudo code for BVH/BVH test

for coll det between two objects.

– For many many objects.
l Course pruning of ”obviously” non-colliding objects
l E.g., Use a grid with an object list per cell, storing the objects

that intersect that cell. For each cell with list length > 1, test
those against each other with a more exact method.

