
Shading

Slides by Ulf Assarsson and Tomas
Akenine-Möller
Department of Computer Engineering
Chalmers University of Technology

Z

X

Y

Overview of today’s lecture
l A simple most basic real-time lighting

model
– Shading parts: ambient, diffuse, specular,

emission.
l It is also OpenGL’s old fixed pipeline lighting model

l Physically-based shading (PBS)
l Fog
l Gamma correction
l Transparency and alpha

The ambient/diffuse/specular/emission
model

n

l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads
in all directions (view-independent and light-position independent color)

outColorrgb ~materialrgb ⊗ lightColorrgb

Ambient

i.e., (ir , ig , ib) = (mr , mg , mb) (lr , lg , lb)

iamb = mamb lamb

Assuming homogeneous
background light

The ambient/diffuse/specular/emission
model
l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads
in all directions (view-independent and light-position independent color)

l Diffuse light: the part that spreads equally in all directions (view
independent) due to that the surface is very rough on microscopic level

n

outColorrgb ~materialrgb ⊗ lightColorrgb

Light source

Amb + Diff

diffdiffdiff smlni Ä×=)(

l
Just scale light intensity
with incoming angle

The ambient/diffuse/specular/emission
model

n

l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads
in all directions (view-independent and light-position independent color)

l Diffuse light: the part that spreads equally in all directions (view
independent) due to that the surface is very rough on microscopic level

l Specular light: the part that spreads mostly in the reflection direction
(often same color as light source)

outColorrgb ~materialrgb ⊗ lightColorrgb

Amb + Diff + Spec

The ambient/diffuse/specular/emission
model

n

Amb + Diff + Spec + Em

l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads
in all directions (view-independent and light-position independent color)

l Diffuse light: the part that spreads equally in all directions (view
independent) due to that the surface is very rough on microscopic level

l Specular light: the part that spreads mostly in the reflection direction
(often same color as light source)

l Emission: self-glowing surface

outColorrgb ~materialrgb ⊗ lightColorrgb

Material:
•Ambient (r,g,b,a)
•Diffuse (r,g,b,a)
•Specular (r,g,b,a)
•Emission (r,g,b,a) =”self-glowing color”

Light: (r,g,b)

DIFFUSE Base color
SPECULAR Highlight Color
AMBIENT Low-light Color
EMISSION Glow Color
SHININESS Surface Smoothness

A basic lighting model

Ambient component: iamb
l Ad-hoc – tries to account for light coming

from other surfaces
l Just add a constant color:

ambambamb smi Ä=
i.e., (ir , ig , ib , ia) = (mr , mg , mb , ma) (lr , lg , lb , la)

Tomas Akenine-Mőller © 2002

Diffuse component : idiff
l i=iamb+idiff+ispec
l Diffuse (Lambert’s law): fcos=×= lndiffi

l Photons are scattered equally in all
directions

diffdiffdiff smlni Ä×=)(
n and l are
assumed being
unit vectors

Lambertian Surfaces
• Perfectly diffuse reflector
• Light scattered equally in all directions

Highly reflective
surface (specular)

Fully diffuse surface
(Lambertian)

Tomas Akenine-Mőller © 2002

Lighting
Specular component : ispec

l Diffuse is dull (left)
l Specular: simulates a highlight

Tomas Akenine-Mőller © 2002

Specular component: Phong
l Phong specular highlight model
l Reflect l around n:

l)n2(nlr ×+-=

n

lr

-l
nln)(×

ln ×

shishi mm
speci)(cos)(r=×= vr

€

ispec = ((n⋅ l) < 0) ? 0 : max(0,(r⋅ v))mshimspec ⊗ sspec
l Next: Blinns highlight formula: (n.h)m

n must be unit
vector

Halfway Vector (or half vector)

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
(l+v)/2 is halfway between l and v
If n, l, and v are coplanar:

y = f/2
Must then adjust exponent
so that (n·h)e’ ≈ (r·v)e, (e’ ≈ 4e)

If the surface is rough, there is a probability distribution of the
microscopic normals n. This means that the intensity of the
reflection is decided by how many percent of the microscopic
normals are aligned with h. And that probability often scales with
how close h is to the macroscopic surface normal n.

(n·h)s (r·v)s (n·h)4s

Tomas Akenine-Mőller © 2002

Lighting
i=iamb+idiff+ispec

l This is just a hack!
l Has little to do with how reality works!

++

=

Physically-based Shading (PBS)

Physically-based Shading (PBS)

Radiance
• In graphics, we typically use rgb-colors c = (cr,cg,cb) and mean the

intensity or radiance for the red, green, and blue light.
• Radiance, L : a radiometric term. What we store in a pixel is the radiance

towards the eye: a tripplet L = (Lr,Lg,Lb)
– Radiance = the amount of electromagnetic radiation leaving or arriving at a

point on a surface (per unit solid angle per unit projected area)
• Five-dimensional (or 6, including wavelength):

– Position (3)
– Direction (2) – horizontal + vertical angle

• Radiance is ”power per unit projected area per unit solid angle”

Radiance from a specific direction
uses differentials, where the cone
of the solid angle becomes
an infinitesmally thin ray.

Hence, in graphics we often sloppily
talk about the radiance from a
direction to a surface point

dw

L i = 𝝅 𝒄 𝑙𝑖𝑔
ℎ𝑡

• BRDF = Bidirectional Reflection
Distribution Function

• A material description, f (wi,wo)
• What the BRDF describes: how much

of the incoming radiance Li from a given direction wi that will leave in a
given outgoing direction wo.

How to compute color, i.e outgoing radiance Lo
from a point light:

where π comes from that the definition of radiance uses differentials d𝜔𝑖 and integrates a cosine
factor 𝑛 # 𝜔𝑖 for the hemisphere.
The cosine comes from decreased incoming intensity
for higher incoming angles:_

BRDF

A fully diffuse (Lambertian) brdf is
then:

𝑓 𝜔𝑖, 𝜔𝑜 =
𝒄𝑑𝑖𝑓𝑓
𝜋

=>
diff color: 𝑳! 𝜔𝑜 = 𝒄𝑑𝑖𝑓𝑓 𝒄𝑙𝑖𝑔ℎ𝑡 𝑛 # 𝜔𝑖

Li

Lo

Lo Li = 𝝅 𝒄𝑙𝑖𝑔ℎ𝑡
𝑳! 𝝎𝑜 = 𝑓 𝝎𝑖, 𝝎𝑜 𝑳" 𝜔𝑖 𝒏 (𝝎𝑖

𝑳! 𝝎𝑜 = 𝑓 𝝎𝑖, 𝝎𝑜 𝜋𝒄𝑙𝑖𝑔ℎ𝑡 𝒏 (𝝎𝑖

A common surface model:
• Some amount of incoming

light from direction wi :
– reflects to various outgoing

directions (yellow).
– refracts into the material, bounces

around, gets color tinted, and
refracts out as a fully diffuse
reflection (blue). Absorption
creates the color tint.

Surfaces and materials

• The Fresnell equations describe how much of the incoming light that reflects
or refracts. F() depends on the relative refraction index h = h1/h2 and the
incoming angle to the surface.

h1

h2

𝑭 𝒏, 𝒍 ≈ 𝑭0 + 1 − 𝑭0 1 − 𝒏) 𝒍 5

ln

glass copper aluminum

F is also wavelength dependent: highly for metals, not so for dielectrics.

F0

F0,b

F0,g
F0,r

Surfaces and materials
Materials:
• Dielectrics:

• The glossy reflection has
the light’s color.

• The diffuse reflection is
colored by the material

• Ex: glass, skin, wood,
hair, leather, plastic,
stone, concrete, water,

• Metals: has only reflection,
no refraction (so no diffuse component)

Example of material parameters:
• Metalness (vs dielectric). In percent.

• Non-physical though since a mtrl is not both
• shininess [0,∞] (or roughness [0,1])
• Fresnel F0. p:322-323.
• Base_color: 𝒄𝑏𝑎𝑠𝑒

F0 values p:322-323.

– dielectrics vs metals

A physically-based shading model
Putting it together…

metalness (vs dielectric in percent)
shininess
Base color: 𝒄𝑏𝑎𝑠𝑒

Li = π clight *1/r2 // point light

Li = π clight // directional light

Fresnell effect: 𝑭 𝒏, 𝒍 ≈ 𝑭0 + 1 − 𝑭0 1 − 𝒏 + 𝒍 5

diffuse_brdf = 𝒄!"#$
"

metal_brdf = * cbase

dielectric_brdf = * vec3(1) + (1-F) diffuse_brdf

brdf = metalness * metal_brdf + (1 - metalness) * dielectric_brdf

TOTAL: 𝑳# 𝜔𝑜 = ∑$%&
#($)*+, 𝐛𝐫𝐝𝐟 (Li) 𝒏 + 𝝎𝑖

Li = π clightn

𝑳!

,(.7,.8)0 .9 1(.7)
2⋅.8 |2⋅.7|

roughness
roughness

,(.-,..)1 ./ 2(.-)
3⋅.. |3⋅.-|

,(.-,..)1 ./ 2(.-)
3⋅.. |3⋅.-| To be explained next

by Erik… or see his

online video 1 2 3 4.

Specular reflection

metal reflection is

colored by material

but not so for dielectrics

Parameters:

Formulas:

http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video1.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video2.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video3.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video4.mp4

Extra… (bonus)
• Anisotropic Normal Distribution Functions – update D() in the microfacet

model - see p343

• Multibounce surface reflections – p:346

• Subsurface Scattering: p:347 – modify the Lambertian brdf and the Fresnell
factor.

• Light falloff: page 111, Unreal, Frostbite + CryEngine

• Distance falloff function / windowing function: Just Cause 2

• Lambertian brdf. = diffuse color = albedo.

• Some light source types: point lights, area lights,

– Incoming light from the surrounding can be captured by environment maps,

Environment maps (reflection maps)

Tomas Akenine-Mőller © 2002

Additions to the lighting equation
l Accounting for distance: 1/(a+bt+ct2)
l Several lights: just sum their respective

contributions
l Different light types:

Clarification on accounting for distance

l Energy is emitted at equal proportions in all directions from a
spherical radiator. Due to energy conservation, the intensity is
proportional to the spherical area at distance r from the light
center.

• A = 4πr2

l Thus, the intensity scales
~ 1/r2

l For efficiency, we often cap or limit
how far the light source will affect the
environment.
– Hence, we often want to fade its intensity to zero

at some finite distance r.

r

Tomas Akenine-Mőller © 2002

Shading
l Shading: compute the fragment’s final

color contribution to the pixel.
l Three types of shading

regarding how often it is computed per triangle:
l Flat shading: once per triangle
l Goraud shading: once per vertex
l Phong shading: once per pixel (standard today)

Tomas Akenine-Mőller © 2002

Shading
l Flat, Goraud, and Phong shading:

l Flat shading: one normal per triangle. Lighting computed once for the whole
triangle.

l Gouraud shading: the lighting is computed per triangle vertex and for each
pixel, the color is interpolated from the colors at the vertices.

l Phong Shading: the lighting is not computed per vertex. Instead the normal
is interpolated per pixel from the normals defined at the vertices and full
lighting is computed per pixel using this normal. This is of course more
expensive but looks better.

Flat Gouraud Phong

Gouraud
shading

Phong
shading

Flat
shading

Transparency and alpha
l Transparency

– Very simple in real-time contexts
l The tool: alpha blending (mix two colors)
l Alpha (a) is the forth color component (r,g,b,a)

– e.g., of the material for a triangle
– Represents the opacity
– 1.0 is totally opaque
– 0.0 is totally transparent

l The over operator:
dso ccc)1(aa -+=

Rendered object

Color already in
the frame buffer at the
corresponding position

Ulf Assarsson© 2007

Transparency
l Need to sort the transparent objects

– Render back to front (blending is order dep.)
l See next slide…

l Lots of different other blending modes
l Can store RGBa in textures as well

So the texels with a=0.0
do not not hide the
objects behind

dso ccc)1(aa -+=
Rendered fragment Background

Transparency
l Need to sort the transparent objects

– First, render all non-transparent triangles as
usual.

– Then, sort all transparent triangles and
render them back-to-front with blending
enabled.
l The reason for sorting is that the blending operation

(i.e., over operator) is order dependent.

If we have high frame-to-frame coherency regarding the objects to be
sorted per frame, then Bubble-sort (or Insertion sort) are really good!
(superior to Quicksort).
Because, they have expected runtime of resorting already almost sorted
input in O(n) instead of O(n log n), where n is number of elements.

Ulf Assarsson © 200332

l Used for
– Transparency

l glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

– Effects (shadows, reflections)
– (Complex materials)

l Quake3 used up to 10 rendering passes, blending toghether
contributions such as:
– Diffuse lighting (for hard shadows)
– Bump maps
– Base texture
– Specular and emissive lighting
– Volumetric/atmospheric effects

– Enable with glEnable(GL_BLEND)

Blending

dso ccc)1(aa -+=

Tomas Akenine-Mőller © 2002

Fog
l Simple atmospheric effect

– A little better realism
– Help in determining distances

Tomas Akenine-Mőller © 2002

l Color of fog: color of surface: fc sc

€

c p = fcs + (1− f)c f f ∈[0,1]
l How to compute f ?
l 3 ways: linear, exponential, exponential-squared
l Linear:

startend

pend

zz
zz

f
-

-
=

Tomas Akenine-Mőller © 2002

Fog example

l Often just a matter of
– Choosing fog color
– Choosing fog model
– Old OpenGL – just turn it on. New OpenGL – program it

yourself in the fragment shader

Fog in up-direction

Tomas Akenine-Mőller © 2002

Gamma correction

Lighting computes
rgb color intensities in
linear space from
[0,1]

However, CRT-monitor output is exponential.
Has more precision for darker regions. Very
Good! But we need to adapt the input to
utilize this. Else, our images will be too dark.

xγ

Intensities: xγ vs linear

Expon. distribution better for
humans. Our eyes have non-
linear sensitivity and monitors
have limited brightness

xγ: perceived
lin. intensity:

linear intensity:

darker brighter darker brighter

γ = 2.2

So, store color intensities with more precision for darker colors: i.e., convert color to x(1/γ) before storing in
8- bits in the frame buffer. Conversion to x(1/γ) is called gamma correction.

Shader rgb colors

x(1/γ)

Frame buffer rgb colors.
“Dark pixels are made brighter”

x(1/γ)

Displayed by CRT
Linear output again, but
redistributed precision.

sc
re

en

= rgb_in

xγ

Framebuf. rgb: 0 0.5 0.66 0.8 0.9 1
Shader rgb: 0 0.2 0.4 0.6 0.8 1

rgb_in

rgb_out

(x(1/γ)) γ

in
te

ns
ity

Textures: store in
gamma space for better
ditributed precision.

Gamma correction

l If input to gun is 0.5, then you don’t get
0.5 as output in intensity

l Instead, gamma correct that signal:
gives linear relationship

xγ

γ = 2.2 x(1/γ)

Tomas Akenine-Mőller © 2002

Gamma correction

l I=intensity on screen
l V=input voltage (electron gun)
l a,e, and g are constants for each system
l Common gamma values: 2.2-2.6
l Assuming e=0, gamma correction is:

ge)(+= VaI

)/1(g
icc =

Why is it important to care about
gamma correction?
l Portability across platforms
l Image quality

– Texturing
– Anti-aliasing

l One solution is to put gamma correction
in hardware…

l sRGB asumes gamma=2.2
l Can use EXT_framebuffer_sRGB to render with

gamma correction directly to frame buffer

Gamma correction today
l Reasons for wanting gamma correction (standard is 2.2):
1. Screen has non-linear color intensity

– We often really want linear output (e.g. for correct antialiasing)
– (But, today, screens can be made with linear output, so non-linearity is more

for backwards compatibility reasons.)

2. Also happens to give more efficient color space (when
compressing intensity from 32-bit floats to 8-bits). Thus, often
desired when storing textures. Gamma of 2.2. Better

distribution for humans.
Perceived as linear.

Truly linear intensity
increase.

A linear intensity output (bottom) has a large jump in perceived brightness
between the intensity values 0.0 and 0.1, while the steps at the higher end of the
scale are hardly perceptible.
A nonlinearly-increasing intensity (upper), will show much more even steps in
perceived brightness.

Gamma correction today
l Reasons for wanting gamma correction (standard is 2.2):
1. Screen has non-linear color intensity

– We often really want linear output (e.g. for correct antialiasing)
– (But, today, screens can be made with linear output, so non-linearity is more

for backwards compatibility reasons.)

2. Also happens to give more efficient color space (when
compressing intensity from 32-bit floats to 8-bits). Thus, often
desired when storing textures. Gamma of 2.2. Better

distribution for humans.
Perceived as linear.

Truly linear intensity
increase.

A linear intensity output (bottom) has a large jump in perceived brightness
between the intensity values 0.0 and 0.1, while the steps at the higher end of the
scale are hardly perceptible.
A nonlinearly-increasing intensity (upper), will show much more even steps in
perceived brightness.

Important on Gamma correction
l Give two reasons for gamma correction:

– screen output is non-linear so we need gamma
to counter that.

– Textures/images can be stored with better
precision (for human eye) for low-intensity
regions.

Tomas Akenine-Mőller © 2002

What is important
l Amb-, diff-, spec-, emission model + formulas
l Phong’s + Blinn’s highlight model:

– Phong: scales with 𝒓 " 𝒗 s

– Blinn: scales with 𝒏) 𝒉 s , halfvector h = (l+v)/|l + v|
l Flat-, Gouraud- and Phong shading
l Transparency:

– Draw transparent triangles back-to-front.
– Use blending with this over operator:

l Two reasons for wanting gamma correction
dso ccc)1(aa -+=

