Ray Tracing |: Switching gears...

CHALMERS

For your convenience

e Half-Time
ummary
Slides

Anmalningskod (for www.studera.nu): CTH-23630 =5 -
Examiner:

uffe@ce.chalmers.se

Home Schedu Literature Tutorials Exam

SCHEDULE:

= Alllectures are in ED, located in the EDIT-building at Campus Johanneberg
- for lecture hall and tutorial rooms

Lectures

Mondays 13-15 in HB1, week 5-7

Wednesdays 13-15 in HB1, week 1-7.

Fridays 13-15 in HC3, week 1-7.

The following plan may change during the course. The links for the Bonus-OH are located under the table.
Bonus material is simply non-compulsory additional material that is fun or highlighting for the interested reader.
The column "Tutorial” states when it is wise to start working on the corresponding tutorial.

Losenordsskyddade bonusfiler packas upp med Isenord "datorgrafik™.

All self-studies below are non-compulsory

NOTE: If you are using the 2:nd edition of Real-Time Rendering, for the compulsory RTR-chapter hints, see last year's schedule

|[Lecture |[Readings/Lasanvisningar [Tutorial |[Deadlines

[|week 1 | |
Compulsory: RTR chapter 2, ch 15.2.

|Wed. lecture 1 -

|[Introduction +
||Pipeline and OpenGL

Bonus: A - the test application shown at lecture,
Also, see ~ with

Self studies -

|[Languages (non-

- Read briefly in and only if you find it interesting

e o o

Compulsory: \ ,RTR ch: 14: 14.1 (skip 14.1.4), 14.2,14.3, 144,145,
Fri. lecture 6 - 14.6 (skip 14.6.1, 14.6.2, 14.6.3), 14.7 RTR ch: 16 (skip: 16.1, 16.4, 16.7.2, 16.7.3, 16.10.2,
Intersections and 16.11, 16.12,16.13.4, for 16.13.5 — see Sep Axis Theorem in slides, 16.14.1, 16.15,
Spatial data 16.17), 16.14 briefly.
structures

Bonus: OH 309-320
Self studies |[Bonus: , OH 17-26, OH 65-79 och OH 281-282. |

Ty B— -

\week 4

Wed lecture 7 - Ray
Tracing 1

‘ Tutorial 2

Self studies: Textures
in Art of lllusion and
Perlin-noise

Bonus: OH 175-200

Fri. lecture 8 - Ray
Tracing 2

— i o a

Typical Exam Questions

e Prev Lecture:

— Describe one intersection test for
e ray/triangle — (e.g. analytically, Jordans Cross theorem or

summing angles)
:HC:/ e Ray/box (slabs)
¢ e View Frustum Culling using spheres

|
- — Culling — VFC, Portal, Detail,
Backface, Occlusion

— What is LODs ..

— Describe how to build and use BVHSs, AABSP-
tree, Polygon aligned BSP-tree. NG @

- Describe the octree/quadtree.

What is ray tracing?

e Another rendering algorithm
- Fundamentally different from polyg
rendering (using e.g., OpenGL)
- OpenGL

e renders one triangle at a time

e Z-buffer sees to it that triangles appear "so
viewpoint

e Local lighting --- per vertex ==
- Ray tracing S

e Gives correct reflections!

e Renders one pixel at a time

e Sorts per pixel

e Global lighting equation (reflections, shadows)

&

What is the point of ray tracing?
e Higher quality rendering

— Global lighting equation (shadows, reflections,
refraction)

— Accurate shadows, reflections, refraction
— More accurate lighting equations

e |s the base for more advanced algorithms
— Global illumination, e.g., path tracing, photon
mapping
e [t is extremely simple to write a (naive)
ray tracer

e A disadvantage: it is inherently slow!

Again: it is simple to write a ray tracer!
— A la Paul Heckbert:

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02 } ;struct sphercy
vec cen,color;double rad.kd ks, kt kL ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,
05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
1.,5..0.,0.,0.,.5,1.5.};yx;double ub,tmin sqrt(),tan();double vdot(A B)vec A
,B;{return A x*B.x+A.y*B.y+A.z*B.z;} vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*
A.x;B.yt=a*A.y;B.zt+=a*A.z;return B;} vec vunit(A)vec A; {return vcomb(1./sqrt(

vdot(A,A)),A,black); } struct sphere*intersect(P,D)vec P,D; {best=0;tmin=1e30;s=
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s
->rad,u=u>07sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:

tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;

struct sphere*s, *L;if(!level--)return black;if(s<intersect(P,D));else return
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen
)));1f(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;lI=sph+5;while(1-->sph)if((e=I
->kl*vdot(N,U=vunit(vcomb(-1.,P,]->cen))))>0&&intersect(P,U)==l)color=vcomb(e
,I->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-cta*
eta*(1-d*d);return veomb(s->kt,e>07trace(Jevel,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e),N,black))):black,vcomb(s->k&trace(Iovel,P,vcomb(2*d,N,D)),vcomb(s->kd,

color,vcomb(s->kl,U,black)))); } main() {printf("%d %d\n",32,32);while(yx<32*32)
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U); } /*minray!*/

Which rendering algorithm will win
at the end of the day?

e Ray tracing or polygon rendering?
e Ray tracing is:
- Slow
— But realistic
— Therefore, focus is on creating faster algorithms, and
possible hardware acceleration (GPU, RPU)
e Polygon rendering (OpenGL) is:
— Fast (simple to build hardware)
— Not that realistic
— Therefore, focus is on creating more realistic images
using graphics hardware
e Answer: right now, it depends on what you
want, but for the future, no one really knows

Side by side com p:Jr]::Jn
Images courtesy of Eric Haines

To be physically correct, follow
photons from light sources...

e Not what we do for a simple ray tracer

— Though this is almost what we do for more
advanced techniques (photon mapping)

Image plane Light source

<

e Not effective, not many rays will arrive at
the eye

This image was generated in 1991 by simulating ® O0°

the motion of 29.8 Billion photons in a room. e

The room 1s 2 meters cubed with a 30 cm

aperture in one wall. The opposite and adjacent

walls are mirrors, so this 1s a 'tunnel of mirrors'. -
The depth of field is very shallow. In the
foreground is a prism, resting on the floor. A
beam of light emerges from the left wall, goes 29.8 Billion photons
through the prism and makes a spectrum on the

right wall. About 1 in 177 photons made it

through the aperture.

The 1image took 100 Sun SparcStationls 1 month
to generate using background processing time.
This represents 10 CPU years of processing time.
If the lights are 25 watt bulbs this represents a
few picoseconds of time.

Same image but with 382 Billion
Photons

Follow photons backwards from
the eye: treat one pixel at a time

e Rationale: find photons that arrive at each pixel
e How do one find the visible object at a pixel?
e With intersection testing

- Ray, r(r)=o+td, against geometrical objects

— Use object that is closest to cameral

— Valid intersections have > 0

— tis a signed distance
Image plane

<

Closest intersection point

Finding closest point of
intersection

e Naively: test all geometrical objects in the
scene against each ray, use closest point
— Very very slow!

e Be smarter:

— Use spatial data structures, e.g.:
e Bounding volume hierarchies (BVH)
e (Octrees), Sparse Voxel Octrees
e kd trees
e Grids (not yet treated)
e Or a combination (hierarchies) of those

e \We will return to this topic a little later

trace () and shade () :

Re curs | on | Point 1s in shadow
hght trace ()

Image plane \
Shade ()

; trace ()

<

trace ()

e First call trace () to find first intersection

e trace () then calls shade () to compute
lighting

e shade () then calls trace () for reflection and
refraction directions

trace () In detall 0t

Color trace (Ray R) -

{ h
float t; < ~
Object O; /Il typically a triangle .

Color col;
bool hit=findClosestIntersection (R, &t, &0) ;
if (hit)
{
// Compute intersection point P
Vec3f P = R.origin() + t*R.direction();
// Compute normal at intersection point
Vec3f N = computeNormal (P,O0) ;
I/ flip normal if pointing in wrong dir.
if (dot(N,R.direction()) > 0.0) N=-N;
col=shade (R,0,P,N) ;
}
else col=background color;
return col;

In trace (), we need a function
findClosestIntersection ()

e Use intersection testing (from a previous
lecture) for rays against objects

e Intersection testing returns signed distance(s),
t, to the object

e Use the 7 that is smallest, but >0

e Naive: test all objects against each ray
— Better: use spatial data structures (more later)

e Precision problems (exaggerated):

light : :
The point, p, can be incorrectly

self-shadowed, due to imprecision

<

n
eye ray Solution: after p has been computed,

update as: p’=p+en
point of intersection: (n is normal at p, ¢ is small number >0)

Example of

shade () In detail

Color shade(Ray R, Mtrl &m, Vector P,N)
{
Color col;
Vector refl, refr;
for each light L
{
if (not inShadow(L,P))
col+=DiffuseAndSpecular() ;

}
col+=AmbientTerm() ;

if (recursed too many times()) return col;
refl=reflectionVector (R,N) ;
col+=m.specular color() *trace(refl);
refr=computeRefractionVector (R,N,m) ;
col+=m.transmission color () *trace (refr);
return col;

Who calls trace () or shade () ?

e Someone need to spawn rays

— One or more per pixel

— A simple routine, raytraceImage (), computes rays,
and calls trace () for each pixel.

4

[/ S/

N

LSS

/

[TT 777

[S S S

N
N
~
N
N

i

[/ S S
[/S S S S

N
N
N
N
N
N

™
™
™
™
™

[/ [/

S

N

N
e Use camera parameters to compute rays
- Resolution, fov, camera direction & position & up

When does recursion stop?

e Recurse until ray does not hit something?

Does not work for closed models

e One solution is to allow for max N levels of recursion

N=3 is often sufficient (sometimes 10 is sufficient)

e Another is to look at material parameters

E.g., if specular material color is (0,0,0), then the object is not
reflective, and we don’t need to spawn a reflection ray

More systematic: send a weight, w, with recursion
Initially w=1, and after each bounce,
w =w * O.specular_color(); and so on.

Will give faster rendering, if we terminate recursion when

weight is too small (say <0.05).
e Or use a weight per rgb, w=(1,1,1) and stop when max(w,, wg, wy) < 0.05
or when ||w]| < 0.05.

When to stop recursion

W‘_c-ﬁOTIir_i s 1
e AP
Ly -
iy '.%:—-

24

Reflections - Result

* Direct illumination
with shadows +
reflections

* Depth cutoff = 1

29

25

Reflections - Result

* Direct illumination
with shadows +
reflections

* Depth cutoff =2

30

26

Reflections - Result

* Direct illumination
with shadows +
reflections

e Depth cutoff =3

31

Reflection vector (recap)

e Reflecting the incoming
ray v around n:

e Note that the incoming
ray is sometimes called
—v depending on the v
direction of the vector.

e r can be computed as a=(n-(-v)n

v+(2a). l.e.,

Known as Heckbert’'s method

Refraction:
Need a transmission direction vector, t

e n, i, t are unit vectors

e 1, & n, are refraction indices

e Snell’s law says that: ﬁx/:i

e sin(8y)/sin(84)= N/, =N, Where n is
relative refraction index.

e How can we compute the
refraction vector t ?

LB

e This would be easy in 2D:
- t=-sin(06,)

- t,=-cos(0,)

- le,, t =—sin(b,)x —cos(b,)y

Known as Heckbert’'s method

Refraction: 3D n i m)m =

t =—sin(6,)Xx—cos(6,)y n 0 —cos(6)n
e But we are in 3D, not in 2D! 1

e SO0, the solution will look like:

t =5in(0,)¥, —cos(0,)V,

V,=h
v, = normalize(—i + (i - n)n)
So we could concider us done. But let’s conti
trigonometric functions (sin, cos, arcsin)-Only use cheap cos(6,)= (—i - n).
1. Remove normalization to use Snelf’s law in step 3 below:

- v,=(—i+ (i-n)n)/sin(6,)
2. Plugin v, intot

= t=sin(0,) (i — (i - n)n)/ sin(6,) - cos(6,)n
3. Use Snell: sin(0,)/sin(64) =n

= t=n(i— (i -n)n)-cos(,)n
4. Simplify cos(GW Trig1: cos(0,)%2= 1 - sin(0,)? and Snell: sin(6,) = n sin(04):
= c0s(0,)=y/1 — sin(0,)? =[Snell]=,/1 — n?2 sin(0,)? =[Trig1]= /1 — n (1—cos(,)

= t=n(i—- (@ -n)n)-,/1—n?(1—cos(0,)2 n // replacing cos(0,) with an expression of cos(,)
// which is fast to compute since cos(0,) = (—i - n)

simplifying to avoid expensive

Bonus

Refraction

e Thus:
t =i + (ncos(0,) - sart[1 —n*(1-(cos(64))?)])n
This is fast to compute since
cos(04)=-n
which only requires a simple dot product
uf

9

N

Known as Heckbert’'s method

-

ey

B
3
i

i!

T
o tmans S

Some refraction indices, n

e Measured with respect to vacuum
— Air: 1.0003
- Water: 1.33
- Glass: around 1.45 - 1.65 V
-~ Diamond: 2.42
—- Salt: 1.54

e Note 1: the refraction index var
wavelength for metals, i.e., one index per color
channel, RGB.

e Note 2: can get Total Internal Reflection (TIR)

-~ Means no transmission, only reflection

- TIR occurs when the square root has an imaginary solution.
e Or put differently:
— 0, = arcsin(n sin(01))
- TIR occurs when |n sin(64)| > 1, i.e., arcsin() undefined

As the angle of incidence increases from 0 to greater angles ...

...the refracted ray becomes dimmer (there is less refraction)
...the reflected ray becomes brighter (there is more reflection)

...the angle of refraction approaches 90 degrees until finally
a refracted ray can no longer be seen.

Supersampling

e Evenly distribute ray samples over pixel
e Use box (or tent filter) to find pixel color

e More samples gives better quality
— Costs more time to render

e Example of 4x4 samples against 1
sample:

Be a bit smarter, make it cheaper:

Adaptive supersampling (1)

e Quincunx sampling pattern to start with

— 2 samples per pixel, 1 in center,
1 in upper-left

— Note: adaptive sampling is not feasible in
graphics hardware, but simple in a ray tracer

® Colors of AE, DE are quite similar,
so don’t waste more time on those.

® The colors of B & E are different, so
add more samples there with the same

sampling pattern
® Same thing again, check FG, BG, HG, EG:

only EG needs more sampling
® So, add rays for J, K, and L

Adaptive supersampling
v
e C & E were different too

e Add N & M
e Compare EM, HM, CM, NM

® C & M are too different
® So add rays at P, Q, and R

@® At this point, we consider the entire
pixel to be sufficiently sampled

® Time to weigh (filter) the colors of
all rays

Adaptive supersampling (3)E

e Final sample pattern for pixel:

® How filter the colors of the
rays?
® Think of the pattern differently:

® And use the area of each ray

sample as its weight:

1 (A+E , D+E 1 L+K E+K}
s (A28 + 55]

1
+4[2+2+2+4

E+M . H+M _ N+M 1{M+Q P+Q , C+Q R+Q}]

> T2 T2 YTz

Adaptive Supersampling

Pseudo code:
Color AdaptiveSuperSampling() {

- Make sure all 5 samples exist
e (Shoot new rays along diagonal if necessary)

— Color col = black;

- Foreachquadi
e |f the colors of the 2 samples are fairly similar
— col += (1/4)*(average of the two colors)
e Else
— col +=(1/4)*
adaptiveSuperSampling(quad[i])

— return col;

Caveats with adaptive
supersampling (4)

e May miss really small objects anyway

e It's still supersampling, but smart
supersampling
— Cannot fool Nyquist!
— Only reduce aliasing — does not eliminate it

Antialiasing - example

Patterns

e Texture zoomed out until square < 1 pixel

Moire example

LWL LU T
\\\ \‘\ \\\-.\"_ \\.‘..\\‘ ‘\\'.‘l-..l
\\ \.\\\\\\\“.“‘\."\V.l:\.‘d‘
\ \\\\".\.,‘ ""ulhi".'.“,:."'
}H: LN "1
i : "l‘. it
(A TR
. , / ,,’,", ¢,'."‘. ;."‘:’,
/ : //’ A 1 i
;" ‘I’II/,4'I//’:I /5"’/’ f/ ,/", ”’ '.‘ s /. ‘;' ,
i, /% == i
i o://' =)
NI T 0 /,

vn".",: '.,' "/ "/

:;/ ‘”v',"{‘”,’c/""// / o

i

{1 “;f..‘:w,,

‘l,'* :‘“ ”’."2“» '

".“\\‘_..:"‘.-‘0“\". \‘ lﬂ ‘

RN

AUHLA LN .
\\ \._‘o‘. \u‘\\'\.l‘;‘.\\‘.\\\\' \\ \\\\\ \ :

Moire patterns Noise + gaussian blur

(no moire patterns)

Why

“Moir¢ effects occur whenever tiny image structures (like the
pattern on a shirt) can not be resolved sufficiently by the
resolution of the image sensor. According to the Nyquist

theorem, each period of an 1image structure must be covered
with at least two pixels. When this 1s not the case, Moiré
effects are the consequence. To avoid Moir¢ Effects the
manufacturers of CCD camera systems use a filter that
diffuses the light hitting the sensor area in such a way that 1t
corresponds to the resolution of the ccd. “

)
/////// i

.
/]
l,”l
i1/

/]

’
,,”l,',l'l '/
1111111

oy,
-

"y s
e
.

MR %

'
ALl

WA

"

LU
A

Jittered sampling

e \Works as before

- Replaces aliasing with noise
— Our visual system likes that better

e This is often a preferred solution
e Can use adaptive strategies as well

Typical Exam Questions

Describe the basic ray tracing algorithm (see next slide)
Compute the reflection + refraction vector

— You do not need to use Heckbert’'s method

Describe an adaptive super sampling scheme
— Including recursively computing weights

What is jittering?

Pseudo code:
Color AdaptiveSuperSampling() {

Make sure all 5 samples exist
e (Shoot new rays along diagonal if necessary)

Color col = black;
For each quad i
e If the colors of the 2 samples are fairly similar
- col += (1/4)*(average of the two colors)
e Else
- col +=(1/4)* adaptiveSuperSampling(quad]i])

return col;

07 + 08. Ray Tracing :
Summary of the Ray tracing-

al gor ithm: Point is in shadow
light

Image plane 2L

'shade ()

<

— trace ()

()ﬁ_ﬂ
%

e main()-calls trace() for each pixel

e trace(): should return color of closest hit point along ray.
1. calls findClosestintersection()
2. If any object intersected — call shade()-

e Shade(): should compute color at hit point

1. For each light source, shoot shadow ray to determine if light source is visible
If not in shadow, compute diffuse + specular contribution.

2. Compute ambient contribution
3. Call trace() recursively for the reflection- and refraction ray.

Real-Time Ray Tracing

e Hardware:
- SSE, GPU,
— NVIDIA RTX - GPU accelerated:

e AABB-hierarchy construction and
e ray vs AABBH intersection tests.

e Low level optimizations
- Precomputation of constants per frame, e.q., ray-AABB test.

e Rasterize primary rays.
e Adaptive sub sampling

e Frameless rendering (motion blur)
e Temporal Reprojection

Ray-AABB hierarchy test, optimized

t=(-(n-0)-d)/ (n-d)

Compute constants per ray and slab
axis (x,y, or z). With o, d and n
constant, we can precompute:

seta=-(n:-0)/ (n-d)

b=-1/(n-d)

= t=a+d*b //just1 madd instr.
per plane

Per AABB:

» 6 ray/plane computations a 1 madd.
 ~5 max instr.

+ a few comparison instructions.
VERY FAST

ds d,

d.ldz.i
o

Keep max of /s and min of #mes
If 7in < maxthen intersection

Special case when ray parallell to
slab

Adaptive Sub Sampling

SN B

Many versions exist. E.g., quincunx again:
» Start by sampling every 4x4 pixel corners and in the
middle. Gives on average 2 samples per 16 pixels.
* If a quadrant’s 2 samples are fairly similar,
 fill in pixel colors by interpolation.
* Else, supersample recursively.

Frame€less re

Frameless Rendering - updating e.g. only10% of all pixels each frame

Temporal Reprojection

Store (r,g,b) color and world space (X,y,z) per pixel

frame n

frame n+1

Reproject samples from

frame n to frame n+./. Then:
* For pixel with <1 sample
| » trace new ray
Q * For pixel with >=1 sample
» use closest (smallest z)
* Does not work as well
for spec. mtrl.

53
frame n frame n+1

