
Lecture 10 of TDA384/DIT391
Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider
Chalmers University of Technology | University of Gothenburg

Parallel Linked Lists (sets)

A number of factors challenge designing correct and efficient parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In this lecture, we focus on reducing the synchronization costs associated with locking

Synchronization costs

2

The burden of locking

Linked set implementations
Nodes, lists, and sets
Sequential access

Parallel linked sets
Coarse-grained locking
Fine-grained locking
Optimistic locking
Lazy node removal
Lock-free access

Today’s menu

3

The burden of locking

4

Standard techniques for concurrent programming are ultimately based on locks
Programming with locks has several drawbacks:

• Performance overhead
• Lock granularity is hard to choose:

• not enough locking: race conditions
• too much locking: not enough parallelism

• Risk of deadlock and starvation
• Lock-based implementations do not compose
• Lock-based programs are hard to maintain and modify

Message-passing programming is higher-level, but it also inevitably incurs on
synchronization costs – of magnitude comparable to those associated with locks

The trouble with locks

5

Lock-free programming takes a fresh look at the problems of concurrency and
tries to dispense with using locks altogether

• Lock-based programming is pessimistic: be prepared for the worst possible
conditions:

if things can go wrong, they will

• Lock-free programming is optimistic: do what you have to do without worrying
about race conditions:

if things go wrong, just try again

Breaking free of locks

6

Lock-free programming relies on:
• using stronger primitives for atomic access
• building optimistic algorithms using those primitives

Compare-and-set operations are an example of stronger primitives:
public class AtomicInteger {

// atomically set to ‘update’ if current value is ‘expect’
// otherwise do not change value and return false
boolean compareAndSet(int expect, int update)

}

To update an AtomicInteger variable k:
do { // keep trying until no one changes k in between

int oldValue = k.get();

int newValue = compute(oldValue);

} while (!k.compareAndSet(oldValue, newValue));

Lock-free programming

7

• Test-and-set: modifies the contents of a memory
location and returns its old value as a single
atomic operation

• Compare-and-set: atomically compares the
contents of a memory location to a given value
and, only if they are the same, modifies the
contents of that memory location to a given new
value

Diagram by Avadlam3, Wikipedia (2016).

CAS operations are not free: they involve memory barrier operations to synchronize caches
(∼100-1000 cycles)

Compare-and-set is not free

8

You need to add synchronization caches to
ensure memory consistency (which takes
between 100 and 1000 cycles)

https://en.wikipedia.org/wiki/Cache_hierarchy
http://sigops.org/s/conferences/sosp/2013/papers/p33-david.pdf

Compare-and-set is not free

Chart by ayshen, based on Peter Norvig’s “Teach Yourself Programming in Ten Years”.

CAS operations are not free: they involve memory barrier operations to synchronize caches
(∼100-1000 cycles)

9

Doing a compare-and-set
operation could be as
expensive as sending 1 KB
data over a 1Gbps network

https://gist.github.com/ayshen
http://norvig.com/21-days.html
http://sigops.org/s/conferences/sosp/2013/papers/p33-david.pdf

Two classes of lock-free algorithms, collectively called non-blocking:

• lock-free: guarantee system-wide progress: infinitely often, some process makes
progress

• wait-free: guarantee per-process progress: every process eventually makes
progress

Which one is stronger?

Wait-free is stronger than lock-free:

• Lock-free algorithms are free from deadlock
• Wait-free algorithms are free from deadlock and starvation

Lock-free vs. wait-free

10

Programming correctly without using locks is challenging

Instead of trying to develop general techniques, we focus on implementing reusable
data structures that make minimal usage of locking

The effort involved in developing correct implementations pays off since very many
applications can then use such thread-safe data structure implementations to
synchronize safely and implicitly by accessing the structures through their APIs

A data structure is thread safe if its operations are free from
race conditions when executed by multi-threaded clients

Our lock-free and wait-free algorithms are some of those used in the implementations
of thread-safe structures in java.util.concurrent (non-blocking data structures
atomically accessible in parallel)

Thread-safe data structures

11

Race condition: the correctness of the program depends on the execution

Linked set implementations

12

In the rest of this lecture, we go through several implementations of linked lists that
support parallel access; the implementations differ in how much locking they use to
guarantee correctness and, correspondingly, in how much parallelism they allow

We will use pseudo-code that is very close to regular Java syntax but occasionally
takes some liberties to simplify the notation

On the course website you can download fully working implementations of some of the
classes

Parallel linked lists

13

Linked set implementations
Nodes, Lists, and Sets

14

We use linked lists to implement a set data structure with interface:

public interface Set<T>

{

// add ‘item’ to set; return false if ‘item’ is already in the set
boolean add(T item);

// remove ‘item’ from set; return false if ‘item’ not in the set
boolean remove(T item);

// is ‘item’ in set?

boolean has(T item);

}

The interface of a set

15

The underlying implementations of sets use singly-linked lists, which are made of chains of
nodes - Every node:
• stores an item – its value
• has a unique key – the value’s hash code
• points to the next node in the chain
In the graphical representations of nodes, we do not distinguish between items and their
keys – and represent both by characters:

interface Node<T>
{
// value of node
T item();
// hash code of value
int key();
// next node in chain
Node<T> next();

}

Nodes

16

A list with special head and tail nodes implements a set:

• the elements of the set are items in different nodes
• to facilitate searching, the nodes are maintained sorted in ascending key order
• to facilitate searching, the head has the smallest possible key, the tail has the largest

possible key, and all elements have finitely many keys that are in between

For example, the set {b, e, a, f, g} is implemented by:

Relaxing these assumptions is possible at the cost of complicating the implementations

Lists as chains of nodes

17

Linked set implementations
Sequential access

18

We start with a standard linked-list-based implementation of sets, which only works for
sequential access

class SequentialSet<T> implements Set<T>

{
// nodes at beginning and end
protected Node<T> head, tail;

// empty set
public SequentialSet() {

head = new SequentialNode<>(Integer.MIN_VALUE); // smallest key
tail = new SequentialNode<>(Integer.MAX_VALUE); // largest key
head.setNext(tail);

}

}

Sequential set: basic linked implementation

Empty set: head tail

19

Only visible within the class,
not from any other class
(including subclasses)

In Java: -231

In Java: 231 - 1

A node’s implementation uses private attributes with getters and setters

A bit tedious (we could just let the set implementations access the attributes directly)…
… but it leads to nicer designs in the variants of set implementations we describe later

Nodes in a sequential set

20

class SequentialNode<T> implements Node<T> {
private T item; // value stored in node
private int key; // hash code of item
private Node<T> next; // next node in chain

// getters:

T item() { return item; }

int key() { return key; }

Node<T> next() { return next; }

// setters:

void setItem(T item) { this.item = item; }

void setKey(int key) { this.key = key; }

void setNext(Node<T> next) { this.next = next; }

}

Thanks to the boundary keys chosen for head and tail, searching for any value key returns a valid
position in the list

Finding a position inside a list

a b e f ghead tail

pred curr

21

Since we maintain nodes in order of key, and every item has a unique key, we can
search for the position of any given key by going through the list from head to tail
The method find implements this frequently used operation of finding the position of a
key inside a list
The position of key is a pair (pred,curr) of adjacent nodes, such that

pred.key() < key <= curr.key()

For example, the position of c
in the following list is:

// first position from ‘start’ whose key is no smaller than ‘key’
protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration
curr = start; // from start node

do {
pred = curr; curr = curr.next(); // move to next node

} while (curr.key() < key); // until curr.key >= key
return (pred,curr); // return position

Finding a position inside a list
curr

pseudo-code for: new Position<T>(pred,curr)

ea bhead f g tail

pred currpred currpred curr

e

22

A set has item if and only if item is (equal to) the first element in the set whose key is greater
than or equal to item’s

// is ‘item’ in set?
public boolean has(T item) {

int key = item.key(); // item’s key
// find position of key from head:

Node<T> pred, curr = find(head, key);

// curr.key() >= key
return curr.key() == key; // item can only appear here!

}

Sequential set: method has

ea bhead f g tail

pred curr

23

has(e) = true
has(c) = false

A new item must be added between pred and curr, where (pred,curr) is item’s
position in the list

public boolean add(T item) {
Node<T> node = new Node<>(item); // new node
Node<T> pred, curr = find(head, item.key()); // curr.key >= item.key()
if (curr.key() == item.key()) // item already in set
return false;

else // item not in set: add node between pred and curr
{
node.setNext(curr);
pred.setNext(node);
return true;

}
}

Sequential set: method add

c

a bhead e f g tail

c

pred curr

24

node:

An element item is removed from a set by redirecting pred.next to skip over curr,
where (pred,curr) is item’s position in the list

public boolean remove(T item) {
Node<T> pred, curr = find(head, item.key());

// curr.key() >= item.key()
if (curr.key() > item.key()) return false; // item not in set
else // item in set: remove node curr
{

pred.setNext(curr.next());
return true;

}

}

Sequential set: method remove

a bhead f g taile

pred curr

25

If multiple threads are active on the same instance of SequentialSet, they can easily
interfere with each other’s operations (and possibly leave the set in an inconsistent state)

For example, if thread t runs remove(e) while thread u runs add(c): in some
interleavings, remove is reverted:

Sequential set does not work under concurrency

currpred c

a bhead e f g tail

pred curr

26

Sequential set does not work under concurrency

currpred c

a bhead e f g tail

pred curr

27

If multiple threads are active on the same instance of SequentialSet, they can easily
interfere with each other’s operations (and possibly leave the set in an inconsistent state)

For example, if thread t runs remove(e) while thread u runs add(c): in some
interleavings, add is reverted:

If find goes through the list while another thread is modifying it, even more subtle errors
may occur

Parallel linked sets

28

Parallel linked sets
Coarse grained locking

29

A straightforward way to make SequentialSet work correctly under concurrency is
using a lock to ensure that at most one thread at a time is operating on the structure

class CoarseSet<T> extends SequentialSet<T>

{
// lock controlling access to the whole set
private Lock lock = new ReentrantLock();

// overriding of add, remove, and has

Every method add, remove, and has simply works as follows:

1. acquires the lock on the set
2. performs the operation as in SequentialSet
3. releases the lock on the set

Concurrent set with coarse-grained locking

30

public boolean add(T item) {

lock.lock(); // lock whole set

try {

return super.add(item); // execute ‘add’ while locking
} finally {

lock.unlock(); // done: release lock

}

}

Coarse-locking set: method add

node:

a bhead e f g tail

c

pred curr

c

31

Coarse-locking set: method remove

a bhead

pred curr

f g taile

public boolean remove(T item) {

lock.lock(); // lock whole set

try {

return super.remove(item); // execute ‘remove’ while locking
} finally {

lock.unlock(); // done: release lock

}

}

32

Coarse-locking set: method has

a bhead e f g tail

pred currpred curr

public boolean has(T item) {

lock.lock(); // lock whole set

try {

return super.has(item); // execute ‘has’ while locking
} finally {

lock.unlock(); // done: release lock

}

}

33

Pros:

• obviously correct – it avoids race conditions and deadlocks
• if the lock is fair, so is access to the set
• if contention is low (not many threads accessing the set concurrently), CoarseSet

is quite efficient

Cons:

• access to the set is essentially sequential – missing opportunities for parallelization
• if contention is high (many threads accessing the set concurrently), CoarseSet

is quite slow

Coarse-locking set: pros and cons

34

Can we reduce the size of the critical sections by executing find without locking, and
then acquiring the lock only before modifying the list?
No, because the list may be modified between when a thread performs find and when
it acquires the lock

For example, suppose thread t runs remove(e) while thread u runs add(c), and t
acquires the lock first:

Locking after finding?

currpred c

a bhead e f g tail

pred curr

35

Parallel linked sets
Fine grained locking

36

Rather than locking the whole linked list at once, we add a lock to each node
Then, threads only lock the individual nodes on which they are operating

public class FineSet<T> extends SequentialSet<T>

{

// empty set

public FineSet() {

head = new LockableNode<>(Integer.MIN_VALUE); // smallest key

tail = new LockableNode<>(Integer.MAX_VALUE); // largest key

head.setNext(tail);

}

// overriding of find, add, remove, and has

Concurrent set with fine-grained locking

37

Each node includes a lock object, and lock and unlock methods that access the lock

class LockableNode<T> extends SequentialNode<T>

{

private Lock lock = new ReentrantLock();

void lock() { lock.lock(); } // lock node
void unlock() { lock.unlock(); } // unlock node

}

Nodes in a fine-locking set

38

We have seen (in CoarseSet) that we have to lock as soon as we start executing find
Thus, we start locking the head node and pass the lock along the chain of nodes

How many nodes do we have to hold locked at once? Even though pred’s node is
the only node that is actually modified, only locking pred is not enough

For example, if thread t runs remove(e) while thread u runs remove(b), it may happen
that only b’s removal takes place:

How many nodes do we have to lock?

a bhead

pred curr

f g taile

currpred

39
Problem: we may lock both pred and curr (pred) at once

// find while locking pred and curr, return locked position
protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration
pred = start; curr = start.next(); // from start node
pred.lock(); curr.lock(); // lock pred and curr nodes
while (curr.key < key) {

pred.unlock(); // unlock pred node
pred = curr; curr = curr.next(); // move to next node
curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position
}

Fine-locking set: method find

pseudo-code for: new Position<T>(pred, curr)

a b e f ghead tail

pred currpred currpred curr

40

The lock acquisition protocol used by find in FineSet is called hand-over-hand
locking or lock coupling
• Always keep at least one node locked to prevent interference between threads; otherwise:

• Locking two nodes at once is sufficient to prevent problems with conflicting operations: threads
proceed along the linked list in order, without one thread “overtaking” another thread that is
further out

• The protocol ensures locks are acquired by all threads in the same order, avoiding deadlocks

Hand-over-hand locking

a bhead

pred curr

f g taile

currpred currpred currpred

pred currThis node has been removed!

41

public boolean add(T item) {

Node<T> node = new LockableNode<>(item); // new node

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // add node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

Fine-locking set: method add

node:

a bhead e f g tail

c

pred curr

c

42

public boolean remove(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // remove node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

Fine-locking set: method remove

a bhead

pred curr

f g taile

43

public boolean has(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // check node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

Fine-locking set: method has

a bhead e f g tail

pred currpred curr

44

Pros:

• if locks are fair, so is access to the set, because threads proceed along the list one
after the other without changing order

• threads operating on disjoint portions of the list may be able to operate in parallel

Cons:

• it is still possible that one thread prevents another thread from operating in parallel on
a disjoint portion of the list – for example, if one thread wants to access the end of the
list but another thread blocks it while locking the beginning of the list

• the hand-over-hand locking protocol may be quite slow, as it involves a significant
number of lock operations

Fine-locking set: pros and cons

45

Parallel linked sets
Optimistic locking

46

Let us revisit the idea of performing find without locking
We have seen that problems may occur if the list is modified between when a threads
finds a position and when it acquires locks on that position
Thus, we validate a position after finding it and while the nodes are locked, to verify
that no interference took place

Concurrent set with optimistic locking

public class OptimisticSet<T> extends SequentialSet<T>

{

public FineSet()

// smallest key

// largest key

{ head = new ReadWriteNode<>(Integer.MIN_VALUE);

tail = new ReadWriteNode<>(Integer.MAX_VALUE);

head.setNext(tail); }

// is (pred, curr) a valid position?

protected boolean valid(Node<T> pred, Node<T> curr) // ...

// overriding of find, add, remove, and has
47

Since we need to be able to follow the chain of next references without locking,
attribute next must be declared volatile in Java – so that modifications to it (which
occur while the node is locked) are propagated to all threads (even if they have not
locked a node)

• Other than for this detail, a ReadWriteNode is the same as a LockableNode

• With a little abuse of notation, we can pretend that ReadWriteNode inherits from
LockableNode and overrides its nextattribute

Overriding of attributes is however not possible in Java (shadowing takes place
instead); the actual implementation that we make available does not reuse
LockableNode’s code through inheritance

class ReadWriteNode<T> extends LockableNode<T>

{

private volatile Node<T> next; // next node in chain
}

Nodes in an optimistic-locking set

48

In OptimisticSet, operations work as follows:
1. find the item’s position inside the list without locking – as in SequentialSet

2. lock the position’s nodes pred and curr
3. validate the position while the nodes are locked:

3.1 if the position is valid, perform the operation while the nodes are locked, then
release locks

3.2 if the position is invalid, release locks and repeat the operation from scratch
This approach is optimistic because it works well when validation is often successful
(so we don’t have to repeat operations)

Delayed locking as optimistic locking

49

public boolean add(T item) {

Node<T> node = new ReadWriteNode<>(item); // new node
do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position
try { // if position still valid, while locked:
if (valid(pred, curr)) { ... } // physically add node

} finally { pred.unlock(); curr.unlock(); } // done: unlock
} while (true); // if not valid: try again!

}

Optimistic set: method add

node:

a bhead e f g tail

c

pred curr

c

50

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:
if (valid(pred, curr)) { ... } // physically remove node

} finally { pred.unlock(); curr.unlock(); } // done: unlock
} while (true); // if not valid: try again!

}

Optimistic set: method remove

a bhead

pred curr

f g taile

51

Optimistic set: method has

public boolean has(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, check key while locked

if (valid(pred, curr)) return curr.key() == item.key();

} finally { pred.unlock(); curr.unlock(); } // done: unlock

} while (true); // if not valid: try again!

}

a bhead e f g tail

pred currpred curr

52

Validation goes through the nodes until it reaches the given position
Optimistic set: validating a position

// Is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

Node<T> node = head; // start from head

while (node.key() <= pred.key()) { // does pred point to curr?

if (node == pred) return pred.next() == curr;

node = node.next(); // continue to the next node

} // until node.pred > pred.key

return false; // pred could not be reached

} // or does not point to curr

bahead e f g tail

pred curr

node node node

b e

53

What can happen between the time when a thread finds a position (pred,curr) and
when it locks nodes pred and curr?

• Node pred is removed: validation fails because pred is not reachable
• Node curr is removed: validation fails because pred does not point to curr

• A node is added between pred and curr: validation fails because pred does not
point to curr

• Any other modification of the set: validation succeeds because operations leave
the set in a consistent state

How validation works

54

What happens if the set is being modified while a thread is validating a locked position
(pred,curr)?

• If a node following curr is modified: validation is not affected because it only goes
up until curr

• If a node n before pred is removed: validation succeeds even if it goes through n,
since n still leads back to pred

• If a node n is added before pred: validation succeeds even if it skips over n

Is validation safe?

55

Pros:

• threads operating on disjoint portions of the list can operate in parallel
• when validation often succeeds, there is much less locking involved than in
FineSet

Cons:

• OptimisticSet is not starvation free: a thread t may fail validation forever if other
threads keep removing and adding pred/curr between when t performs find and
when it locks pred and curr

• if traversing the list twice without locking is not significantly faster than traversing it
once with locking, OptimisticSet does not have a clear advantage over FineSet

Optimistic-locking set: pros and cons

56

Parallel linked sets
Lazy node removal

57

In many applications, has is executed many more times than add and remove
Can has work correctly without locking?
Problems may occur if another thread removes curr between find and has’s check:
since remove is not atomic without locking, if has does not acquire locks it may not
notice that curr is being removed
For example, if thread t runs remove(e) while thread u runs has(e) without locking, u
may incorrectly think that e is in the list even if t is about to remove it – that is thread t
is in its critical section:

Testing membership without locking

a bhead

pred curr

f g taile

currpred

58

We need a way to atomically share the information that a node is being removed, but
without locking
To this end, each node includes a flag valid with setters and getters:
• valid() == true: the node is part of the set
• valid() == false: the node is being (or has been) removed

class ValidatedNode<T> extends ReadWriteNode<T>

{
private volatile boolean valid;

boolean valid() { return valid; } // is node valid?
void setValid() { valid = true; } // mark valid
void setInvalid() { valid = false; } // mark invalid

}

Nodes in a lazy-removal set

59

Nodes of type ValidatedNode can also be locked, sinceValidatedNode inherits from ReadWriteNode

In a lazy set:

• Validation only needs to check the mark valid
• Operation remove marks a node invalid before removing it
• Operation has is lock-free
• Operation add works as in OptimisticSet

Concurrent set with lazy node removal

// smallest key

// largest key

public class LazySet<T> extends OptimisticSet<T>

{

public LazySet() {

head = new ValidatedNode<>(Integer.MIN_VALUE);

tail = new ValidatedNode<>(Integer.MAX_VALUE);

head.setNext(tail);

}

// overriding of valid, remove, and has

60

Validation becomes a constant-time operation:

• Node pred is reachable from the head iff it has not beenremoved iff it is marked
valid

• Node curr follows pred in the list iff pred.next() == curr and curr is marked valid

Lazy set: validating a position

Scenario: t ’s validation of curr succeeds:

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

return pred.valid() && curr.valid() && pred.next() == curr;

}

a bhead

pred curr

f g taile

currpred

61

Validation becomes a constant-time operation:

• Node pred is reachable from the head iff it has not beenremoved iff it is marked
valid

• Node curr follows pred in the list iff pred.next() == curr and curr is marked valid

Lazy set: validating a position

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

return pred.valid() && curr.valid() && pred.next() == curr;

}

a bhead

pred curr

f g taile

currpred

e

Scenario: t ’s validation of curr fails:

62

Method has runs without locking: it finds the position (pred,curr), validates curr, and
checks whether curr’s key is equal to item’s

public boolean has(T item) {

// find position without locking
Node<T> pred, curr = find(head, item.key());

// check validity and item without locking
return curr.valid() && curr.key() == item.key();

}

Method find may traverse invalid nodes; this does not prevent it from eventually reaching all valid nodes
in the list

Lazy set: method has

a bhead e f g tail

pred curr

e

63

Method add works as in OptimisticSet, but using theoverridden version of valid –
which works in constant time

Lazy set: method add

node:

a bhead e f g tail

c

pred curr

c

64

After finding the position of a node to be removed, the actual removal consists of two
steps

1. logical removal: mark the node to be removed as invalid
2. physical removal: skip over the node by redirecting its predecessor’s next

This removal is lazy because logical and physical removal may be done at different
times: after a node has been logically removed, every thread is aware that it should not
be considered part of the list

Lazy set: method remove

a bhead

pred curr

f g tailee

65

Lazy set: method remove
public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locking:

if (valid(pred, curr)) {

if (curr.key() != item.key())

return false; // item not in the set

else { // item in the set at curr: remove it

curr.setInvalid(); // logical removal

pred.setNext(curr.next()); // physical removal

return true;

}

}

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}
66

Pros:

• validation is constant time
• membership checking does not require any locking – it’s even wait-free (it traverses

the list once without locking)
• physical removal of logically removed nodes could be batched and performed when

convenient – thus reducing the number of times the physical chain of nodes is
changed, in turn reducing the expensive propagation of information between threads

Cons:

• operations add and remove still require locking (as in OptimisticSet), which may
reduce the amount of parallelism

Lazy-removal set: pros and cons

67

Parallel linked sets
Lock free access

68

To implement a set that is correct under concurrent access without using any locks we
need to rely on synchronization primitives more powerful than just reading and writing
shared variables

We are going to use a variant of the compare-and-set operation

Atomic references

class AtomicReference<V> {

V get();

void set(V newRef);

// current reference

// set reference to newRef

// if reference == expectRef, set to newRef and return true

// otherwise, do not change reference and return false

boolean compareAndSet(V expectRef, V newRef);

}

69

As a first attempt, we make attribute next of type AtomicReference<Node<T>> and
use compareAndSet to update it: if one thread changes next when another thread
is also trying to change it, we repeat the operation
An implementation of remove() following this idea:
public boolean remove(T item) {

boolean done;

do {

Node<T> pred, curr = find(head, item.key());

if (curr.key() >= item.key()) return false; // item not in set
else
// try to remove curr by setting pred.next using compareAndSet
done = pred.next().compareAndSet(pred.next(), curr.next());

} while (!done); return true;

}

Atomic lock-free access: first naive attempt

pred.next may have changed
when compareAndSet() executes

70

Unfortunately, the first attempt does not work: for example, if thread t runs remove(e)
while thread u runs remove(b), it may happen that only b’s removal takes place

Atomic lock-free access: first naive attempt

a bhead

pred curr

f g taile

currpred

We have seen a similar problem before: modifications of the list need to have control of
both pred and curr – even if it is only the former node that is actually modified

71

class AtomicMarkableReference<V> {

V, boolean get(); // current reference and mark

// if reference == expectRef set mark to newMark and return true

// otherwise do not change anything and return false

boolean attemptMark(V expectRef, boolean newMark);

// if reference == expectRef and mark == expectMark,

// set reference to newRef, mark to newMark and return true;

// otherwise, do not change anything and return false

boolean compareAndSet(V expectRef, V newRef, boolean expectMark, boolean newMark)

}

Atomic markable references
As in LazySet, nodes can be marked valid or invalid; an invalid node is logically removed
In addition, we need to access the information of both attributes valid and next atomically:
every node includes an attribute nextValid of type AtomicMarkableReference<Node<T>>, which
provides methods to both update a reference and mark it, atomically

72

Every node has an attribute nextValid typed AtomicMarkableReference<Node<T>>
The node interface provides methods to retrieve and conditionally update the current
value of nextValid, which includes a reference (corr. to next) and a mark (corr. to valid)

Nodes in a lock-free set

class LockFreeNode<T> extends SequentialNode<T> {

// reference to next node and validity mark of current node

private AtomicMarkableReference<Node<T>> nextValid;

// return next and valid as a pair

Node<T>, boolean nextValid() { return nextValid.get(); }

Node<T> next()

{ Node<T> next, boolean valid = nextValid(); return next; }

boolean valid()

{ Node<T> next, boolean valid = nextValid(); return valid; }

73

nextValid

=

(next_node, valid_node)

Nodes in a lock-free set

update next only if the node is valid

class LockFreeNode<T> extends SequentialNode<T> {

// try to set invalid; return true if successful

boolean setInvalid()

{ Node<T> next = next();

return nextValid.compareAndSet(next, next, true, false); }

// try to update to newNext if valid; return true if successful
boolean setNextIfValid(Node<T> expectNext, Node<T> newNext)

{ return nextValid.compareAndSet(expectNext, newNext, true, true); }

Every node has an attribute nextValid typed AtomicMarkableReference<Node<T>>
The node interface provides methods to retrieve and conditionally update the current
value of nextValid, which includes a reference (corr. to next) and a mark (corr. to valid)

74

expectRef

nextRef

expectMark

newMark

In a lock-free set:
• Operation remove marks a node invalid before removing it
• Operations that modify nodes complete successfully only if the nodes are valid and not

concurrently modified by another thread
• Failed operations are repeated until success (no interference)

public class LockFreeSet<T> extends SequentialSet<T>

{

public LockFreeSet() {

head = new LockFreeNode<>(Integer.MIN_VALUE); // smallest key

tail = new LockFreeNode<>(Integer.MAX_VALUE); // largest key

head.setNext(tail); // unconditionally set next only in new nodes

}

// overriding of all methods

Concurrent set with lock-free access

75

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key());

if (curr.key() != item.key() || !curr.valid()) return false; // not in set or invalid
// try to invalidate; try again if node is being modified:

if (!curr.setInvalid()) continue;

// try once to physically remove curr:

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}

Lock-free set: method remove

a bhead

pred curr

f g taile

currpred

physical removal of e
fails: never mind!

physical removal of e fails

76

Scenario 1:

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;
// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}

Lock-free set: method remove

a bhead

pred curr

f g taile

currpred

e

logical removal of e fails

logical removal
of e fails: retry!

now remove(e) returns false

77

Scenario 2:Scenario 3:

If two threads both try to mark a node invalid, only one can succeed – so it is
guaranteed that no other thread is touching the node

If this property were not enforced:

Logical removal: only one thread succeeds

a bhead

pred curr

f g taile

currpred

t ’s remove(e) returns true

u’s remove(e) returns true
but e has already been removed!

78

• The same element may be removed twice

public boolean add(T item) {
do { Node<T> pred, curr = find(head, item.key());

if (curr.key() == item.key() && curr.valid()) return false; // already in set and valid

// new node, pointing to curr:

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node:

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}

Lock-free set: method add

bahead e f g tail

pred curr

c

currpred

b

connecting c fails
pred curr

79

node:

Method has works as in LazySet: it finds the position (pred,curr), validates curr,
and checks whether curr’s key is equal to item’s

Unlike add and remove (which use a new version of find), has traverses both valid
and invalid nodes, and makes no attempt at removing the latter

Lock-free set: method has

a bhead e f g tail

pred curr

e

public boolean has(T item) {

// find position (use plain search in SequentialSet)

Node<T> pred, curr = super.find(head, item.key());

// check validity and item

return curr.valid() && curr.key() == item.key();

}

80

Method has does not modify the set, so it can safely traverse valid and invalid nodes
without changing the node structure
In contrast, methods add and remove physically remove all logically removed nodes
encountered by find
This is a convenient time to perform physical removal, because it avoids the buildup
of long chains of invalid nodes
For example, the logical removal of nodes f and g requires thread t to physically
remove f before it can physically remove g:

When to physically remove nodes?

f ga b ehead tailf g

pred curr

currpred
t cannot redirect pred because invalid!

81

Example: A run of find(k) that also physically removes three invalid nodes

Lock-free set: how findworks

a b e f ghead tail

pred curr succcurr succpred curr succpred curr succcurr succcurr

Threads may interfere with find, requiring to restart it
In the worst case, starvation may occur with a thread continuously restarting find while
others make progress modifying the list

82

protected Node<T>, Node<T> find(Node<T> start, int key) {

boolean valid; // is curr valid?

Node<T> pred, curr, succ; // consecutive nodes in iteration

retry: do {

pred = start; curr = start.next(); // from start node

do { // succ is curr’s successor; valid is curr’s validity

succ, valid = curr.nextValid();

while (!valid) { // while curr is not valid, try to remove it

// if pred is modified while trying to redirect it, retry

if (!pred.setNextIfValid(curr, succ)) continue retry;

// curr has been physically removed: move to next node

curr = succ; succ, valid = curr.nextValid();

} // now curr is valid (and so is pred)

if (curr.key() >= key) return (pred, curr);

pred = curr; curr = succ; // continue search

} while (true);

} while (true);

}

Lock-free set: method find

83

We keep track of 3 nodes!

Pros:

• no operations require locking: maximum potential for parallelism
• membership checking does not require any locking – it’s even wait-free (it traverses

the list once without locking)

Cons:

• the implementation needs test-and-set-like synchronization primitives, which have to
be supported and come with their own performance costs

• operations add and remove are lock-free but not wait-free: they may have to repeat
operations, and they may be delayed while they physically remove invalid nodes, with
the risk of introducing contention on nodes that have been already previously
logically deleted

Lock-free set: pros and cons

84

Each of the different implementations of concurrent set is the best choice for certain
applications and not for others:

• CoarseSet works well with low contention

• FineSet works well when threads tend to access the list orderly

• OptimisticSet works well to let threads operate on disjoint portions of the list

• LazySet works well when batching invalid node removal is convenient

• LockFreeSet works well when locking is quite expensive

To lock or not to lock?

85

No many threads accessing the data
structure at the same time

86

