Intersection Testing Chapter 16

Department of Computer Engineering Chalmers University of Technology

What for?

• A tool needed for the graphics people all the time...

- Very important components:
 - Need to make them fast!
- Finding if (and where) a ray hits an object
 - Picking
 - Ray tracing and global illumination
- For speed-up techniques
- Collision detection (treated in a later lecture)

Midtown Madness 3, DICE

Some basic geometrical primitives

Four different techniques

- Analytical
- Geometrical
- Separating axis theorem (SAT)
- Dynamic tests

 Given these, one can derive many tests quite easily

However, often tricks are needed to make them fast

Analytical: C **Ray/sphere test** • Sphere center: c, and radius r • Ray: $\mathbf{r}(t) = \mathbf{0} + t\mathbf{d}$ • Sphere formula: $||\mathbf{p}-\mathbf{c}|| = r$ • Replace **p** by $\mathbf{r}(t)$, and square it: $(\mathbf{r}(t) - \mathbf{c}) \cdot (\mathbf{r}(t) - \mathbf{c}) - r^2 = 0$ $(\mathbf{o} + t\mathbf{d} - \mathbf{c}) \cdot (\mathbf{o} + t\mathbf{d} - \mathbf{c}) - r^2 = 0$ $(t\mathbf{d} + (\mathbf{o} - \mathbf{c})) \cdot (t\mathbf{d} + (\mathbf{o} - \mathbf{c})) - r^2 = 0$ $(\mathbf{d} \cdot \mathbf{d})t^{2} + 2((\mathbf{o} - \mathbf{c}) \cdot \mathbf{d})t + (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - r^{2} = 0$ $t^{2} + 2((\mathbf{o} - \mathbf{c}) \cdot \mathbf{d})t + (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - r^{2} = 0 \quad ||\mathbf{d}|| = 1$

Geometrical: Ray/Box Intersection

- Boxes and spheres often used as bounding volumes
- A slab is the volume between two parallell planes:

 A box is the logical intersection of three slabs (2 in 2D):

BOX

Geometrical: Ray/Box Intersection (2)

 Intersect the 2 planes of each slab with the ray

Keep max of t^{min} and min of t^{max}
If t^{min} < t^{max} then we got an intersection
Special case when ray parallell to slab

Separating Axis Theorem (SAT) Page 563 in book

- Two convex polyhedrons, A and B, are disjoint if any of the following axes separate the objects' projections:
 - A face normal of A
 - A face normal of B
 - Any edge_A cross edge_B

SAT example: Triangle/Box

- E.g an axis-aligned box and a triangle
- 1) test the axes that are orthogonal to the faces of the box
- That is, x,y, and z

Triangle/Box with SAT (2)

Assume that they overlapped on x,y,z
Must continue testing
2) Axis orthogonal to face of triangle

Triangle/Box with SAT (3)

- If still no separating axis has been found...
- 3) Test axis: t=e_{box} x e_{triangle}
- Example:
 - x-axis from box: e_{box} =(1,0,0)
 - $\mathbf{e}_{triangle} = \mathbf{v}_1 \mathbf{v}_0$
- Test all such combinations
- If there is at least one separating axis, then the objects do not collide
- Else they do overlap

Rules of Thumb for Intersection Testing

- Acceptance and rejection test
 - Try them early on to make a fast exit
- Postpone expensive calculations if possible
- Use dimension reduction
 - E.g. 3 one-dimensional tests instead of one complex 3D test, or 2D instead of 3D
- Share computations between objects if possible
- Timing!

Another analytical example: Ray/Triangle in detail V₂

- Ray: $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$
- Triangle vertices: \mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2
- A point in the triangle:
- $\mathbf{t}(u,v) = \mathbf{v}_0 + u(\mathbf{v}_1 \mathbf{v}_0) + v(\mathbf{v}_2 \mathbf{v}_0) = \mathbf{v}_0$ = $(1 - u - v)\mathbf{v}_0 + u\mathbf{v}_1 + v\mathbf{v}_2 \quad [u,v) = 0, u + v <=1]$

 $\overline{\mathbf{V}}_{2} - \overline{\mathbf{V}}_{0}$

• Set t(u,v)=r(t), and solve!

$$\begin{pmatrix} | & | & | \\ -\mathbf{d} & \mathbf{v}_1 - \mathbf{v}_0 & \mathbf{v}_2 - \mathbf{v}_0 \\ | & | & | \end{pmatrix} \begin{pmatrix} t \\ u \\ v \end{pmatrix} = \begin{pmatrix} | \\ \mathbf{o} - \mathbf{v}_0 \\ | \end{pmatrix}$$

BONUS **Ray/Triangle (1)** $\begin{vmatrix} -\mathbf{d} & \mathbf{v}_1 - \mathbf{v}_0 & \mathbf{v}_2 - \mathbf{v}_0 \\ | & | & | & | \end{vmatrix} \begin{vmatrix} \mathbf{v} \\ \mathbf{v} \end{vmatrix} = \begin{vmatrix} \mathbf{o} - \mathbf{v}_0 \\ | & | & | \end{vmatrix}$ Solve for *t*,*u*,*v* using Cramer's rule for a system of *n* linear equations with *n* unknowns: A x = bCramer's rule: $\begin{vmatrix} \mathbf{k} & e & f \\ \mathbf{l} & h & i \\ \mathbf{l} & h & i \\ \mathbf{k} & e & f \\ \mathbf{k} & \mathbf{k} & \mathbf{k} \\ \mathbf{k} & \mathbf$ de $\begin{vmatrix} a & b & c \\ d & e & f \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} j \\ k \end{vmatrix} \Longrightarrow x =$ hSimplify our equation system by setting: Simplify our equation system by setting: $\mathbf{e}_1 = \mathbf{v}_1 - \mathbf{v}_0$ $\mathbf{e}_2 = \mathbf{v}_2 - \mathbf{v}_0$ $\mathbf{s} = \mathbf{0} - \mathbf{v}_0$ => $\left| -\mathbf{d} \cdot \mathbf{e}_1 \cdot \mathbf{e}_2 \right| \left| u \right| = \left| \mathbf{s} \cdot \mathbf{e}_1 \cdot \mathbf{e}_2 \right| \left| u \right| = \left| \mathbf{s} \cdot \mathbf{e}_2 \cdot \mathbf{e}_1 \cdot \mathbf{e}_2 \right| \left| u \right| = \left| \mathbf{s} \cdot \mathbf{e}_2 \cdot \mathbf{e}_1 \cdot \mathbf{e}_2 \right| \left| u \right| = \left| \mathbf{s} \cdot \mathbf{e}_2 \cdot \mathbf{e}_1 \cdot \mathbf{e}_2 \right| \left| u \right| = \left| \mathbf{s} \cdot \mathbf{e}_2 \cdot \mathbf{e}_2 \cdot \mathbf{e}_2 \cdot \mathbf{e}_2 \cdot \mathbf{e}_2 \right| \left| u \right| = \left| \mathbf{s} \cdot \mathbf{e}_2 \right| \left| u \right| = \left| \mathbf{s} \cdot \mathbf{e}_2 \cdot \mathbf{e}_2$ $\begin{pmatrix} t \\ u \\ v \end{pmatrix} = \frac{1}{\det(-\mathbf{d}, \mathbf{e}_1, \mathbf{e}_2)} \begin{pmatrix} \det(\mathbf{s}, \mathbf{e}_1, \mathbf{e}_2) \\ \det(-\mathbf{d}, \mathbf{s}, \mathbf{e}_2) \\ \det(-\mathbf{d}, \mathbf{e}_1, \mathbf{s}) \end{pmatrix}$ Cramer's rule gives:

BONUS

Ray/Triangle (2)

$$\begin{pmatrix} t \\ u \\ v \end{pmatrix} = \frac{1}{\det(-\mathbf{d}, \mathbf{e}_1, \mathbf{e}_2)} \begin{pmatrix} \det(\mathbf{s}, \mathbf{e}_1, \mathbf{e}_2) \\ \det(-\mathbf{d}, \mathbf{s}, \mathbf{e}_2) \\ \det(-\mathbf{d}, \mathbf{e}_1, \mathbf{s}) \end{pmatrix}$$

 $a = \mathbf{p} \cdot \mathbf{e}_1$

• To compute determinant Use this fact : $det(a, b, c) = (a \times b) \cdot c = -(a \times c) \cdot b$

This gives:
$$\begin{pmatrix} t \\ u \\ v \end{pmatrix} = \frac{1}{(\mathbf{d} \times \mathbf{e}_2) \cdot \mathbf{e}_1} \begin{pmatrix} (\mathbf{s} \times \mathbf{e}_1) \cdot \mathbf{e}_2 \\ (\mathbf{d} \times \mathbf{e}_2) \cdot \mathbf{s} \\ (\mathbf{s} \times \mathbf{e}_1) \cdot \mathbf{d} \end{pmatrix}$$

• Share factors to speed up computations: $\mathbf{p} = \mathbf{d} \times \mathbf{e}_2$

Compute as little as possible. Then test. f = 1/a
 Compute u = f(p · s)
 Then test valid bounds:

 if (u<0 or u>1) exit;

Sphere/Plane Box/Plane

- Plane: $\pi : \mathbf{n} \cdot \mathbf{p} + d = 0$ Sphere: $\mathbf{c} \quad r$ AABB: $\mathbf{b}^{\min} \quad \mathbf{b}^{\max}$
- Sphere: compute f(c) = n · c + d
 f(c) is the signed distance (n normalized)
 abs(f(c)) > r no collision
 abs(f(c)) = r sphere touches the plane
 abs(f(c)) < r sphere intersects plane
- Box: insert all 8 corners
- If all f's have the same sign, then all points are on the same side, and no collision

AABB/plane

Plane: $\pi : \mathbf{n} \cdot \mathbf{p} + d = 0$ Sphere: $\mathbf{c} \qquad r$ Box: $\mathbf{b}^{\min} \quad \mathbf{b}^{\max}$

- The smart way (shown in 2D)
- Find the two vertices that have the most positive and most negative value when tested againt the plane

Ray/Plane Intersections •Ray: r(t)=o+td •Plane: $\mathbf{n} \cdot \mathbf{x} + \mathbf{d} = 0$; (d=- $\mathbf{n} \cdot \mathbf{p}$) •Set $\mathbf{x} = \mathbf{r}(t)$: **n**•(**o**+t**d**) + d = 0 $\mathbf{n} \cdot \mathbf{o} + t(\mathbf{n} \cdot \mathbf{d}) + d = 0$ $t = (-d - n \cdot o) / (n \cdot d)$

Vec3f rayPlaneIntersect(vec3f o,dir, n, d)
{
 float t=(-d-n.dot(o)) / (n.dot(dir));
 return o + dir*t;
}

Ray/Polygon: very briefly Intersect ray with polygon plane Project from 3D to 2D How? • Find max($|n_x|, |n_v|, |n_z|$) Skip that coordinate! • Then, count crossing in 2D

Volume/Volume tests

- Used in collision detection
- Sphere/sphere

- Compute squared distance between sphere centers, and compare to $(r_1+r_2)^2$
- Axis-Aligned Bounding Box (AABB)
 - Test in 1D for x,y, and z

If B_{min_x} > A_{max_x} or A_{min_x} > B_{max_x} => no intersection. ... same with y,z ...

 X_{max}, y_{max}

Oriented Bounding boxes
 Use SAT [details in book]

View frustum testing

- View frustum is 6 planes:
- Near, far, right, left, top,

- Create planes from projection matrix
 - Let all positive half spaces be outside frustum
 - Not dealt with here -- p. 983-984.
- Sphere/frustum common approach:
 - Test sphere against each of the 6 frustum planes:
 - If outside the plane => no intersection
 - If intersecting the plane or inside, continue
 - If not outside after all six planes, then conservatively concider sphere as inside or intersecting
- Example follows...

View frustum testing example

Not exact test, but not incorrect

- A sphere that is reported to be inside, can be outside
- Not vice versa
- Similarly for boxes

Dynamic Intersection Testing [In book: 620-628]

 Testing is often done every rendered frame, i.e., at discrete time intervals
 <u>Therefore, you can get</u> "quantum effects"

Frame *n*

Frame n+1

- Dynamic testing deals with this
- Is more expensive

 Deals with a time interval: time between two frames

Dynamic intersection testing **BONUS** Sphere/Plane

- No collision occur:
 - If they are on the same side of the plane (s_cs_e>0)
 and: |s_c|>r and |s_e|>r

• Otherwise, sphere can move $|s_c|-r$

• Time of collision:

$$t_{cd} = n + \frac{s_c - r}{s_c - s_e}$$

 s_e is signed distance

 S_e

t=n+1

Response: reflect v around n, and move: (1-t_{cd})r
 (r=refl vector)

BONUS

Dynamic Separating Axis Theorem SAT: tests one axis at a time for overlap

- Same with DSAT, but:
 - Use a relative system where B is fixed
 - i.e., compute A's relative motion to B.
 - Need to adjust A's projection on the axis so that the interval moves on the axis as well
- Need to test same axes as with SAT
- Same criteria for overlap/disjoint:
 - If no overlap on axis => disjoint
 - If overlap on all axes => objects overlap

Exercises

 Create a function (by writing code on paper) that tests for intersection between:

- two spheres
- a ray and a sphere
- view frustum and a sphere

What you need to know

- Analytic test:
 - Be able to compute ray vs sphere or other similar formula
 - Ray/triangle, ray/plane
 - Point/plane, Sphere/plane, box/plane
 - Know equations for ray, sphere, cylinder, plane, triangle
- Geometrical tests
 - Ray/box with slab-test
 - Ray/polygon (3D->2D)
 - AABB/AABB
 - View frustum vs spheres/AABB:s/BVHs.
 - Separating Axis Theorem (SAT)
- Know what a dynamic test is