
Full-time wrapup



Lecture 1

• Application-, geometry-, rasterization stage
• Real-time Graphics pipeline
• Modelspace, worldspace, viewspace, clip space, 

screen space
• Z-buffer
• Double buffering
• Screen tearing



Lecture 1: Real-time Rendering
The Graphics Rendering Pipeline

• Three conceptual stages of the pipeline:
– Application (executed on the CPU)

• logic, speed-up techniques, animation, etc…
– Geometry

• Executing vertex and geometry shader
• Vertex shader: 

– lighting computations per triangle vertex
– Project onto screen (3D to 2D)

– Rasterizer
• Executing fragment shader
• Interpolation of per-vertex  parameters (colors, texcoords etc) over triangle
• Z-buffering, fragment merge (i.e., blending), stencil tests…

Application Geometry Rasterizer

3D
sceneinput

Image

output
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Rendering Pipeline and 
Hardware

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Appli-
cation
Stage

CPU

Geometry Stage Rasterization Stage

GPU
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Hardware design

light

Geometry

blue

red green

Vertex shader:

•Lighting (colors)

•Screen space positions

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage
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Hardware design Geometry shader:

•One input primitive

•Many output primitives

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

or

Geometry Stage
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Hardware design Clips triangles against
the unit cube (i.e., 
”screen borders”)

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage
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Hardware design Maps window size to
unit cube

HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Rasterizer Stage
Geometry stage always operates inside 
a unit cube [-1,-1,-1]-[1,1,1]
Next, the rasterization is made against a 
draw area corresponding to window 
dimensions.



Hardware design
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HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Collects three vertices
into one triangleRasterizer Stage



Hardware design
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HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Creates the 
fragments/pixels for the 
triangle

Rasterizer Stage



blue

red green
Rasterizer

Hardware design
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HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Pixel Shader:
Compute color 
using:
•Textures
•Interpolated data 
(e.g. Colors + 
normals) from 
vertex shader

Rasterizer Stage



Hardware design
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HARDWARE

Vertex 
shader

Pixel
shader

Display

Geometry
shader Merger

Frame buffer:
• Color buffers

• Depth buffer

• Stencil buffer

The merge units update
the frame buffer with the 
pixel’s color

Rasterizer Stage



Application Geometry Rasterizer

model space world space world space

e.g., compute lighting

camera space

Do projection
clip space

(or unit space)

clip map to screen
screen space

Done in vertex shader
Fixed hardware function

Per-vertex computations
GEOMETRY – transformation summary



Painter’s Algorithm
• Render polygons a back to front order so that polygons 

behind others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons 
first 

–O(n log n) calculation for ordering
–Not every polygon is either in 
front or behind all other polygons

I.e., : Sort all triangles and  
render them back-to-front. 



z-Buffer Algorithm
• Use a buffer called the z or depth buffer to store 
the depth of the closest object at each pixel found 
so far

• As we render each polygon, compare the depth 
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and 
update z buffer

Also know double buffering!



• We do not want to show
the image until its drawing
is finished.

• The front buffer is displayed
• The back buffer is rendered to
• When new image has been created in back buffer,

swap the Front-/Back-buffer pointers.
• Use vsynch or screen tearing will occur…

i.e., when the swap happens in the middle of the screen with respect to the screen refresh 
rate.

Application Geometry RasterizerThe RASTERIZER 
double-buffering

Front buffer
(rgb color buffer)

Back buffer
(rgb color buffer)

Last fully finished 
drawn frame.

Color buffer we draw to.
Not displayed yet.



Application Geometry RasterizerThe RASTERIZER 
double-buffering – screen tearing

Example if the swap happens here (w.r.t the screen refresh rate).
Solution: use vsynch to swap buffers after monitor has 
”updated” the screen. See page 1011-1012.

old

new



Screen Tearing
Swapping 
back/front buffers

Screen tearing is solved by using V-Sync.
V-Sync: swap front/back buffers during vertical blank (vblank) instead.

vblank



The default frame buffer:
Typically: Front + Back color buffers + Z buffer + (Stencil buffer)

Front buffer
(rgb color buffer)

Z buffer
(depth)

Stores rgb(a) value per pixel.
Default: 8 bits per r,g,b channel.

Stores fragment’s 
depth value per 
pixel, typically: (16), 
24, or 32 bits.

Back buffer
(rgb color buffer)

Stencil buffer

Stencil buffer can be 
asked for. 8-bits per 
pixel.

Last fully finished 
drawn frame.
Is displayed.

Color buffer we draw to.
Not displayed yet.

To resolve visibility
Used for masking rendering 
to only where pixel’s stencil 
value = some specific value.



Lecture 2: Transforms

• Homogeneous notation
• Rigid-body transform, Euler rotation (head,pitch,roll)
• Change of frames
• Quaternions

– Know what they are good for. Not knowing the mathematical rules. 

 

Use :  N= M-1( )T     instead of M

l Transformation pipeline: ModelViewProjection matrix
l Scaling, rotations, translations, projection
l Cannot use same matrix to transform normals

l …represents a rotation of 2f radians around axis
uq of point p

l Understand the simple DDA algorithm
l Bresenhams line-drawing algorithm

)cos,(sinˆ ff quq =

1ˆˆˆ -qpq

(M-1)T=M if rigid-body 
transform
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v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

l
l
l

object
space

View/Eye/
Camera
space

Unit-cube 
space /
Normalized

device coords

Window 
coords.
Screen 
space

Transformation
Pipeline

OpenGL | Geometry stage | done on GPU

What we do in the vertex shader:

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

The perspective division is then done automatically by the GPU 
before the GPU does clipping and screen mapping.

Homogeneous 
coord. space

Lecture 2:
Clip space: clipping is nowadays typically done in 
homogeneous space. However, it used to be done in 
unit-cube space. Both terminologies are still used.



cameraModel space World space View space

Model to World 
Matrix

World to View
Matrix

ModelViewMtx = ”Model to View Matrix”

ModelViewMtx * v = (MVçW * MWçM) * v

vview_space = ModelViewMtx * vmodel_space

Full projection:

Vclip_space = projectionMatrix * ModelViewMatrix * vmodel_space

Or simply: vclip_space = MModelViewProjection * v 

x

y

z

Projection
Matrix

, where MModelViewProjection = projectionMatrix * ModelViewMatrix
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Lecture 2: Transforms

l Homogeneous notation
l Rigid-body transform, Euler rotation (head,pitch,roll)
l Change of frames
l Quaternions

– Know what they are good for. Not knowing the 
mathematical rules. 

 

Use :  N= M-1( )T     instead of M

l Scaling, rotations, translations, projection
l Cannot use same matrix to transform normals

l …represents a rotation of 2f radians around
axis uq of point p

l Bresenhams line-drawing algorithm

)cos,(sinˆ ff quq =

1ˆˆˆ -qpq

(M-1)T=M 
if rigid-
body 
transform
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Homogeneous notation
l A point:
l Translation becomes:

l A vector (direction):
l Translation of vector:
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02. Vectors and Transforms



Change of Frames
• How to get the Mmodel-to-world matrix:
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E.g.:  pworld = Mm®w pmodel = Mm®w (0,5,0,1)T = 5 b  (+ o) 
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(Both coordinate systems are right-handed)
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The basis vectors a,b,c
are expressed in the 
world coordinate system
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world space

model space

Change of Frames
pmodelspace =(px,py,pz)

Let’s initially disregard the translation o. I.e., o=[0,0,0]
X: One step along a results in ax steps along world space axis x.

One step along b results in bx steps along world space axis x.
One step along c results in cx steps along world space axis x.

The x-coord for p in world space (instead of modelspace) is thus [ax bx cx]p.
The y-coord for p in world space is thus [ay by cy]p.
The z-coord for p in world space is thus [az bz cz]p.

With the translation o we get pworldspace= Mmodel-to-world pmodelspace

Same example, just explained differently:
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Projections
l Orthogonal (parallel) and Perspective

02. Vectors and Transforms
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Orthogonal projection
l Simple, just skip one coordinate

– Say, we’re looking along the z-axis
– Then drop z, and render
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02. Vectors and Transforms



DDA Algorithm
• Digital Differential Analyzer

–DDA was a mechanical device for numerical 
solution of differential equations

–Line y=kx+ m satisfies differential equation
dy/dx = k = Dy/Dx = y2-y1/x2-x1

• Along scan line Dx = 1
y=y1;
For(x=x1; x<=x2,ix++) {
write_pixel(x, round(y), line_color)
y+=k;

}

02. Vectors and Transforms



Using Symmetry

•Use for 1 ³ k ³ 0
•For k > 1, swap role of x and y

–For each y, plot closest x

Otherwise we get 
problem for steep 
slopes

02. Vectors and Transforms



• The problem with DDA is that it uses floats
which was slow in the old days

• Bresenhams algorithm only uses integers

You do not need to know Bresenham’s algorithm
by heart. It is enough that you understand it if
you see it.

Very Important!

02. Vectors and Transforms



Lecture 3.1: Shading
• Ambient, diffuse, specular, emission

– Formulas, 
– Phongs vs Blinns highlight model.

• Half vector: 𝒉 = 𝒍"𝒗
| 𝒍"𝒗 |

• Flat, Goraud, and Phong shading
• Fog
• Transparency
• Gamma correction



Lighting
i=iamb+idiff+ispec+iemission

++

=

Know how to compute components. 

Lecture 3: Shading

ambambamb smi Ä= diffdiffdiff smlni Ä×= )(

 

ispec =max(0,(h× n))mshimspec Ä sspec

Phong’s reflection model:

Blinn’s reflection model:

 

ispec =max(0,(r× v))mshimspec Ässpec
emissionemission mi =
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Diffuse component : idiff
l i=iamb+idiff+ispec+iemission
l Diffuse is Lambert’s law: fcos=×= lndiffi

l Photons are scattered equally in all 
directions

diffdiffdiff smlni Ä×= )(

03. Shading:

(Note that n and l need to be 
normalized)
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Lighting
Specular component : ispec

l Diffuse is dull (left)
l Specular: simulates a highlight

03. Shading:
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Specular component: Phong
l Phong specular highlight model
l Reflect l around n:

l)n2(nlr ×+-=

n

lr

-l
nln )( ×

ln ×

shishi mm
speci )(cos)( r=×= vr

 

ispec =max(0,(r× v))mshimspec Ässpec
l Next: Blinns highlight formula: (n.h)m

03. Shading:

(n needs to be 
normalized)



Halfway Vector

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
(l+v)/2 is halfway between l and v
If n, l, and v are coplanar:

y = f/2
Must then adjust exponent
so that (n·h)e’ ≈ (r·v)e

(e’ ≈ 4e)

03. Shading:

specspec
m

spec
shi smnhi Ä×= ))(,0max(
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Shading
l Flat, Goraud, and Phong shading:

l Flat shading: one normal per triangle. Lighting computed once for the whole
triangle. 

l Gouraud shading: the lighting is computed per triangle vertex and for each
pixel, the color is interpolated from the colors at the vertices.

l Phong Shading: the lighting is not computed per vertex. Instead the normal 
is interpolated per pixel from the normals defined at the vertices and full 
lighting is computed per pixel using this normal. This is of course more
expensive but looks better. 

Flat Gouraud Phong

Gouraud 
shading

Phong 
shading

Flat 
shading

03. Shading:
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l Color of fog:         color of surface: fc sc

€ 

c p = fcs + (1− f )c f       f ∈[0,1]
l How to compute f ?
l E.g., linearly:

startend

pend

zz
zz

f
-

-
=
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Transparency and alpha
l Transparency

– Very simple in real-time contexts

l The tool: alpha blending (mix two colors)
l Alpha (a) is another component in the 

frame buffer, or on triangle
– Represents the opacity 
– 1.0 is totally opaque
– 0.0 is totally transparent

l The over operator: dso ccc )1( aa -+=
Rendered object

03. Shading:

(Blending)



Transparency
l Need to sort the transparent objects

– First, render all non-transparent triangles as 
usual. 

– Then, sort all transparent triangles and render
back-to-front with blending enabled.  (and using
standard depth test)
l The reason is to avoid problems with the depth test and 

because the blending operation (i.e., over operator) is order 
dependent.

03. Shading:

If we have high frame-to-frame coherency regarding the objects to be sorted
per frame, then Bubble-sort (or Insertion sort) are really good! Superior to 
Quicksort.
Because, they have expected runtime of resorting already almost sorted
input in O(n) instead of O(n log n), where n is number of elements.



Gamma correction
l Reasons for wanting gamma correction

(standard is 2.2):
1. Screen has non-linear color intensity

– We often want linear output (e.g. for correct antialiasing)

2. Also happens to give more efficient color space (when 
compressing intensity from 32-bit floats to 8-bits). Thus, often 
desired when storing textures.

Tomas Akenine-Mőller © 2002

Gamma of 2.2. Better 
distribution for humans. 
Perceived as linear.

Truly linear intensity 
increase.

A linear intensity output (bottom) has a large jump in perceived brightness between the 
intensity values 0.0 and 0.1, while the steps at the higher end of the scale are hardly 
perceptible. 
A nonlinearly-increasing intensity (upper), will show much more even steps in 
perceived brightness.

)/1( g
icc =

(x(1/γ)) γx(1/γ)xγ



Leture 3.2: Sampling, filtrering, and Antialiasing

• When does it occur?
– In 1) pixels, 2) time, 3) texturing

• Supersampling schemes:
• Quincunx + weights

• Jittered sampling
– Why is it good?

• Supersampling vs multisampling vs 
coverage sampling



SSAA, MSAA and CSAA
l Super Sampling Anti Aliasing

– Stores duplicate information (color, depth, stencil) for each sample and 
fragment shader is run for each sample.

– Corresponds to rendering to an oversized buffer and downfiltering.
l Multi Sampling Anti Aliasing

– Shares some information between samples. E.g:
l Result of Frament shader – Frag. shader is only run once per rasterized fragment. 
l But stores a color per sample and typically also a stencil and depth-value per sample

l Coverage Sampling Anti Aliasing
– Idea: Don’t even store unique color and depth per sample.

In each subsample, store index into a per-pixel
list of 4-8 colors+depths.

– I.e., for 4-8 polygons, store their coverage.
– Fragment shader executed once per rasterized

fragment

– E.g., Each sample holds a 
2-bit index into a table (a storage 
of up to four colors per pixel)

Tomas Akenine-Mőller © 200344

16x CSAA
+ z



04. Texturing
What is most important:
• Filtering: magnification, minification

– Mipmaps + their memory cost
– How compute bilinear/trilinear filtering
– Number of texel accesses for trilinear filtering
– Anisotropic filtering

• Environment mapping – cube maps, how compute lookup.
• Bump mapping
• 3D-textures – what is it?
• Sprites
• Billboards/Impostors, viewplane vs viewpoint oriented, axial 

billboards, how to handle depth buffer for fully transparent 
texels. 

• Particle systems
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FILTERING:
l For magnification: Nearest or Linear (box vs Tent 

filter)

l For minification: nearest, linear and…
– Bilinear – using mipmapping
– Trilinear – using mipmapping
– Anisotropic – up to 16 mipmap lookups along line of anisotropy

Filtering
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Mipmapping
l Image pyramid
l Half width and  

height when going
upwards

l Average over 4 ”parent texels” to form 
”child texel”

l Depending on amount of minification, 
determine which image to fetch from

l Compute d first, gives two images
– Bilinear interpolation in each

u

v

d
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Mipmapping
l Interpolate between those bilinear values

– Gives trilinear interpolation

l Constant time filtering: 8 texel accesses

v
u

d

Level n+1

Level n

(u0,v0,d0)
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Mipmapping:
Memory requirements
l Not twice the number of bytes…!

1/4
1/16

1/1

1/64

Modified by Ulf Assarsson 2004
l Rather 33% more – not that much



Anisotropic texture filtering

(See page 
188-189)
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Environment mapping

l Assumes the environment is infinitely far away
l Sphere mapping, or Cube mapping
l Cube mapping is the norm nowadays

Modified by Ulf Assarsson 2004
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x

y

z

Cube mapping

l Simple math: compute reflection vector, r
l Largest abs-value of component, determines which cube face.

– Example: r=(5,-1,2) gives POS_X face
l Divide r by abs(5) gives (u,v)=(-1/5,2/5)
l Also remap from [-1,1] to [0,1] by (u,v) = ((u,v)+vec2(1,1))*0.5;
l Your hardware does all the work for you. You just have to

compute the reflection vector. 

neye
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Bump mapping
l by Blinn in 1978
l Inexpensive way of simulating wrinkles

and bumps on geometry
– Expensive to model these geometrically

l Instead let a texture modify the normal at 
each pixel, and then use this normal to
compute lighting per pixel

geometry Bump map
Stores heights: can derive normals

+
Bump mapped geometry

=



Normal mapping in tangent vs object space

Tangent space:
lNormals are stored as distorsion of face orientation. The same bump map 
can be tiled/repeated and reused for many faces with different orientation54

Object space:
•Normals are stored directly in 
model space. I.e., as 
including both face orientation
plus distorsion. 

Normal map

Tangent space:
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3D Textures
l 3D textures:

– Texture filtering is no longer trilinear
– Rather quadlinear (linear interpolation 4 times)
– Enables new possibilities

l Can store light in a room, for example



Sprites
GLbyte M[64]=
{ 127,0,0,127, 127,0,0,127, 

127,0,0,127, 127,0,0,127,
0,127,0,0,   0,127,0,127, 
0,127,0,127, 0,127,0,0,
0,0,127,0,   0,0,127,127, 
0,0,127,127, 0,0,127,0,
127,127,0,0, 127,127,0,127, 
127,127,0,127, 127,127,0,0};

void display(void) {
glClearColor(0.0,1.0,1.0,1.0);
glClear(GL_COLOR_BUFFER_BIT);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, 

GL_ONE_MINUS_SRC_ALPHA);
glRasterPos2d(xpos1,ypos1);
glPixelZoom(8.0,8.0);
glDrawPixels(width,height,

GL_RGBA, GL_BYTE, M);

glPixelZoom(1.0,1.0);
SDL_GL_SwapWindow //”Swap buffers”

}
56

Sprites (=älvor) was a technique on older home 
computers, e.g. VIC64. As opposed to billboards, 
sprites do not use the frame buffer. They are rasterized 
directly to the screen using a special chip. (A special 
bit-register also marked colliding sprites.)

Just know what “sprites” are and that 
they are very similar to a billboard



Billboards
• 2D images used 

in 3D 
environments
– Common for 

trees, 
explosions, 
clouds, lens 
flares



• Rotate them towards viewer
– Either by rotation matrix  (see OH 288), or
– by orthographic projection

Billboards

58

normal

View 
vector

Rotation 
axis

Rot 
angle

=> Rotation matrix for the 
billboard



• Fix correct transparency by 
blending AND using alpha-
test
– In fragment shader:

if (color.a < 0.1) discard;

Billboards
Color Buffer         Depth Buffer

With 
blending

With 
alpha test

If alpha value in texture
is lower than this 
threshold value, the pixel 
is not rendered to. I.e., 
neither frame buffer nor 
z-buffer is updated,  
which is what we want to 
achieve.               
E.g. here: so that objects behind is visible through the hole



(Also called Impostors)

axial billboarding
The rotation axis is fixed and 
disregarding the view position

n



Lecture 5: OpenGL

• How to use OpenGL (or DirectX)
– Will not ask about syntax. Know how to use.

• I.e. functionality
– E.g. how to achieve

• Blending and transparency
• Fog – how would you implement in a fragment 

shader?
– pseudo code is enough

• Specify a material,  a triangle, how to translate or 
rotate an object.

• Triangle – vertex order and facing
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l Understand at pseudo code level!

Reflections with environment 
mapping

VERTEX SHADER
in vec3 vertex;
in  vec3 normalIn; // The normal
out vec3 normal;   
out vec3 eyeVector;
uniform mat4 normalMatrix;
uniform mat4 modelViewMatrix;
uniform mat4 modelViewProjectionMatrix; 

void main() 
{

gl_Position = modelViewProjectionMatrix *vec4(vertex,1);
normal = (normalMatrix * vec4(normalIn,0.0)).xyz;
eyeVector = (modelViewMatrix * vec4(vertex, 1)).xyz;

}
FRAGMENT SHADER
in vec3 normal; 
in vec3 eyeVector; 
uniform samplerCube tex1;
out vec4 fragmentColor;

void main() 
{

vec3 reflectionVector = normalize(reflect(normalize(eyeVector),     
normalize(normal))); 

fragmentColor = texture(tex1, reflectionVector);
}



63

Buffers
l Frame buffer

– Back/front/left/right – glDrawBuffers()
– Offscreen buffers (e.g., framebuffer objects, auxiliary buffers)

Frame buffers can consist of:
l Color buffer - rgb(a) 
l Depth buffer (z-buffer)

– For correct depth sorting
– Instead of BSP-algorithm or painters algorithm…

l Stencil buffer
– E.g., for shadow volumes or only render to frame buffer where

stencil = certain value (e.g., for masking).



Lecture 6: Intersection Tests
• Analytic test: 

– Be able to compute ray vs sphere or other similar formula
– Ray/triangle, ray/plane
– Point/plane, Sphere/plane, box/plane
– Know equations for ray, sphere, cylinder, plane, triangle

• Geometrical tests
– Ray/box with slab-test
– Ray/polygon (3D->2D)
– AABB/AABB
– View frustum vs spheres/AABB:s/BVHs.
– Separating Axis Theorem (SAT)

• Know what a dynamic test is
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Analytical:
Ray/plane intersection

l Ray: r(t)=o+td
l Plane formula: n•p + d = 0

l Replace p by r(t) and solve for t: 
n•(o+td) + d = 0
n•o+tn•d + d = 0
t = (-d -n•o) / (n•d)

o d n

Here, one scalar 
equation and one 
unknown -> just solve 
for t.
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Analytical:
Ray/sphere test
l Sphere center: c, and radius r
l Ray: r(t)=o+td
l Sphere formula: ||p-c||=r
l Replace p by r(t): ||r(t)-c||=r
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This is a standard quadratic equation. Solve for t.
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Geometrical:
Ray/Box Intersection (2)
l Intersect the 2 planes of each slab with 

the ray

min
xt

max
xt

min
yt

max
yt

l Keep max of tmin and min of tmax

l If tmin < tmax then we got an intersection
l Special case when ray parallell to slab



Point/Plane
l Insert a point x into plane equation:

0:    :Plane =+× dpnp

?)( =+×= df xnx
plane on the s'for      0)( xxnx =+×= df

 sideother  on the s'for      0)( xxnx >+×= dfPositive
half space

plane  theof side oneon  s'for      0)( xxnx <+×= dfNegative
half space



Sphere/Plane
Box/Plane
l Sphere: compute

0:    :Plane =+× dpnp
r            :Sphere c

AABB:    bmin    bmax

df +×= cnc)(
l f (c) is the signed distance (n normalized)

l Box: insert all 8 corners
l If all f ’s have the same sign, then all 

points are on the same side, and no 
collision

l abs( f (c)) > r      no collision
l abs( f (c)) = r      sphere touches the plane
l abs( f (c)) < r      sphere intersects plane



n

AABB/plane
l The smart way (shown in 2D)
l Find the two vertices that have the most 

positive and most negative value when tested 
againt the plane

Need only test
the red points

0:    :Plane =+× dpnp
r            :Sphere c

maxmin        :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx :bminx
v posy = (ny > 0)?bmaxy :bminy
v posz = (nz > 0)?bmax z :bminz
vnegx = (nx < 0)?bmaxx :bminx
vnegy = (ny < 0)?bmaxy :bminy
vnegz = (nz < 0)?bmax z :bminz

See page 970 for even faster version. 
OBB almost as easy. Just first project
n on OBB’s axes – see p: 972



Another analytical example: 
Ray/Triangle in detail

l Ray: r(t)=o+td
l Triangle vertices: v0, v1, v2

l A point in the triangle:
t(u,v) = v0 + u(v1 - v0 ) + v(v2 - v0 ) 

where [u,v>=0, u+v<=1] is inside triangle

l Set t(u,v)=r(t), and solve for t, u, v:
v0+u(v1 - v0 ) +v(v2 - v0 )  = o+td
=> -td + u(v1 - v0 ) + v(v2 - v0 ) = o-v0
=> [-d, (v1 - v0 ), (v2 - v0 )]  [t, u, v]T = o-v0

v2
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Ray/Polygon: very briefly
l Intersect ray with polygon plane
l Project from 3D to 2D
l How?
l Find max(|nx|,|ny|,|nz|)
l Skip that coordinate!
l Then, count crossing in 2D
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View frustum testing example

l Algorithm: 
– if sphere is outside any of the 6 frustum planes -> report ”outside”. 
– Else report intersect.

l Not exact test, but not incorrect, i.e.,
– A sphere that is reported to be inside, can be outside
– Not vice versa, so test is conservative

outside
frustum

intersecting
frustum



Lecture 7.1: Spatial Data Structures and 
Speed-Up Techniques

• Speed-up techniques
– Culling

• Backface
• View frustum (hierarchical)

• Portal
• Occlusion Culling
• Detail

– Levels-of-detail:

• How to construct and use the spatial data structures
• BVH, BSP-trees (polygon aligned + axis aligned), 

quadtree/octree
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Axis Aligned Bounding Box 
Hierarchy - an example
l Assume we click on screen, and want to 

find which object we clicked on

click!
1) Test the root first
2) Descend recursively as needed
3) Terminate traversal when possible
In general: get O(log n) instead of O(n)
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How to create a BVH?
Example: using AABBs
l Find minimal box, then split along longest axis

x is longest Find minimal
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
Similar for other BVs

AABB = Axis Aligned 
Bounding Box

BVH = Bounding Volume 
Hierarchy



Axis-aligned BSP tree
Rough sorting
l Test the planes, recursively from root, against the point of view. For each 

traversed node:
– If node is leaf, draw the node’s geometry
– else

l Continue traversal on the ”hither” side with respect to the eye to sort front to back
l Then, continue on the farther side.

eye

0

1a

A B

1b

C 2

D E

1

1a 1b

2

0

23
4 5

l Works in the same way for polygon-
aligned BSP trees --- but that gives 
exact sorting



Polygon-aligned BSP tree
l Allows exact sorting
l Very similar to axis-aligned BSP tree

– But the splitting plane are now located in the 
planes of the triangles

Know how to build it 
and how to traverse 
back-to-front or 
front-to-back with 
respect to the eye 
position (here: v)

Drawing Back-to-Front {
recurse on farther side of P;
Draw P;
Recurse on hither side of P;

}// farther/hither is with respect to eye pos.



Scene graphs
– a node hierarchy

l A scene graph is a node hierarchy, which often reflects a 
logical hierarchical scene description

– often in combination with a BVH such that each node has a BV.

l Common hierarchical features include:
– Lights
– Materials
– Transforms
– Transparency
– Selection

79

A Scene Graph is a hierarchical scene description –
more typically a logical hierarchy (than e.g. spatial)



Lecture 7.2: Collision Detection
• 3 types of algorithms:

– With rays
• Fast but not exact

– With BVH
• Slower but exact
• You should be able to write pseudo code for BVH/BVH test for 

coll det between two objects.

– For many many objects.
• Course pruning of ”obviously” non-colliding objects
• E.g., Use a grid with an object list per cell, storing the objects that intersect that cell. 

For each cell with list length > 1, test those against each other with a more exact
method.

• Sweep-and-prune (explain)



Pseudo code for BVH against BVH

Pseudocode
deals with 4 cases:

1) Leaf against   
leaf node

2) Internal node
against internal node

3) Internal against leaf
4) Leaf against internal

if return true;

if return true;

if return true;

if return true;

0:      if(not overlap(A, B)) return false; 

A B



Lecture 8+9: Ray tracing
• Adaptive Super Sampling scheme:
• Jittering:
• How to stop ray tracing recursion? Send weight…
• Spatial data structures: 

– Draw: BVH: AABB/OBB/sphere. BSP-trees: polygon-aligned +
AABSP=kd-tree. Octree/quadtree. Grids, hierarchical/recursive grids.

• Speedup techniques
• Optimizations for BVHs: skippointer tree
• Ray BVH-traversal
• Grids: mailboxing – purpose and how it works.
• (You do not need to learn the ray traversal algorithms for Grids nor 

AA-BSP trees) 
• Shadow cache

• Material:  

• Constructive Solid Geometry – how to implement

Metall: rgb-dependent Fresnel effect
Dielectrics: not rgb-dependent.



Adaptive Supersampling
Pseudo code:
Color  AdaptiveSuperSampling() {

– Make sure all 5 samples exist
l (Shoot new rays along diagonal if necessary)

– Color col = black;
– For each quad i

l If the colors of the 2 samples are fairly similar
– col += (1/4)*(average of the two colors)

l Else 
– col +=(1/4)* 

adaptiveSuperSampling(quad[i])

– return col;
}

Tomas Akenine-Mőller © 2002
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Summary of the Ray tracing-
algorithm:

l main()-calls trace() for each pixel
l trace(): should return color of closest hit point along ray. 

1. calls findClosestIntersection() 
2. If any object intersected ® call shade().

l Shade(): should compute color at hit point 
1. For each light source, shoot shadow ray to determine if light source is visible 

If not in shadow, compute diffuse + specular  contribution.
2. Compute ambient contribution
3. Call trace() recursively for the reflection- and refraction ray.

trace()

shade()

Image plane
light

trace()

shade()

trace()

Point is in shadow

08 + 09. Ray Tracing



Data structures
l Octree

l Kd tree

l Grids

l Bounding box hierarchies 
Tomas Akenine-Mőller © 2002

Including mail 
boxing Hierarchical

grid

Recursive
grid

Kd-tree = Axis-Aligned BSP tree with 
fixed recursive split plane order (e.g. 
x,y,z,x,y,z…)

One of the most important slides:



– The rendering equation + BRDF
l Be able to explain all its components

– Monte Carlo sampling:
l The naïve way (an exponentially growing ray tree)
l Path tracing 

– Why it is good, compared to naive monte-carlo sampling
– The overall algorithm (on a high level as in these slides).

l Photon Mapping:
1. Shoot photons from light source, and let them bounce around in the scene, and 

store them where they land (e.g. in a kD-tree).
2. Ray-tracing pass from the eye. Estimate photon density at each ray hit, by growing 

a sphere (at the hit point in the kD-tree) until it contains a predetermined #photons. 
Sphere radius is then the inverse measure of the light intensity at the point. 

l Bidirectional Path Tracing, Metropolis Light Transport
– Just their names. Don’t need to know the algorithms.

– Denoising by Final Gather or AI
– Final Gather – sample indirect illumination at some positions in the world (final-

gather points). At each ray hit, estimate indirect illumination by interpolation from 
nearby final-gather points.

– AI: use some existing Deep Neural Network solution that denoises your images for 
your kind of scenes. 86
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Lecture 10 – Global Illumination
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Lecture 10 – Global Illumination

Ray tracing

Global
Illumination

Effects to note in Global Illumination image:
1) Indirect lighting (light reaches the roof)
2) Soft shadows (light source has area)
3) Color bleeding (example: roof is red near red wall) (same as 1)
4) Caustics (concentration of refracted light through glass ball)
5) Materials have no ambient component



Monte Carlo Ray Tracing (naïvely)

diffuse floor and wall 

eye

')')(',()',,( wwwww dLfLL ireo nxx ×+= ò
W

light light

88

l (Compute local lighting as usual, with a shadow ray per 
light.)

l Sample indirect illumination by shooting sample rays 
over the hemisphere, at each hit.



Monte Carlo Ray Tracing (naïvely)
l The indirect-illumination sampling gives a ray

tree with most rays at the bottom level. This is 
bad since these rays have the lowest influence
on the pixel color.

89



PathTracing 
– one efficient Monte-Carlo Ray-Tracing solution
l Path Tracing instead only traces one of the 

possible ray paths at a time. This is done by 
randomly selecting only one sample direction
at a bounce. Hundreds of paths per pixel are
traced.

Equally number of rays
are traced at each level

90

Even smarter: terminate path with
some probablility after each level, 
since they have decreasing
importance to final pixel color.

Or:



Path Tracing – indirect + direct
illumination.

l Shoot many paths per pixel (the image just shows one 
light path).
– At each intersection, 

l Shoot one shadow ray per light source
– at random position on light, for area/volumetric light sources

l and randomly select one new ray direction.

diffuse floor and wall 

eye

light light

91

One path:



Path tracing with soft shadows
(area lights):

l For area lights:
– For each path, at each intersection

l Shoot the shadow ray to a random position on the area light source.

For many paths per pixel, this will converge to a soft 
shadow.

diffuse floor and wall 

eye

light

D D

D

92



Path tracing: Summary

l Uses Monte Carlo sampling to solve
integration: 
– by shooting many random ray paths over the 

integral domain.
– Algorithm: 

l For each pixel, // we will shoot a number of paths:
– For each path, generate the primary ray:

1. Trace the ray. At hitpoint:
2. Shoot one shadow ray and compute local lighting.
3. Sample indirect illumination randomly over the possible

reflection/refraction directions by generating one such
new ray.

4. Repeat from 1, until the path is randomly terminated (or 
the ray does not hit anything).

l Shorter summary: shoot many paths per pixel, by randomly
choosing one new ray at each interaction with surface + one
shadow ray per light. Terminate the path with a random probability93



Final Gather

l Many versions of Final Gathering exist.
l E.g., to compute final-gather point p:

– Send hundreds of random rays out from p to sample indirect illumination
l To use during ray tracing: interpolate global illumination between nearby

Final Gather points, to estimate incoming radiance at the ray’s intersection
point.

p

eye

light

Final 
gather
sample

94

Idea and good answer: 
• Compute indirect illumination somehow, but only at  a 

few positions (final gather points) in the scene. 
• Estimate indirect illumination for other positions by 

interpolation from nearby final-gather points

1. Precompute some 
final-gather points

2. Interpolate between 
nearby FG points.

Popular for ray tracing and photon 
mapping but not path tracing



Photon Mapping - Summary
l Creating Photon Maps: 

– Trace photons (~100K-1M) from light source. Store them in kd-tree when they hit diffuse surface. Then, 
use russian roulette to decide if the photon should be absorbed or specularly or diffusively reflected. 
Create both global map and caustics map. For the Caustics map, we send more of the photons towards
reflective/refractive objects.

l Ray trace from eye:
– As usual: I.e., shooting primary rays and recursively shooting reflection/refraction rays, and at each

intersection point p, compute direct illumination (shadow rays + shading). 
– Also grow sphere around each p in caustics map to get caustics contribution and in global map to get 

slow-varying indirect illumination. 
– If final gather is used: At the first diffuse hit, instead of using global map directly, sample indirect slow

varying light around p by sampling the hemisphere with ~100 – 1000 rays and use the two photon maps
where those rays hit a surface. Or interpolate from nearby final-gather points.

l Growing sphere: 
– Uses the kd-tree to expand a sphere around p until a fixed amount (e.g. 50) photons are inside the 

sphere. The radius is an inverse measure of the intensity of indirect light at p. The BRDF at p could also
be used to get a more accurate color and intensity value.

Or shorter summary:
1. Shoot photons from light source, and let them bounce around in the scene, and store them where they land 

(e.g. in a kD-tree).
2. Ray-tracing pass from the eye. Estimate photon density at each ray hit, by growing a sphere (at the hit 

point in the kD-tree) until it contains a predetermined #photons. Sphere radius is then the inverse measure
of the light intensity at the point. 95



Lecture 11: Shadows + Reflection

• Point light / Area light
• Three ways of thinking about shadows

– The basis for different algorithms.
• Shadow mapping

– Be able to describe the algorithm
• Shadow volumes

– Be able to describe the algorithm
– Stencil buffer, 3-pass algorithm, Z-pass, Z-fail,
– Creating quads from the silhouette edges as seen from the light source, etc

• Pros and cons of  shadow volumes vs shadow maps
• Planar reflections – how to do. Why not using environment

mapping?
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Ways of thinking about shadows
l As separate objects (like Peter Pan's 

shadow) This corresponds to planar 
shadows

l As volumes of space that are dark
l This corresponds to shadow volumes

l As places not seen from a light source 
looking at the scene. This corresponds 
to shadow maps

l Note that we already "have shadows" for 
objects facing away from light



Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps - Summary

Shadow Map Algorithm:

¡ Render a z-buffer from the light source
� Represents geometry in light

¡ Render from camera
� For every fragment:

¡ Transform(warp) its 3D-pos (x,y,z)
into shadow map (i.e. light space) and
compare depth with the stored 
depth value in the shadow map

¡ If depth greater-> point in shadow
¡ Else -> point in light
¡ Use a bias at the comparison

Understand z-fighting and light leaks
Shadow Map (=depth buffer)

98



Tutorial Shadow Algorithms for Real-time Rendering

Bias
¡ Need a tolerance threshold 

(depth bias) when comparing 
depths to avoid surface self 
shadowing

Shadow map sample

Shadow map

Surface

View sample
bias

99



Tutorial Shadow Algorithms for Real-time Rendering

Bias
¡ Need a tolerance threshold 

(depth bias) when comparing 
depths to avoid surface self 
shadowing

Shadow map sample

Shadow map

Surface

View sample
bias

SM-based 
representation

z-!ghting

without depth bias

shadow map

with depth bias

light leaking at contact shadows

o"set
 SM-based 

representation

100



Tutorial Shadow Algorithms for Real-time Rendering

Bias
¡ Need a tolerance threshold 

(depth bias) when comparing 
depths to avoid surface self 
shadowing

Shadow map sample

Shadow map

Surface

View samplebias

SM-based 
representation

z-!ghting

without depth bias

shadow map

with depth bias

light leaking at contact shadows

o"set
 SM-based 

representation

Surface that 
should be in 
shadow

101



Percentage Closer Filtering

102

Use a 
neighborhood 
of the SM pixel 
(e.g., 3x3 
region) to 
compute an 
averaged 
shadow result 
of this region.



Cascaded Shadow Maps

¡ You need high SM resolution close to 
the camera and can use lower 
further away. So create a separate 
SMs per depth region of the view 
frustum, with higher spatial 
resolution closer to camera.
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Shadow volumes
Create shadow quads for all silhouette 

edges (as seen from the light source). 
(The normals are pointing outwards from the shadow 
volume.)

Then…Edges between one triangle front 
facing the light source and one 
triangle back facing the light source 
are considered silhouette edges.



Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes - concept

¡ Perform counting with the stencil buffer
� Render front facing shadow quads to the stencil buffer

¡ Inc stencil value, since those represents entering shadow volume
� Render back facing shadow quads to the stencil buffer

¡ Dec stencil value, since those represents exiting shadow volume

0
+2

+ +
- -

• No updating of z-buffer
• Z-test is enabled as usual

105



Tutorial Shadow Algorithms for Real-time Rendering

Shadow Volumes with the Stencil Buffer

¡ A three pass process:
� 1st pass: Render ambient lighting
� 2nd pass:

¡ Draw to stencil buffer only
– Turn off updating of z-buffer and writing to color buffer but still 

use standard depth test
– Set stencil operation to 

» incrementing stencil buffer count for frontfacing shadow 
volume quads, and

» decrementing stencil buffer count for backfacing shadow 
volume quads

� 3rd pass: Render diffuse and specular where stencil buffer is 0. 

106



Tutorial Shadow Algorithms for Real-time Rendering

The Z-fail Algorithm
¡ Z-pass must offset the stencil buffer with the number of 

shadow volumes that the eye is inside. Problematic.
¡ Count to infinity instead of to the eye

� We can choose any reference location for the counting
� A point in light avoids any offset
� Infinity is always in light – if we cap the shadow volumes at 

infinity

+2
0

Simply invert z-test and
invert stencil inc/dec

Near capping

Far capping 107
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Compared to Z-pass:

Invert z-test

Invert stencil inc/dec

I.e., count to infinity instead of from eye.



Tutorial Shadow Algorithms for Real-time Rendering

Shadow Maps vs Shadow Volumes

Shadow Maps Shadow Volumes
� Good: shadows are sharp. Handles omni-

directional lights.
� Bad: 3 passes, shadow polygons must be 

generated and rendered ® lots of 
polygons & fill
� Solution: culling & clamping

� Good: Handles any rasterizable geometry, 
constant cost regardless of complexity, map 
can sometimes be reused. Very fast.

� Bad: Frustum limited. Jagged shadows if res 
too low, biasing headaches.
� Solution: 
� 6 SM (cube map), high res., use 

filtering (huge topic)
109



Planar reflections
l We’ve already done reflections in curved surfaces with environment

mapping. But the env.map is assumed to have an infinite radius, such
that only the reflection ray’s direction (not origin) matters. Hence…

l …Environment maps does not work well for reflections in planar surfaces:

l Parallax corrected cube maps fix this, but purely planar reflections are
actually easy to get by reflecting the geometry or camera as we will see
on the next slide…  

11
0
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Planar reflections
Two methods: 
1. Reflecting the object:

– If reflection plane is z=0 (else somewhat more
complicated – see page 504)
l Apply glScalef(1,1,-1);

– Backfacing becomes front facing!
l i.e., use frontface culling instead of backface culling

– Lights should be reflected as well

2. Reflecting the camera in the reflection
plane
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Planar reflections
l Assume plane is z=0
l Then apply glScalef(1,1,-1);
l Effect:

z

Important:
• render scaled (1,1,-1) 

model
• with reflected ligh pos.
• using front face culling



11
3

Or reflect camera position
instead of the object:

• Render reflection:
1. Render reflective plane to stencil buffer
2. Reflect camera including camera axes ß The important part!
3. Set user clip plane in mirror plane to cull anything between mirror and 

reflected camera
4. Render scene from reflected camera.

• Render scene as normal from original camera

R
ight-hand sided 

coordinate system

Le
ft-

ha
nd

 s
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ed
 

co
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te
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Curves and Surfaces - outline
Goal is to explain NURBS curves/surfaces…
• Introduce types of curves and surfaces

– Explicit – not general, easy to compute.
– Implicit – general, non-easy to compute.
– Parametric - general + simple to compute. We choose this.

• A complete curve is split into curve segments, each defined by a 
cubical polynomial.

– Introducing Interpolating/Hermite/Bezier curves.
• Adjacent segments should have C2 continuity.

– Leads to B-Splines with a blending function (a spline) per control point
• Each spline consists of 4 cubical polynomials, forming a bell shape translated along u.
• (Also, four bells will overlap at each point on the complete curve.)

• NURBS – a generalization of B-Splines:
– Control points at non-uniform locations along parameter u.
– Individual weights (i.e., importance) per control point

114

12. Curves and Surfaces:



Continuity

• A) Non-continuous
• B) C0-continuous
• C) G1-continuous
• D) C1-continuous
• (C2-continuous)

(a) (b) (c) (d)

See page 726-727 in 
Real-time Rendering, 
4th ed.

12. Curves and Surfaces:



p0

p1

p2

p3

116

• Introduce the types of curves
– Interpolating

• Blending polynomials for interpolation of 4 control points (fit curve to 4 
control points)

– Hermite 
• fit curve to 2 control points + 2 derivatives (tangents)

– Bezier
• 2 interpolating control points + 2 intermediate points to define the 

tangents 
– B-spline – use points of adjacent curve segments

• To get C1 and C2 continuity
– NURBS

• Different weights of the control points
• The control points can be at non-uniform intervalls

Types of Curves
12. Curves and Surfaces:



Splines and Basis
• If we examine the cubic B-spline from the 
perspective of each control (data) point, 
each interior point contributes (through the 
blending functions) to four segments

•We can rewrite p(u) in terms of the data 
points as

defining the basis functions {Bi(u)}

puBup ii )()( å=

12. Curves and Surfaces:



B-Splines

u

p0 p1

p2

p3

p4

p5

p6 p7

p8

u=0 8
u

1 2 3 4 5 6 7

These are our control points, p0-
p8, to which we want to 
approximate a curve

Illustration of how the control points are evenly (uniformly) distributed
along the parameterisation u of the curve p(u).

In each point p(u) of the curve, for a given u, the point is defined as a 
weighted sum of the closest 4 surrounding points.  Below are shown the 
weights for each point along u=0®1

p0 p1 p2 p3 p4 p5 p6 p7 p8

100%

12. Curves and Surfaces:



B-Splines

p0 p1 p2 p3 p4

u

p5 p6 p7 p8

100%

The weight function (blend function)  Bpi (u) for a point pi can thus be 
written as a translation of a basis function B(t). Bpi(u) = B(u-i)

B(t):

t
0 1 2-1-2

100%

Blendfunction  B1(u) for  
point p1

puBup ii )()( å=
Our complete B-spline
curve p(u) can thus be 
written as:

SUMMARY

In each point p(u) of the curve, for a given u, the point is defined as a 
weighted sum of the closest 4 surrounding points.  Below are shown the 
weights for each point along u=0®1



NURBS
NURBS is similar to B-Splines except that:
1. The control points can have different weights, wi, 

(heigher weight makes the curve go closer to that 
control point)

2. The control points do not have to be at uniform 
distances (u=0,1,2,3...) along the parameterisa-
tion u. E.g.: u=0, 0.5, 0.9, 4, 14,…

NURBS = Non-Uniform Rational B-Splines
The NURBS-curve is thus defined as:

Division with the sum of the weights, 
to make the combined weights sum
up to 1, at each position along the 
curve.  Otherwise, a translation of the 
curve is introduced (which is not 
desirable)

p(u) =
Bi (u)wii=0

n−1
∑ p(i)

Bi (u)wii=0

n−1
∑

12. Curves and Surfaces:



NURBS
• Allowing control points at non-uniform distances 

means that the basis functions Bpi() are being 
streched and non-uniformly located. 

• E.g.:

Each curve Bpi() should of course look smooth and  C2 –continuous. 
But it is not so easy to draw smoothly by hand…(The sum of the 
weights are still =1 due to the division in previous slide ) 

12. Curves and Surfaces:

u



• Perspective correct
interpolation (e.g. for textures)

• Taxonomy:
– Sort first
– sort middle
– sort last fragment
– sort last image

• Bandwidth
– Why it is a problem and how to ”solve” it

• L1 / L2 caches
• Texture caching with prefetching, (warp switching)
• Texture compression, Z-compression, Z-occlusion testing (HyperZ)

• Be able to sketch the functional blocks and relation to hardware for a 
modern graphics card (next slide→)

Linearly interpolate (ui/wi, vi/wi, 1/wi) in screenspace
from each triangle vertex i.
Then at each pixel:

uip = (u/w)ip / (1/w)ip
vip = (v/w)ip / (1/w)ip

where ip = screen-space interpolated value from 
the triangle vertices.

Sort-
first

Sort-
middle

Sort-last
fragment
Sort-last 
image
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Application

PCI-E x16

Vertex
shader

Vertex
shader

Vertex
shader…

Primitive assembly

Clipping

Fragment Generation

…

Geo
shader

Geo
shader

Geo
shader

Vertex-, Geometry- and Fragment shaders
exectued on a pool of thousands of ALUs

The graphics-pipeline’s funcional
blocks and their relation to hardware

Fixed function hardware

Fixed function hardware
Fragment 
shader

Fragment 
shader

Fragment 
shader

Fragment 
Merge

Fragment 
Merge

Fragment 
Merge

…
Sort


