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DAT295/DIT221 Advanced Computer 
Graphics - Seminar Course, 7.5p

⚫ If you are interested, register to that course

⚫ http://www.cse.chalmers.se/edu/course/TDA362/Advan

ced Computer Graphics/

⚫ ~13 seminars in total, sp4

⚫ Project (no exam)
– Self or in groups

⚫ Project examples include:
– GPU ray tracing (Vulkan), AI denoising

– realistic explosions, clouds, smoke, procedural textures

– fractal mountains, CUDA program, Spherical Harmonics, SSAO, 

Displacement mapping, Collision detection

– 3D Game

– real-time ray tracer, enhanced path tracing.

– or anything else you can come up with…
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GFX Companies Gothenburg
Non-Gothenburg

Game Studios:

 Avalanche studios (Sthlm)

 DICE / EA (Sthlm)

 Massive (Malmö)

 Frostbite (Sthlm)

Architects

Arcitec – (Sthlm)– 

visualization of buildings for 

architects

For graphics artists:

Rapid Images

AFRY

Zoink games

Industriromantik

Stark Film

Edit House

Bobby Works

Filmgate

Ord och bild

Magoo 3D Studios

Tenjin Visual

Silverbullet Film

Tengbom

MFX – www.mfx.se Architects, graphics artists:

White

Wingårdhs

Volvo Personvagnar

Semcon

Ramböll

Zynka

CAP AB

 

3D software development:

Rapid Images

EA Frostbite (filial i Göteborg) 

TTK Games (Gbg + Sthlm)

Epic Games

NVIDIA – Lund/Göteborg

Smart Eye AB,

EON Reality,

Spark Vision

MindArk

Mentice

Vizendo

Surgical Science

Combitech

Fraunhofer (Chalmers Teknikpark)

RD&T Technology

Qualisys

Volvo Trucks, Volvo Cars

Zenseact

Berge Consulting / Berge Group

And many more that I have forgotten 

now…
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Isn’t classic ray tracing enough?

Images courtesy of Henrik Wann Jensen

Whitted Ray tracing
(reflections, refractions, shadows)

Effects to note in Global Illumination image:

1) Indirect lighting (light reaches the roof)

2) Color bleeding (example: roof is red near red wall)

3) Materials have no ambient component

4) Caustics (concentration of refracted light through glass ball)

5) Soft shadows (light source has area)

Others: volumetric effects, e.g., participating media

Global

Illumination

Which are

the differences?
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Global Illumination
⚫ The goal: follow all photon/ray bounces through a 

scene, in order to render images with all kinds of light
paths.

⚫ This will give incredibly realistic images

⚫ This lecture will treat:
– Background: 

⚫ radiance

⚫ the rendering equation

– How to solve the rendering equation by Monte Carlo ray
tracing:
⚫ Path tracing

⚫ Bidirectional Path tracing

⚫ Adding denoising - Final Gathering or AI denoising

⚫ Photon mapping

⚫ Great book on global illumination:
– Pharr, Humphreys, Physically Based Rendering, 2010

⚫ With source code.
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Radiance
• In graphics, we typically use rgb-colors c = (cr,cg,cb) and mean the 

intensity or radiance for the red, green, and blue light. 

• Radiance, L : a radiometric term. What we store in a pixel is the radiance

towards the eye: a tripplet L = (Lr,Lg,Lb) 

– Radiance = the amount of electromagnetic radiation leaving or arriving at a 

point on a surface (per unit solid angle per unit projected area)

• Lo(x,) is often five-dimensional (or 6, including wavelength):

– Position (3)

– Direction (2) – horizontal + vertical angle

• Radiance is ”power per unit projected area per unit solid angle”

Radiance from a specific direction

uses differentials, so the cone

of the solid angle becomes

an infinitesmally thin ray.

Hence, in graphics we often sloppily 

talk about the radiance from a 

direction to a surface point

d Solid angle: measured in

Steradians (4 is whole sphere).



Background:
The rendering equation

⚫ Paper by Kajiya, 1986 (see course website).

⚫ Is the basis for all rendering, but especially for 
global illumination algorithms

⚫ Lo(x,)=Le(x, )+Lr(x, )  (slightly different terminology than Kajiya)

– outgoing=emitted+reflected radiance

– x is position on surface,  is direction vector

⚫ Extend the last term Lr(x,)

')')(',()',,(  dLfLL ireo nxx += 


⚫ fr is the BRDF (next slide), ’ is incoming direction, n is 
normal at  point x,  is hemisphere ”around” x and n, Li

is incoming radiance
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Background:
Briefly about BRDFs
⚫ Bidirectional Reflection Distribution Function

⚫ A more accurate description of material properties

⚫ What it describes: 
– How much of the incoming radiance Li from a given direction i that

will leave in a given outgoing direction o.

– It is wavelength and polarization dependent.

⚫ i is incoming direction

⚫ o is outgoing direction

⚫ Many different ways
to get BRDF:s

– Measurement

– Models: 
– Simple: amb+diff+spec

– Physically-based: metalness (vs dielectric), shininess, Fresnel, base color
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Radiance/strålning

⚫ Radiance, L : a radiometric term. What we store in a 

pixel is the radiance towards the eye

– the amount of electromagnetic radiation leaving or arriving at a 

point on a surface

⚫ Lo= outgoing radiation from a point to a certain direction

⚫ Radiation = color and its intensity, i.e., rbg-value

⚫ x = x,y,z-position in space

⚫  = outgoing direction

Lo(x,)

x 
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⚫ Paper by Kajiya, 1986.

⚫ Is the basis for all global illumination algorithms

⚫ Lo(x,)=Le(x, )+Lr(x, ) 

– outgoing=emitted+reflected radiance

Lr(x,)

')')(',()',,(  dLfLL ireo nxx += 


⚫ fr is the BRDF, ’ is incoming direction, n is normal at  point x,  is 
hemisphere ”around” x and n, Li is incoming radiance

Li(x,)

Li(x,)
Li(x,)

Li(x,)

The rendering equation - Summary

Integrate over all 

incoming 

directions to 

get how much 

radiance is 

reflected in 

outgoing 

direction 



⚫ Paper by Kajiya, 1986.

⚫ Is the basis for all global illumination algorithms

⚫ Lo(x,)=Le(x, )+Lr(x, ) 

– outgoing=emitted+reflected radiance

')')(',()',,(  dLfLL ireo nxx += 


⚫ fr is the BRDF, ’ is incoming direction, n is normal at  point x,  is 
hemisphere ”around” x and n, Li is incoming radiance

n



cos()


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The rendering equation
Scale incoming 

radiance with 

cosine of the 

incoming angle



⚫ Paper by Kajiya, 1986.

⚫ Is the basis for all global illumination algorithms

⚫ Lo(x,)=Le(x, )+Lr(x, ) 

– outgoing=emitted+reflected radiance

Lr(x,)

')')(',()',,(  dLfLL ireo nxx += 


⚫ fr is the BRDF, ’ is incoming direction, n is normal at  point x,  is 
hemisphere ”around” x and n, Li is incoming radiance

Li(x,)

Li(x,)
Li(x,)

Li(x,)

The rendering equation
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⚫ Paper by Kajiya, 1986.

⚫ Is the basis for all global illumination algorithms

⚫ Lo(x,)=Le(x, )+Lr(x, ) 

– outgoing=emitted+reflected radiance

Lr(x,)

')')(',()',,(  dLfLL ireo nxx += 


⚫ fr is the BRDF, ’ is incoming direction, n is normal at  point x,  is 
hemisphere ”around” x and n, Li is incoming radiance

Li(x,)

BRDF: 
fr(x,  ) =

”How much of incoming 
radiance, Li, from direction 
that leaves in an 
outgoing direction 

The rendering equation
BRDF = Bidirectional Reflection Distribution Function
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⚫ Paper by Kajiya, 1986.

⚫ Is the basis for all global illumination algorithms

⚫ Lo(x,)=Le(x, )+Lr(x, ) 

– outgoing=emitted+reflected radiance

')')(',()',,(  dLfLL ireo nxx += 


⚫ fr is the BRDF, ’ is incoming direction, n is normal at  point x,  is 
hemisphere ”around” x and n, Li is incoming radiance

The rendering equation - Summary

Le(x,)

14

Self glowing term



Many GI algorithms are built on 
Monte Carlo Integration
⚫ Integral in rendering equation:

– Hard to evaluate numerically

– But we can sample it.

⚫ MC can estimate integrals: =
b

a
dxxfI )(

⚫ Assume we can compute the mean of f(x) over the 
interval [a,b]
⚫ Then the integral is mean*(b-a)

⚫ Thus, focus on estimating mean of f(x)

⚫ Idea: sample f at n uniformly distributed random locations, xi:


=

−=
n

i

iMC xf
n

abI
1

)(
1

)( Monte Carlo estimate

⚫ When n→infinity, IMC→I

⚫ Standard deviation convergence is slow: n

1


⚫ Thus, to halve error, must use 4x number of samples!
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Monte Carlo Ray Tracing (naïvely)

diffuse floor and wall 

eye

')')(',()',,(  dLfLL ireo nxx += 


light light
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⚫ But we separate direct lighting from indirect, since direct lighting is so 

dominant (when not in shadow), by always shooting a ray to light sources.
– I.e., compute local lighting as usual, with a shadow ray per light.

⚫ Then, sample indirect illumination by shooting sample rays over the 

hemisphere, at each hit.

⚫ This separation of local vs global lighting works without getting math biasing

issues.



Monte Carlo Ray Tracing (naïvely)

⚫ The indirect-illumination sampling gives a ray

tree with most rays at the bottom level. This is 

bad since these rays have the lowest influence

on the pixel color.

17



PathTracing 
– one efficient Monte-Carlo Ray-Tracing solution

⚫ Path Tracing instead only traces one of the 

possible ray paths at a time. This is done by 

randomly selecting only one sample direction

at a bounce. Hundreds of paths per pixel are

traced.

Equally number of rays

are traced at each level
18

Even smarter: terminate path with

some probablility after each level, 

since they have decreasing

importance to final pixel color.

Or:



Path Tracing – indirect + direct illumination. 

⚫ Shoot many paths per pixel (the image just shows one 

light path).

– At each intersection, 

⚫ Shoot one shadow ray per light source

– at random position on light, for area/volumetric light sources

⚫ and randomly select one new ray direction.

diffuse floor and wall 

eye

light light

19

One path:



Path Tracing and area lights

⚫ For area light sources, shoot the shadow ray to one
random position on the area light. This gives soft 
shadows when many paths are averaged for the pixel.

⚫ Example: Three paths for one pixel
– At each ray intersection, 

⚫ Pick one random position on light source

⚫ Send one random ray bounce to continue the path...

diffuse floor and wall 

eye

light

20



Example of diffuse surface + soft 
shadows

⚫ Need to send many many paths to avoid noisy images
– Perhaps 10,000 or more paths are needed per pixel

⚫ But eventually you often denoise by Final Gather or AI denoising.

⚫ Still, it is a simple method to generate high quality
images. Will converge to a statistically correct result.

One sample

per pixel

100 samples

per pixel

Images courtesy of Peter Shirley21



Path tracing: Summary

⚫ Uses Monte Carlo sampling to solve
integration: 

– by shooting many random ray paths over the 
integral domain.

– Algorithm: 
⚫ For each pixel, // we will shoot a number of paths:

– For each path, generate the primary ray:

– Repeat {

1. Trace the ray. At hitpoint:

2. Shoot one shadow ray (per light) to compute direct lighting.

3. Sample indirect illumination randomly over the possible
reflection/refraction directions by generating one new 
ray to continue the path.

– } until the path is randomly terminated (or the ray does not hit 
anything).

⚫ Shorter summary: shoot many paths per pixel, by randomly choosing

one new ray at each interaction with surface + one shadow ray per light. 
Terminate the path with a random probability22



Russian Roulette

Use randomness to decide whether to trace a diffuse or specular ray:

⚫ Assume kdiff+kspec<=1 (since energy cannot be created but can be 

absorbed)

– In Physically-based Shading – use the mtrl brdf, e.g., fspec= D()G()F():

⚫ Let kspec = %reflectivity for the ray w.r.t incoming angle

⚫ Let kdiff = %refraction for the ray w.r.t incoming angle

(If transparent mtrl., then also randomly select between diffuse ray

and transparency ray based on material’s %transparency.)

⚫ When a ray hits such a surface

– Pick a random number, r in [0,1]

– If( r < kdiff ) → send diffuse ray (e.g. in random direction)

– Else if( r < kdiff +kspec ) → send specular ray (e.g. along reflection dir.)

– Else absorb ray, i.e., terminate ray.

⚫ This is called Russian roulette.
– Common for layered materials.

– and for BRDF’s, see path-tracer lab.

⚫ Point: this selects just one ray so we get a path instead of a tree. 
23
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A classical example – spec+diff 
surface + hard shadow

⚫ Path tracing was introduced in 1986 by Jim 
Kajiya

⚫ Note how the right sphere reflects light, and so 
the ground under the sphere is brighter

24



What is Caustics?

⚫ Caustic’s don’t work well for path tracing

25



Reason why forward ray tracing 
fails to capture caustics well

Caustic

Must be lucky to hit the specular

reflector and discover that it 

focuses the light.

Compute color 

Strong light

Path tracing

26



Extensions to path tracing
⚫ Bidirectional path tracing

– Developed in1993-1994

– Sends light paths, both from eye and from the light

– Faster, but still noisy images.

⚫ Metropolis light transport

– 1997

– Ray distribution is proportional to unknown function

– Means that more rays will be sent where they are needed

– Faster convergence in certain cases (see below)

Path tracing Metropolis (same rendering time)
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Bidirectional Path tracing

28
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Metropolis Light Transport



12/3/2024 Advanced Computer Graphics - Path Tracing 30

Metropolis Light Transport



Denoising

⚫ Monte Carlo ray tracing is typically 

slow or noisy.

⚫ You can denoise by using:

–  Final Gather (older)

–  or AI denoising (new).

⚫ E.g., a machine learning 
autoencoder that takes in 3 
images: albedo (=diffuse), 
first bounce normals, and the 
input noisy image. Outputs a 
filtered image.

– OIDN – Intel Open Image 
Denoise library

– OptiX Recurrent Denoising 
Autoencoder, NVIDIA

– DLSS, NVIDIA

31 For more info, see https://alain.xyz/blog/ray-tracing-denoising

https://alain.xyz/blog/ray-tracing-denoising


Final Gather

⚫ Many versions of Final Gathering exist.

⚫ E.g., to compute final-gather point p:

– Send thousand(s) random rays out from p to sample indirect illumination

⚫ To use during ray tracing: interpolate global illumination between nearby Final Gather
points, to estimate incoming radiance at the ray’s intersection point.

⚫ Does not matter much if indirect illumination is blotchy for secondary rays.

p

light

Final 

gather

sample

32

Idea and good answer: 

• Compute indirect illumination somehow, but only at  

sparse set of positions (final gather points) in the scene. 

• Estimate indirect illumination for other positions by 

interpolation from nearby final-gather points

1. Precompute some 

final-gather points

2. Interpolate indirect 

illumination between 

nearby FG points.

Popular for naïve monte carlo ray 

tracing and photon mapping but not for 

variants of path tracing.



Final Gather – sample representation 

⚫ Directional radiance information can for instance be stored as Spherical
Harmonics or a set of Spherical Gaussians (beyond this course).

⚫ You may store directional incoming radiance, to then be multiplied for each
incoming direction by the brdf to compute outgoing radiance for desired ray
direction

⚫ Or just store directional outgoing radiance directly, thereby baking in the 
surface brdf (faster but less general when interpolating FG samples)33

– The FG samples typically need to store directional information about

radiance Li(). 

Li(i)

i i

ii

Lo()
o o

oo

Lo(o)

Or:

directional incoming radiance directional outgoing radiance

Bonus

p

Li(i) independent of p’s brdf . Better for 

interpolation between nearby positions.
Lo(o) only valid for p’s brdf. E.g., bad 

for textured surfaces.

p



Path tracing + AI Denoising

34

Before denoising After denoising



Real-time Denoising - NVIDIA

35 (8 min video) https://www.youtube.com/watch?v=6O2B9BZiZjQ

https://www.youtube.com/watch?v=6O2B9BZiZjQ


Monte-Carlo Ray tracing – the maths

The weight of the radiance from each sampled ray direction:

⚫ If hemispherical directions are not sampled perfectly randomly, then the 

weight for each of the n sampled rays is not just 𝑤 = Τ1 𝑛 ,

– e.g., when shooting more sampling rays towards the more probable 

directions (by trying to somewhat regard the BRDF). This is called

importance sampling:

⚫ Solutions:

– In theory, we could look at the actual taken sample directions, and 

estimate good weights. This is rarely used.
⚫ Does not work well for path tracing, since we only sample one direction per position.

– Or, rely on probability theory, which will converge to correct weights

when #samples, n, goes to infinity.

⚫ 𝑤𝑖 = Τ1 𝑛 ∗ 𝑝 𝜔𝑖 , 𝑝 𝜔𝑖 = ”𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑏𝑖𝑎𝑠_ 𝑜𝑓_𝑡ℎ𝑒_𝑐ℎ𝑜𝑜𝑠𝑒𝑛_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛”

where function 𝑝 𝜔 is our Probability Density Function (PDF)

⚫ This is what people use today. See our path-tracing tutorial.

36

more samples in these directions than

on average over the hemisphere.

How much

more/less 
likely direction
𝜔𝑖 is 

compared to 
the average

direction (avg. 
should be =1).

BONUS



Photon mapping

⚫ Developed by 

Henrik Wann Jensen

(started 1993)

⚫ A two-pass algorithm:

– 1: Shoot photons from light source, and let them bounce around

in the scene, and store them where they land (e.g. in a kD-tree).

– 2: Ray- or path-tracing pass from the eye. Estimate photon

density at each ray hit, by growing a sphere (at the hit point in 

the kD-tree) until it contains a predetermined #photons. Sphere

radius is then the inverse measure of the light intensity at the 

point. 

⚫ Features:
⚫ Polurar in the 90’ies + 00’ies. Now again popular by combining

bidirectional path tracing and progressive photon mapping.

⚫ Less noise than path tracing37



The first pass:
Photon tracing

⚫ Store illumination as points (photons) in a 

”photon map” data structure

⚫ In the first pass: photon tracing

– Emit photons from light sources

– Trace them through scene

– Store them in photon map data structure

⚫ More details:

– When a photon hits a surface (that is not too specular), 

store the photon in photon map

– Then use Russian roulette to find out whether the photon

is absorbed, reflected, or refracted

– If reflected, then shoot photon in new random direction

38



The photon map data structure
⚫ Keep them in a separate (from geometry) structure

⚫ Store all photons in kD-tree
– Essentially an axis-aligned BSP tree, since we must alter 

splitting axis: x,y,z,x,y,z,x,y,z, etc.

– Each node stores a photon

– Needed because the algorithm needs to locate the n closest 
photons to a point

⚫ A photon:
– float x,y,z;

– char power[4];  // essentially the color, with more accuracy

– char phi,theta;  // compact representation of incoming direction

– short flag; // used by KD-tree (stores which plane to split) 

⚫ Create balanced KD-tree – simple, done once.

⚫ Photons are stored linearly in memory:
– Parent node at index: p

– Left child at: 2p , right child: 2p+139



Locate n closest photons
After Henrik Wann Jensen

// locate n closest photons around point ”pos”

// call with ”locate_photons(1)”, i.e., with the root as in argument

locate_photons(p)

{

if(2p+1 < number of photons in photon map structure)

{ // examine child nodes

delta=signed distance to plane of node n

if(delta<0)

{ // we’re to the ”left” of the plane

locate_photons(2p);

if(delta*delta < d*d)

locate_photons(2p+1); //right subtree

}

else

{ // we’re to the ”right” of the plane

locate_photons(2p+1);

if(delta*delta < d*d)

locate_photons(2p);  // left subtree

}

}

delta=real distance from photon p to pos

if(delta*delta < d*d)

{ // photon close enough?

insert photon into priority queue h

d=distance to photon in root node of h

}

}

// think of it as an expanding sphere, that stops exanding when n closest

// photons have been found40



What does it  look like?

⚫ Stored photons displayed:

41



Density estimation

⚫ The density of the photons indicate how much light that 

point receives

⚫ Radiance is the term for what we display at a pixel

⚫ Complex derivation skipped (see Jensen’s book)…

⚫ Reflected radiance at point x:

),(),,(),( ppp

n

rf
r

L 






xxx  



⚫ L is radiance in x in the direction of w

⚫ r is radius of expanded sphere

⚫ p is the direction of the stored photon

⚫ p is the stored power of the photon

⚫ fr is the BRDF42



Two-pass algorithm

⚫ Already said:

– 1) Photon tracing, to build photon maps

– 2) Rendering from the eye + using photon maps

⚫ Pass 1 (create photon maps):

– Use two photon maps

– A caustics photon map (for caustics)
⚫ Stores photons that have been reflected or refracted (via a 

specular/transparent surface) to a diffuse surface

– A global photon map (for all illumination)
⚫ All photons that landed on diffuse surfaces

+

43



Caustic map and global map

⚫ Caustic map: send photons only towards reflective and 
refractive surfaces. Gives biased photon-density
distribution but does not matter much:

⚫ Caustics is a high frequency component of illumination

⚫ Therefore, need many photons to represent accurately

⚫ Global map - assumption: illumination varies more
slowly. 

Caustic map Global map

44



Pass 2:
Rendering using the photon map

⚫ Render from the eye using a modified ray or path tracer

– Ray/path trace from the eye.

– For each ray bounce (hit point p), compute:

⚫ Direct illumination (light that reaches a surface directly from light source): 

Compute local lighting with shadow rays and local shading.

⚫ Indirect illumination (options): 

– Can grow sphere around p until it includes a predetermined #photons

⚫ in caustics map to get caustics contribution and

⚫ in global map to get slow-varying indirect illumination

– Can use Final Gather

– Can continue ray path (or ray-tracing recursion) a bit more.

– Can use AI denoising as post process (can sometimes produce

good caustics)

45



Example of noise when using the 
photon maps for the primary rays

⚫ Ugly noise:

⚫ Solution: 

– for the primary 
rays: don’t use 

the global map 
directly. E.g., 

instead use 

Final Gather.

46



Final Gather with Photon Mapping

diffuse floor and wall 

eye

⚫ Too noisy to use the global map for direct visualization

⚫ Remember: eye rays are recursively traced (via 

reflections/refractions) until a diffuse enough hit, p. There, we

want to estimate slow-varying indirect illumination.
– Instead of growing sphere in global map at p, Final Gather shoots 100-1000 indirect rays

from p. Where each of those rays end at a surface, grow a sphere in the global map and 

also caustics map, or interpolate from nearby already computed final-gather points.

47

Final-gather point



Photon Mapping + AI Denoising

⚫ Or use AI denoising instead of Final Gathering:

48



Photon Mapping + AI Denoising

⚫ Or use AI denoising instead of Final Gathering:

49



Images of the four components
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Photon Mapping - Summary

⚫ Creating Photon Maps: 
– Trace many many photons from light source. Store them in kd-tree where they hit surface (unless surface

is very specular because standard ray tracing captures sharper reflections well). Then, use russian

roulette to decide if the photon should be absorbed or specularly or diffusively reflected. Create both

global map and caustics map. For the Caustics map, we send more of the photons towards

reflective/refractive objects.

⚫ Ray trace or path trace from eye:
– At each intersection point p, compute direct illumination (shadow rays + local shading). 

– For indirect illumination: can grow sphere around p in caustics map to get caustics contribution and in 

global map to get slow-varying indirect illumination. 

– If final gather is used: instead of using global map directly, sample the indirect illumination around p by 

sampling the hemisphere with many many rays and then use the two photon maps where those rays hit a 

surface. 

⚫ Growing sphere: 
– Uses the kd-tree to grow a sphere around p until a fixed amount of photons are inside the sphere. 

Estimate outgoing radiance by using the material’s brdf and the photons’ powers and incoming directions.

Or shorter summary:

1. Shoot photons from light source, and let them bounce around in the scene, and store them where they land 

(e.g. in a kD-tree).

2. Ray-tracing pass from the eye. Estimate radiance at each ray hit, by growing a sphere (at the hit point in 

the kD-tree) until it contains a predetermined #photons. Use the caustics map and the global map.
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Reality check:

• In 2000-2010, e.g., trace 100K-10M 

photons. Grow sphere to include 20-

100 photons. Artist select this.

• Today, e.g., combine progressive 

photon mapping with bidirectional 

path tracing.



Standard 
photon mapping

Caustics: concentrated

reflected or refracted light
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Extensions to photon mapping

⚫ Participating media

53



Another one on participating media
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Smoke and photon mapping

Press for a movie
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Photon mapping with subsurface 
scattering

⚫ Photons enter the surface, and bounces 

around

Standard way Subsurface scattering
Press for a movie

Press for a movie56

BSSRDF-SIGGRAPH-ET2001.avi


More GI methods…

Newer global-illumination methods:

⚫ Vertex Connection and Merging 

⚫ Unified Path Sampling 
– Both are effectively identical techniques. They combine bidirectional path tracing and progressive photon 

mapping, and is particularly advantageous for specular- diffuse paths and specular-diffuse-specular 

paths (i.e. caustics and specular reflections of caustics) 

– Progressive photon mapping allows many photon-passes (e.g., to use more photons than fit in RAM).

⚫ Unified Points, Beams, and Paths (UPBP). For volume rendering. Particular 

strength are crepuscular rays,volume caustics, and specular reflections of volume 

caustics. Implemented in Pixar’s RenderMan.

⚫ See https://graphics.pixar.com/library/PathTracedMovies/paper.pdf

⚫ Point-based Global Illumination, Tamy Boubekeur et al.
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https://graphics.pixar.com/library/PathTracedMovies/paper.pdf


In conclusion
⚫ If you want to get global illumination effects, then implement a path

tracer

– Very simple to implement

– Good results – will eventually converge to correct result although may
take very long time for caustics and hidden light sources (long light

paths).

– Advantage: fast for reasonable preview.

– Noisy, so use together with AI denoising

⚫ If you want a more advanced renderer:

– Bidirectional path tracing – handles caustics and hidden light well.  

– Metropolis Light Transport –handles caustics even better but not 

popular for movie rendering due to temporal unstability - new 
specularities may be discovered and appear suddently

– Photon Mapping – considered fast. Easy to implement for volumetric

media. Use with bidirectional path tracing (”Vertex Connection and 

Merging” or ”Unified Path Sampling”)

THE END58



What you need to know
– The rendering equation

⚫ Be able to explain all its components

– Monte Carlo sampling:

⚫ The naïve way (an exponentially growing ray tree)

⚫ Path tracing 

– Why it is good, compared to naive monte-carlo sampling

– The overall algorithm (on a high level as in these slides).

⚫ Photon Mapping

– The short summary of the algorithm

– Why 2 maps (global + caustics) are needed.

⚫ Bidirectional Path Tracing, Metropolis Light Transport

– Just their names. Don’t need to know the algorithms.

– Denoising by Final Gather or AI
– Final Gather – sample indirect illumination at some positions in the world (these are 

the final-gather points). Then, at each ray hit, estimate indirect illumination by 
interpolation from nearby final-gather points.

– AI: use some existing Deep Neural Network solution that denoises your images for 

your kind of scenes. 
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The most important slides 
from today’s lecture →



Isn’t ray tracing enough?

Images courtesy of Henrik Wann Jensen

Ray tracing

Effects to note in Global Illumination image:

1) Indirect lighting (light reaches the roof)

2) Soft shadows (light source has area)

3) Color bleeding (example: roof is red near red wall) (same as 1)

4) Caustics (concentration of refracted light through glass ball)

5) Materials have no ambient component

Global

Illumination

Which are

the differences?
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The rendering equation

⚫ Paper by Kajiya, 1986.

⚫ Is the basis for all global illumination algorithms

⚫ Lo(x,)=Le(x, )+Lr(x, ) 

– outgoing=emitted+reflected radiance

Lr(x,)

x 

')')(',()',,(  dLfLL ireo nxx += 


⚫ fr is the BRDF, ’ is incoming direction, n is normal at  point x,  is 
hemisphere ”around” x and n, Li is incoming radiance

+Le(x,)
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Monte Carlo Ray Tracing – direct + 
indirect illumination

⚫ Sample indirect illumination by shooting 

sample rays over the hemisphere, at 

each hit.

diffuse floor and wall 

eye

')')(',()',,(  dLfLL ireo nxx += 


light light
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Monte Carlo Ray Tracing (naïvely)

⚫ The indirect-illumination sampling gives a ray

tree with most rays at the bottom level. This is 

bad since these rays have the lowest influence

on the pixel color.
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PathTracing 
– one efficient Monte-Carlo Ray-Tracing solution

⚫ Path Tracing instead only traces one of the 

possible ray paths at a time. This is done by 

randomly selecting only one sample direction

at a bounce. Hundreds of paths per pixel are

traced.

Equally number of rays

are traced at each level
65

Even smarter: terminate path with

some probablility after each level, 

since they have decreasing

importance to final pixel color.

Or:



Path Tracing – indirect + direct 
illumination

⚫ Shoot many paths per pixel (the image just shows one 

light path).

– At each intersection, 

⚫ Shoot one shadow ray per light source

– at random position on light, for area/volumetric light sources

⚫ and randomly select one new ray direction.

diffuse floor and wall 

eye

light light
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Path Tracing and area lights

⚫ For area light sources, shoot the shadow ray to one
random position on the area light. This gives soft 
shadows when many paths are averaged for the pixel.

⚫ Example: Three paths for one pixel
– At each ray intersection, 

⚫ Pick one random position on light source

⚫ Send one random ray bounce to continue the path...

diffuse floor and wall 

eye

light

67



Path tracing: Summary

⚫ Uses Monte Carlo sampling to solve
integration: 

– by shooting many random ray paths over the 
integral domain.

– Algorithm: 
⚫ For each pixel, // we will shoot a number of paths:

– For each path, generate the primary ray:

– Repeat {

1. Trace the ray. At hitpoint:

2. Shoot one shadow ray and compute local lighting.

3. Sample indirect illumination randomly over the possible
reflection/refraction directions by generating one such
new ray.

– } until the path is randomly terminated (or the ray does not hit 
anything).

⚫ Shorter summary: shoot many paths per pixel, by randomly choosing

one new ray at each interaction with surface + one shadow ray per light. 
Terminate the path with a random probability68



Final Gather

⚫ Many versions of Final Gathering exist.

⚫ E.g., to compute final-gather point p:

– Send thousand(s) random rays out from p to sample indirect illumination

⚫ To use during ray tracing: interpolate global illumination between nearby Final Gather
points, to estimate incoming radiance at the ray’s intersection point.

⚫ Does not matter much if indirect illumination is blotchy for secondary rays.

p

light

Final 

gather

sample

69

Idea and good answer: 

• Compute indirect illumination somehow, but only at  

sparse set of positions (final gather points) in the scene. 

• Estimate indirect illumination for other positions by 

interpolation from nearby final-gather points

1. Precompute some 

final-gather points

2. Interpolate indirect 

illumination between 

nearby FG points.

Popular for naïve monte carlo ray 

tracing and photon mapping but not for 

variants of path tracing.



Final Gather with Photon Mapping

diffuse floor and wall 

eye

⚫ Too noicy to use the global map for direct visualization

⚫ Remember: eye rays are recursively traced (via 

reflections/refractions) until a diffuse hit, p. There, we want to 

estimate slow-varying indirect illumination.
– Instead of growing sphere in global map at p, Final Gather shoots 100-1000 indirect rays

from p and grows sphere in the global map and also caustics map, where each of those

rays end at a diffuse surface. Or interpolate from nearby already computed final-gather
points.70

Final-gather point



Photon Mapping - Summary

⚫ Creating Photon Maps: 
– Trace many many photons from light source. Store them in kd-tree where they hit surface (unless surface

is very specular because standard ray tracing captures sharper reflections well). Then, use russian

roulette to decide if the photon should be absorbed or specularly or diffusively reflected. Create both

global map and caustics map. For the Caustics map, we send more of the photons towards

reflective/refractive objects.

⚫ Ray trace or path trace from eye:
– At each intersection point p, compute direct illumination (shadow rays + local shading). 

– For indirect illumination: can grow sphere around p in caustics map to get caustics contribution and in 

global map to get slow-varying indirect illumination. 

– If final gather is used: instead of using global map directly, sample the indirect illumination around p by 

sampling the hemisphere with many many rays and then use the two photon maps where those rays hit a 

surface. 

⚫ Growing sphere: 
– Uses the kd-tree to grow a sphere around p until a fixed amount of photons are inside the sphere. 

Estimate outgoing radiance by using the material’s brdf and the photons’ powers and incoming directions.

Or shorter summary:

1. Shoot photons from light source, and let them bounce around in the scene, and store them where they land 

(e.g. in a kD-tree).

2. Ray-tracing pass from the eye. Estimate radiance at each ray hit, by growing a sphere (at the hit point in 

the kD-tree) until it contains a predetermined #photons. Use the caustics map and the global map.
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