
Programming Language Technology

Exam, 13 January 2020 at 08.30 – 12.30 in M

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150 and DIT230.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 09:30 and 11:30.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: 24 January 2019 13.30-15.00 in EDIT meeting room Analysen (3rd floor).

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
kinds of constructs of C:
• Program: int main() followed by a block
• Block: a sequence of statements enclosed between { and }
• Statement:

– block
– initializing variable declaration, e.g., int x = e;
– statement formed from an expression by adding a semicolon ;
– if statement with else

• Expression:
– boolean literal true or false
– integer literal
– function call with a list of comma-separated arguments
– post-increment of an identifier, e.g., x++
– addition (+), left associative
– parenthesized expression

• Type: int or bool
Lines starting with # are comments. An example program is:

#include <stdio.h>

#define printInt3(e1,e2,e3) printf("%d %d %d\n",e1,e2,e3)

int main () {

int x = 8;

if (true) {

printInt3 (x++, 10 + x++, x++ + 19);

} else bool b = false;

}

You can use the standard BNFC categories Integer and Ident, the coercions pragma,
and list categories via the terminator and separator pragmas.
(10p)

1

Question 2 (Lexing): An acceptable password be a sequence of characters that con-
tains at least one digit and one special character. Our alphabet be Σ = {a, b, c} where a
stands for digits, b for special characters, and c for other characters (like letters).

1. Give a regular expression for acceptable passwords.

2. Give a deterministic finite automaton for acceptable passwords with no more than
8 states.

Remember to mark initial and final states appropriately. (4p)

Question 3 (LR Parsing): Consider the following labeled BNF-Grammar (written in
bnfc syntax). The starting non-terminal is S.

Seq. S ::= P M ;

Plus. P ::= P A "+" ;

None. P ::= ;

Minus. M ::= A "-" M ;

Done. M ::= A ;

X. A ::= "x" ;

Y. A ::= "y" ;

Step by step, trace the shift-reduce parsing of the expression

x + y - x

showing how the stack and the input evolve and which actions are performed. (8p)

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and blocks of
Question 1. The form of the typing judgements should be Γ ` s ⇒ Γ′ where s
is a statement or list of statements, Γ is the typing context before s, and Γ′ the
typing context after s. Observe the scoping rules for variables! You can assume a
type-checking judgement Γ ` e : t for expressions e.

Alternatively, you can write the type checker in pseudo code or Haskell (then assume
checkExpr to be defined). In any case, the typing environment must be made
explicit. (6p)

2. Write syntax-directed interpretation rules for the expressions of Question 1. The
form of the evaluation judgement should be γ ` e ⇓ 〈v; γ′〉 where e denotes the
expression to be evaluated in environment γ and the pair 〈v; γ′〉 denotes the resulting
value and updated environment. You can assume a judgement γ ` b ⇓ v stating
that block b evaluates to value v in environment γ.

Alternatively, you can write the interpreter in pseudo code or Haskell (then assume
a function evalBlock to be defined). A function lookupVar can be assumed if its
behavior is described. In any case, the environment must be made explicit. (6p)

2

Question 5 (Compilation):

1. Write compilation schemes in pseudo code or Haskell for the statement, block, and
expressions constructions of Question 1. The compiler should output symbolic JVM
instructions (i.e. Jasmin assembler). It is not necessary to remember exactly the
names of the instructions—only what arguments they take and how they work.

Service functions like addVar, lookupVar, lookupFun, newLabel, newBlock, popBlock,
and emit can be assumed if their behavior is described. (9p)

2. Give the small-step semantics of the JVM instructions you used in the compilation
schemes in part 1. Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) is the program counter, variable store, and stack before execution
of instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For
adjusting the program counter, you can assume that each instruction has size 1.
(7p)

Question 6 (Functional languages):

1. The following grammar describes a tiny simply-typed sub-language of Haskell.

x identifier
n ::= 0 | 1 | −1 | 2 | −2 | . . . numeral
e ::= n | e+ e | x | λx→ e | e e expression
t ::= Int | t→ t type

Application e1 e2 is left-associative, the arrow t1 → t2 is right-associative.
For the following typing judgements Γ ` e : t, decide whether they are valid or not.

Your answer can be just “valid” or “not valid”, but you may also provide a justification
why some judgement is valid or invalid.

(a) ` λx→ λy → (y x) 0 : Int→ (Int→ Int)
(b) g : (Int→ Int)→ Int ` (g + 1) (λx→ x) : Int
(c) f : Int→ Int ` λx→ f (f (1 + (f x))) : Int→ Int
(d) x : Int→ Int, g : Int ` x (g + 1) : Int
(e) f : (Int→ Int)→ (Int→ Int) ` (λx→ f x) (λx→ f (λx→ x)x)) : Int→ Int

The usual rules for multiple-choice questions apply: For a correct answer you get 1 point
for a wrong answer −1 points. If you choose not to give an answer for a judgement, you
get 0 points for that judgement. Your final score will be between 0 and 5 points, a negative
sum is rounded up to 0. (5p)

2. Write a call-by-name interpreter for the functional language above, either with in-
ference rules or in pseudo code or Haskell. (5p)

3

