
Texturing

Slides done by Tomas Akenine-Möller
and Ulf Assarsson
Department of Computer Engineering
Chalmers University of Technology

1

Texturing: Glue n-dimensional
images onto geometrical objects

l Purpose: more realism, and this is a cheap
way to do it
– Bump mapping
– Plus, we can do environment mapping
– And other things

+ =

2

Texture coordinates

l What if (u,v) >1.0 or <0.0 ?
l To repeat textures, use just the fractional part

– Example: 5.3 -> 0.3
l Repeat, mirror, clamp_to_edge, clamp_to_border:

(0,0) (1,0)

(1,1)(0,1)

(u,v) in [0,1] (u0,v0)

(u1,v1)

(u2,v2)

(-1,-1)

(2,2)

3

Texture magnification
l What does the

theory say…
– Let’s try the

sinc(x) filter since it
gives best quality.

l But sinc(x) is not feasible in real time
l Box filter (nearest-neighbor) is

very fast
– But poorer quality:

4

l (for minification, use sinc(x/a) where a is
the minification factor. See p:136)

Texture magnification
l Tent filter is

feasible!
l Linear

interpolation

l Looks better
l Simple in 1D:
l (1-t)*color0+t*color1
l How about 2D?

5

Bilinear interpolation

l Interpolate 1D in x & y respectively, using
the fractional part of the texel coordinate:

1. Interpolate along texture’s x-axis to obtain
two interpolated colors.

2. Then, interpolate between them
along the y-axis.

6

l Texture coordinates (pu,pv) in [0,1]
l Texture images size: n*m texels
l Nearest neighbor would access:

(floor(n*u+0.5), floor(m*v+0.5))

Bilinear interpolation
l Check out this formula at home
l t(u,v) accesses the texture map
l b(u,v) bilinear-filtered texture lookup
l (u’,v’) = fractional part of texel coordinate

l See RTR, page 179.

w
ei

gh
ts

7

Examples - filters for magnification

8

Texture magnification of a 48 x 48 image onto 320 x 320 pixels. Left: nearest
neighbor filtering, where the nearest texel is chosen per pixel. Middle: bilinear
filtering using a weighted average of the four nearest texels. Right: cubic filtering
using a weighted average of the 5x5 nearest texels.

nearest neighbor Bilinear filtering 5x5 cubic filtering

Texture minification
What does a pixel ”see”?

l Theory (sinc) is too expensive
l Cheaper: average of texel inside a pixel
l Still too expensive, actually

l Mipmaps – another level of approximation
– Prefilter texture maps as shown on next slide

9

Mipmapping
l Image pyramid
l Half width and

height when going
upwards

l Average over 4 ”child texels” to form
”parent texel”

l Depending on amount of minification,
determine which image to fetch from

l Compute d first, gives two images
– Bilinear interpolation in each

u
v

d

10

Mipmapping
l Interpolate between those bilinear values

– Gives trilinear interpolation

l Constant time filtering: 8 texel accesses

l How to compute d?

v
u

d

Level n+1

Level n

(u0,v0,d0)

11

Computing d for mipmapping today

l Fragment shaders are always executed in
parallel for at least 2x2 pixel blocks.

l If du ≠ dv, then d gives overblur for one of the
dimensions.
– Even better: anisotropic texture filtering

l Approximate quad with several smaller mipmap samples12

du/dx = upix1 – upix0
dv/dx = vpix1 – vpix0
du/dy = upix2 – upix0
dv/dy = vpix2 – vpix0

E.g.: duv = log2 max((!"!# , !"!$)n, (!%!# , !%!$)m)
d = max(du, dv)

pix0 pix1

pix2

Texture images size: n*m texels

Anisotropic texture filtering

16 samples

13

Mipmapping:
Memory requirements
l Not twice the number of bytes…!

1/4
1/16

1/1

1/64

Modified by Ulf Assarsson 2004
l Rather 33% more – not that much14

Miscellaneous
l Textures:

– vary material parameters over
the surfaces, used by the
lighting computations

l Common texture maps:
– Color, Roughness, Metal,

Normal texture
– Reflectivity texture

l controls how diffuse vs
specular a surface is. But
physically this is controlled by
the Fresnell effect so not
used by Physically-based
shaders.

– See lab 4 for these material
parameters.

15

Roughness texture:
Controls shinness value per pixel.

Controls metalic vs dielectric behaviour
of specularity per pixel.

Color texture

Metalness texture:

Miscellaneous
l Textures:

– vary material parameters over
the surfaces, used by the
lighting computations

l Common texture maps:
– Color, Roughness, Metal

texture
– Reflectivity texture

l controls how diffuse vs
specular a surface is. But
physically this is controlled by
the Fresnell effect so not
used by Physically-based
shaders.

– See lab 4 for these material
parameters.

16

Roughness texture:
Controls shinness value per pixel.

Controls metalic vs dielectric behaviour
of specularity per pixel.

Color texture

Metalness texture:

Using textures in OpenGL
Do once when loading texture:

glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
int w, h, comp; // width, height, #components (rgb=3, rgba=4), #comp
unsigned char* image = stbi_load("floor.jpg", &w, &h, &comp, STBI_rgb_alpha);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, image);
stbi_image_free(image);
glGenerateMipmap(GL_TEXTURE_2D);

//Indicates that the active texture should be repeated over the surface
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
// Sets the type of mipmap interpolation to be used on magnifying and minifying the texture. These are the
// nicest available options.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 16);

Do every time you want to use this texture when drawing:
//selects which texture unit subsequent texture state calls will affect:
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
// Now, draw your triangles with texture coordinates specified

17

FRAGMENT SHADER

in vec2 texCoord;
layout(binding = 0) uniform sampler2D coltex;

void main()
{

gl_FragColor = texture2D(coltex, texCoord.xy);
}

Light Maps
• Often used in games
• Mutliply both textures with

each other in the fragment
shader, or (old way):
– render wall using brick

texture
– render wall using light

texture and blending to the
frame buffer

+

=

18

19

Department of Computer Engineering

Environment mapping

Tomas Akenine-Mőller © 2002

Environment mapping

l Assumes the environment is infinitely far away
l Sphere mapping
l Cube mapping is the norm nowadays

– Advantages: no singularities as in sphere map
– Much less distortion
– Gives better result
– Not dependent on a view position

Modified by Ulf Assarsson 2004

Department of Computer Engineering

Sphere map
• example

Sphere map
(texture)

Sphere map
applied on torus

Sphere Map

• Assume surface normals are available
• Then OpenGL can compute reflection vector at

each pixel
• The texture coordinates s,t are given by:

– (see OH 169 for details)

()

÷÷
ø

ö
çç
è

æ
+=

÷
ø
ö

ç
è
æ +=

+++=

15.0

15.0

1 222

L
R

t

L
Rs

RRRL

y

x

zyx

23

Sphere Map

24
In front of the sphere.
Behind the sphere.

Sphere Map
• Infinitesimally small

reflective sphere (infinitely
far away)
– i.e., orthographic view of a

reflective unit sphere

• Create by:
– Photographing metal sphere
– Or,

• Ray tracing
• Transforming cube map to

sphere map

25

x

y

z

Cube mapping

l Simple math: compute reflection vector, r
l Largest abs-value of component, determines which cube face.

– Example: r=(5,-1,2) gives POS_X face
l Divide r by abs(5) gives (u,v)=(-1/5,2/5)
l Remap from [-1,1] to [0,1], i.e., ((u,v)+(1,1))/2
l Your hardware does all the work. You just have to compute the

reflection vector. (See lab 4)

neye

26

Department of Computer Engineering

Example

Department of Computer Engineering

Bump mapping

• by Blinn in 1978
• Inexpensive way of simulating wrinkles and bumps

on geometry
– Too expensive to model these geometrically

• Instead let a texture modify the normal at each pixel,
and then use this normal to compute lighting

geometry Bump map
Stores heights: can derive normals

+
Bump mapped geometry

=

Department of Computer Engineering

Bump mapping
Storing bump maps:
1. as a gray scale image
2. As Δx, Δy distortions
3. As normals (nx , ny , nz)
• How store normals in texture (bump map):

– n=(nx , ny , nz) are in [-1,1]
– Add 1, mult 0.5: in [0,1]
– Mult by 255 (8 bit per color

component)
– Values can now be stored in 8-bit rgb texture

Bump mapping: example

30

Normal mapping in tangent vs object space

Tangent space:
lNormals are stored as distortion of face orientation. The same bump map
can be tiled/repeated and reused for many faces with different orientation31

Object space:
•Normals are stored directly in
model space. I.e., as
including both face orientation
plus distortion.

Normal map

Tangent space:

More...
l 3D textures:

– Texture filtering is no longer trilinear
– Rather quadlinear

l (linear interpolation 4 ”times” – 3 dimensions + between mipmap
levels)

– Enables new possibilities
l Can store light in a room, for example

l Displacement Mapping
– Like bump/normal maps but truly offsets the surface

geometry (not just the lighting).
– Gfx hardware cannot offset the fragment’s position

l Offsetting per vertex is easy in vertex shader but requires a highly
tessellated surface.

l Tesselation shaders are created to increase the tessellation of a
triangle into many triangles over its surface. Highly efficient.

l (Can also be done using Geometry Shader (e.g. Direct3D 10) by ray
casting in the displacement map, but tessellation shaders are generally
more efficient for this.)32

2D texture vs 3D texture

33

Precomputed Light fields

Max Payne 2 by Remedy Entertainment

Samuli Laine and Janne Kontkanen34

High-res 3D texture
– Sparse Voxel DAG:s

35 40963, <30 MB Dan Dolonius, Erik Sintorn, Ulf Assarsson.
UV-free Texturing using Sparse Voxel DAGs, CGF 2020

Displacement Mapping
l Uses a map to

displace the
surface at each
position

l Can be done with
a tesselation
shader

Rendering to Texture
//**
// Create a Frame Buffer Object (FBO) that we first render to and then use as a texture
//**
glGenFramebuffers(1, &frameBuffer); // generate framebuffer id
glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer); // following commands will affect ”frameBuffer”

// Create a texture for the frame buffer, with specified filtering, rgba-format and size
glGenTextures(1, &texFrameBuffer);
glBindTexture(GL_TEXTURE_2D, texFrameBuffer); // following commands will affect ”texFrameBuffer”
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 4, 512, 512, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

// Create a depth buffer for our FBO
glGenRenderbuffers(1, &depthBuffer); // get the ID to a new Renderbuffer
glBindRenderbuffer(GL_RENDERBUFFER, depthBuffer);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, 512, 512);

// Set rendering of the default color0-buffer to go into the texture
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,

texFrameBuffer, 0);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER,
depthBuffer); // Associate our created depth buffer with the FBO

Or simply render to back-buffer and copy into texture
using command: glCopyTexSubImage (). But is slower.

37

(See also Lab 5)

Drawing to several buffers at once in fragment shader

Fragment shader can draw to several buffers at once:
OpenGL CPU-side:
// specify an array of the color buffers you want to use
const GLenum buffers[] = {GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1,

GL_COLOR_ATTACHMENT2, GL_COLOR_ATTACHMENT3};
// give the array to OpenGL
glDrawBuffers(4, buffers);

In the fragment shader:
layout(location = 0) out vec4 diffuseColor;
layout(location = 1) out vec4 specularColor;
layout(location = 2) out vec3 normal;
layout(location = 3) out vec3 position;

38

Sprites
GLbyte M[64]=
{ 127,0,0,127, 127,0,0,127,

127,0,0,127, 127,0,0,127,
0,127,0,0, 0,127,0,127,
0,127,0,127, 0,127,0,0,
0,0,127,0, 0,0,127,127,
0,0,127,127, 0,0,127,0,
127,127,0,0, 127,127,0,127,
127,127,0,127, 127,127,0,0};

void display(void) {
glClearColor(0.0,1.0,1.0,1.0);
glClear(GL_COLOR_BUFFER_BIT);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);
glRasterPos2d(xpos1,ypos1);
glPixelZoom(8.0,8.0);
glDrawPixels(width,height,

GL_RGBA, GL_BYTE, M);

glPixelZoom(1.0,1.0);
SDL_GL_SwapWindow //”Swap buffers”

}
39

Sprites (=älvor) was a technique on older home
computers, e.g. VIC64. As opposed to billboards,
sprites do not use the frame buffer. They are rasterized
directly to the screen using a special chip. (A special
bit-register also marked colliding sprites.)

Sprites

Animation Maps

The sprites for Ryu
in Street Fighter:

40

Billboards
• 2D images used

in 3D
environments
– Common for

trees,
explosions,
clouds, lens-
flares

41

• Rotate them towards viewer
– Either by rotation matrix (see OH 288), or
– by orthographic projection

Billboards

42

• Fix correct transparency
by blending AND using
alpha-test
– In fragment shader:

if (color.a < 0.1) discard;

• Or: sort back-to-front and
blend
– (Depth writing could then

be disabled to gain speed)
• glDepthMask(0);

Billboards
Color Buffer Depth Buffer

With only
blending

With
alpha test

43

Soft Particles

44

http://blog.wolfire.com/2010/04/Soft-Particles

Normal billboard Soft Particle

Billboard’s mid depth Blending billboard and background
color, based on depth difference.

d1 is negative (in front of billboard’s z range)
so the standard depth test kills the fragment; at
d2 and d4, the particle blends with the
background; in d3 the fragment is opaque.

d = (zbg – zbb__min) / (zbb_max – zbb_min);
f =smooth(d,0,1); // clamp smoothly [0,1]
c = f cbb + (1-f) cbg; // blending bg and bb

z bb_
mi
n

z bb_
ma
x

BONUS

d1
d2

d3

d4

bb = billboard,
bg = background

Perspective distortion
• Spheres often appear as ellipsoids when

located in the periphery. Why?

Exaggerated examplecamera
If our eye was placed at the camera position, we would not see
the distortion. We are often positioned way behind the camera.45

Which is preferred?

Actually, viewpoint
oriented can be
preferred since it
most closely
resembles the result
using standard 3D
geometry

This is the result

billboards

Real 3D
spheres

Real 3D
sphere:

View plane
aligned:

Viewpoint
oriented:

Real 3D
sphere:

Also called Impostors

axial billboarding
The rotation axis is fixed and
disregarding the view position

n

47

Department of Computer Engineering

Particle system

Particles

Department of Computer Engineering

Partikelsystem

Department of Computer Engineering

What’s most important?
Texturing:
• Filtering:

– Magnification – nearest neightbor, linear
– Minification – nearest neighbor, linear, bilinear & trilinear-filtered

mipmap lookup.
– Mipmaps + their memory cost
– How compute bilinear/trilinear filtering
– Number of texel accesses for trilinear filtering
– Anisotropic filtering – take several trilinear-filtered mipmap lookups

along the line of anisotropy (e.g., up to 16 lookups)
• Environment mapping – cube maps. How compute lookup.
• Bump mapping
• 3D-textures – what is it?
• Sprites
• Billboards/Impostors, viewplane vs viewpoint oriented, axial

billboards, how to handle depth buffer for fully transparent
texels.

• Particle systems 51

