
Intersection Testing
Chapter 16

Department of Computer
Engineering
Chalmers University of
Technology

What for?
l A tool needed for the graphics people all the

time…
l Very important components:

– Need to make them fast!

l Finding if (and where) a ray hits an object
– Picking
– Ray tracing and global illumination

l For speed-up techniques
l Collision detection (treated in a later lecture)

Example

Midtown Madness 3, DICE

Some basic geometrical primitives
l Ray:
l Sphere:
l Box

– Axis-aligned (AABB)
– Oriented (OBB)

l k-DOP

Four different techniques
l Analytical
l Geometrical
l Separating axis theorem (SAT)
l Dynamic tests

l Given these, one can derive many tests
quite easily
– However, often tricks are needed to make them

fast

Analytical:
Ray/sphere test
l Sphere center: c, and radius r
l Ray: r(t)=o+td
l Sphere formula: ||p-c||=r
l Replace p by r(t), and square it:

0))(())((2 =--×- rtt crcr

1|||| 0)()())((2 22 ==--×-+×-+ dcοcοdcο rtt

0)()(2 =--+×-+ rtt cdocdo

0)()())((2)(22 =--×-+×-+× rtt cοcοdcοdd

o

d

c
r

€

(td+ (o − c))⋅ (td+ (o − c)) − r2 = 0

Analytical, continued
0)()())((2 22 =--×-+×-+ rtt cοcοdcο

l Be a little smart…
? 0)(>×- dcο

c

o
d

? 0)()(2 <--×- rcοcο
l Such tests are called ”rejection tests”
l Other shapes: 222 rpp yx =+

1)/()/()/(222 =++ cpbpap zyx

0)/()/(22 =-+ zyx pbpap

Geometrical:
Ray/Box Intersection
l Boxes and spheres often used as

bounding volumes
l A slab is the volume between two

parallell planes:

l A box is the logical intersection of three
slabs (2 in 2D):

BOX

Geometrical:
Ray/Box Intersection (2)
l Intersect the 2 planes of each slab with

the ray

min
xt

max
xt

min
yt

max
yt

l Keep max of tmin and min of tmax

l If tmin < tmax then we got an intersection
l Special case when ray parallell to slab

Separating Axis Theorem (SAT)
Page 563 in book
l Two convex polyhedrons, A and B, are

disjoint if any of the following axes
separate the objects’ projections:
– A face normal of A
– A face normal of B
– Any edgeA cross edgeB

A and B overlaps on this axis

axis

SAT example:
Triangle/Box
l E.g an axis-aligned box and a triangle
l 1) test the axes that are orthogonal to the

faces of the box
l That is, x,y, and z

Triangle/Box with SAT (2)
l Assume that they overlapped on x,y,z
l Must continue testing
l 2) Axis orthogonal to face of triangle

Triangle seen from side

axis

Triangle/Box with SAT (3)
l If still no separating axis has been found…
l 3) Test axis: t=ebox x etriangle

l Example:
– x-axis from box: ebox=(1,0,0)
– etriangle=v1-v0

l Test all such combinations
l If there is at least one separating axis,

then the objects do not collide
l Else they do overlap

Rules of Thumb for
Intersection Testing
l Acceptance and rejection test

– Try them early on to make a fast exit
l Postpone expensive calculations if

possible
l Use dimension reduction

– E.g. 3 one-dimensional tests instead of one
complex 3D test, or 2D instead of 3D

l Share computations between objects if
possible

l Timing!

Another analytical example:
Ray/Triangle in detail

l Ray: r(t)=o+td
l Triangle vertices: v0, v1, v2

l A point in the triangle:
l t(u,v)=v0+u(v1 - v0) +v(v2 - v0)=

=(1-u-v)v0+uv1+vv2 [u,v>=0, u+v<=1]
l Set t(u,v)=r(t), and solve!

v2

v1

v0

v1 -v0

v2 -v0

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
-=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

|

|

|||

|||

00201 vovvvvd
v
u
t

Ray/Triangle (1)
l Solve for t,u,v using Cramer’s rule for a system of n linear

equations with n unknowns:

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
-=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

|

|

|||

|||

00201 vovvvvd
v
u
t

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

-
-

-
=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

),,det(
),,det(
),,det(

),,det(
1

1

2

21

21 sed
esd
ees

eed
v
u
t

€

| | |
−d e1 e2
| | |

$

%
% %

&

'

(
((

t
u
v

$

%
% %

&

'

(
((

=

|
s
|

$

%
% %

&

'

(
((

A x = b

0022011 vosvvevve -=-=-=
Simplify our equation system by setting:

=>

=>

Cramer’s rule gives:

Cramer’s rule:

BONUS

Ray/Triangle (2)
l To compute determinant

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

-
-

-
=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

),,det(
),,det(
),,det(

),,det(
1

1

2

21

21 sed
esd
ees

eed
v
u
t

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

×´
×´
×´

×´
=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

des
sed
ees

eed
)(
)(
)(

)(
1

1

2

21

12v
u
t

l Share factors to speed up computations:

bcacbacba ×´-=×´=)()()det(:fact thisUse ,,

This gives:

af
a

/1
1

2

=
×=
´=
ep
edp

)(sp ×= fu

Then test valid bounds:
if (u<0 or u>1) exit;

l Compute as little as possible. Then test.
Compute

BONUS

Point/Plane
l Insert a point x into plane equation:

0: :Plane =+× dpnp

f (x) = n ⋅x+ d
plane on the s'for 0)(xxnx =+×= df

1x

0cos|||| 11 >=× fxxn

p

n

origin

2x

0cos|||| 22 <=× gxxn

 sideother on the s'for 0)(xxnx >+×= dfPositive
half space

plane theof side oneon s'for 0)(xxnx <+×= dfNegative
half space

Sphere/Plane
Box/Plane
l Sphere: compute

0: :Plane =+× dpnp
r :Sphere c

AABB: bmin bmax

df +×= cnc)(
l f (c) is the signed distance (n normalized)

l Box: insert all 8 corners
l If all f ’s have the same sign, then all

points are on the same side, and no
collision

l abs(f (c)) > r no collision
l abs(f (c)) = r sphere touches the plane
l abs(f (c)) < r sphere intersects plane

n

AABB/plane
l The smart way (shown in 2D)
l Find the two vertices that have the most

positive and most negative value when tested
againt the plane

Need only test
the red points

0: :Plane =+× dpnp
r :Sphere c

maxmin :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx :bminx
v posy = (ny > 0)?bmaxy :bminy
v posz = (nz > 0)?bmax z :bminz
vnegx = (nx < 0)?bmaxx :bminx
vnegy = (ny < 0)?bmaxy :bminy
vnegz = (nz < 0)?bmax z :bminz

See page 970 for even faster version.
OBB almost as easy. Just first project
n on OBB’s axes – see p: 972

Ray/Plane Intersections
lRay: r(t)=o+td
lPlane: n•x + d = 0; (d=-n•p)
lSet x=r(t):

n•(o+td) + d = 0
n•o+t(n•d) + d = 0
t = (–d –n•o) / (n•d)

n

o
d

p

Vec3f rayPlaneIntersect(vec3f o,dir, n, d)
{

float t=(-d-n.dot(o)) / (n.dot(dir));
return o + dir*t;

}

Tomas Akenine-Mőller © 2003

Ray/Polygon: very briefly
l Intersect ray with polygon plane
l Project from 3D to 2D
l How?
l Find max(|nx|,|ny|,|nz|)
l Skip that coordinate!
l Then, count crossing in 2D

Volume/Volume tests
l Used in collision detection
l Sphere/sphere

– Compute squared distance between sphere
centers, and compare to (r1+r2)2

l Axis-Aligned Bounding Box (AABB)
– Test in 1D for x,y, and z

l Oriented Bounding boxes
– Use SAT [details in book]

xmax,ymax

xmin,ymin

If Amin_x > Bmax_x or
Amin_y > Bmax_y or
Amin_z > Bmax_z or
Bmin_x > Amax_x or
Bmin_y > Amax_y or
Bmin_z > Amax_z
return no_intersection

Else
return intersection.

xmax,ymax

xmin,ymin

A

B

If Bmin_x > Amax_x or Amin_x > Bmax_x
=> no intersection.

… same with y,z …

View frustum testing
l View frustum is 6 planes:
l Near, far, right, left, top, bottom
l Create planes from projection matrix

– Let all positive half spaces be outside frustum
– Not dealt with here -- p. 983-984.

l Sphere/frustum common approach:
– Test sphere against each of the 6 frustum planes:

l If outside the plane => no intersection
l If intersecting the plane or inside, continue

– If not outside after all six planes, then conservatively
concider sphere as inside or intersecting

l Example follows…

View frustum testing example

l Not exact test, but not incorrect
– A sphere that is reported to be inside, can be outside
– Not vice versa

l Similarly for boxes

outside
frustum

intersecting
frustum

Dynamic Intersection Testing
[In book: 620-628]

l Testing is often done every rendered
frame, i.e., at discrete time intervals

l Therefore, you can get ”quantum effects”

Frame n Frame n+1

l Dynamic testing deals with this
l Is more expensive
l Deals with a time interval: time between

two frames

Dynamic intersection testing
Sphere/Plane

l No collision occur:
– If they are on the same side of the plane (scse>0)

l and: |sc|>r and |se|>r

l Otherwise, sphere can move |sc|-r
l Time of collision:

e

r
sc

se

sc & se are signed distancest=n

t=n+1

ec

c
cd ss

rsnt
-
-

+=

l Response: reflect v around n, and move: (1-tcd)r
(r=refl vector)

r
vc

n

se is signed distance

BONUS

Dynamic Separating Axis Theorem
l SAT: tests one axis at a time for overlap

l Same with DSAT, but:
– Use a relative system where B is fixed

– i.e., compute A’s relative motion to B.
– Need to adjust A’s projection on the axis so that the interval

moves on the axis as well
l Need to test same axes as with SAT
l Same criteria for overlap/disjoint:

– If no overlap on axis => disjoint
– If overlap on all axes => objects overlap

BONUS

Exercises
l Create a function (by writing code on

paper) that tests for intersection between:
– two spheres
– a ray and a sphere
– view frustum and a sphere

What you need to know
• Analytic test:

– Be able to compute ray vs sphere or other similar formula
– Ray/triangle, ray/plane
– Point/plane, Sphere/plane, box/plane
– Know equations for ray, sphere, cylinder, plane, triangle

• Geometrical tests
– Ray/box with slab-test
– Ray/polygon (3D->2D)
– AABB/AABB
– View frustum vs spheres/AABB:s/BVHs.
– Separating Axis Theorem (SAT)

• Know what a dynamic test is

