Computer Graphics

Curves and Surfaces
Interpolating/Hermite/Bezier Curves,

,,,,,,

-

\\\\\
\!

Most of the material is originally made by EdwWa
adapted to this course by Ulf Assarsson. Some
Magnus Bondesson e

http://www.3drender.com/nurbana/figures/wire_multihead1.gif

Utah Teapot

* Most famous data set in computer graphics

* Widely available as a list of 306 3D vertices and
the indices that define 32 Bezier patches

P30

P33

Poo Pos
A Bezier patch

Curves and Curved Surfaces

e Reason: may want

— smooth shapes from few control points.

— Infinite resolutions (e.g., in movie rendering). No discretization.
e Vast topic, e.g.,
— Bezier patches:

e can describe all polynomial surfaces

— (quadratic, cubic, quartic, quintic,...). \,
— NURBS :

e standard for CAD, more flexibility.
e Not in course book (Real-Time Rendering)
— Subdivision surfaces:
e Good for smoothing arbitrary triangle meshes
e Popularinrendering
e E.g., Loop subdivision, Catmull-Clark subdivision, ...

e Often easier to grasp on your own, compared to NURBS.

Outline

Goal is to explain NURBS curves/surfaces...

* Introduce types of curves and surfaces
— Explicit — not general, easy to compute.
— Implicit — general, non-easy to compute.
— Parametric - general and easy to compute. We choose this.

« A complete curve is split into curve segments, each defined by a
polynomial (per Xx,y,z coordinate), e.g., cubic polynomials.

— Introducing Interpolating/Hermite/Bezier curves. /,\/; /
» Adjacent segments should preferably have C? continuity: 'c 1 c2

— Leads to B-Splines with a blending function (a spline) per control point
« Each spline consists of 4 cubical polynomials, forming a bell shape translated along u. —"_

* (Also, four bells will overlap at each point on the complete curve.) Vs
« NURBS — a generalization of B-Splines: /_/

— Control points at non-uniform locations along parameter u.
— Individual weights (i.e., importance) per control point
— popular in CAD systems

Modeling with Curves

\

Interpolating data point
data points
approximating curve

What Makes a Good
Representation?

*There are many ways to represent curves
and surfaces

* Want a representation that is
—Stable
—Smooth
—Easy to evaluate

—Must we Interpolate or can we just come close
to data?

—Do we need derivatives?

Explicit Representation

* Most familiar form of curve in 2D y /\/
y=1(x)
« Cannot represent all curves ~
—Vertical lines
—Circles

« Extension to 3D
—y=1(x), z=g(x) — gives a curve in 3D
—The form y = f(x,z) defines a surface

Implicit Representation

* Two dimensional curve(s)
equation: g(x,y)=0
* Much more robust
—All lines ax+by+c=0
—Circles x?+y?-r2=0
* Three dimensions g(x,y,z)=0 defines a

3

surface

Parametric Curves

« Separate equation for each spatial variable

X = x(u)
v =y(u) p(U)=[x(w), (), Z()]"

z=12(u)

*For u.;, <u<u,,, We trace out a curve in two or
three dimensions

B\
/ P(Ura)

p(umin)

How should we create the parametric
functions x(u), y(u), z(u)?

10

We create the curves from user-given control points. But how choose a curve for
these points?:

Selecting Functions

 Usually we can select many “good” functions
—not unigque for a given spatial curve
— Approximate or interpolate known data
—Want functions which are easy to evaluate
—Want functions which are easy to differentiate
« Computation of normals
« Connecting pieces (segments)

—Want functions which are smooth

11

Lines are easy...

Parametric Lines

We can let u be over the interval (0,1)

Line connecting two points p, and p;

p(u)=(1-u)py+up, /

P(0) = po

pP(1)=p,

Parametric Surfaces

e Surfaces require 2 parameters vy

X=x(U,V)
y=y(u,v) PELY
z=2(u,v) POV X

p(u,v) = [x(u,v), y(u,v), z(uv)]" 2

« \Want same properties as curves:
— Smoothness
— Differentiability
12 — Ease of evaluation

13

If we have the x(u,v), y(u,v), z(u,v) functions, we can compute the

normal at any point u,v.

We can differentiate with respecttouandvto

Normals

obtain the normal at any point p

op(u,Vv) _

n

ox(u,v)/ou
PUN) | oy(u.v)/au
o oz(u,v)/ou

_opu,v) adp(u,v)

ou

oV

oV

ox(u,v)/ov |
oy(u,v)/ov

- oz(u,v)/ov |

\Y

http://www.3drender.com/nurbana/figures/wire_multihead1.gif

14

Parametric Planesp

Let:
d=P1—Po
r=p,—pPo)

Then, let’s write parametric
function for plane as:

p(u,v) = po+uq+vr
Compute normal as:

n= Tp@y) . fp(uy)
Tu v

l.e, nN=qgXxr

Po

P1

We create the curves from user-given control points by using curve segments...

Curve Segments

 We can normalize u, so each curve Is written

p(u)=[x(u), y(u), z(u)]', Osu=1
* In classical numerical methods, we design a
single global curve.

 In computer graphics and CAD, it is better to
design small connected curve segments

o(u) join point p(1) = gq(0)

5(0) g(u) q(1)

15 How should we describe curve segments?

We choose Polynomials

* Easy to evaluate

« Continuous and differentiable everywhere

—Must worry about continuity at join points
iIncluding continuity of derivatives

p(u)

ST~ N
\

join point p(1) = g(0)
butp” (1) =g’ (0)

16 Let’ s worry about that later. First let’ s scrutinize the polynomials!

Parametric Polynomial Curves

N M L
X(u)=> cau' YU)=> cyu’ z(U)=> cuu*
i—0 j=0 k=0

_ _ _ Remember: p(u)
*Cubic polynomials gives N=M=L=3 x=x(U)
y=y(U) p(min) >p(umax)

u) =cy + c;U + Cc,u? + c,Ud
p(u) =Co + C4 2 3 2=2(u)

*Noting that the curves for X, y and z are independent,
we can define each independently in an identical manner

L
*We will use the form p(u) = ch Th

k=0
where p Is any of X, y, z. It is just the numerical c, values that differ.

17 Let’ s assume cubic polynomials!

18

Cubic Parametric Polynomials
A Y a AN aYe

Linear. Quadratic. Cubic. Quartic.

« Cubic polynomials give balance between ease of
evaluation and ﬂex?ibility In design

p(u) — ZCk Uk p(u) = ¢y + c U + CoU2 + Cczud
k=0

 Four coefficients to determine for each of X, y
and z

« Seek four independent conditions for various
values of u resulting in 4 equations in 4
unknowns, for each of x, y and z

— Conditions are a mixture of continuity requirements at the join
points and conditions for fitting the data

Some Types of Curves

/\/p3
* Introduce the types of curv Po P2
— Interpolating

« Blending polynomials for interpolation of 4 control points (fit curve to 4
control points)
— Hermite N
« fit curve to 2 control points + 2 derivatives (tangents)
— Bezier

2 interpolating €

p’(0) p'(1)

p(0) p(1)

oints + 2 intermediate points to define the

tangents p)
— B-spline_— use points of adjacent curve se
» To get Ctand-€2continuity
—NURBS D
- Different weights of the control points Po >
.)) p,®
» The control points can be at non-uniform u,v interva op,
+ Analyze them PO

Matrix-Vector Form

3
p(U) — ch Uk p(u) = Co + CoU + CoU2 + C3ud
k=0

Co 1
. C1 u
C2 u

Cs

then p(u) = UT C = CT u

CO_ 1

2,,371(€1| = u
[1uuu]cz _[C0C1C2C3]u2
e u’

21

Interpolating Curve

P1 s

Po D,

Given four data (control) points py , P1,P2 , P3
determine cubic p(u) which passes through them

Must find ¢, ,c;,C, , C,

Let’ s create an equation system!

p 4

P1 Ps3
Interpolation Equations p/\/

P, P

p(U) = Cy + C1U + CoU2 + CzU3 0 1=/3 3 1 U
apply the interpolating conditions at u=0, 1/3, 2/3, 1
- p(0) =p, =¢
pP(1/3) = p; =cy+(1/3)c,+(1/3)%c,+(1/3)3¢c,
P(2/3) = p, =cy,+(2/3)c,+(2/3)%c,+(2/3)3c,
. P(1) =p; =CotCytCytCs

or in matrix form with p = [py p; P, Pa]”

| él 0 0 0 3 \

SR NI Y

p=Ac p=¢ = Ac= ;S ﬂg o

5 P2 | ¢ 220 220" 220 Us ¢

l.e., c=A1p € p, | 21 §35 §30 €30 ﬂg ¢y |
£E1 1 1 1 Y

23

Interpolation Matrix

Solving for ¢ we find the interpolation matrix

1 0 0 0
4 |-55 9 —45 1
Mi=A = 9 -—225 18 —45
—45 135 -135 45 |
=2 C= MIp

Note that M, does not depend on input data and
can be used for each segment x(u), yu), and z(u)

P1 Ds
p(u) = ¢y + CU + C,uU? + cgud

Po P2

Interpolation Matrix

p(u) = ¢y + CU + C,U? + C3U° means:

X:X(U):Cxo + CnU + szu2 + CX3U3 “ 1
y=y(u)=Cyo + Cy3U + C,,U? + Cy3U°
z=2(U)=C,q + C,;U + C,,U? + C,5u3 p3

where 0
Cx: |\/II px p
Cy= M, Py

Cz = I\/II pz

p, are the x coordinates of py ... ps3
p, are the y coordinates of p, ... p3
p, are the z coordinates of p; ... ps

24

25

Interpolating Multiple Segments

P e
Po] / P \ P
P

use p = [Py P1 P Pal” use p = [Ps P4 Ps Pe]’

We have continuity of the curve at the join points but not
continuity of the curve’s derivatives. l.e., curve is not smooth.
Let’s ignore that a few more slides...

26

Blending Function%\/pg

Rewriting the equation for p(u) Po P2
p(U):uTC:uTI\/IIp — b(u)Tp :El’u’ 02, 1] {5.5 9 —45 1:“

Py
P
P,
p;

9 -225 18 -45
-45 135 -135 45

where b(u) = [by(u) by(u) b,(u) bg(u)]"is b(u)
an array of blending polynomials such that

p(u) = bo(u)pg+ by (U)ps+ by(U)py+ ba(u)ps

e — |

0o(U) = -4.5(u-1/3)(u-2/3)(u-1)
0,(u) = 13.5u (u-2/3)(u-1)
0,(U) =-13.5u (u-1/3)(u-1)
05(U) = 4.5u (u-1/3)(u-2/3)

Blending Functions :
“Weight curves for each control pointp at a : Ps
certain u”

pO p2

! b (4 byl
] bo(U) Fail

-
."h--’

p(u) = bo(u)pg+ by (U)p,+ by(U)p,+ by(u)ps
27

28

Blending Patches

3 I 10
Patch: p(u,V):Z ZCUUIVJ P::)

3 3

p(uy) =@ Qb,(u)b;(v)p, =u" M,PM}v

. =0 [Doo Po1 Poz2 Po3)
mo T P1o P11 P12 P13

P= P20 P21 P22 P23

| P30 P31 P32 P33

Each b;(u)b;(v) Is a blending patch

Shows that we can build and analyze surfaces
from our knowledge of curves.

Curve: p(u) =u'c =u'M,p =b(u)™p
Patch: p(u,v)=u"Cv=u'™,PM,"v=b(u)"Pb(v)"

29

Hermite Curves and Surfaces

 Our Interpolating curves have discontinuities
between curve segments

—Discontinuous derivatives B T
.. .] Po P, P Rl)
at join points:

L d
-
-

* Hermite curves solves this...

30

Hermite Form

p’ (0) p" (1)

p(0) p(1)

Use two interpolating conditions and
two derivative conditions per segment

Ensures continuity and first derivative
continuity between segments

Charles Hermite, 1822-1901

31

P ())

Equations r@w e

p(u) = cy+uc;+u?c,+usc,

Interpolating conditions are the same at ends

P(0) = po=Cy
P(1) = py = CotCytCytCy

Differentiating we find p’(u) = ¢,+2uc,+3u%c,4

Evaluating at end points

ep,U €1 0 0 Ou
P’ (0)=p0=cy g 3 21 1 1 13
p (1) =p 1=cy+2c,+3c; q:ép Y AO 1 0 ot
ol f0o1 2 3

32

Matrix Form

H
R P R O

o - O

ou
U

Ly

C
ou
i

p’ (O) p’ (1)

p(0) P(L)

Solving for c, we find c=My,q where M is the Hermite matrix

1 0
0O O
-3 3
2 -2

0

1
—2

1

0
0
-1

1_

p(u) =u'c=>
p(u) =u'™™yq

33

Blending Polynomials

p(u) =u™yg => p(u) =b(u)'q

b(u) =

2u3—3u2+1
—2u*+3y°

u>—2u+u

-t

u=[1uu?u3]

1 0 0 0
0 0 1 0
Mi=l 3 3 5 4
2 -2 1 1

Although these functions are smooth, the Hermite form
IS not used directly in Computer Graphics and CAD
because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form

34

Continuity

A) Non-continuous

B) CO-continuous realtme Rendoring,
C) G!-continuous aned

D) C-continuous

(C2-continuous)

35

Gl-continuity Example

*Here the p and g have the same tangents
at the ends of the segment but different
derivatives (lengths) B

_ This generates different 90} /
Hermite curves

\ ql)

PO} [/qu\\ P11

* This techniques Is used
In drawing applications

36

Reflections should be at least C1

37

Bezier Curves

* In graphics and CAD, we do not usually have
derivative data

* Bezier suggested using the same 4 data points
as with the interpolating curve to approximate
the derivatives in the Hermite form

Bézier popularized but did not actually create the Bézier curve — using such curves to
design automobile bodies. The curves were first developed in 1959 by Paul de Casteljau
using de Casteljau's algorithm, a numerically stable method to evaluate Bézier curves. The

38 curves remain widely used in computer graphics to model smooth curves.

39

Computing Derivatives

o P

p, located at u=1/3 P, located at u=2/3

_ . P;—P
dp(u=0 . 1)= Fs P2
P=D) < (o) 0= 173

du
slope p’ (0) —__ __slope p’ (1)

Po P3

Equations

Interpolating conditions are the same

P(0) = po=Cy
P(1) = p3= Co+C+CyrHCy

Approximating derivative conditions

! pl_po_ ’ _ _
P08 P (0) =3(P1-Po) = &
o~ | p’ (1) = 3(ps- p,) = €, +2¢,+3c,
173 |

Solve four linear equations for c=Mgp

40

A

Po P3

p(u) = cy+uc,+u?c,+udc,
p’ (u) = ¢;+2uc,+3u2c,

= Bp=Ac
= Cc=A"1Bp

41

Bezier Matrix

1 0 0 O
|-3 3 0 0
M= 3 -6 3 0
-1 3 -3 1

p(u) =u™™gp =b(u)"p

blending functions

Blending Functions

Po P3

1
é 3 U :
é (l_l/l) u 0.8:
€ Su(l-u)? U
b(u)=¢ (L-u) 0 o4f
g 3u2(1-u) (022
6 3 U

e U u OO 0.2 O!AI Olé 0.8 1

Note that all zeros are at 0 and 1 which forces
the functions to be smoother over (0,1)

Smoother because the curve stays inside the convex

hull, and therefore does not have room to fluctuate so
42 much.

Convex Hull Property

At given u, all weights being within [0,1] and sum
of all weights = 1 ensures that all Bezier curves
lie in the convex hull of their control points

* Hence, even though we do not interpolate all the
data, we cannot be too far away

P1 P2
.—— convex hull

Bezier curve

Po P3

43

Bezier Patches ., .
p(U’V):Z ZCiquVj

i=0 =0
Using same data array P=[p;] as with interpolating form

P =S biW)b; (V) P, =" Ms P MBV

i=0 j=0

P30

Patch lies In
convex hull

P33

Poo Pos

44

45

Analysis

 Although the Bezier form is much better than
the Interpolating form, the derivatives are not
continuous at join points

1

Po P3

\What shall we do to solve this?

B-Splines

* Basis splines: use the data at

P=[Pi.> Pi1 Pi Pi+1]" to define curve only between
Pi., and p; " P

. p(0) oll)

» Allows us to apply more continuity
conditions to each segment

 For cubics, we can have continuity of the
function and first and second derivatives at
the join points

So what does the cubic B-spline

matrix look like? ...
46

Cubic B-spline Matrix

1

_1] -3
MS 6 3
-1

a7

p(u) =u™™gp = b(u)'p

] ..
4 1 O °p,
0 3 0 —

0
6 3 0| o, PO p(1)
3 -3 1 .p.

1st and 2nd derivatives are now continuous
as we can see on the blend functions...

Blending Functions

4 b1 (v)

by (L—u)’
11b:4-6y%+3y°
6|1+3u+3y%-3,°
! U3

b(u) =

p(u) = u™™gp = b(u)"p =>
p(u) = bo(u)pe+ by (U)p,+ by(u)pyt+ by(u)ps

o b~

m O O O
e —

1
1| -3
T :1 23:|_
uMS[uuu63_
-1

w o
|
dy W w P

48 o e

p(u) =c'u=u'Mgp =b(u)"p

16 unknowns in M. We need 16 equations:

by(0)=b;(1). by(1)=0. b;(0)=b,(1). by(0)=b5(1). b;(0)=0.

by(0)=b,’ (1). by (1)=0. b, (0)=b, (1). b, (0)=b5'(1). b5"(0)=0.

BONUS

How compute the cubic B-spline matrix Mg ?

5 for endpoint values:

Same 5 for endpoint 15t derivatives:

Same 5 for endpoint 214 derivatives:

by (0)=b,"(1). by (1)=0. b, (0)=b," (1). b," (0)=b;" (1). b;" (0)=0.

49

Sum = 1, everywhere: by(u)+b;(u)+b,(u)+bs(u)=1, for u€[0,1]. E.g., for u=0.

by (u)

bo(U)

50

B-Spline Patches

S &
p(uwv)=aab(u)b;(v)p, =u MsPMsv

i=0 j=0

defined over only 1/9 of region

51

Let the 4 splines b, 3(u) create a basis function — -
The blend function of each control point is just a translation along u of this basis

e Basis Splines

*|If we examine the cubic B-spline from the
perspective of each control (data) point,
each interior point contributes (through the
blending functions) to four segments

*We can rewrite p(u) in terms of all the data
points along the curve as

St p(u) =Y Bi(u) p,

defining the basis functions {B;(u)}

*P,;

Basis Fiinctinng -

Over this blue segment... 512 N
i+1
_2 _ A b op,
pu)=aBiu)p,= BoW)pyt--Bual)p,, |)
R bo(u) (1—U)3
...these are the blending functions for by(U) _ gyt 4-6ut+s’
. bz(U) 6[1+3u+3y2-3,°
control points pg ... ps3 bo(U) B
bo(u) ba(v)
From the perspective of any control point p;this is -
its weight, B;(u), over the complete curve u=0...n: 1‘
0 u<i-2
ba(u-i+2) 1-2<u<i-1
] bp(u-i+l) i-1<u<i
Bi (u) = b (u-i) i<u<i+l
bo(u-i-1) 1+1<u<i+2
0 u>i+2 0

Each individual blending function B;(u) is just a b P1 P> Ps Pa
translation of the bell shape: Z '

P
Py pe

Po

° | | > U
p3 0 1 2 3 a4

Weights for each point along the curve

One more example

1 A
Ps Po P1 P2 Pz Ps Po
000 000
Die P2
0 | > U u=27
o p.OQ p3
p(u) = By(u)po+ By (U)py+ By(u)p+ Bs(U)ps + By(u)p, P+#

e p(u) = Bi(u) p

53

SUMMARY

100 |
%

These are our control points, py-pg, to
which we want to approximate a curve

B-Splines

lllustration of how the control points are evenly (uniformly)
distributed along the parameterisation u of the curve p(u).

In each point p(u) of the curve (i.e., for a given u), the point is defined as a
X weighted sum of all control points (only the closest 4 surrounding will be
nonzero). Below are shown the weights for each control point along u=0—8

Pg P4 Ps Pa P; Ps

54 .

SUMMARY .
B-Splines
In each point p(u) of the curve, for a given u, the point is defined as a

weighted sum of all control points (only the closest 4 surrounding will be
nonzero). Below are shown the weights for each control point along u=0—8

100% 4 Blendf_unction Bl(U)
, for point p, :
Po P1 Ps P4 P7 Ps

4

The weight function (blend function) B; (u) for a point p; can thus be written
as a translation of a basis function B(t). B;(u) = B(u-i)

100%,

»

B(t): Our complete B-spline curve

/ \ p(u) can thus be written as:

: Lt p(u)=),Bi(u) p

v

Generalizing Splines

« Common to use knot vector:
— array of the control-point indices: 0,1,2,3,4,5,6...
— Can have repeated knots: 0,0,0,1,2,3,4,5,5,6,

* Repeating a ctrl point 3x forces cubic spline to interpolate the point

« If you want the curve to start at the first point and end at the last point, just
repeat those 3 times: e.g., 0,0,0,1,2,3,4,5,6,6,6.

. (Cox-deBoor recursion
DEMO of B-Spline gives method of
curve: (make evaluation - also known
duplicate knots) as de Casteljau-

recursion, see page
721, RTR 4:th edition
for details)

* We can extend to splines of any degree
— Not just cubic polynomials (quartic, quintic...)
« Data and conditions do not have to be given at equally
spaced u values:

— Nonuniform (vs uniform splines)
56 —Leads us to NURBS...

57

NURBS

NURBS = Non-Uniform Rational B-Splines o
NURBS is similar to B-Splines except that: ©

1. The control points can have different weights, w;, (heigher
weight makes the curve go closer to that control point)

2. The control points do not have to be at upiform distances
(u=0,1,2,3...) along the parameterisati
E.g.:.u=0,0.5,09,4,14,...

The NURBS-curve is thus defined as;:

Division with the sum of the weights,
' 1 i to make the combined weights sum
— i=0 .
p(lxl) — o n-1 up to 1, at each position along the
a B (M)W / curve. (Otherwise, some
I scaling/translation of the curve is
introduced, which is not desirable)

NURBS

 Allowing control points at non-uniform distances
means that the basis functions B() are being
streched and non-uniformly located.

Each curve B() should of course look smooth and C2—continuous.
But it is not so easy to draw smoothly by hand...

- (The sum of the weights are still =1 due to the division in previous slide.)

NURBS Surfaces - examples

59

http://www.3drender.com/nurbana/figures/wire_multihead1.gif

What you need to know:

= e

Continuity

f) \.

Objectives

« Introduce the types of curv Po P2
—Interpolating

« Blending polynomials for interpolation of 4 control points (fit curve to 4
control points)

(

100

lllustration of how the control points are evenly (uniformly)
distributed along the parameterisation u of the curve p(u).
In each point p(u) of the curve, for a given u, the point is defined as a

weighted sum of all control points (only the closest 4 surrounding will be
nonzer_o). Below are shown the weights for each control point along u=0—8

Pg
i/
A

—0)

P1 P3 P4
N /

\
/ \\\

The weight function (blend function) B; (u) for a point p; can thus be written
as a translation of a basis function B(t). Bj(u) = By(u-i)

100%
B(t):

Our complete B-spline curve n
p(u) can thus be written as: 2 - ,(u&v)p
p(u) =5

L opw)=Y B, Sy

@) —Hermite PO
« fit curve to 2 control points + 2 derivatives (tangents)
—Bezier 0 WD
. « 2 interpolatini oints + 2 intermediate points to define the
* A) Non-continuous ongorts; o 5
. 2
0 . See page 726-727 in —B-spline — use points of adjacent curve s
L] - . .
B) C%-continuous Reaktime Rendering, - To get CTant-C2 continuity
. ed.
+ C) G'-continuous ~NURBS 5
1 . « Different weights of the control points -
* D) C'-continuous « Analyze them : o
PO}
& e (1)
* (C2-continuous) Po B
SUMMARY ; SUMMARY .
These are our control points, pg-pg, to d
i which we want to approximatega caurve B S pllnes N U RBS
B-S pl Ines In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of all control points (only the closest 4 surrounding will be L. .
nonzero). Below are shown the weights for each control point along u=0—8 NURBS is similar to B-Splines except that: o
% P . P 100 Blendfunction B (u) 1. The control points can have different weights, w;, °
p°f ple—"7" 4 P ! * : (heigher weight makes the cu/ e go closer to that
! ! 2 p3“‘ ps | ! control point)
1 I3 / i 2. The control points do not have to be at uniform
wo 1 2 3 4 5 6 7 8 distances (u=0,1,2,3...) along the parameterisa-
= tion u. E.g.: u=0, 0.5, /6414

NURBS = Non-Uniform Rational B-Splines
The NURBS-curve is thus defined as:

ot

Division with the sum of the weights,
to make the combined weights sum
| up to 1, at each position along the
| curve. Otherwise, a scaling of (with
the effect of also translating) the
curve is introduced (which is not

desirable)

60

Bonus

Bonus slides

Every polynomial curve can be exactly described by a
bezier curve (by properly adjusting the control points).

Rasterization of Bezier curves can be implemented
highly efficiently using de Casteljau recursion.

Thus, NURBS curves are often first converted to Bezier
curves, to be efficiently rasterized.

See following bonus slides for explanations...

61

Bonus

Every Polynomial Curve is a

Bezier Curve

* We can render a given polynomial using the
recursive method if we find control points for its
representation as a Bezier curve

e Suppose that p(u) is given as an interpolating
curve with control points g

p(u)=u'™™q

* There exist Bezier control points p such that
p(u)=u"Mpgp
* Equating and solving, we find p=Mz'M, g

62

Bonus

deCasteljau® Recursion

*\We can use the convex hull property of
Bezier curves to obtain an efficient
recursive method that does not require any
function evaluations

—Uses only the values at the control points

«Based on the idea that “any polynomial
and any part of a polynomial is a Bezier
polynomial for properly chosen control
data”

1 Paul de Casteljau and Pierre Bezier where engineers in the car industry. De Casteljau
at Peugot at Bezier at Renault. Both developed Bezier-surfaces, unaware of each other.

deCasteljau! Recursion: Bonus

Splitting a Cubic Bezier

Po: P1: P2, P3determine a cubic Bezier polynomial
and its convex hull\ \

P;

P

Consider left half I(u) and right half r(u)

64

deCasteljau! Recursion: Bonus

I(u) and r(u)

Since I(u) and r(u) are Bezier curves, we should be able to
find two sets of control points {l,, I, I,, I3} and {r,, ry, 1, r3}
that determine them

65

deCasteljau! Recursion: Bonus

Convex Hulls

{l,, 11, 15, I3} and {r,, 1y, r,, r;}each have a convex hull that
that is closer to p(u) than the convex hull of {p,, py, P2, P2}
This is known as the variation diminishing property.

The polyline from |l,to |; (=r,) to r;is an approximation

to p(u). Repeating recursively we get better approximations.

66

deCasteljau! Recursion:

Efficient Form

lo= Py
3= Ps3
|, =%2(py + Py)

r,=Y%2(p, + py)

I, =%2(l; + Y2(py + Po))
ry=%(r,+ %2(py+ p,))
l3=ro="2(l,+ 1)

Requires only shifts and adds!

Then, recursively continue for the two new bezier
curves{ly, l1, I5, I3} and {ry, ry, 1y, r3} until desired
precission is reached.

Bonus

67

	Slide 1: Computer Graphics Curves and Surfaces Interpolating/Hermite/Bezier Curves, B-Splines, and NURBS
	Slide 2: Utah Teapot
	Slide 3: Curves and Curved Surfaces
	Slide 4: Outline
	Slide 5: Modeling with Curves
	Slide 6: What Makes a Good Representation?
	Slide 7: Explicit Representation
	Slide 8: Implicit Representation
	Slide 9: Parametric Curves
	Slide 10: Selecting Functions
	Slide 11: Parametric Lines
	Slide 12: Parametric Surfaces
	Slide 13: Normals
	Slide 14: Parametric Planes
	Slide 15: Curve Segments
	Slide 16: We choose Polynomials
	Slide 17: Parametric Polynomial Curves
	Slide 18: Cubic Parametric Polynomials
	Slide 19: Some Types of Curves
	Slide 20: Matrix-Vector Form
	Slide 21: Interpolating Curve
	Slide 22: Interpolation Equations
	Slide 23: Interpolation Matrix
	Slide 24: Interpolation Matrix
	Slide 25: Interpolating Multiple Segments
	Slide 26: Blending Functions
	Slide 27: Blending Functions
	Slide 28: Blending Patches
	Slide 29: Hermite Curves and Surfaces
	Slide 30: Hermite Form
	Slide 31: Equations
	Slide 32: Matrix Form
	Slide 33: Blending Polynomials
	Slide 34: Continuity
	Slide 35: G1-continuity Example
	Slide 36: Reflections should be at least C1
	Slide 37: Example
	Slide 38: Bezier Curves
	Slide 39: Computing Derivatives
	Slide 40: Equations
	Slide 41: Bezier Matrix
	Slide 42: Blending Functions
	Slide 43: Convex Hull Property
	Slide 44: Bezier Patches
	Slide 45: Analysis
	Slide 46: B-Splines
	Slide 47: Cubic B-spline Matrix
	Slide 48: Blending Functions
	Slide 49: How compute the cubic B-spline matrix MS ?
	Slide 50: B-Spline Patches
	Slide 51: Basis Splines
	Slide 52: Basis Functions
	Slide 53: One more example
	Slide 54: B-Splines
	Slide 55: B-Splines
	Slide 56: Generalizing Splines
	Slide 57: NURBS
	Slide 58: NURBS
	Slide 59: NURBS Surfaces - examples
	Slide 60: What you need to know:
	Slide 61: Bonus slides
	Slide 62: Every Polynomial Curve is a Bezier Curve
	Slide 63: deCasteljau1 Recursion
	Slide 64: Splitting a Cubic Bezier
	Slide 65: l(u) and r(u)
	Slide 66: Convex Hulls
	Slide 67: Efficient Form

