
Full-time wrapup

Lecture 1

• Application-, geometry-, rasterization stage
• Real-time Graphics pipeline
• Modelspace, worldspace, viewspace, clip space,

screen space
• Z-buffer
• Double buffering
• Screen tearing

Lecture 1: Real-time Rendering
The Graphics Rendering Pipeline

• Three conceptual stages of the pipeline:
– Application (executed on the CPU)

• logic, speed-up techniques, animation, etc…
– Geometry

• Executing vertex and geometry shader
• Vertex shader:

– lighting computations per triangle vertex
– Project onto screen (3D to 2D)

– Rasterizer
• Executing fragment shader
• Interpolation of per-vertex parameters (colors, texcoords etc) over triangle
• Z-buffering, fragment merge (i.e., blending), stencil tests…

Application Geometry Rasterizer

3D
sceneinput

Image

output

Tomas Akenine-Mőller © 20034

Rendering Pipeline and
Hardware

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Appli-
cation
Stage

CPU

Geometry Stage Rasterization Stage

GPU

Tomas Akenine-Mőller © 20035

Hardware design

light

Geometry

blue

red green

Vertex shader:

•Lighting (colors)

•Screen space positions

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage

Tomas Akenine-Mőller © 20036

Hardware design Geometry shader:

•One input primitive

•Many output primitives

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

or

Geometry Stage

Tomas Akenine-Mőller © 20037

Hardware design Clips triangles against
the unit cube (i.e.,
”screen borders”)

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage

Tomas Akenine-Mőller © 20038

Hardware design Maps window size to
unit cube

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Rasterizer Stage
Geometry stage always operates inside
a unit cube [-1,-1,-1]-[1,1,1]
Next, the rasterization is made against a
draw area corresponding to window
dimensions.

Hardware design

Tomas Akenine-Mőller © 20039

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Collects three vertices
into one triangleRasterizer Stage

Hardware design

Tomas Akenine-Mőller © 200310

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Creates the
fragments/pixels for the
triangle

Rasterizer Stage

blue

red green
Rasterizer

Hardware design

Tomas Akenine-Mőller © 200311

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Pixel Shader:
Compute color
using:
•Textures
•Interpolated data
(e.g. Colors +
normals) from
vertex shader

Rasterizer Stage

Hardware design

Tomas Akenine-Mőller © 200312

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Frame buffer:
• Color buffers

• Depth buffer

• Stencil buffer

The merge units update
the frame buffer with the
pixel’s color

Rasterizer Stage

Application Geometry Rasterizer

model space world space world space

e.g., compute lighting

camera space

Do projection
clip space

(or unit space)

clip map to screen
screen space

Done in vertex shader
Fixed hardware function

Per-vertex computations
GEOMETRY – transformation summary

Painter’s Algorithm
• Render polygons a back to front order so that polygons

behind others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons
first

–O(n log n) calculation for ordering
–Not every polygon is either in
front or behind all other polygons

I.e., : Sort all triangles and
render them back-to-front.

z-Buffer Algorithm
• Use a buffer called the z or depth buffer to store
the depth of the closest object at each pixel found
so far

• As we render each polygon, compare the depth
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and
update z buffer

Also know double buffering!

• We do not want to show
the image until its drawing
is finished.

• The front buffer is displayed
• The back buffer is rendered to
• When new image has been created in back buffer,

swap the Front-/Back-buffer pointers.
• Use vsynch or screen tearing will occur…

i.e., when the swap happens in the middle of the screen with respect to the screen refresh
rate.

Application Geometry RasterizerThe RASTERIZER
double-buffering

Front buffer
(rgb color buffer)

Back buffer
(rgb color buffer)

Last fully finished
drawn frame.

Color buffer we draw to.
Not displayed yet.

Application Geometry RasterizerThe RASTERIZER
double-buffering – screen tearing

Example if the swap happens here (w.r.t the screen refresh rate).
Solution: use vsynch to swap buffers after monitor has
”updated” the screen. See page 1011-1012.

old

new

Screen Tearing
Swapping
back/front buffers

Screen tearing is solved by using V-Sync.
V-Sync: swap front/back buffers during vertical blank (vblank) instead.

vblank

The default frame buffer:
Typically: Front + Back color buffers + Z buffer + (Stencil buffer)

Front buffer
(rgb color buffer)

Z buffer
(depth)

Stores rgb(a) value per pixel.
Default: 8 bits per r,g,b channel.

Stores fragment’s
depth value per
pixel, typically: (16),
24, or 32 bits.

Back buffer
(rgb color buffer)

Stencil buffer

Stencil buffer can be
asked for. 8-bits per
pixel.

Last fully finished
drawn frame.
Is displayed.

Color buffer we draw to.
Not displayed yet.

To resolve visibility
Used for masking rendering
to only where pixel’s stencil
value = some specific value.

Lecture 2: Transforms

• Homogeneous notation
• Rigid-body transform, Euler rotation (head,pitch,roll)
• Change of frames
• Quaternions

– Know what they are good for. Not knowing the mathematical rules.

Use : N= M-1()T instead of M

l Transformation pipeline: ModelViewProjection matrix
l Scaling, rotations, translations, projection
l Cannot use same matrix to transform normals

l …represents a rotation of 2f radians around axis
uq of point p

l Understand the simple DDA algorithm
l Bresenhams line-drawing algorithm

)cos,(sinˆ ff quq =

1ˆˆˆ -qpq

(M-1)T=M if rigid-body
transform

Ulf Assarsson© 2007

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

l
l
l

object
space

View/Eye/
Camera
space

Unit-cube
space /
Normalized

device coords

Window
coords.
Screen
space

Transformation
Pipeline

OpenGL | Geometry stage | done on GPU

What we do in the vertex shader:

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

The perspective division is then done automatically by the GPU
before the GPU does clipping and screen mapping.

Homogeneous
coord. space

Lecture 2:
Clip space: clipping is nowadays typically done in
homogeneous space. However, it used to be done in
unit-cube space. Both terminologies are still used.

cameraModel space World space View space

Model to World
Matrix

World to View
Matrix

ModelViewMtx = ”Model to View Matrix”

ModelViewMtx * v = (MVçW * MWçM) * v

vview_space = ModelViewMtx * vmodel_space

Full projection:

Vclip_space = projectionMatrix * ModelViewMatrix * vmodel_space

Or simply: vclip_space = MModelViewProjection * v

x

y

z

Projection
Matrix

, where MModelViewProjection = projectionMatrix * ModelViewMatrix

Ulf Assarsson © 2004

Lecture 2: Transforms

l Homogeneous notation
l Rigid-body transform, Euler rotation (head,pitch,roll)
l Change of frames
l Quaternions

– Know what they are good for. Not knowing the
mathematical rules.

Use : N= M-1()T instead of M

l Scaling, rotations, translations, projection
l Cannot use same matrix to transform normals

l …represents a rotation of 2f radians around
axis uq of point p

l Bresenhams line-drawing algorithm

)cos,(sinˆ ff quq =

1ˆˆˆ -qpq

(M-1)T=M
if rigid-
body
transform

Tomas Akenine-Mőller © 2002

Homogeneous notation
l A point:
l Translation becomes:

l A vector (direction):
l Translation of vector:

1

1
)(

1000
100
010
001

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

+
+
+

=

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

zz

yy

xx

z

y

x

z

y

x

tp
tp
tp

p
p
p

t
t
t

!! "!! #$

tT

()Tzyx ppp 1=p

()Tzyx ddd 0=d
dTd =

Translation part

Rotation
part

02. Vectors and Transforms

Change of Frames
• How to get the Mmodel-to-world matrix:

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

1000

M world-to-model
zzzz

yyyy

xxxx

ocba
ocba
ocba

(0,5,0,1)

E.g.: pworld = Mm®w pmodel = Mm®w (0,5,0,1)T = 5 b (+ o)

b

x

y

z

c

a

o

world space

model space

(Both coordinate systems are right-handed)

P=

0
5
0
1

!

"

#
#
#
#

$

%

&
&
&
&

The basis vectors a,b,c
are expressed in the
world coordinate system

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

1000

M world-to-model
zzzz

yyyy

xxxx

ocba
ocba
ocba

b

x

y

z

a

c

o

world space

model space

Change of Frames
pmodelspace =(px,py,pz)

Let’s initially disregard the translation o. I.e., o=[0,0,0]
X: One step along a results in ax steps along world space axis x.

One step along b results in bx steps along world space axis x.
One step along c results in cx steps along world space axis x.

The x-coord for p in world space (instead of modelspace) is thus [ax bx cx]p.
The y-coord for p in world space is thus [ay by cy]p.
The z-coord for p in world space is thus [az bz cz]p.

With the translation o we get pworldspace= Mmodel-to-world pmodelspace

Same example, just explained differently:

Tomas Akenine-Mőller © 2002

Projections
l Orthogonal (parallel) and Perspective

02. Vectors and Transforms

Tomas Akenine-Mőller © 2002

Orthogonal projection
l Simple, just skip one coordinate

– Say, we’re looking along the z-axis
– Then drop z, and render

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

Þ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

1
0

1

1000
0000
0010
0001

y

x

z

y

x

orthoortho

p
p

p
p
p

MM

z z

02. Vectors and Transforms

DDA Algorithm
• Digital Differential Analyzer

–DDA was a mechanical device for numerical
solution of differential equations

–Line y=kx+ m satisfies differential equation
dy/dx = k = Dy/Dx = y2-y1/x2-x1

• Along scan line Dx = 1
y=y1;
For(x=x1; x<=x2,ix++) {
write_pixel(x, round(y), line_color)
y+=k;

}

02. Vectors and Transforms

Using Symmetry

•Use for 1 ³ k ³ 0
•For k > 1, swap role of x and y

–For each y, plot closest x

Otherwise we get
problem for steep
slopes

02. Vectors and Transforms

• The problem with DDA is that it uses floats
which was slow in the old days

• Bresenhams algorithm only uses integers

You do not need to know Bresenham’s algorithm
by heart. It is enough that you understand it if
you see it.

Very Important!

02. Vectors and Transforms

Lecture 3.1: Shading
• Ambient, diffuse, specular, emission

– Formulas,
– Phongs vs Blinns highlight model.

• Half vector: 𝒉 = 𝒍"𝒗
| 𝒍"𝒗 |

• Flat, Goraud, and Phong shading
• Fog
• Transparency
• Gamma correction

Lighting
i=iamb+idiff+ispec+iemission

++

=

Know how to compute components.

Lecture 3: Shading

ambambamb smi Ä= diffdiffdiff smlni Ä×=)(

ispec =max(0,(h× n))mshimspec Ä sspec

Phong’s reflection model:

Blinn’s reflection model:

ispec =max(0,(r× v))mshimspec Ässpec
emissionemission mi =

Tomas Akenine-Mőller © 2002

Diffuse component : idiff
l i=iamb+idiff+ispec+iemission
l Diffuse is Lambert’s law: fcos=×= lndiffi

l Photons are scattered equally in all
directions

diffdiffdiff smlni Ä×=)(

03. Shading:

(Note that n and l need to be
normalized)

Tomas Akenine-Mőller © 2002

Lighting
Specular component : ispec

l Diffuse is dull (left)
l Specular: simulates a highlight

03. Shading:

Tomas Akenine-Mőller © 2002

Specular component: Phong
l Phong specular highlight model
l Reflect l around n:

l)n2(nlr ×+-=

n

lr

-l
nln)(×

ln ×

shishi mm
speci)(cos)(r=×= vr

ispec =max(0,(r× v))mshimspec Ässpec
l Next: Blinns highlight formula: (n.h)m

03. Shading:

(n needs to be
normalized)

Halfway Vector

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
(l+v)/2 is halfway between l and v
If n, l, and v are coplanar:

y = f/2
Must then adjust exponent
so that (n·h)e’ ≈ (r·v)e

(e’ ≈ 4e)

03. Shading:

specspec
m

spec
shi smnhi Ä×=))(,0max(

Tomas Akenine-Mőller © 2002

Shading
l Flat, Goraud, and Phong shading:

l Flat shading: one normal per triangle. Lighting computed once for the whole
triangle.

l Gouraud shading: the lighting is computed per triangle vertex and for each
pixel, the color is interpolated from the colors at the vertices.

l Phong Shading: the lighting is not computed per vertex. Instead the normal
is interpolated per pixel from the normals defined at the vertices and full
lighting is computed per pixel using this normal. This is of course more
expensive but looks better.

Flat Gouraud Phong

Gouraud
shading

Phong
shading

Flat
shading

03. Shading:

Tomas Akenine-Mőller © 2002

l Color of fog: color of surface: fc sc

€

c p = fcs + (1− f)c f f ∈[0,1]
l How to compute f ?
l E.g., linearly:

startend

pend

zz
zz

f
-

-
=

Tomas Akenine-Mőller © 2002

Transparency and alpha
l Transparency

– Very simple in real-time contexts

l The tool: alpha blending (mix two colors)
l Alpha (a) is another component in the

frame buffer, or on triangle
– Represents the opacity
– 1.0 is totally opaque
– 0.0 is totally transparent

l The over operator: dso ccc)1(aa -+=
Rendered object

03. Shading:

(Blending)

Transparency
l Need to sort the transparent objects

– First, render all non-transparent triangles as
usual.

– Then, sort all transparent triangles and render
back-to-front with blending enabled. (and using
standard depth test)
l The reason is to avoid problems with the depth test and

because the blending operation (i.e., over operator) is order
dependent.

03. Shading:

If we have high frame-to-frame coherency regarding the objects to be sorted
per frame, then Bubble-sort (or Insertion sort) are really good! Superior to
Quicksort.
Because, they have expected runtime of resorting already almost sorted
input in O(n) instead of O(n log n), where n is number of elements.

Gamma correction
l Reasons for wanting gamma correction

(standard is 2.2):
1. Screen has non-linear color intensity

– We often want linear output (e.g. for correct antialiasing)

2. Also happens to give more efficient color space (when
compressing intensity from 32-bit floats to 8-bits). Thus, often
desired when storing textures.

Tomas Akenine-Mőller © 2002

Gamma of 2.2. Better
distribution for humans.
Perceived as linear.

Truly linear intensity
increase.

A linear intensity output (bottom) has a large jump in perceived brightness between the
intensity values 0.0 and 0.1, while the steps at the higher end of the scale are hardly
perceptible.
A nonlinearly-increasing intensity (upper), will show much more even steps in
perceived brightness.

)/1(g
icc =

(x(1/γ)) γx(1/γ)xγ

Leture 3.2: Sampling, filtrering, and Antialiasing

• When does it occur?
– In 1) pixels, 2) time, 3) texturing

• Supersampling schemes:
• Quincunx + weights

• Jittered sampling
– Why is it good?

• Supersampling vs multisampling vs
coverage sampling

SSAA, MSAA and CSAA
l Super Sampling Anti Aliasing

– Stores duplicate information (color, depth, stencil) for each sample and
fragment shader is run for each sample.

– Corresponds to rendering to an oversized buffer and downfiltering.
l Multi Sampling Anti Aliasing

– Shares some information between samples. E.g:
l Result of Frament shader – Frag. shader is only run once per rasterized fragment.
l But stores a color per sample and typically also a stencil and depth-value per sample

l Coverage Sampling Anti Aliasing
– Idea: Don’t even store unique color and depth per sample.

In each subsample, store index into a per-pixel
list of 4-8 colors+depths.

– I.e., for 4-8 polygons, store their coverage.
– Fragment shader executed once per rasterized

fragment

– E.g., Each sample holds a
2-bit index into a table (a storage
of up to four colors per pixel)

Tomas Akenine-Mőller © 200344

16x CSAA
+ z

04. Texturing
What is most important:
• Filtering: magnification, minification

– Mipmaps + their memory cost
– How compute bilinear/trilinear filtering
– Number of texel accesses for trilinear filtering
– Anisotropic filtering

• Environment mapping – cube maps, how compute lookup.
• Bump mapping
• 3D-textures – what is it?
• Sprites
• Billboards/Impostors, viewplane vs viewpoint oriented, axial

billboards, how to handle depth buffer for fully transparent
texels.

• Particle systems

Ulf Assarsson © 2004

FILTERING:
l For magnification: Nearest or Linear (box vs Tent

filter)

l For minification: nearest, linear and…
– Bilinear – using mipmapping
– Trilinear – using mipmapping
– Anisotropic – up to 16 mipmap lookups along line of anisotropy

Filtering

Tomas Akenine-Mőller © 2002

Mipmapping
l Image pyramid
l Half width and

height when going
upwards

l Average over 4 ”parent texels” to form
”child texel”

l Depending on amount of minification,
determine which image to fetch from

l Compute d first, gives two images
– Bilinear interpolation in each

u

v

d

Tomas Akenine-Mőller © 2002

Mipmapping
l Interpolate between those bilinear values

– Gives trilinear interpolation

l Constant time filtering: 8 texel accesses

v
u

d

Level n+1

Level n

(u0,v0,d0)

Tomas Akenine-Mőller © 2002

Mipmapping:
Memory requirements
l Not twice the number of bytes…!

1/4
1/16

1/1

1/64

Modified by Ulf Assarsson 2004
l Rather 33% more – not that much

Anisotropic texture filtering

(See page
188-189)

Tomas Akenine-Mőller © 2002

Environment mapping

l Assumes the environment is infinitely far away
l Sphere mapping, or Cube mapping
l Cube mapping is the norm nowadays

Modified by Ulf Assarsson 2004

Tomas Akenine-Mőller © 2002

x

y

z

Cube mapping

l Simple math: compute reflection vector, r
l Largest abs-value of component, determines which cube face.

– Example: r=(5,-1,2) gives POS_X face
l Divide r by abs(5) gives (u,v)=(-1/5,2/5)
l Also remap from [-1,1] to [0,1] by (u,v) = ((u,v)+vec2(1,1))*0.5;
l Your hardware does all the work for you. You just have to

compute the reflection vector.

neye

Tomas Akenine-Mőller © 2002

Bump mapping
l by Blinn in 1978
l Inexpensive way of simulating wrinkles

and bumps on geometry
– Expensive to model these geometrically

l Instead let a texture modify the normal at
each pixel, and then use this normal to
compute lighting per pixel

geometry Bump map
Stores heights: can derive normals

+
Bump mapped geometry

=

Normal mapping in tangent vs object space

Tangent space:
lNormals are stored as distorsion of face orientation. The same bump map
can be tiled/repeated and reused for many faces with different orientation54

Object space:
•Normals are stored directly in
model space. I.e., as
including both face orientation
plus distorsion.

Normal map

Tangent space:

Tomas Akenine-Mőller © 2002

3D Textures
l 3D textures:

– Texture filtering is no longer trilinear
– Rather quadlinear (linear interpolation 4 times)
– Enables new possibilities

l Can store light in a room, for example

Sprites
GLbyte M[64]=
{ 127,0,0,127, 127,0,0,127,

127,0,0,127, 127,0,0,127,
0,127,0,0, 0,127,0,127,
0,127,0,127, 0,127,0,0,
0,0,127,0, 0,0,127,127,
0,0,127,127, 0,0,127,0,
127,127,0,0, 127,127,0,127,
127,127,0,127, 127,127,0,0};

void display(void) {
glClearColor(0.0,1.0,1.0,1.0);
glClear(GL_COLOR_BUFFER_BIT);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);
glRasterPos2d(xpos1,ypos1);
glPixelZoom(8.0,8.0);
glDrawPixels(width,height,

GL_RGBA, GL_BYTE, M);

glPixelZoom(1.0,1.0);
SDL_GL_SwapWindow //”Swap buffers”

}
56

Sprites (=älvor) was a technique on older home
computers, e.g. VIC64. As opposed to billboards,
sprites do not use the frame buffer. They are rasterized
directly to the screen using a special chip. (A special
bit-register also marked colliding sprites.)

Just know what “sprites” are and that
they are very similar to a billboard

Billboards
• 2D images used

in 3D
environments
– Common for

trees,
explosions,
clouds, lens
flares

• Rotate them towards viewer
– Either by rotation matrix (see OH 288), or
– by orthographic projection

Billboards

58

normal

View
vector

Rotation
axis

Rot
angle

=> Rotation matrix for the
billboard

• Fix correct transparency by
blending AND using alpha-
test
– In fragment shader:

if (color.a < 0.1) discard;

Billboards
Color Buffer Depth Buffer

With
blending

With
alpha test

If alpha value in texture
is lower than this
threshold value, the pixel
is not rendered to. I.e.,
neither frame buffer nor
z-buffer is updated,
which is what we want to
achieve.
E.g. here: so that objects behind is visible through the hole

(Also called Impostors)

axial billboarding
The rotation axis is fixed and
disregarding the view position

n

Lecture 5: OpenGL

• How to use OpenGL (or DirectX)
– Will not ask about syntax. Know how to use.

• I.e. functionality
– E.g. how to achieve

• Blending and transparency
• Fog – how would you implement in a fragment

shader?
– pseudo code is enough

• Specify a material, a triangle, how to translate or
rotate an object.

• Triangle – vertex order and facing

Ulf Assarsson © 200362

l Understand at pseudo code level!

Reflections with environment
mapping

VERTEX SHADER
in vec3 vertex;
in vec3 normalIn; // The normal
out vec3 normal;
out vec3 eyeVector;
uniform mat4 normalMatrix;
uniform mat4 modelViewMatrix;
uniform mat4 modelViewProjectionMatrix;

void main()
{

gl_Position = modelViewProjectionMatrix *vec4(vertex,1);
normal = (normalMatrix * vec4(normalIn,0.0)).xyz;
eyeVector = (modelViewMatrix * vec4(vertex, 1)).xyz;

}
FRAGMENT SHADER
in vec3 normal;
in vec3 eyeVector;
uniform samplerCube tex1;
out vec4 fragmentColor;

void main()
{

vec3 reflectionVector = normalize(reflect(normalize(eyeVector),
normalize(normal)));

fragmentColor = texture(tex1, reflectionVector);
}

63

Buffers
l Frame buffer

– Back/front/left/right – glDrawBuffers()
– Offscreen buffers (e.g., framebuffer objects, auxiliary buffers)

Frame buffers can consist of:
l Color buffer - rgb(a)
l Depth buffer (z-buffer)

– For correct depth sorting
– Instead of BSP-algorithm or painters algorithm…

l Stencil buffer
– E.g., for shadow volumes or only render to frame buffer where

stencil = certain value (e.g., for masking).

Lecture 6: Intersection Tests
• Analytic test:

– Be able to compute ray vs sphere or other similar formula
– Ray/triangle, ray/plane
– Point/plane, Sphere/plane, box/plane
– Know equations for ray, sphere, cylinder, plane, triangle

• Geometrical tests
– Ray/box with slab-test
– Ray/polygon (3D->2D)
– AABB/AABB
– View frustum vs spheres/AABB:s/BVHs.
– Separating Axis Theorem (SAT)

• Know what a dynamic test is

Tomas Akenine-Mőller © 2003

Analytical:
Ray/plane intersection

l Ray: r(t)=o+td
l Plane formula: n•p + d = 0

l Replace p by r(t) and solve for t:
n•(o+td) + d = 0
n•o+tn•d + d = 0
t = (-d -n•o) / (n•d)

o d n

Here, one scalar
equation and one
unknown -> just solve
for t.

Tomas Akenine-Mőller © 2003

Analytical:
Ray/sphere test
l Sphere center: c, and radius r
l Ray: r(t)=o+td
l Sphere formula: ||p-c||=r
l Replace p by r(t): ||r(t)-c||=r

0))(())((2 =--×- rtt crcr

1|||| 0)()())((2 22 ==--×-+×-+ dcοcοdcο rtt

0)()(2 =--+×-+ rtt cdocdo

0)()())((2)(22 =--×-+×-+× rtt cοcοdcοdd

o

d

c
r

This is a standard quadratic equation. Solve for t.

Tomas Akenine-Mőller © 2003

Geometrical:
Ray/Box Intersection (2)
l Intersect the 2 planes of each slab with

the ray

min
xt

max
xt

min
yt

max
yt

l Keep max of tmin and min of tmax

l If tmin < tmax then we got an intersection
l Special case when ray parallell to slab

Point/Plane
l Insert a point x into plane equation:

0: :Plane =+× dpnp

?)(=+×= df xnx
plane on the s'for 0)(xxnx =+×= df

 sideother on the s'for 0)(xxnx >+×= dfPositive
half space

plane theof side oneon s'for 0)(xxnx <+×= dfNegative
half space

Sphere/Plane
Box/Plane
l Sphere: compute

0: :Plane =+× dpnp
r :Sphere c

AABB: bmin bmax

df +×= cnc)(
l f (c) is the signed distance (n normalized)

l Box: insert all 8 corners
l If all f ’s have the same sign, then all

points are on the same side, and no
collision

l abs(f (c)) > r no collision
l abs(f (c)) = r sphere touches the plane
l abs(f (c)) < r sphere intersects plane

n

AABB/plane
l The smart way (shown in 2D)
l Find the two vertices that have the most

positive and most negative value when tested
againt the plane

Need only test
the red points

0: :Plane =+× dpnp
r :Sphere c

maxmin :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx :bminx
v posy = (ny > 0)?bmaxy :bminy
v posz = (nz > 0)?bmax z :bminz
vnegx = (nx < 0)?bmaxx :bminx
vnegy = (ny < 0)?bmaxy :bminy
vnegz = (nz < 0)?bmax z :bminz

See page 970 for even faster version.
OBB almost as easy. Just first project
n on OBB’s axes – see p: 972

Another analytical example:
Ray/Triangle in detail

l Ray: r(t)=o+td
l Triangle vertices: v0, v1, v2

l A point in the triangle:
t(u,v) = v0 + u(v1 - v0) + v(v2 - v0)

where [u,v>=0, u+v<=1] is inside triangle

l Set t(u,v)=r(t), and solve for t, u, v:
v0+u(v1 - v0) +v(v2 - v0) = o+td
=> -td + u(v1 - v0) + v(v2 - v0) = o-v0
=> [-d, (v1 - v0), (v2 - v0)] [t, u, v]T = o-v0

v2

v1

v0

v1 -v0

v2 -v0

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
-=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

|

|

|||

|||

00201 vovvvvd
v
u
t Ax=b

x=A-1b

Tomas Akenine-Mőller © 2003

Ray/Polygon: very briefly
l Intersect ray with polygon plane
l Project from 3D to 2D
l How?
l Find max(|nx|,|ny|,|nz|)
l Skip that coordinate!
l Then, count crossing in 2D

Tomas Akenine-Mőller © 2003

View frustum testing example

l Algorithm:
– if sphere is outside any of the 6 frustum planes -> report ”outside”.
– Else report intersect.

l Not exact test, but not incorrect, i.e.,
– A sphere that is reported to be inside, can be outside
– Not vice versa, so test is conservative

outside
frustum

intersecting
frustum

Lecture 7.1: Spatial Data Structures and
Speed-Up Techniques

• Speed-up techniques
– Culling

• Backface
• View frustum (hierarchical)

• Portal
• Occlusion Culling
• Detail

– Levels-of-detail:

• How to construct and use the spatial data structures
• BVH, BSP-trees (polygon aligned + axis aligned),

quadtree/octree

Tomas Akenine-Mőller © 2002

Axis Aligned Bounding Box
Hierarchy - an example
l Assume we click on screen, and want to

find which object we clicked on

click!
1) Test the root first
2) Descend recursively as needed
3) Terminate traversal when possible
In general: get O(log n) instead of O(n)

Tomas Akenine-Mőller © 2002

How to create a BVH?
Example: using AABBs
l Find minimal box, then split along longest axis

x is longest Find minimal
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
Similar for other BVs

AABB = Axis Aligned
Bounding Box

BVH = Bounding Volume
Hierarchy

Axis-aligned BSP tree
Rough sorting
l Test the planes, recursively from root, against the point of view. For each

traversed node:
– If node is leaf, draw the node’s geometry
– else

l Continue traversal on the ”hither” side with respect to the eye to sort front to back
l Then, continue on the farther side.

eye

0

1a

A B

1b

C 2

D E

1

1a 1b

2

0

23
4 5

l Works in the same way for polygon-
aligned BSP trees --- but that gives
exact sorting

Polygon-aligned BSP tree
l Allows exact sorting
l Very similar to axis-aligned BSP tree

– But the splitting plane are now located in the
planes of the triangles

Know how to build it
and how to traverse
back-to-front or
front-to-back with
respect to the eye
position (here: v)

Drawing Back-to-Front {
recurse on farther side of P;
Draw P;
Recurse on hither side of P;

}// farther/hither is with respect to eye pos.

Scene graphs
– a node hierarchy

l A scene graph is a node hierarchy, which often reflects a
logical hierarchical scene description

– often in combination with a BVH such that each node has a BV.

l Common hierarchical features include:
– Lights
– Materials
– Transforms
– Transparency
– Selection

79

A Scene Graph is a hierarchical scene description –
more typically a logical hierarchy (than e.g. spatial)

Lecture 7.2: Collision Detection
• 3 types of algorithms:

– With rays
• Fast but not exact

– With BVH
• Slower but exact
• You should be able to write pseudo code for BVH/BVH test for

coll det between two objects.

– For many many objects.
• Course pruning of ”obviously” non-colliding objects
• E.g., Use a grid with an object list per cell, storing the objects that intersect that cell.

For each cell with list length > 1, test those against each other with a more exact
method.

• Sweep-and-prune (explain)

Pseudo code for BVH against BVH

Pseudocode
deals with 4 cases:

1) Leaf against
leaf node

2) Internal node
against internal node

3) Internal against leaf
4) Leaf against internal

if return true;

if return true;

if return true;

if return true;

0: if(not overlap(A, B)) return false;

A B

Lecture 8+9: Ray tracing
• Adaptive Super Sampling scheme:
• Jittering:
• How to stop ray tracing recursion? Send weight…
• Spatial data structures:

– Draw: BVH: AABB/OBB/sphere. BSP-trees: polygon-aligned +
AABSP=kd-tree. Octree/quadtree. Grids, hierarchical/recursive grids.

• Speedup techniques
• Optimizations for BVHs: skippointer tree
• Ray BVH-traversal
• Grids: mailboxing – purpose and how it works.
• (You do not need to learn the ray traversal algorithms for Grids nor

AA-BSP trees)
• Shadow cache

• Material:

• Constructive Solid Geometry – how to implement

Metall: rgb-dependent Fresnel effect
Dielectrics: not rgb-dependent.

Adaptive Supersampling
Pseudo code:
Color AdaptiveSuperSampling() {

– Make sure all 5 samples exist
l (Shoot new rays along diagonal if necessary)

– Color col = black;
– For each quad i

l If the colors of the 2 samples are fairly similar
– col += (1/4)*(average of the two colors)

l Else
– col +=(1/4)*

adaptiveSuperSampling(quad[i])

– return col;
}

Tomas Akenine-Mőller © 2002

Tomas Akenine-Mőller © 2002

Summary of the Ray tracing-
algorithm:

l main()-calls trace() for each pixel
l trace(): should return color of closest hit point along ray.

1. calls findClosestIntersection()
2. If any object intersected ® call shade().

l Shade(): should compute color at hit point
1. For each light source, shoot shadow ray to determine if light source is visible

If not in shadow, compute diffuse + specular contribution.
2. Compute ambient contribution
3. Call trace() recursively for the reflection- and refraction ray.

trace()

shade()

Image plane
light

trace()

shade()

trace()

Point is in shadow

08 + 09. Ray Tracing

Data structures
l Octree

l Kd tree

l Grids

l Bounding box hierarchies
Tomas Akenine-Mőller © 2002

Including mail
boxing Hierarchical

grid

Recursive
grid

Kd-tree = Axis-Aligned BSP tree with
fixed recursive split plane order (e.g.
x,y,z,x,y,z…)

One of the most important slides:

– The rendering equation + BRDF
l Be able to explain all its components

– Monte Carlo sampling:
l The naïve way (an exponentially growing ray tree)
l Path tracing

– Why it is good, compared to naive monte-carlo sampling
– The overall algorithm (on a high level as in these slides).

l Photon Mapping:
1. Shoot photons from light source, and let them bounce around in the scene, and

store them where they land (e.g. in a kD-tree).
2. Ray-tracing pass from the eye. Estimate photon density at each ray hit, by growing

a sphere (at the hit point in the kD-tree) until it contains a predetermined #photons.
Sphere radius is then the inverse measure of the light intensity at the point.

l Bidirectional Path Tracing, Metropolis Light Transport
– Just their names. Don’t need to know the algorithms.

– Denoising by Final Gather or AI
– Final Gather – sample indirect illumination at some positions in the world (final-

gather points). At each ray hit, estimate indirect illumination by interpolation from
nearby final-gather points.

– AI: use some existing Deep Neural Network solution that denoises your images for
your kind of scenes. 86

')')(',()',,(wwwww dLfLL ireo nxx ×+= ò
W

Lecture 10 – Global Illumination

Ulf Assarsson © 2004

Lecture 10 – Global Illumination

Ray tracing

Global
Illumination

Effects to note in Global Illumination image:
1) Indirect lighting (light reaches the roof)
2) Soft shadows (light source has area)
3) Color bleeding (example: roof is red near red wall) (same as 1)
4) Caustics (concentration of refracted light through glass ball)
5) Materials have no ambient component

Monte Carlo Ray Tracing (naïvely)

diffuse floor and wall

eye

')')(',()',,(wwwww dLfLL ireo nxx ×+= ò
W

light light

88

l (Compute local lighting as usual, with a shadow ray per
light.)

l Sample indirect illumination by shooting sample rays
over the hemisphere, at each hit.

Monte Carlo Ray Tracing (naïvely)
l The indirect-illumination sampling gives a ray

tree with most rays at the bottom level. This is
bad since these rays have the lowest influence
on the pixel color.

89

PathTracing
– one efficient Monte-Carlo Ray-Tracing solution
l Path Tracing instead only traces one of the

possible ray paths at a time. This is done by
randomly selecting only one sample direction
at a bounce. Hundreds of paths per pixel are
traced.

Equally number of rays
are traced at each level

90

Even smarter: terminate path with
some probablility after each level,
since they have decreasing
importance to final pixel color.

Or:

Path Tracing – indirect + direct
illumination.

l Shoot many paths per pixel (the image just shows one
light path).
– At each intersection,

l Shoot one shadow ray per light source
– at random position on light, for area/volumetric light sources

l and randomly select one new ray direction.

diffuse floor and wall

eye

light light

91

One path:

Path tracing with soft shadows
(area lights):

l For area lights:
– For each path, at each intersection

l Shoot the shadow ray to a random position on the area light source.

For many paths per pixel, this will converge to a soft
shadow.

diffuse floor and wall

eye

light

D D

D

92

Path tracing: Summary

l Uses Monte Carlo sampling to solve
integration:
– by shooting many random ray paths over the

integral domain.
– Algorithm:

l For each pixel, // we will shoot a number of paths:
– For each path, generate the primary ray:

1. Trace the ray. At hitpoint:
2. Shoot one shadow ray and compute local lighting.
3. Sample indirect illumination randomly over the possible

reflection/refraction directions by generating one such
new ray.

4. Repeat from 1, until the path is randomly terminated (or
the ray does not hit anything).

l Shorter summary: shoot many paths per pixel, by randomly
choosing one new ray at each interaction with surface + one
shadow ray per light. Terminate the path with a random probability93

Final Gather

l Many versions of Final Gathering exist.
l E.g., to compute final-gather point p:

– Send hundreds of random rays out from p to sample indirect illumination
l To use during ray tracing: interpolate global illumination between nearby

Final Gather points, to estimate incoming radiance at the ray’s intersection
point.

p

eye

light

Final
gather
sample

94

Idea and good answer:
• Compute indirect illumination somehow, but only at a

few positions (final gather points) in the scene.
• Estimate indirect illumination for other positions by

interpolation from nearby final-gather points

1. Precompute some
final-gather points

2. Interpolate between
nearby FG points.

Popular for ray tracing and photon
mapping but not path tracing

Photon Mapping - Summary
l Creating Photon Maps:

– Trace photons (~100K-1M) from light source. Store them in kd-tree when they hit diffuse surface. Then,
use russian roulette to decide if the photon should be absorbed or specularly or diffusively reflected.
Create both global map and caustics map. For the Caustics map, we send more of the photons towards
reflective/refractive objects.

l Ray trace from eye:
– As usual: I.e., shooting primary rays and recursively shooting reflection/refraction rays, and at each

intersection point p, compute direct illumination (shadow rays + shading).
– Also grow sphere around each p in caustics map to get caustics contribution and in global map to get

slow-varying indirect illumination.
– If final gather is used: At the first diffuse hit, instead of using global map directly, sample indirect slow

varying light around p by sampling the hemisphere with ~100 – 1000 rays and use the two photon maps
where those rays hit a surface. Or interpolate from nearby final-gather points.

l Growing sphere:
– Uses the kd-tree to expand a sphere around p until a fixed amount (e.g. 50) photons are inside the

sphere. The radius is an inverse measure of the intensity of indirect light at p. The BRDF at p could also
be used to get a more accurate color and intensity value.

Or shorter summary:
1. Shoot photons from light source, and let them bounce around in the scene, and store them where they land

(e.g. in a kD-tree).
2. Ray-tracing pass from the eye. Estimate photon density at each ray hit, by growing a sphere (at the hit

point in the kD-tree) until it contains a predetermined #photons. Sphere radius is then the inverse measure
of the light intensity at the point. 95

Lecture 11: Shadows + Reflection

• Point light / Area light
• Three ways of thinking about shadows

– The basis for different algorithms.
• Shadow mapping

– Be able to describe the algorithm
• Shadow volumes

– Be able to describe the algorithm
– Stencil buffer, 3-pass algorithm, Z-pass, Z-fail,
– Creating quads from the silhouette edges as seen from the light source, etc

• Pros and cons of shadow volumes vs shadow maps
• Planar reflections – how to do. Why not using environment

mapping?

Tomas Akenine-Mőller © 2002

Ways of thinking about shadows
l As separate objects (like Peter Pan's

shadow) This corresponds to planar
shadows

l As volumes of space that are dark
l This corresponds to shadow volumes

l As places not seen from a light source
looking at the scene. This corresponds
to shadow maps

l Note that we already "have shadows" for
objects facing away from light

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps - Summary

Shadow Map Algorithm:

¡ Render a z-buffer from the light source
� Represents geometry in light

¡ Render from camera
� For every fragment:

¡ Transform(warp) its 3D-pos (x,y,z)
into shadow map (i.e. light space) and
compare depth with the stored
depth value in the shadow map

¡ If depth greater-> point in shadow
¡ Else -> point in light
¡ Use a bias at the comparison

Understand z-fighting and light leaks
Shadow Map (=depth buffer)

98

Tutorial Shadow Algorithms for Real-time Rendering

Bias
¡ Need a tolerance threshold

(depth bias) when comparing
depths to avoid surface self
shadowing

Shadow map sample

Shadow map

Surface

View sample
bias

99

Tutorial Shadow Algorithms for Real-time Rendering

Bias
¡ Need a tolerance threshold

(depth bias) when comparing
depths to avoid surface self
shadowing

Shadow map sample

Shadow map

Surface

View sample
bias

SM-based
representation

z-!ghting

without depth bias

shadow map

with depth bias

light leaking at contact shadows

o"set
 SM-based

representation

100

Tutorial Shadow Algorithms for Real-time Rendering

Bias
¡ Need a tolerance threshold

(depth bias) when comparing
depths to avoid surface self
shadowing

Shadow map sample

Shadow map

Surface

View samplebias

SM-based
representation

z-!ghting

without depth bias

shadow map

with depth bias

light leaking at contact shadows

o"set
 SM-based

representation

Surface that
should be in
shadow

101

Percentage Closer Filtering

102

Use a
neighborhood
of the SM pixel
(e.g., 3x3
region) to
compute an
averaged
shadow result
of this region.

Cascaded Shadow Maps

¡ You need high SM resolution close to
the camera and can use lower
further away. So create a separate
SMs per depth region of the view
frustum, with higher spatial
resolution closer to camera.

Tomas Akenine-Mőller © 2002

Shadow volumes
Create shadow quads for all silhouette

edges (as seen from the light source).
(The normals are pointing outwards from the shadow
volume.)

Then…Edges between one triangle front
facing the light source and one
triangle back facing the light source
are considered silhouette edges.

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes - concept

¡ Perform counting with the stencil buffer
� Render front facing shadow quads to the stencil buffer

¡ Inc stencil value, since those represents entering shadow volume
� Render back facing shadow quads to the stencil buffer

¡ Dec stencil value, since those represents exiting shadow volume

0
+2

+ +
- -

• No updating of z-buffer
• Z-test is enabled as usual

105

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes with the Stencil Buffer

¡ A three pass process:
� 1st pass: Render ambient lighting
� 2nd pass:

¡ Draw to stencil buffer only
– Turn off updating of z-buffer and writing to color buffer but still

use standard depth test
– Set stencil operation to

» incrementing stencil buffer count for frontfacing shadow
volume quads, and

» decrementing stencil buffer count for backfacing shadow
volume quads

� 3rd pass: Render diffuse and specular where stencil buffer is 0.

106

Tutorial Shadow Algorithms for Real-time Rendering

The Z-fail Algorithm
¡ Z-pass must offset the stencil buffer with the number of

shadow volumes that the eye is inside. Problematic.
¡ Count to infinity instead of to the eye

� We can choose any reference location for the counting
� A point in light avoids any offset
� Infinity is always in light – if we cap the shadow volumes at

infinity

+2
0

Simply invert z-test and
invert stencil inc/dec

Near capping

Far capping 107

Tomas Akenine-Mőller © 2002

Compared to Z-pass:

Invert z-test

Invert stencil inc/dec

I.e., count to infinity instead of from eye.

Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps vs Shadow Volumes

Shadow Maps Shadow Volumes
� Good: shadows are sharp. Handles omni-

directional lights.
� Bad: 3 passes, shadow polygons must be

generated and rendered ® lots of
polygons & fill
� Solution: culling & clamping

� Good: Handles any rasterizable geometry,
constant cost regardless of complexity, map
can sometimes be reused. Very fast.

� Bad: Frustum limited. Jagged shadows if res
too low, biasing headaches.
� Solution:
� 6 SM (cube map), high res., use

filtering (huge topic)
109

Planar reflections
l We’ve already done reflections in curved surfaces with environment

mapping. But the env.map is assumed to have an infinite radius, such
that only the reflection ray’s direction (not origin) matters. Hence…

l …Environment maps does not work well for reflections in planar surfaces:

l Parallax corrected cube maps fix this, but purely planar reflections are
actually easy to get by reflecting the geometry or camera as we will see
on the next slide…

11
0

Tomas Akenine-Mőller © 2002

Planar reflections
Two methods:
1. Reflecting the object:

– If reflection plane is z=0 (else somewhat more
complicated – see page 504)
l Apply glScalef(1,1,-1);

– Backfacing becomes front facing!
l i.e., use frontface culling instead of backface culling

– Lights should be reflected as well

2. Reflecting the camera in the reflection
plane

Tomas Akenine-Mőller © 2002

Planar reflections
l Assume plane is z=0
l Then apply glScalef(1,1,-1);
l Effect:

z

Important:
• render scaled (1,1,-1)

model
• with reflected ligh pos.
• using front face culling

11
3

Or reflect camera position
instead of the object:

• Render reflection:
1. Render reflective plane to stencil buffer
2. Reflect camera including camera axes ß The important part!
3. Set user clip plane in mirror plane to cull anything between mirror and

reflected camera
4. Render scene from reflected camera.

• Render scene as normal from original camera

R
ight-hand sided

coordinate system

Le
ft-

ha
nd

 s
id

ed

co
or

di
na

te
 s

ys
te

m

Curves and Surfaces - outline
Goal is to explain NURBS curves/surfaces…
• Introduce types of curves and surfaces

– Explicit – not general, easy to compute.
– Implicit – general, non-easy to compute.
– Parametric - general + simple to compute. We choose this.

• A complete curve is split into curve segments, each defined by a
cubical polynomial.

– Introducing Interpolating/Hermite/Bezier curves.
• Adjacent segments should have C2 continuity.

– Leads to B-Splines with a blending function (a spline) per control point
• Each spline consists of 4 cubical polynomials, forming a bell shape translated along u.
• (Also, four bells will overlap at each point on the complete curve.)

• NURBS – a generalization of B-Splines:
– Control points at non-uniform locations along parameter u.
– Individual weights (i.e., importance) per control point

114

12. Curves and Surfaces:

Continuity

• A) Non-continuous
• B) C0-continuous
• C) G1-continuous
• D) C1-continuous
• (C2-continuous)

(a) (b) (c) (d)

See page 726-727 in
Real-time Rendering,
4th ed.

12. Curves and Surfaces:

p0

p1

p2

p3

116

• Introduce the types of curves
– Interpolating

• Blending polynomials for interpolation of 4 control points (fit curve to 4
control points)

– Hermite
• fit curve to 2 control points + 2 derivatives (tangents)

– Bezier
• 2 interpolating control points + 2 intermediate points to define the

tangents
– B-spline – use points of adjacent curve segments

• To get C1 and C2 continuity
– NURBS

• Different weights of the control points
• The control points can be at non-uniform intervalls

Types of Curves
12. Curves and Surfaces:

Splines and Basis
• If we examine the cubic B-spline from the
perspective of each control (data) point,
each interior point contributes (through the
blending functions) to four segments

•We can rewrite p(u) in terms of the data
points as

defining the basis functions {Bi(u)}

puBup ii)()(å=

12. Curves and Surfaces:

B-Splines

u

p0 p1

p2

p3

p4

p5

p6 p7

p8

u=0 8
u

1 2 3 4 5 6 7

These are our control points, p0-
p8, to which we want to
approximate a curve

Illustration of how the control points are evenly (uniformly) distributed
along the parameterisation u of the curve p(u).

In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of the closest 4 surrounding points. Below are shown the
weights for each point along u=0®1

p0 p1 p2 p3 p4 p5 p6 p7 p8

100%

12. Curves and Surfaces:

B-Splines

p0 p1 p2 p3 p4

u

p5 p6 p7 p8

100%

The weight function (blend function) Bpi (u) for a point pi can thus be
written as a translation of a basis function B(t). Bpi(u) = B(u-i)

B(t):

t
0 1 2-1-2

100%

Blendfunction B1(u) for
point p1

puBup ii)()(å=
Our complete B-spline
curve p(u) can thus be
written as:

SUMMARY

In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of the closest 4 surrounding points. Below are shown the
weights for each point along u=0®1

NURBS
NURBS is similar to B-Splines except that:
1. The control points can have different weights, wi,

(heigher weight makes the curve go closer to that
control point)

2. The control points do not have to be at uniform
distances (u=0,1,2,3...) along the parameterisa-
tion u. E.g.: u=0, 0.5, 0.9, 4, 14,…

NURBS = Non-Uniform Rational B-Splines
The NURBS-curve is thus defined as:

Division with the sum of the weights,
to make the combined weights sum
up to 1, at each position along the
curve. Otherwise, a translation of the
curve is introduced (which is not
desirable)

p(u) =
Bi (u)wii=0

n−1
∑ p(i)

Bi (u)wii=0

n−1
∑

12. Curves and Surfaces:

NURBS
• Allowing control points at non-uniform distances

means that the basis functions Bpi() are being
streched and non-uniformly located.

• E.g.:

Each curve Bpi() should of course look smooth and C2 –continuous.
But it is not so easy to draw smoothly by hand…(The sum of the
weights are still =1 due to the division in previous slide)

12. Curves and Surfaces:

u

• Perspective correct
interpolation (e.g. for textures)

• Taxonomy:
– Sort first
– sort middle
– sort last fragment
– sort last image

• Bandwidth
– Why it is a problem and how to ”solve” it

• L1 / L2 caches
• Texture caching with prefetching, (warp switching)
• Texture compression, Z-compression, Z-occlusion testing (HyperZ)

• Be able to sketch the functional blocks and relation to hardware for a
modern graphics card (next slide→)

Linearly interpolate (ui/wi, vi/wi, 1/wi) in screenspace
from each triangle vertex i.
Then at each pixel:

uip = (u/w)ip / (1/w)ip
vip = (v/w)ip / (1/w)ip

where ip = screen-space interpolated value from
the triangle vertices.

Sort-
first

Sort-
middle

Sort-last
fragment
Sort-last
image

122

Lecture 13:

Department of Computer Engineering

Application

PCI-E x16

Vertex
shader

Vertex
shader

Vertex
shader…

Primitive assembly

Clipping

Fragment Generation

…

Geo
shader

Geo
shader

Geo
shader

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

The graphics-pipeline’s funcional
blocks and their relation to hardware

Fixed function hardware

Fixed function hardware
Fragment
shader

Fragment
shader

Fragment
shader

Fragment
Merge

Fragment
Merge

Fragment
Merge

…
Sort

