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Overview of today’s lecture
l A simple most basic real-time lighting

model
– Shading parts: ambient, diffuse, specular, 

emission.
l It is also OpenGL’s old fixed pipeline lighting model

l Physically-based shading (PBS)
l Fog
l Gamma correction
l Transparency and alpha



The ambient/diffuse/specular/emission 
model

n

l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads 
in all directions (view-independent and light-position independent color)

outColorrgb ~materialrgb ⊗ lightColorrgb

Ambient

i.e., (ir , ig , ib) = (mr , mg , mb ) (lr , lg , lb)

iamb = mamb lamb 

Assuming homogeneous 
background light



The ambient/diffuse/specular/emission 
model
l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads 
in all directions (view-independent and light-position independent color)

l Diffuse light: the part that spreads equally in all directions (view 
independent) due to that the surface is very rough on microscopic level

n

outColorrgb ~materialrgb ⊗ lightColorrgb

Light source

Amb + Diff

diffdiffdiff smlni Ä×= )(

l
Just scale light intensity 
with incoming angle



The ambient/diffuse/specular/emission 
model

n

l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads 
in all directions (view-independent and light-position independent color)

l Diffuse light: the part that spreads equally in all directions (view 
independent) due to that the surface is very rough on microscopic level

l Specular light: the part that spreads mostly in the reflection direction 
(often same color as light source)

outColorrgb ~materialrgb ⊗ lightColorrgb

Amb + Diff + Spec



The ambient/diffuse/specular/emission 
model

n

Amb + Diff + Spec + Em

l The most basic real-time model:
l Light interacts with material and change color at bounces:

l Ambient light: incoming background light from all directions and spreads 
in all directions (view-independent and light-position independent color)

l Diffuse light: the part that spreads equally in all directions (view 
independent) due to that the surface is very rough on microscopic level

l Specular light: the part that spreads mostly in the reflection direction 
(often same color as light source)

l Emission: self-glowing surface

outColorrgb ~materialrgb ⊗ lightColorrgb



Material:
•Ambient   (r,g,b,a) 
•Diffuse   (r,g,b,a)
•Specular (r,g,b,a)
•Emission   (r,g,b,a)  =”self-glowing color”

Light: (r,g,b)

DIFFUSE Base color
SPECULAR Highlight Color
AMBIENT Low-light Color
EMISSION Glow Color
SHININESS Surface Smoothness

A basic lighting model



Ambient component: iamb
l Ad-hoc – tries to account for light coming 

from other surfaces
l Just add a constant color:

ambambamb smi Ä=
i.e., (ir , ig , ib , ia) = (mr , mg , mb , ma) (lr , lg , lb , la)
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Diffuse component : idiff
l i=iamb+idiff+ispec
l Diffuse (Lambert’s law): fcos=×= lndiffi

l Photons are scattered equally in all 
directions

diffdiffdiff smlni Ä×= )(
n and l are 
assumed being 
unit vectors



Lambertian Surfaces
• Perfectly diffuse reflector
• Light scattered equally in all directions

Highly reflective 
surface (specular)

Fully diffuse surface 
(Lambertian)
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Lighting
Specular component : ispec

l Diffuse is dull (left)
l Specular: simulates a highlight
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Specular component: Phong
l Phong specular highlight model
l Reflect l around n:

l)n2(nlr ×+-=

n

lr

-l
nln )( ×

ln ×

shishi mm
speci )(cos)( r=×= vr

€ 

ispec = ((n⋅ l) < 0) ?  0 :  max(0,(r⋅ v))mshimspec ⊗ sspec
l Next: Blinns highlight formula: (n.h)m

n must be unit 
vector



Halfway Vector (or half vector)

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
(l+v)/2 is halfway between l and v
If n, l, and v are coplanar:

y = f/2
Must then adjust exponent
so that (n·h)e’ ≈ (r·v)e, (e’ ≈ 4e)

If the surface is rough, there is a probability distribution of the 
microscopic normals n. This means that the intensity of the 
reflection is decided by how many percent of the microscopic 
normals are aligned with h. And that probability often scales with 
how close h is to the macroscopic surface normal n. 



(n·h)s (r·v)s (n·h)4s
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Lighting
i=iamb+idiff+ispec

l This is just a hack!
l Has little to do with how reality works!

++

=



Physically-based Shading (PBS)



Physically-based Shading (PBS)



Radiance
• In graphics, we typically use rgb-colors c = (cr,cg,cb) and mean the 

intensity or radiance for the red, green, and blue light. 
• Radiance, L : a radiometric term. What we store in a pixel is the radiance

towards the eye: a tripplet L = (Lr,Lg,Lb) 
– Radiance = the amount of electromagnetic radiation leaving or arriving at a 

point on a surface (per unit solid angle per unit projected area)
• Five-dimensional (or 6, including wavelength):

– Position (3)
– Direction (2) – horizontal + vertical angle

• Radiance is ”power per unit projected area per unit solid angle”

Radiance from a specific direction
uses differentials, where the cone
of the solid angle becomes
an infinitesmally thin ray.

Hence, in graphics we often sloppily 
talk about the radiance from a 
direction to a surface point

dw

L i = 𝝅 𝒄 𝑙𝑖𝑔
ℎ𝑡



• BRDF = Bidirectional Reflection
Distribution Function

• A material description, f (wi,wo)
• What the BRDF describes: how much

of the incoming radiance Li from a given direction wi that will leave in a 
given outgoing direction wo.

How to compute color, i.e outgoing radiance Lo
from a point light:

where π comes from that the definition of radiance uses differentials d𝜔𝑖 and integrates a  cosine
factor 𝑛 # 𝜔𝑖 for the hemisphere.
The cosine comes from decreased incoming intensity
for higher incoming angles:_

BRDF

A fully diffuse (Lambertian) brdf is 
then:

𝑓 𝜔𝑖, 𝜔𝑜 =
𝒄𝑑𝑖𝑓𝑓
𝜋

=> 
diff color:  𝑳! 𝜔𝑜 = 𝒄𝑑𝑖𝑓𝑓 𝒄𝑙𝑖𝑔ℎ𝑡 𝑛 # 𝜔𝑖

Li

Lo

Lo Li = 𝝅 𝒄𝑙𝑖𝑔ℎ𝑡
𝑳! 𝝎𝑜 = 𝑓 𝝎𝑖, 𝝎𝑜 𝑳" 𝜔𝑖 𝒏 ( 𝝎𝑖

𝑳! 𝝎𝑜 = 𝑓 𝝎𝑖, 𝝎𝑜 𝜋𝒄𝑙𝑖𝑔ℎ𝑡 𝒏 ( 𝝎𝑖



A common surface model:
• Some amount of incoming

light from direction wi :
– reflects to various outgoing

directions (yellow). 
– refracts into the material, bounces

around, gets color tinted, and 
refracts out as a fully diffuse 
reflection (blue). Absorption 
creates the color tint.

Surfaces and materials

• The Fresnell equations describe how much of the incoming light that reflects
or refracts. F() depends on the relative refraction index h = h1/h2 and the 
incoming angle to the surface.

h1

h2

𝑭 𝒏, 𝒍 ≈ 𝑭0 + 1 − 𝑭0 1 − 𝒏 ) 𝒍 5

ln

glass copper aluminum

F is also wavelength dependent: highly for metals, not so for dielectrics. 

F0

F0,b

F0,g
F0,r



Surfaces and materials
Materials:
• Dielectrics: 

• The glossy reflection has 
the light’s color.

• The diffuse reflection is 
colored by the material

• Ex: glass, skin, wood, 
hair, leather, plastic, 
stone, concrete, water, 

• Metals: has only reflection,
no refraction (so no diffuse component)

Example of material parameters:
• Metalness (vs dielectric). In percent.

• Non-physical though since a mtrl is not both
• shininess [0,∞] (or roughness [0,1]) 
• Fresnel F0. p:322-323.
• Base_color: 𝒄𝑏𝑎𝑠𝑒

F0 values p:322-323.

– dielectrics vs metals



A physically-based shading model
Putting it together…

metalness (vs dielectric in percent)
shininess
Base color: 𝒄𝑏𝑎𝑠𝑒

Li = π clight *1/r2 // point light

Li = π clight // directional light

Fresnell effect: 𝑭 𝒏, 𝒍 ≈ 𝑭0 + 1 − 𝑭0 1 − 𝒏 + 𝒍 5

diffuse_brdf = 𝒄!"#$
"

metal_brdf =                                            * cbase

dielectric_brdf =                                        * vec3(1) + (1-F) diffuse_brdf

brdf = metalness * metal_brdf + (1 - metalness) * dielectric_brdf

TOTAL:  𝑳# 𝜔𝑜 = ∑$%&
#($)*+, 𝐛𝐫𝐝𝐟 (Li) 𝒏 + 𝝎𝑖

Li = π clightn

𝑳!

,(.7,.8)0 .9 1(.7)
2⋅.8 |2⋅.7|

roughness
roughness

,(.-,..)1 ./ 2(.-)
3⋅.. |3⋅.-|

,(.-,..)1 ./ 2(.-)
3⋅.. |3⋅.-| To be explained next 

by Erik… or see his 

online video 1 2 3 4.

Specular reflection

metal reflection is 

colored by material

but not so for dielectrics

Parameters:

Formulas:

http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video1.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video2.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video3.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video4.mp4


Extra… (bonus)
• Anisotropic Normal Distribution Functions – update D() in the microfacet 

model - see p343

• Multibounce surface reflections – p:346

• Subsurface Scattering: p:347 – modify the Lambertian brdf and the Fresnell
factor.

• Light falloff: page 111, Unreal, Frostbite + CryEngine

• Distance falloff function / windowing function: Just Cause 2

• Lambertian brdf. = diffuse color = albedo.

• Some light source types: point lights, area lights,

– Incoming light from the surrounding can be captured by environment maps,



Environment maps (reflection maps)
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Additions to the lighting equation
l Accounting for distance: 1/(a+bt+ct2)
l Several lights: just sum their respective

contributions
l Different light types:



Clarification on accounting for distance

l Energy is emitted at equal proportions in all directions from a 
spherical radiator. Due to energy conservation, the intensity is 
proportional to the spherical area at distance r from the light 
center. 

• A = 4πr2

l Thus, the intensity scales
~ 1/r2

l For efficiency, we often cap or limit 
how far the light source will affect the 
environment.
– Hence, we often want to fade its intensity to zero

at some finite distance r.

r
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Shading
l Shading: compute the fragment’s final 

color contribution to the pixel. 
l Three types of shading

regarding how often it is computed per triangle:
l Flat shading: once per triangle
l Goraud shading: once per vertex
l Phong shading: once per pixel (standard today)
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Shading
l Flat, Goraud, and Phong shading:

l Flat shading: one normal per triangle. Lighting computed once for the whole
triangle. 

l Gouraud shading: the lighting is computed per triangle vertex and for each
pixel, the color is interpolated from the colors at the vertices.

l Phong Shading: the lighting is not computed per vertex. Instead the normal 
is interpolated per pixel from the normals defined at the vertices and full 
lighting is computed per pixel using this normal. This is of course more
expensive but looks better. 

Flat Gouraud Phong

Gouraud 
shading

Phong 
shading

Flat 
shading



Transparency and alpha
l Transparency

– Very simple in real-time contexts
l The tool: alpha blending (mix two colors)
l Alpha (a) is the forth color component (r,g,b,a)

– e.g., of the material for a triangle
– Represents the opacity
– 1.0 is totally opaque
– 0.0 is totally transparent

l The over operator:
dso ccc )1( aa -+=

Rendered object

Color already in 
the frame buffer at the 
corresponding position
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Transparency
l Need to sort the transparent objects

– Render back to front (blending is order dep.)
l See next slide…

l Lots of different other blending modes
l Can store RGBa in textures as well

So the texels with a=0.0 
do not not hide the 
objects behind

dso ccc )1( aa -+=
Rendered fragment Background



Transparency
l Need to sort the transparent objects

– First, render all non-transparent triangles as 
usual. 

– Then, sort all transparent triangles and 
render them back-to-front with blending
enabled. 
l The reason for sorting is that the blending operation 

(i.e., over operator) is order dependent.

If we have high frame-to-frame coherency regarding the objects to be 
sorted per frame, then Bubble-sort (or Insertion sort) are really good! 
(superior to Quicksort).
Because, they have expected runtime of resorting already almost sorted
input in O(n) instead of O(n log n), where n is number of elements.
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l Used for
– Transparency

l glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

– Effects (shadows, reflections)
– (Complex materials)

l Quake3 used up to 10 rendering passes, blending toghether 
contributions such as:
– Diffuse lighting (for hard shadows)
– Bump maps
– Base texture
– Specular and emissive lighting
– Volumetric/atmospheric effects

– Enable with glEnable(GL_BLEND)

Blending 

dso ccc )1( aa -+=
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Fog
l Simple atmospheric effect

– A little better realism 
– Help in determining distances
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l Color of fog:         color of surface: fc sc

€ 

c p = fcs + (1− f )c f       f ∈[0,1]
l How to compute f ?
l 3 ways: linear, exponential, exponential-squared
l Linear:

startend

pend

zz
zz

f
-

-
=
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Fog example

l Often just a matter of 
– Choosing fog color
– Choosing fog model
– Old OpenGL – just turn it on. New OpenGL – program it 

yourself in the fragment shader



Fog in up-direction
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Gamma correction

Lighting computes 
rgb color intensities in 
linear space from 
[0,1]

However, CRT-monitor output is exponential. 
Has more precision for darker regions. Very 
Good! But we need to adapt the input to 
utilize this. Else, our images will be too dark.

xγ

Intensities: xγ vs linear

Expon. distribution better for 
humans. Our eyes have non-
linear sensitivity and monitors 
have limited brightness

xγ: perceived 
lin. intensity:

linear intensity:

darker brighter darker brighter

γ = 2.2

So, store color intensities with more precision for darker colors: i.e., convert color to x(1/γ) before storing in 
8- bits in the frame buffer. Conversion to x(1/γ) is called gamma correction.

Shader rgb colors 

x(1/γ)

Frame buffer rgb colors.
“Dark pixels are made brighter”

x(1/γ)

Displayed by CRT
Linear output again, but 
redistributed precision.

sc
re

en

= rgb_in

xγ

Framebuf. rgb: 0    0.5 0.66  0.8   0.9   1
Shader rgb: 0    0.2  0.4  0.6   0.8   1

rgb_in

rgb_out

(x(1/γ)) γ

in
te

ns
ity

Textures: store in 
gamma space for better 
ditributed precision. 



Gamma correction

l If input to gun is 0.5, then you don’t get 
0.5 as output in intensity

l Instead, gamma correct that signal:     
gives linear relationship

xγ

γ = 2.2 x(1/γ)
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Gamma correction

l I=intensity on screen
l V=input voltage (electron gun)
l a,e, and g are constants for each system
l Common gamma values: 2.2-2.6
l Assuming e=0, gamma correction is:

ge )( += VaI

)/1( g
icc =



Why is it important to care about 
gamma correction?
l Portability across platforms
l Image quality

– Texturing
– Anti-aliasing

l One solution is to put gamma correction 
in hardware…

l sRGB asumes gamma=2.2 
l Can use EXT_framebuffer_sRGB  to render with 

gamma correction directly to frame buffer



Gamma correction today
l Reasons for wanting gamma correction (standard is 2.2):
1. Screen has non-linear color intensity

– We often really want linear output (e.g. for correct antialiasing)
– (But, today, screens can be made with linear output, so non-linearity is more 

for backwards compatibility reasons.)

2. Also happens to give more efficient color space (when 
compressing intensity from 32-bit floats to 8-bits). Thus, often 
desired when storing textures. Gamma of 2.2. Better 

distribution for humans. 
Perceived as linear.

Truly linear intensity 
increase.

A linear intensity output (bottom) has a large jump in perceived brightness 
between the intensity values 0.0 and 0.1, while the steps at the higher end of the 
scale are hardly perceptible. 
A nonlinearly-increasing intensity (upper), will show much more even steps in 
perceived brightness.

Gamma correction today
l Reasons for wanting gamma correction (standard is 2.2):
1. Screen has non-linear color intensity

– We often really want linear output (e.g. for correct antialiasing)
– (But, today, screens can be made with linear output, so non-linearity is more 

for backwards compatibility reasons.)

2. Also happens to give more efficient color space (when 
compressing intensity from 32-bit floats to 8-bits). Thus, often 
desired when storing textures. Gamma of 2.2. Better 

distribution for humans. 
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Truly linear intensity 
increase.

A linear intensity output (bottom) has a large jump in perceived brightness 
between the intensity values 0.0 and 0.1, while the steps at the higher end of the 
scale are hardly perceptible. 
A nonlinearly-increasing intensity (upper), will show much more even steps in 
perceived brightness.



Important on Gamma correction
l Give two reasons for gamma correction:

– screen output is non-linear so we need gamma 
to counter that.

– Textures/images can be stored with better 
precision (for human eye) for low-intensity 
regions.
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What is important
l Amb-, diff-, spec-, emission model + formulas
l Phong’s + Blinn’s highlight model: 

– Phong: scales with 𝒓 " 𝒗 s

– Blinn: scales with 𝒏 ) 𝒉 s , halfvector h = (l+v)/|l + v|
l Flat-, Gouraud- and Phong shading
l Transparency:

– Draw transparent triangles back-to-front.
– Use blending with this over operator: 

l Two reasons for wanting gamma correction
dso ccc )1( aa -+=


