
Chalmers | GÖTEBORGS UNIVERSITET

Alejandro Russo, Computer Science and Engineering

Concurrent Programming TDA381/DIT390

Friday, March 18, 08.30hs (4 hours), M.

(including example solutions to programming problems)

Alejandro Russo, tel. 0705 110896

• Grading scale (Betygsgränser):

Chalmers: 3 = 20–29 points, 4 = 30–39 points , 5 = 40–50 points
Chalmers ETCS: E = 20–23, D = 24–29, C = 30–37, B = 38–43, A = 44–50
GU: Godkänd 20–39 points, Väl godkänd 40–50 points

Total points on the exam: 50

• Results: within 21 days.

• Permitted materials (Hjälpmedel):

– Dictionary (Ordlista/ordbok)

• Notes:

– Read through the paper first and plan your time.

– Answer in either Swedish or English.

– If a question does not give you all the details you need, you may make reasonable assump-
tions. Your assumptions must be clearly stated. If your solution only works under certain
conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of each programming language you are going to use is not so important
as long as the graders can understand the intended meaning. If you are unsure just put in
an explanation of your notation.

– Points will be deducted for solutions which are unnecessarily complicated.

– As a recommendation, consider spending around 45 minutes per exercise. However, this
is only a recommendation.

1

Question 1. The Problem Sushi places usually present interesting concurrent patterns. For this exercise,
we consider a sushi restaurant where a sushi master serves sushi to one or more customers. We
assume that the sushi master places the sushi orders in a circular finite bar and the customers
take their orders from there. Figure 1 illustrates the scenario.

Figure 1: Sushi restaurant

The sushi master places the sushi in the front of the bar, while customers take sushi from the
rear of it. For simplicity, the restaurant has only one dish in its menu, a constant number C of
customers per day, and the number of places in the sushi bar is N (for instance, in the picture
above N = 8).

The rules in the restaurant are the following:

• The restaurant opens at lunch time. Customers can immediately get into the restaurant.
However, it is forbidden to go to the sushi bar until the sushi master properly sets up all his
(her) elements. Otherwise, it is considered an insult to the sushi master! Once the sushi
master is ready to start making sushi, customers are allowed to go to the bar.

• Sushi master must wait if the sushi bar is full

• Customers must wait if the sushi bar is empty

Your assignment Your task is to implement a simulation of the sushi restaurant. The important
aspect that your simulation should capture is the synchronization between the sushi master and
customers. Your simulation should only consider what happens in the sushi restaurant during
one working day. (10p)

To get full points your solution must fulfill the following criteria:

2

• You can use either Java or JR. If you choose to use JR, remember that the primitive sem is
for declaring semaphores (e.g. sem s), the primitive P(s) for acquiring semaphore s, and
V(s) for signaling semaphore s.

• You must use semaphores for synchronization or mutual exclusion. No other synchroniza-
tion constructs are allowed.

• Customers must all execute the same code.

1. import edu.ucdavis.jr.JR;
public class Sushi {

private final int N = 5;
private final int C = 10;

private final int sushi = 9999 ;

private sem empty = N ;
private sem full = 0 ;
private sem ready = 0 ;
private sem mutexC = 1 ; // Mutex for customers

private int [] bar = {0,0,0,0,0} ;

private int front = 0,
rear = 0 ;

process SushiMaster {
// Preparing tools
System.out.println("Sushi master is preparing his(her) tools");
JR.nap(1000) ;
for (int i=0; i < C; i++)

V(ready) ;
while(true){

//Produce sushi
P(empty);
System.out.println("Making sushi!");
bar[front] = sushi;
front = (front+1)%N;
System.out.println("Done making sushi!");
V(full);

}
}

process Customer((int i=0;i<C;i++)) {
int sushi ;
System.out.println("Customer "+i+" waiting for master to get ready");
P(ready) ;
while(true){
P(full);
P(mutexC);
System.out.println("Customer "+i+" grab sushi!");
sushi = bar[rear]; // eat sushi!

3

rear = (rear+1)%N;
V(mutexC);
V(empty);
//Eat sushi

}
}

public static void main(String[] args) {
new Sushi();

}
}

Question 2. The Problem You have started working at the company Poortify. One product of this company
is a music player. The music player allows users to create their own play lists. To keep up with
the competitive market, the managers have decided to incorporate a new feature into Poortify.
The feature is as follows: users can now specify which other users can add songs to their play
lists.

The previous version of the music player had a class which implements the store and adminis-
tration of a play list. It has the following interface:

class PlayList where
public SongInfo checkSong (SongName song) ;
public void addSong (SongInfo songInfo) ;

Function checkSong receives as an argument the name of the song and returns its information
(singer, album, record year, etc). If the song is not present in the list, checkSong returns null.

Function addSong adds a new song to the play list.

Your Assignment Your task is to implement a new class ThreadSafePlayList which utilizes
the old class but that can be safely used by different threads at the same time. Your class should
have the same interface as the old one. It is important to guarantee that several threads can
obtain information about songs (i.e., by calling checkSong) at the same time. Please, do not
care about fairness in your solution.

As company policy at Poortify, all programmers must use Java 5 monitors as synchronization
primitive. Here is a short reference of what you will need from java.util.concurrent.locks.

class ReentrantLock {
public ReentrantLock();
public Condition newCondition();
public void lock();
public void unlock();

}
class Condition {
public void await();
public void signal();
public void signalAll();

}

(8p)

4

import java.util.concurrent.*;
class ThreadSafePlayList {
private PlayList playlist;
private final Lock lock = new ReentrantLock();
private final Condition waitingToRead = lock.newCondition();
private final Condition waitingToWrite = lock.newCondition();
private int readers = 0;
private int writers = 0;
public ThreadSafePlayList() {
playlist = new PlayList();

}

public SongInfo checkSong(SongName song) {
SongInfo songInfo ;
lock.lock();
while (writers > 0)
waitingToRead.await();

readers++;
lock.unlock();
songInfo = playlist.checkSong(song);
lock.lock();
readers--;
if (readers == 0)
waitingToWrite.signal();

lock.unlock();
return songInfo;

}

public void addSong(SongInfo songInfo) {
lock.lock();
while (readers > 0 || writers > 0)
waitingToWrite.await();

writers++;
lock.unlock();
playlist.addSong(songInfo);
lock.lock();
writers--;
waitingToWrite.signal();
waitingToRead.signalAll();
lock.unlock();

}
}

Question 3. Background The dining philosophers problem is an illustrative example of a common comput-
ing problem in concurrency. We have seen this problem during the lectures. We briefly recap
the statement of the problem.

The problem The dining philosophers problem consists of, for instance, four silent philoso-
phers sitting at a circular table (see Figure 2). Philosophers only perform two activities: eat and
think. While eating, they are not thinking, and while thinking, they are not eating. A large bowl
of rice is placed in front of each of them. A chopstick is placed in between each pair of adjacent
philosophers, and each philosopher must only use the chopsticks that are located to his left and

5

to his right. In order to eat, a philosopher must have two chopsticks. So, each philosopher
should pick up the chopsticks to his left and right, eat, put the chopsticks down again and then
think (and repeat).

Figure 2: Illustration of the dining philosophers problem

Your assignment

a) Your task is to implement a simulation of the dining philosophers problem using transac-
tional memory. You should assume that there are N philosophers sit around a table with
N chairs instead of four as described above. Philosophers should be modelled by processes
and nothing else.

(8p)

b) Can deadlock occur in your solution? If so, show under which situation(s) it might occur.
Otherwise, justify why your solution is deadlock free. (2p)

c) Can starvation occur in your solution? If so, show under which situation(s) it might occur.
Otherwise, justify why your solution is starvation free. (2p)

To get full points your solution must fulfill the following criteria:

• You can use pseudo-code or Haskell. If you use pseudo-code, you must use

atomic {
statements

}

to introduce a transaction. Command retry is used to abort a transaction and rerun it at
a later time.

• You must use transactional memory. No other synchronization constructs are allowed.

a) process Philosopher ((int i=0;i<N;i++)) {
int left = i,

right = (i+1)%N;
while (true) {

//Think
atomic
{

6

if (forks[left] == forks[right]==0)
{
forks[left] = 1 ;
forks[right] = 1 ;

} else retry ;
}
//Eat
atomic()
{

forks[left] = 0 ;
forks[right] = 0 ;

}
}

}

b) Transactional memory guarantees that there are no deadlocks.

c) It might occur. It depends on the scheduler used by the implementation of the transactional
memory.

Question 4. The Problem Consider the following operations:

op void syncSend(int x)
op int[] syncReceive()

which allow processes to send and receive integers. Operation syncSend sends one integer,
and operation syncReceive receives N integers (from N senders) in one go. For simplicity,
we assume that there is only one process receiving data and N processes who send integers.
A receiver blocks until all N senders have sent an integer. Senders block until the receiver is
ready to get some information and all the other N − 1 senders have sent their integers. For
example, assume that N = 2, and given three processes P1, P2, and P3. If P1 firstly executes
call syncSend(42), then it blocks since there is no receiver and the other sender has not yet
called call syncSend. Then, P2 executes syncReceive(), then it blocks since there is only
one sender who wants to send data. Finally, P3 executes call synSend(10). Then, P2 receives
an array with the elements 42 and 10. Processes P1, P2, and P3 are now capable to continue with
their respective computations.

Your assignment Your task is to write a server process that implements the operations syncSend
and syncReceive.

To get full points your solution must fulfill the following criteria:

• You must use JR (Hint: you might consider the use of forward, but it is not strictly
necessary here).

• You must use message passing for synchronization. No other synchronization constructs
are allowed.

(8p)

A solution in JR.

public class Nto1 {

public op void syncSend(int x);

7

public op int[] syncReceive();

private op void senderQ(int);
private int N = 2;

private int [] to_send = {42,10}; // Data to be sent

private process server {
int [] data = {0,0};

while (true)
{
inni void syncSend(int x) {

forward senderQ(x);
}

[] int[] syncReceive() st senderQ.length() == N {
for(int i=0; i<N; i++)
inni void senderQ(int x) {

data[i]=x;
return ;

}
return data ;

}
}

}

// Just testing code below
private process c {
int [] data_receive = {0,0} ;
System.out.println("Going to receive...");
data_receive = syncReceive();
for(int i=0; i<N; i++)

System.out.println("Received: "+data_receive[i]);
}

private process sender((int id=0 ; id < N; id++)) {
edu.ucdavis.jr.JR.nap(2000*id);
System.out.println("Sending:"+to_send[id]);
syncSend(to_send[id]);
System.out.println("Sent:"+to_send[id]);

}

public static void main(String[] args) {
new Nto1();

}

}

Question 5. Background There are several approaches to make parallel sequential code. In this exercise,
we explore one of them.

8

Consider the definition of function map in Erlang.

map(_, []) -> [] ;
map(F, [H|T]) -> [F(H)|map(F,T)].

This function sequentially applies function F to every element in the list. For example, calling
map(fun (X) ->X*X end, [1,2,3]) gives the result [1,4,9]. Here, some examples of other
functions that use map in their definitions.

sum_sqrt(List) -> lists:sum(map(fun (X) -> X*X end, List)).
min_sqrt(List) -> lists:min(map(fun (X) -> X*X end, List)).
suffix_sqrt(List1, List2) ->

lists:suffix(List1, map(fun (X) -> X*X end, List2)).

Function sum_sqrt adds the square values of the elements in the list (e.g. sum_sqrt([1,2,3])
is 14). Function min_sqrt returns the minimum of the square values of the elements in the
list (e.g. min_sqrt([1,2,3]) is 1). Function suffix_sqrt determines if List1 is a suffix of
the list of the square values of List2 (e.g. suffix_sqrt([4,9], [1,2,3]) is true, while
suffix_sqrt([5,9], [1,2,3]) is false).

Problem Computing the result of function F applied to an argument could be an intensive com-
putation, i.e., it could take a considerable amount of time. Under certain conditions, however, it
is possible to speed up the code that uses map with a parallel version of it, called pmap.

Function pmap works like map, but when we call pmap(F,L), it creates one parallel process for
each application of F to an element of L. For simplicity, we consider only those uses of map

where the order of elements in the resulting list is not important. For instance, we could change
the use of map by pmap in the functions sum_sqrt and min_sqrt, but not in suffix_sqrt.

Your assignment Your task is to provide an implementation of pmap in Erlang. To achieve that,
you need to implement a series of auxiliary functions. Even though it sounds difficult, do not
be afraid, the solution of this exercise is just a few lines in Erlang!

a) Implement a function called gather. This function returns a list of N elements and takes a
positive number N and an unique identifier Ref as arguments. The process calling gather(N,Ref)

waits to get N messages of the form {Ref, Value} and puts all the received values into a list.
For instance, if a process calls gather(2,123456) and it has the messages {123456, 20},
{555555, 30}, and {123456, 99} in its mailbox, then the function returns the list [20,99]
if message {123456, 20} is received before than {123456, 99}. Otherwise, the function
returns the list [99,20]. (5p)

b) Implement a function called distribute. This function takes a list List, a function F, and
a unique reference Ref as arguments. When calling distribute(List,F,Ref), the function
creates, for each element X of the list, a process to compute F(X). Each of these processes
will send a message to the process executing distribute. The messages will have two
components. The first component is the unique identifier Ref and the second component
being F(X). (5p)

c) Implement function pmap using gather and distribute. (2p)

-module(pmap).
-export([gather/2, distribute/3, pmap/2]).

9

gather(0,_) -> [] ;
gather(N,Ref) ->

receive
{Ref, Value} -> [Value | gather(N-1, Ref)]

end.

distribute([], _, _) -> true ;
distribute([Value|Rest], F, Ref) ->

S = self(),
spawn(fun() -> S ! {Ref, F(Value)}

end),
distribute(Rest, F, Ref).

pmap(L,F) ->
Ref = erlang: make_ref(),
distribute(L,F,Ref),
gather(length(L),Ref).

10

